Changes for page 06 Operation
Last modified by Iris on 2025/08/06 18:24
From version 42.1
edited by Joey
on 2022/06/10 15:32
on 2022/06/10 15:32
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Joey1 +XWiki.admin - Content
-
... ... @@ -2,22 +2,21 @@ 2 2 3 3 == **Check before operation** == 4 4 5 +|=(% scope="row" %)**No.**|=**Content** 6 +|=(% colspan="2" %)Wiring 7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=5|Servo drive and servo motor must be grounded reliably. 12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=7|The force of all cables is within the specified range. 14 +|=8|The wiring terminals have been insulated. 15 +|=(% colspan="2" %)Environment and Machinery 16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 5 5 6 -|**No.**|**Content** 7 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring 8 -|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 9 -|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 10 -|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 11 -|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 12 -|5|Servo drive and servo motor must be grounded reliably. 13 -|6|When using an external braking resistor, the short wiring between drive C and D must be removed. 14 -|7|The force of all cables is within the specified range. 15 -|8|The wiring terminals have been insulated. 16 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery 17 -|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 18 -|2|The servo drive and external braking resistor are not placed on combustible objects. 19 -|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 20 - 21 21 Table 6-1 Check contents before operation 22 22 23 23 == **Power-on** == ... ... @@ -43,17 +43,17 @@ 43 43 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 44 44 45 45 46 - (% class="table-bordered" %)47 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((45 + 46 +|=(% scope="row" %)**Function code**|=**Name**|=((( 48 48 **Setting method** 49 -)))| (% style="text-align:center; vertical-align:middle" %)(((48 +)))|=((( 50 50 **Effective time** 51 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**52 -| (% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((50 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 51 +|=P10-01|JOG speed|((( 53 53 Operation setting 54 -)))|( % style="text-align:center; vertical-align:middle" %)(((53 +)))|((( 55 55 Effective immediately 56 -)))| (% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm55 +)))|100|0 to 3000|JOG speed|rpm 57 57 58 58 Table 6-2 JOG speed parameter 59 59 ... ... @@ -61,25 +61,25 @@ 61 61 62 62 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 63 63 64 - (% class="table-bordered" %)65 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((63 + 64 +|=(% scope="row" %)**Function code**|=**Name**|=((( 66 66 **Setting method** 67 -)))| (% style="text-align:center; vertical-align:middle" %)(((66 +)))|=((( 68 68 **Effective time** 69 -)))| (% style="text-align:center; vertical-align:middle" %)(((68 +)))|=((( 70 70 **Default value** 71 -)))| (% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**72 -| (% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((70 +)))|=**Range**|=**Definition**|=**Unit** 71 +|=P00-04|Rotation direction|((( 73 73 Shutdown setting 74 -)))|( % style="text-align:center; vertical-align:middle" %)(((73 +)))|((( 75 75 Effective immediately 76 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((75 +)))|0|0 to 1|((( 77 77 Forward rotation: Face the motor shaft to watch 78 78 79 79 0: standard setting (CW is forward rotation) 80 80 81 81 1: reverse mode (CCW is forward rotation) 82 -)))| (% style="text-align:center; vertical-align:middle" %)-81 +)))|- 83 83 84 84 Table 6-3 Rotation direction parameters** ** 85 85 ... ... @@ -92,17 +92,16 @@ 92 92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 93 93 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 94 94 95 -(% class="table-bordered" %) 96 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 94 +|=(% scope="row" %)**Function code**|=**Name**|=((( 97 97 **Setting method** 98 -)))| (% style="text-align:center; vertical-align:middle" %)(((96 +)))|=((( 99 99 **Effective time** 100 -)))| (% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**101 -| (% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((98 +)))|=**Default**|=**Range**|=**Definition**|=**Unit** 99 +|=P00-09|Braking resistor setting|((( 102 102 Operation setting 103 -)))|( % style="text-align:center; vertical-align:middle" %)(((101 +)))|((( 104 104 Effective immediately 105 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((103 +)))|0|0 to 3|((( 106 106 0: use built-in braking resistor 107 107 108 108 1: use external braking resistor and natural cooling ... ... @@ -110,18 +110,18 @@ 110 110 2: use external braking resistor and forced air cooling; (cannot be set) 111 111 112 112 3: No braking resistor is used, it is all absorbed by capacitor. 113 -)))| (% style="text-align:center; vertical-align:middle" %)-114 -|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 115 -| (% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((111 +)))|- 112 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 113 +|=P00-10|External braking resistor value|((( 116 116 Operation setting 117 -)))|( % style="text-align:center; vertical-align:middle" %)(((115 +)))|((( 118 118 Effective immediately 119 -)))| (% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω120 -| (% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((117 +)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 118 +|=P00-11|External braking resistor power|((( 121 121 Operation setting 122 -)))|( % style="text-align:center; vertical-align:middle" %)(((120 +)))|((( 123 123 Effective immediately 124 -)))| (% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W122 +)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 125 125 126 126 Table 6-4 Braking resistor parameters 127 127 ... ... @@ -139,7 +139,7 @@ 139 139 140 140 **(3) Timing diagram of power on** 141 141 142 - (% style="text-align:center" %)140 + 143 143 [[image:image-20220608163014-1.png]] 144 144 145 145 Figure 6-1 Timing diagram of power on ... ... @@ -148,17 +148,17 @@ 148 148 149 149 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. 150 150 151 -(% class="table-bordered" %) 152 -|Shutdown mode|Shutdown description|Shutdown characteristics 153 -|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 154 -|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 155 155 150 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 151 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 152 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 153 + 156 156 Table 6-5 Comparison of two shutdown modes 157 157 158 -(% class="table-bordered" %) 159 -|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked** 160 -|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 161 161 157 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 158 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 159 + 162 162 Table 6-6 Comparison of two shutdown status 163 163 164 164 **(1) Servo enable (S-ON) OFF shutdown** ... ... @@ -165,27 +165,27 @@ 165 165 166 166 The related parameters of the servo OFF shutdown mode are shown in the table below. 167 167 168 - (% class="table-bordered" %)169 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((166 + 167 +|=(% scope="row" %)**Function code**|=**Name**|=((( 170 170 **Setting method** 171 -)))| (% style="text-align:center; vertical-align:middle" %)(((169 +)))|=((( 172 172 **Effective time** 173 -)))| (% style="text-align:center; vertical-align:middle" %)(((171 +)))|=((( 174 174 **Default value** 175 -)))| (% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**176 -| (% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((173 +)))|=**Range**|=**Definition**|=**Unit** 174 +|=P00-05|Servo OFF shutdown|((( 177 177 Shutdown 178 178 179 179 setting 180 -)))|( % style="text-align:center; vertical-align:middle" %)(((178 +)))|((( 181 181 Effective 182 182 183 183 immediately 184 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((182 +)))|0|0 to 1|((( 185 185 0: Free shutdown, and the motor shaft remains free status. 186 186 187 187 1: Zero-speed shutdown, and the motor shaft remains free status. 188 -)))| (% style="text-align:center; vertical-align:middle" %)-186 +)))|- 189 189 190 190 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 191 191 ... ... @@ -201,13 +201,13 @@ 201 201 202 202 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 203 203 204 - (% class="table-bordered" %)205 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((202 + 203 +|=(% scope="row" %)**Function code**|=**Name**|=((( 206 206 **Setting method** 207 -)))| (% style="text-align:center; vertical-align:middle" %)(((205 +)))|=((( 208 208 **Effective time** 209 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**210 -| (% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((207 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 208 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 211 211 0: OFF (not used) 212 212 213 213 01: S-ON servo enable ... ... @@ -255,32 +255,30 @@ 255 255 24: Internal multi-segment position selection 4 256 256 257 257 Others: reserved 258 -)))| (% style="text-align:center; vertical-align:middle" %)-259 -| (% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((256 +)))|- 257 +|=P06-09|DI_3 channel logic selection|Operation setting|((( 260 260 Effective immediately 261 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((259 +)))|0|0 to 1|((( 262 262 DI port input logic validity function selection. 263 263 264 264 0: Normally open input. Active low level (switch on); 265 265 266 266 1: Normally closed input. Active high level (switch off); 267 -)))| (% style="text-align:center; vertical-align:middle" %)-268 -| (% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((265 +)))|- 266 +|=P06-10|DI_3 input source selection|Operation setting|((( 269 269 Effective immediately 270 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((268 +)))|0|0 to 1|((( 271 271 Select the DI_3 port type to enable 272 272 273 273 0: Hardware DI_3 input terminal 274 274 275 275 1: virtual VDI_3 input terminal 276 -)))|(% style="text-align:center; vertical-align:middle" %)- 277 - 278 -(% class="table-bordered" %) 279 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 274 +)))|- 275 +|=P06-11|DI_4 channel function selection|((( 280 280 Operation setting 281 -)))|( % style="text-align:center; vertical-align:middle; width:195px" %)(((277 +)))|((( 282 282 again Power-on 283 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((279 +)))|4|0 to 32|((( 284 284 0 off (not used) 285 285 286 286 01: SON Servo enable ... ... @@ -328,25 +328,25 @@ 328 328 24: Internal multi-segment position selection 4 329 329 330 330 Others: reserved 331 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-332 -| (% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((327 +)))|- 328 +|=P06-12|DI_4 channel logic selection|Operation setting|((( 333 333 Effective immediately 334 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((330 +)))|0|0 to 1|((( 335 335 DI port input logic validity function selection. 336 336 337 337 0: Normally open input. Active low level (switch on); 338 338 339 339 1: Normally closed input. Active high level (switch off); 340 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-341 -| (% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((336 +)))|- 337 +|=P06-13|DI_4 input source selection|Operation setting|((( 342 342 Effective immediately 343 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((339 +)))|0|0 to 1|((( 344 344 Select the DI_4 port type to enable 345 345 346 346 0: Hardware DI_4 input terminal 347 347 348 348 1: virtual VDI_4 input terminal 349 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-345 +)))|- 350 350 351 351 Table 6-8 DI3 and DI4 channel parameters 352 352 ... ... @@ -358,10 +358,9 @@ 358 358 359 359 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 360 360 361 - (% class="table-bordered" %)357 + 362 362 |((( 363 -(% style="text-align:center" %) 364 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]] 359 +[[image:image-20220611151617-1.png]] 365 365 ))) 366 366 |((( 367 367 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped; ... ... @@ -379,15 +379,14 @@ 379 379 380 380 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 381 381 382 - (% style="text-align:center" %)377 + 383 383 [[image:image-20220608163136-2.png]] 384 384 385 385 Figure 6-2 VD2B servo drive brake wiring 386 386 387 - (% class="table-bordered" %)382 + 388 388 |((( 389 -(% style="text-align:center" %) 390 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]] 384 +[[image:image-20220611151642-2.png]] 391 391 ))) 392 392 |((( 393 393 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V. ... ... @@ -403,42 +403,42 @@ 403 403 404 404 Related function code is as below. 405 405 406 - (% class="table-bordered" %)407 -|(% s tyle="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((400 + 401 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=((( 408 408 **Effective time** 409 409 ))) 410 -| (% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((404 +|=144|((( 411 411 BRK-OFF Brake output 412 -)))| (% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again406 +)))|Output the signal indicates the servo motor brake release|Power-on again 413 413 414 414 Table 6-2 Relevant function codes for brake setting 415 415 416 - (% class="table-bordered" %)417 -|(% s tyle="text-align:center; vertical-align:middle;width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((410 + 411 +|=(% scope="row" %)**Function code**|=**Name**|=((( 418 418 **Setting method** 419 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)(((413 +)))|=((( 420 420 **Effective time** 421 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**422 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((415 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 416 +|=P1-30|Delay from brake output to instruction reception|((( 423 423 Operation setting 424 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms425 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((418 +)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms 419 +|=P1-31|In static state, delay from brake output OFF to the motor is power off|((( 426 426 Operation setting 427 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms428 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((421 +)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms 422 +|=P1-32|Rotation status, when the brake output OFF, the speed threshold|((( 429 429 Operation setting 430 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((424 +)))|Effective immediately|30|0 to 3000|((( 431 431 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. 432 432 433 433 When the brake output (BRK-OFF) is not allocated, this function code has no effect. 434 -)))| (% style="text-align:center; vertical-align:middle" %)rpm435 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((428 +)))|rpm 429 +|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|((( 436 436 Operation setting 437 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((431 +)))|Effective immediately|500|1 to 1000|((( 438 438 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. 439 439 440 440 When brake output (BRK-OFF) is not allocated, this function code has no effect. 441 -)))| (% style="text-align:center; vertical-align:middle" %)ms435 +)))|ms 442 442 443 443 Table 6-9 Brake setting function codes 444 444 ... ... @@ -452,10 +452,9 @@ 452 452 453 453 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__ 454 454 455 - (% class="table-bordered" %)449 + 456 456 |((( 457 -(% style="text-align:center" %) 458 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]] 451 +[[image:image-20220611151705-3.png]] 459 459 ))) 460 460 |((( 461 461 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused. ... ... @@ -463,7 +463,6 @@ 463 463 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 464 464 ))) 465 465 466 -(% style="text-align:center" %) 467 467 [[image:image-20220608163304-3.png]] 468 468 469 469 Figure 6-3 Brake Timing of when the motor is stationary ... ... @@ -474,10 +474,9 @@ 474 474 475 475 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__. 476 476 477 - (% class="table-bordered" %)469 + 478 478 |((( 479 -(% style="text-align:center" %) 480 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]] 471 +[[image:image-20220611151719-4.png]] 481 481 ))) 482 482 |((( 483 483 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused. ... ... @@ -491,7 +491,6 @@ 491 491 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 492 492 ))) 493 493 494 -(% style="text-align:center" %) 495 495 [[image:image-20220608163425-4.png]] 496 496 497 497 Figure 6-4 Brake timing when the motor rotates ... ... @@ -500,7 +500,7 @@ 500 500 501 501 The brake timing (free shutdown) in the fault status is as follows. 502 502 503 - (% style="text-align:center" %)493 + 504 504 [[image:image-20220608163541-5.png]] 505 505 506 506 Figure 6-5 The brake timing (free shutdown) in the fault state ... ... @@ -509,7 +509,7 @@ 509 509 510 510 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 511 511 512 - (% style="text-align:center" %)502 + 513 513 [[image:image-20220608163643-6.png]] 514 514 515 515 Figure 6-6 Position control diagram ... ... @@ -516,17 +516,17 @@ 516 516 517 517 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 518 518 519 - (% class="table-bordered" %)520 -| (% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((509 + 510 +|**Function code**|**Name**|((( 521 521 **Setting method** 522 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((512 +)))|((( 523 523 **Effective time** 524 -)))| (% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**525 -| (% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((514 +)))|**Default value**|**Range**|**Definition**|**Unit** 515 +|P01-01|Control mode|((( 526 526 Operation setting 527 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((517 +)))|((( 528 528 immediately Effective 529 -)))| (% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((519 +)))|0|0 to 1|((( 530 530 0: position control 531 531 532 532 2: speed control ... ... @@ -538,7 +538,7 @@ 538 538 5: position/torque mix control 539 539 540 540 6: speed /torque mix control 541 -)))| (% style="text-align:center; vertical-align:middle" %)-531 +)))|- 542 542 543 543 Table 6-10 Control mode parameters 544 544 ... ... @@ -546,21 +546,21 @@ 546 546 547 547 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 548 548 549 - (% class="table-bordered" %)550 -| (% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((539 + 540 +|**Function code**|**Name**|((( 551 551 **Setting method** 552 -)))|( % style="text-align:center; vertical-align:middle; width:189px" %)(((542 +)))|((( 553 553 **Effective time** 554 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**555 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((544 +)))|**Default value**|**Range**|**Definition**|**Unit** 545 +|P01-06|Position instruction source|((( 556 556 Operation setting 557 -)))|( % style="text-align:center; vertical-align:middle; width:189px" %)(((547 +)))|((( 558 558 immediately Effective 559 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px"%)0to 1|(% style="width:284px" %)(((549 +)))|0|0 to 1|((( 560 560 0: pulse instruction 561 561 562 562 1: internal position instruction 563 -)))| (% style="text-align:center; vertical-align:middle" %)-553 +)))|- 564 564 565 565 Table 6-11 Position instruction source parameter 566 566 ... ... @@ -568,20 +568,20 @@ 568 568 569 569 1) Low-speed pulse instruction input 570 570 571 -(% class="table-bordered" %) 572 -|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 573 -|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive 574 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting 575 575 562 +|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 563 +|VD2A and VD2B servo drives|VD2F servo drive 564 +|(% colspan="2" %)Figure 6-7 Position instruction input setting 565 + 576 576 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__. 577 577 578 578 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 579 579 580 -(% class="table-bordered" %) 581 -|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage** 582 -|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V 583 -|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V 584 584 571 +|**Pulse method**|**Maximum frequency**|**Voltage** 572 +|Open collector input|200K|24V 573 +|Differential input|500K|5V 574 + 585 585 Table 6-12 Pulse input specifications 586 586 587 587 1.Differential input ... ... @@ -588,7 +588,7 @@ 588 588 589 589 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 590 590 591 - (% style="text-align:center" %)581 + 592 592 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]] 593 593 594 594 Figure 6-8 Differential input connection ... ... @@ -599,7 +599,7 @@ 599 599 600 600 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 601 601 602 - (% style="text-align:center" %)592 + 603 603 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]] 604 604 605 605 Figure 6-9 Open collector input connection ... ... @@ -610,7 +610,7 @@ 610 610 611 611 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 612 612 613 - (% style="text-align:center" %)603 + 614 614 [[image:image-20220608163952-8.png]] 615 615 616 616 Figure 6-10 Example of filtered signal waveform ... ... @@ -617,22 +617,22 @@ 617 617 618 618 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 619 619 620 - (% class="table-bordered" %)621 -| (% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((610 + 611 +|**Function code**|**Name**|((( 622 622 **Setting method** 623 -)))|( % style="text-align:center; vertical-align:middle; width:159px" %)(((613 +)))|((( 624 624 **Effective time** 625 -)))| (% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:71px" %)**Range**|(% colspan="2"style="text-align:center; vertical-align:middle; width:349px"%)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**626 -| (% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((615 +)))|**Default value**|**Range**|(% colspan="2" %)**Definition**|**Unit** 616 +|P00-13|Maximum position pulse frequency|((( 627 627 Shutdown setting 628 -)))|( % style="text-align:center; vertical-align:middle; width:159px" %)(((618 +)))|((( 629 629 Effective immediately 630 -)))| (% style="text-align:center; vertical-align:middle; width:105px" %)300|(% style="text-align:center; vertical-align:middle; width:71px"%)1to 500|(% colspan="2"style="width:349px"%)Set the maximum frequency of external pulse instruction|KHz631 -|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px"%)P00-14|(% rowspan="3"style="text-align:center; vertical-align:middle; width:202px"%)Position pulse anti-interference level|(% rowspan="3"style="text-align:center; vertical-align:middle; width:158px"%)(((620 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 621 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 632 632 Operation setting 633 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:159px"%)(((623 +)))|(% rowspan="3" %)((( 634 634 Power-on again 635 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:105px"%)2|(% rowspan="3"style="text-align:center; vertical-align:middle; width:71px"%)0 to 9|(% colspan="2"style="width:349px"%)(((625 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 636 636 Set the anti-interference level of external pulse instruction. 637 637 638 638 0: no filtering; ... ... @@ -652,8 +652,8 @@ 652 652 7: Filtering time 8.192us 653 653 654 654 8: Filtering time 16.384us 655 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle"%)-656 -|(% rowspan="2" style="width:29px"%)9|VD2: Filtering time 25.5us645 +)))|(% rowspan="3" %)- 646 +|(% rowspan="2" %)9|VD2: Filtering time 25.5us 657 657 |VD2F: Filtering time 25.5us 658 658 659 659 Table 6-13 Position pulse frequency and anti-interference level parameters ... ... @@ -662,17 +662,17 @@ 662 662 663 663 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 664 664 665 - (% class="table-bordered" %)666 -| (% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((655 + 656 +|**Function code**|**Name**|((( 667 667 **Setting method** 668 -)))|( % style="text-align:center; vertical-align:middle; width:135px" %)(((658 +)))|((( 669 669 **Effective time** 670 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**671 -| (% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((660 +)))|**Default value**|**Range**|**Definition**|**Unit** 661 +|P00-12|Position pulse type selection|((( 672 672 Operation setting 673 -)))|( % style="text-align:center; vertical-align:middle; width:135px" %)(((663 +)))|((( 674 674 Power-on again 675 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((665 +)))|0|0 to 5|((( 676 676 0: direction + pulse (positive logic) 677 677 678 678 1: CW/CCW ... ... @@ -684,74 +684,74 @@ 684 684 4: CW/CCW (negative logic) 685 685 686 686 5: A, B phase quadrature pulse (4 times frequency negative logic) 687 -)))| (% style="text-align:center; vertical-align:middle" %)-677 +)))|- 688 688 689 689 Table 6-14 Position pulse type selection parameter 690 690 691 - (% class="table-bordered" %)692 -| (% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**693 -| (% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((681 + 682 +|**Pulse type selection**|**Pulse type**|**Signal**|**Schematic diagram of forward pulse**|**Schematic diagram of negative pulse** 683 +|0|((( 694 694 Direction + pulse 695 695 696 696 (Positive logic) 697 -)))|( % style="text-align:center; vertical-align:middle" %)(((687 +)))|((( 698 698 PULSE 699 699 700 700 SIGN 701 -)))| (% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]702 -| (% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((691 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 692 +|1|CW/CCW|((( 703 703 PULSE (CW) 704 704 705 705 SIGN (CCW) 706 -)))|(% colspan="2" style="text-align:center; vertical-align:middle"%)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]707 -| (% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((696 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 697 +|2|((( 708 708 AB phase orthogonal 709 709 710 710 pulse (4 times frequency) 711 -)))|( % style="text-align:center; vertical-align:middle" %)(((701 +)))|((( 712 712 PULSE (Phase A) 713 713 714 714 SIGN (Phase B) 715 -)))|( % style="text-align:center; vertical-align:middle" %)(((705 +)))|((( 716 716 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]] 717 717 718 718 Phase A is 90° ahead of Phase B 719 -)))|( % style="text-align:center; vertical-align:middle" %)(((709 +)))|((( 720 720 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]] 721 721 722 722 Phase B is 90° ahead of Phase A 723 723 ))) 724 -| (% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((714 +|3|((( 725 725 Direction + pulse 726 726 727 727 (Negative logic) 728 -)))|( % style="text-align:center; vertical-align:middle" %)(((718 +)))|((( 729 729 PULSE 730 730 731 731 SIGN 732 -)))| (% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]733 -| (% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((722 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 723 +|4|((( 734 734 CW/CCW 735 735 736 736 (Negative logic) 737 -)))|( % style="text-align:center; vertical-align:middle" %)(((727 +)))|((( 738 738 PULSE (CW) 739 739 740 740 SIGN (CCW) 741 -)))|(% colspan="2" style="text-align:center; vertical-align:middle"%)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]742 -| (% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((731 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 732 +|5|((( 743 743 AB phase orthogonal 744 744 745 745 pulse (4 times frequency negative logic) 746 -)))|( % style="text-align:center; vertical-align:middle" %)(((736 +)))|((( 747 747 PULSE (Phase A) 748 748 749 749 SIGN (Phase B) 750 -)))|( % style="text-align:center; vertical-align:middle" %)(((740 +)))|((( 751 751 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]] 752 752 753 753 B phase is ahead of A phase by 90° 754 -)))|( % style="text-align:center; vertical-align:middle" %)(((744 +)))|((( 755 755 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]] 756 756 757 757 A phase is ahead of B phase by 90° ... ... @@ -765,7 +765,7 @@ 765 765 766 766 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 767 767 768 - (% style="text-align:center" %)758 + 769 769 [[image:image-20220608164116-9.png]] 770 770 771 771 Figure 6-11 The setting process of multi-segment position ... ... @@ -772,51 +772,51 @@ 772 772 773 773 1) Set multi-segment position running mode 774 774 775 - (% class="table-bordered" %)776 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((765 + 766 +|**Function code**|**Name**|((( 777 777 **Setting method** 778 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((768 +)))|((( 779 779 **Effective time** 780 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**781 -| (% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((770 +)))|**Default value**|**Range**|**Definition**|**Unit** 771 +|P07-01|Multi-segment position running mode|((( 782 782 Shutdown setting 783 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((773 +)))|((( 784 784 Effective immediately 785 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((775 +)))|0|0 to 2|((( 786 786 0: Single running 787 787 788 788 1: Cycle running 789 789 790 790 2: DI switching running 791 -)))| (% style="text-align:center; vertical-align:middle" %)-792 -| (% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((781 +)))|- 782 +|P07-02|Start segment number|((( 793 793 Shutdown setting 794 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((784 +)))|((( 795 795 Effective immediately 796 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-797 -| (% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((786 +)))|1|1 to 16|1st segment NO. in non-DI switching mode|- 787 +|P07-03|End segment number|((( 798 798 Shutdown setting 799 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((789 +)))|((( 800 800 Effective immediately 801 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-802 -| (% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((791 +)))|1|1 to 16|last segment NO. in non-DI switching mode|- 792 +|P07-04|Margin processing method|((( 803 803 Shutdown setting 804 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((794 +)))|((( 805 805 Effective immediately 806 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((796 +)))|0|0 to 1|((( 807 807 0: Run the remaining segments 808 808 809 809 1: Run again from the start segment 810 -)))| (% style="text-align:center; vertical-align:middle" %)-811 -| (% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((800 +)))|- 801 +|P07-05|Displacement instruction type|((( 812 812 Shutdown setting 813 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((803 +)))|((( 814 814 Effective immediately 815 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((805 +)))|0|0 to 1|((( 816 816 0: Relative position instruction 817 817 818 818 1: Absolute position instruction 819 -)))| (% style="text-align:center; vertical-align:middle" %)-809 +)))|- 820 820 821 821 Table 6-16 multi-segment position running mode parameters 822 822 ... ... @@ -826,7 +826,7 @@ 826 826 827 827 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 828 828 829 - (% style="text-align:center" %)819 + 830 830 [[image:image-20220608164226-10.png]] 831 831 832 832 Figure 6-12 Single running curve (P07-02=1, P07-03=2) ... ... @@ -835,12 +835,12 @@ 835 835 836 836 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 837 837 838 - (% style="text-align:center" %)828 + 839 839 [[image:image-20220608164327-11.png]] 840 840 841 841 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 842 842 843 -| (% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]833 +|[[image:image-20220611151917-5.png]] 844 844 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 845 845 846 846 3. DI switching running ... ... @@ -847,30 +847,30 @@ 847 847 848 848 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 849 849 850 -(% class="table-bordered" %) 851 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 852 -|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 853 -|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 854 -|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 855 -|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 856 856 841 +|**DI function code**|**Function name**|**Function** 842 +|21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 843 +|22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 844 +|23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 845 +|24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 846 + 857 857 Table 6-17 DI function code 858 858 859 859 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number. 860 860 861 -(% class="table-bordered" %) 862 -|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number** 863 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1 864 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2 865 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3 866 -|(% colspan="5" style="text-align:center; vertical-align:middle" %)………… 867 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16 868 868 852 +|**INPOS4**|**INPOS3**|**INPOS2**|**INPOS1**|**Running position number** 853 +|0|0|0|0|1 854 +|0|0|0|1|2 855 +|0|0|1|0|3 856 +|(% colspan="5" %)………… 857 +|1|1|1|1|16 858 + 869 869 Table 6-18 INPOS corresponds to running segment number 870 870 871 871 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__. 872 872 873 - (% style="text-align:center" %)863 + 874 874 [[image:image-20220608164545-12.png]] 875 875 876 876 Figure 6-14 DI switching running curve ... ... @@ -881,12 +881,12 @@ 881 881 882 882 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively. 883 883 884 - (% style="text-align:center" %)874 + 885 885 [[image:image-20220608164847-13.png]] 886 886 887 887 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 888 888 889 - (% style="text-align:center" %)879 + 890 890 [[image:image-20220608165032-14.png]] 891 891 892 892 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) ... ... @@ -895,12 +895,12 @@ 895 895 896 896 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively. 897 897 898 - (% style="text-align:center" %)888 + 899 899 [[image:image-20220608165343-15.png]] 900 900 901 901 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 902 902 903 - (% style="text-align:center" %)893 + 904 904 [[image:image-20220608165558-16.png]] 905 905 906 906 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) ... ... @@ -912,10 +912,8 @@ 912 912 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 913 913 914 914 |((( 915 -(% style="text-align:center" %) 916 916 [[image:image-20220608165710-17.png]] 917 917 )))|((( 918 -(% style="text-align:center" %) 919 919 [[image:image-20220608165749-18.png]] 920 920 ))) 921 921 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram ... ... @@ -925,10 +925,8 @@ 925 925 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 926 926 927 927 |((( 928 -(% style="text-align:center" %) 929 929 [[image:image-20220608165848-19.png]] 930 930 )))|((( 931 -(% style="text-align:center" %) 932 932 [[image:image-20220608170005-20.png]] 933 933 ))) 934 934 |Figure 6-21 Absolute indication|Figure 6-22 Displacement ... ... @@ -937,46 +937,46 @@ 937 937 938 938 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 939 939 940 - (% class="table-bordered" %)941 -| (% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((926 + 927 +|**Function code**|**Name**|((( 942 942 **Setting method** 943 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((929 +)))|((( 944 944 **Effective time** 945 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**946 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((931 +)))|**Default value**|**Range**|**Definition**|**Unit** 932 +|P07-09|((( 947 947 1st segment 948 948 949 949 displacement 950 -)))|( % style="text-align:center; vertical-align:middle; width:143px" %)(((936 +)))|((( 951 951 Operation setting 952 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((938 +)))|((( 953 953 Effective immediately 954 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((940 +)))|10000|((( 955 955 -2147483647 to 956 956 957 957 2147483646 958 -)))| (% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-959 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((944 +)))|Position instruction, positive and negative values could be set|- 945 +|P07-10|Maximum speed of the 1st displacement|((( 960 960 Operation setting 961 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((947 +)))|((( 962 962 Effective immediately 963 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px"%)1to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm964 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((949 +)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm 950 +|P07-11|Acceleration and deceleration of 1st segment displacement|((( 965 965 Operation setting 966 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((952 +)))|((( 967 967 Effective immediately 968 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px"%)1to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms969 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((954 +)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms 955 +|P07-12|Waiting time after completion of the 1st segment displacement|((( 970 970 Operation setting 971 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((957 +)))|((( 972 972 Effective immediately 973 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px"%)1to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06959 +)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06 974 974 975 975 Table 6-19 The 1st position operation curve parameters table 976 976 977 977 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 978 978 979 - (% style="text-align:center" %)965 + 980 980 [[image:image-20220608170149-21.png]] 981 981 982 982 Figure 6-23 The 1st segment running curve of motor ... ... @@ -985,16 +985,15 @@ 985 985 986 986 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 987 987 988 - (% class="table-bordered" %)989 -| (% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**990 -| (% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((974 + 975 +|**DI function code**|**Function name**|**Function** 976 +|20|ENINPOS: Internal multi-segment position enable signal|((( 991 991 DI port logic invalid: Does not affect the current operation of the servo motor. 992 992 993 993 DI port logic valid: Motor runs multi-segment position 994 994 ))) 995 995 996 -(% style="text-align:center" %) 997 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]] 982 +[[image:image-20220611152020-6.png]] 998 998 999 999 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 1000 1000 ... ... @@ -1008,13 +1008,13 @@ 1008 1008 1009 1009 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 1010 1010 1011 - (% style="text-align:center" %)996 + 1012 1012 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]] 1013 1013 1014 - (% style="text-align:center" %)999 + 1015 1015 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]] 1016 1016 1017 - (% style="text-align:center" %)1002 + 1018 1018 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]] 1019 1019 1020 1020 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! ... ... @@ -1021,7 +1021,7 @@ 1021 1021 1022 1022 **(2) Setting steps of electronic gear ratio** 1023 1023 1024 - (% style="text-align:center" %)1009 + 1025 1025 [[image:image-20220608170320-22.png]] 1026 1026 1027 1027 Figure 6-24 Setting steps of electronic gear ratio ... ... @@ -1036,6 +1036,7 @@ 1036 1036 1037 1037 Step5: Calculate the value of electronic gear ratio according to formula below. 1038 1038 1024 + 1039 1039 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]] 1040 1040 1041 1041 **(3) lectronic gear ratio switch setting** ... ... @@ -1043,59 +1043,59 @@ 1043 1043 1044 1044 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 1045 1045 1046 - (% class="table-bordered" %)1047 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1032 + 1033 +|**Function code**|**Name**|((( 1048 1048 **Setting method** 1049 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1035 +)))|((( 1050 1050 **Effective time** 1051 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1052 -| (% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1037 +)))|**Default value**|**Range**|**Definition**|**Unit** 1038 +|P00-16|Number of instruction pulses when the motor rotates one circle|((( 1053 1053 Shutdown setting 1054 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1040 +)))|((( 1055 1055 Effective immediately 1056 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((1042 +)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|((( 1057 1057 Instruction pulse 1058 1058 1059 1059 unit 1060 1060 ))) 1061 -| (% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1047 +|P00-17|((( 1062 1062 Electronic gear 1 1063 1063 1064 1064 numerator 1065 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1051 +)))|Operation setting|((( 1066 1066 Effective immediately 1067 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px"%)1to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1068 -| (% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1053 +)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1054 +|P00-18|((( 1069 1069 Electronic gear 1 1070 1070 1071 1071 denominator 1072 -)))|( % style="text-align:center; vertical-align:middle; width:156px" %)(((1058 +)))|((( 1073 1073 Operation setting 1074 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1060 +)))|((( 1075 1075 Effective immediately 1076 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px"%)1to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1077 -| (% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1062 +)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1063 +|P00-19|((( 1078 1078 Electronic gear 2 1079 1079 1080 1080 numerator 1081 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1067 +)))|Operation setting|((( 1082 1082 Effective immediately 1083 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px"%)1to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1084 -| (% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1069 +)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1070 +|P00-20|((( 1085 1085 Electronic gear 2 1086 1086 1087 1087 denominator 1088 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1074 +)))|Operation setting|((( 1089 1089 Effective immediately 1090 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px"%)1to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1076 +)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1091 1091 1092 1092 Table 6-20 Electronic gear ratio function code 1093 1093 1094 1094 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1095 1095 1096 - (% class="table-bordered" %)1097 -| (% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1098 -| (% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((1082 + 1083 +|**DI function code**|**Function name**|**Function** 1084 +|09|GEAR-SEL electronic gear switch 1|((( 1099 1099 DI port logic invalid: electronic gear ratio 1 1100 1100 1101 1101 DI port logic valid: electronic gear ratio 2 ... ... @@ -1103,10 +1103,10 @@ 1103 1103 1104 1104 Table 6-21 Switching conditions of electronic gear ratio group 1105 1105 1106 -| (% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]1107 -|(% rowspan="2" style="text-align:center; vertical-align:middle"%)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]1108 -| (% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]1109 -| (% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]1092 +|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] 1093 +|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]] 1094 +|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1095 +|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1110 1110 1111 1111 Table 6-22 Application of electronic gear ratio 1112 1112 ... ... @@ -1124,32 +1124,32 @@ 1124 1124 1125 1125 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1126 1126 1127 - (% style="text-align:center" %)1113 + 1128 1128 [[image:image-20220608170455-23.png]] 1129 1129 1130 1130 Figure 6-25 Position instruction filtering diagram 1131 1131 1132 - (% class="table-bordered" %)1133 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((1118 + 1119 +|**Function code**|**Name**|((( 1134 1134 **Setting method** 1135 -)))|( % style="text-align:center; vertical-align:middle; width:209px" %)(((1121 +)))|((( 1136 1136 **Effective time** 1137 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**1138 -| (% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((1123 +)))|**Default value**|**Range**|**Definition**|**Unit** 1124 +|P04-01|Pulse instruction filtering method|((( 1139 1139 Shutdown setting 1140 -)))|( % style="text-align:center; vertical-align:middle; width:209px" %)(((1126 +)))|((( 1141 1141 Effective immediately 1142 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((1128 +)))|0|0 to 1|((( 1143 1143 0: 1st-order low-pass filtering 1144 1144 1145 1145 1: average filtering 1146 -)))| (% style="text-align:center; vertical-align:middle; width:72px" %)-1147 -| (% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((1132 +)))|- 1133 +|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1148 1148 Effective immediately 1149 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms1150 -| (% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((1135 +)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms 1136 +|P04-03|Position instruction average filtering time constant|Shutdown setting|((( 1151 1151 Effective immediately 1152 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms1138 +)))|0|0 to 128|Position instruction average filtering time constant|ms 1153 1153 1154 1154 Table 6-23 Position instruction filter function code 1155 1155 ... ... @@ -1169,7 +1169,7 @@ 1169 1169 (% class="wikigeneratedid" %) 1170 1170 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1171 1171 1172 - (% style="text-align:center" %)1158 + 1173 1173 [[image:image-20220608170550-24.png]] 1174 1174 1175 1175 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1178,46 +1178,46 @@ 1178 1178 1179 1179 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1180 1180 1181 - (% style="text-align:center" %)1167 + 1182 1182 [[image:image-20220608170650-25.png]] 1183 1183 1184 1184 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1185 1185 1186 - (% class="table-bordered" %)1187 -| (% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1172 + 1173 +|**Function code**|**Name**|((( 1188 1188 **Setting method** 1189 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1175 +)))|((( 1190 1190 **Effective time** 1191 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1192 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1177 +)))|**Default value**|**Range**|**Definition**|**Unit** 1178 +|P05-12|Positioning completion threshold|((( 1193 1193 Operation setting 1194 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1180 +)))|((( 1195 1195 Effective immediately 1196 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px"%)1to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit1197 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1182 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1183 +|P05-13|Positioning approach threshold|((( 1198 1198 Operation setting 1199 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1185 +)))|((( 1200 1200 Effective immediately 1201 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px"%)1to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit1202 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1187 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1188 +|P05-14|Position detection window time|((( 1203 1203 Operation setting 1204 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1190 +)))|((( 1205 1205 Effective immediately 1206 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px"%)0to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms1207 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1192 +)))|10|0 to 20000|Set positioning completion detection window time|ms 1193 +|P05-15|Positioning signal hold time|((( 1208 1208 Operation setting 1209 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1195 +)))|((( 1210 1210 Effective immediately 1211 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px"%)0to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms1197 +)))|100|0 to 20000|Set positioning completion output hold time|ms 1212 1212 1213 1213 Table 6-24 Function code parameters of positioning completion 1214 1214 1215 - (% class="table-bordered" %)1216 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1217 -| (% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.1218 -| (% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((1201 + 1202 +|**DO function code**|**Function name**|**Function** 1203 +|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1204 +|135|((( 1219 1219 P-NEAR positioning close 1220 -)))|( % style="text-align:center; vertical-align:middle" %)(((1206 +)))|((( 1221 1221 Output this signal indicates that the servo drive position is close. 1222 1222 ))) 1223 1223 ... ... @@ -1227,7 +1227,7 @@ 1227 1227 1228 1228 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1229 1229 1230 - (% style="text-align:center" %)1216 + 1231 1231 [[image:6.28.jpg||height="260" width="806"]] 1232 1232 1233 1233 Figure 6-28 Speed control block diagram ... ... @@ -1236,21 +1236,21 @@ 1236 1236 1237 1237 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1238 1238 1239 - (% class="table-bordered" %)1240 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((1225 + 1226 +|**Function code**|**Name**|((( 1241 1241 **Setting method** 1242 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1228 +)))|((( 1243 1243 **Effective time** 1244 -)))| (% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1245 -| (% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((1230 +)))|**Default value**|**Range**|**Definition**|**Unit** 1231 +|P01-01|Speed instruction source|((( 1246 1246 Shutdown setting 1247 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1233 +)))|((( 1248 1248 Effective immediately 1249 -)))| (% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((1235 +)))|1|1 to 6|((( 1250 1250 0: internal speed instruction 1251 1251 1252 1252 1: AI_1 analog input (not supported by VD2F) 1253 -)))| (% style="text-align:center; vertical-align:middle" %)-1239 +)))|- 1254 1254 1255 1255 Table 6-26 Speed instruction source parameter 1256 1256 ... ... @@ -1258,19 +1258,19 @@ 1258 1258 1259 1259 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below. 1260 1260 1261 - (% class="table-bordered" %)1262 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((1247 + 1248 +|**Function code**|**Name**|((( 1263 1263 **Setting method** 1264 -)))|( % style="text-align:center; vertical-align:middle; width:160px" %)(((1250 +)))|((( 1265 1265 **Effective time** 1266 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1267 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-02|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1252 +)))|**Default value**|**Range**|**Definition**|**Unit** 1253 +|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1268 1268 Internal speed Instruction 0 1269 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1255 +)))|(% rowspan="2" %)((( 1270 1270 Operation setting 1271 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px"%)(((1257 +)))|(% rowspan="2" %)((( 1272 1272 Effective immediately 1273 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1259 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1274 1274 Internal speed instruction 0 1275 1275 1276 1276 When DI input port: ... ... @@ -1282,15 +1282,15 @@ 1282 1282 13-INSPD1: 0, 1283 1283 1284 1284 select this speed instruction to be effective. 1285 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1286 -| (% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*1287 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-23|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1271 +)))|(% rowspan="2" %)rpm 1272 +|-5000 to 5000* 1273 +|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1288 1288 Internal speed Instruction 1 1289 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1275 +)))|(% rowspan="2" %)((( 1290 1290 Operation setting 1291 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px"%)(((1277 +)))|(% rowspan="2" %)((( 1292 1292 Effective immediately 1293 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1279 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1294 1294 Internal speed instruction 1 1295 1295 1296 1296 When DI input port: ... ... @@ -1302,15 +1302,15 @@ 1302 1302 13-INSPD1: 1, 1303 1303 1304 1304 Select this speed instruction to be effective. 1305 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1306 -| (% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*1307 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-24|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1291 +)))|(% rowspan="2" %)rpm 1292 +|-5000 to 5000* 1293 +|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1308 1308 Internal speed Instruction 2 1309 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1295 +)))|(% rowspan="2" %)((( 1310 1310 Operation setting 1311 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px"%)(((1297 +)))|(% rowspan="2" %)((( 1312 1312 Effective immediately 1313 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1299 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1314 1314 Internal speed instruction 2 1315 1315 1316 1316 When DI input port: ... ... @@ -1322,15 +1322,15 @@ 1322 1322 13-INSPD1: 0, 1323 1323 1324 1324 Select this speed instruction to be effective. 1325 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1326 -| (% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*1327 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-25|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1311 +)))|(% rowspan="2" %)rpm 1312 +|-5000 to 5000* 1313 +|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1328 1328 Internal speed Instruction 3 1329 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1315 +)))|(% rowspan="2" %)((( 1330 1330 Operation setting 1331 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px"%)(((1317 +)))|(% rowspan="2" %)((( 1332 1332 Effective immediately 1333 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1319 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1334 1334 Internal speed instruction 3 1335 1335 1336 1336 When DI input port: ... ... @@ -1342,17 +1342,16 @@ 1342 1342 13-INSPD1: 1, 1343 1343 1344 1344 Select this speed instruction to be effective. 1345 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1346 -| (% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*1331 +)))|(% rowspan="2" %)rpm 1332 +|-5000 to 5000* 1347 1347 1348 -(% class="table-bordered" %) 1349 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1334 +|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1350 1350 Internal speed Instruction 4 1351 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1336 +)))|(% rowspan="2" %)((( 1352 1352 Operation setting 1353 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1338 +)))|(% rowspan="2" %)((( 1354 1354 Effective immediately 1355 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1340 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1356 1356 Internal speed instruction 4 1357 1357 1358 1358 When DI input port: ... ... @@ -1364,15 +1364,15 @@ 1364 1364 13-INSPD1: 0, 1365 1365 1366 1366 Select this speed instruction to be effective. 1367 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1368 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1369 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-27|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1352 +)))|(% rowspan="2" %)rpm 1353 +|-5000 to 5000* 1354 +|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1370 1370 Internal speed Instruction 5 1371 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1356 +)))|(% rowspan="2" %)((( 1372 1372 Operation setting 1373 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1358 +)))|(% rowspan="2" %)((( 1374 1374 Effective immediately 1375 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1360 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1376 1376 Internal speed instruction 5 1377 1377 1378 1378 When DI input port: ... ... @@ -1384,15 +1384,15 @@ 1384 1384 13-INSPD1: 1, 1385 1385 1386 1386 Select this speed instruction to be effective. 1387 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1388 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1389 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-28|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1372 +)))|(% rowspan="2" %)rpm 1373 +|-5000 to 5000* 1374 +|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1390 1390 Internal speed Instruction 6 1391 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1376 +)))|(% rowspan="2" %)((( 1392 1392 Operation setting 1393 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1378 +)))|(% rowspan="2" %)((( 1394 1394 Effective immediately 1395 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1380 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1396 1396 Internal speed instruction 6 1397 1397 1398 1398 When DI input port: ... ... @@ -1404,15 +1404,15 @@ 1404 1404 13-INSPD1: 0, 1405 1405 1406 1406 Select this speed instruction to be effective. 1407 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1408 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1409 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-29|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1392 +)))|(% rowspan="2" %)rpm 1393 +|-5000 to 5000* 1394 +|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1410 1410 Internal speed Instruction 7 1411 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1396 +)))|(% rowspan="2" %)((( 1412 1412 Operation setting 1413 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1398 +)))|(% rowspan="2" %)((( 1414 1414 Effective immediately 1415 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1400 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1416 1416 Internal speed instruction 7 1417 1417 1418 1418 When DI input port: ... ... @@ -1424,34 +1424,34 @@ 1424 1424 13-INSPD1: 1, 1425 1425 1426 1426 Select this speed instruction to be effective. 1427 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1428 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1412 +)))|(% rowspan="2" %)rpm 1413 +|-5000 to 5000* 1429 1429 1430 1430 Table 6-27 Internal speed instruction parameters 1431 1431 1432 1432 ✎**Note: **“*” means the set range of VD2F servo drive. 1433 1433 1434 -(% class="table-bordered" %) 1435 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1436 -|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1437 -|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1438 -|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1439 1439 1420 +|**DI function code**|**function name**|**Function** 1421 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1422 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1423 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1424 + 1440 1440 Table 6-28 DI multi-speed function code description 1441 1441 1442 1442 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1443 1443 1444 - (% class="table-bordered" %)1445 -| (% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**1446 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)01447 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)11448 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)21429 + 1430 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1431 +|0|0|0|1|0 1432 +|0|0|1|2|1 1433 +|0|1|0|3|2 1449 1449 |(% colspan="5" %)...... 1450 -| (% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)71435 +|1|1|1|8|7 1451 1451 1452 1452 Table 6-29 Correspondence between INSPD bits and segment numbers 1453 1453 1454 - (% style="text-align:center" %)1439 + 1455 1455 [[image:image-20220608170845-26.png]] 1456 1456 1457 1457 Figure 6-29 Multi-segment speed running curve ... ... @@ -1460,7 +1460,7 @@ 1460 1460 1461 1461 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1462 1462 1463 - (% style="text-align:center" %)1448 + 1464 1464 [[image:image-20220608153341-5.png]] 1465 1465 1466 1466 Figure 6-30 Analog input circuit ... ... @@ -1467,7 +1467,7 @@ 1467 1467 1468 1468 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1469 1469 1470 - (% style="text-align:center" %)1455 + 1471 1471 [[image:image-20220608170955-27.png]] 1472 1472 1473 1473 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1480,18 +1480,18 @@ 1480 1480 1481 1481 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1482 1482 1483 - (% style="text-align:center" %)1468 + 1484 1484 [[image:image-20220608171124-28.png]] 1485 1485 1486 1486 Figure 6-32 AI_1 diagram before and after bias 1487 1487 1488 -(% class="table-bordered" %) 1489 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit** 1490 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1491 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms 1492 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1493 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1494 1494 1474 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1475 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1476 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1477 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1478 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1479 + 1495 1495 Table 6-30 AI_1 parameters 1496 1496 1497 1497 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1502,7 +1502,7 @@ 1502 1502 1503 1503 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1504 1504 1505 - (% style="text-align:center" %)1490 + 1506 1506 [[image:image-20220608171314-29.png]] 1507 1507 1508 1508 Figure 6-33 of acceleration and deceleration time diagram ... ... @@ -1511,22 +1511,22 @@ 1511 1511 1512 1512 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1513 1513 1514 - (% class="table-bordered" %)1515 -| (% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1499 + 1500 +|**Function code**|**Name**|((( 1516 1516 **Setting method** 1517 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1502 +)))|((( 1518 1518 **Effective time** 1519 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**1520 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1504 +)))|**Default value**|**Range**|**Definition**|**Unit** 1505 +|P01-03|Acceleration time|((( 1521 1521 Operation setting 1522 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1507 +)))|((( 1523 1523 Effective immediately 1524 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms1525 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1509 +)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1510 +|P01-04|Deceleration time|((( 1526 1526 Operation setting 1527 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1512 +)))|((( 1528 1528 Effective immediately 1529 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms1514 +)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms 1530 1530 1531 1531 Table 6-31 Acceleration and deceleration time parameters 1532 1532 ... ... @@ -1545,27 +1545,27 @@ 1545 1545 1546 1546 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1547 1547 1548 - (% class="table-bordered" %)1549 -| (% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1533 + 1534 +|**Function code**|**Name**|((( 1550 1550 **Setting method** 1551 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1536 +)))|((( 1552 1552 **Effective time** 1553 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**1554 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1538 +)))|**Default value**|**Range**|**Definition**|**Unit** 1539 +|P01-10|Maximum speed threshold|((( 1555 1555 Operation setting 1556 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1541 +)))|((( 1557 1557 Effective immediately 1558 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1559 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1543 +)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1544 +|P01-12|Forward speed threshold|((( 1560 1560 Operation setting 1561 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1546 +)))|((( 1562 1562 Effective immediately 1563 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1564 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1548 +)))|3000|0 to 5000|Set forward speed limit value|rpm 1549 +|P01-13|Reverse speed threshold|((( 1565 1565 Operation setting 1566 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1551 +)))|((( 1567 1567 Effective immediately 1568 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1553 +)))|3000|0 to 5000|Set reverse speed limit value|rpm 1569 1569 1570 1570 Table 6-32 Rotation speed related function codes 1571 1571 ... ... @@ -1575,19 +1575,19 @@ 1575 1575 1576 1576 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1577 1577 1578 - (% class="table-bordered" %)1579 -| (% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((1563 + 1564 +|**Function code**|**Name**|((( 1580 1580 **Setting method** 1581 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1566 +)))|((( 1582 1582 **Effective time** 1583 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**1584 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((1568 +)))|**Default value**|**Range**|**Definition**|**Unit** 1569 +|P01-21|((( 1585 1585 Zero-speed clamp function selection 1586 -)))|( % style="text-align:center; vertical-align:middle; width:147px" %)(((1571 +)))|((( 1587 1587 Operation setting 1588 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1573 +)))|((( 1589 1589 Effective immediately 1590 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((1575 +)))|0|0 to 3|((( 1591 1591 Set the zero-speed clamp function. In speed mode: 1592 1592 1593 1593 0: Force the speed to 0; ... ... @@ -1597,18 +1597,18 @@ 1597 1597 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1598 1598 1599 1599 3: Invalid, ignore zero-speed clamp input 1600 -)))| (% style="text-align:center; vertical-align:middle; width:58px" %)-1601 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((1585 +)))|- 1586 +|P01-22|((( 1602 1602 Zero-speed clamp speed threshold 1603 -)))|( % style="text-align:center; vertical-align:middle; width:147px" %)(((1588 +)))|((( 1604 1604 Operation setting 1605 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1590 +)))|((( 1606 1606 Effective immediately 1607 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm1592 +)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm 1608 1608 1609 1609 Table 6-33 Zero-speed clamp related parameters 1610 1610 1611 - (% style="text-align:center" %)1596 + 1612 1612 [[image:image-20220608171549-30.png]] 1613 1613 1614 1614 Figure 6-34 Zero-speed clamp diagram ... ... @@ -1621,7 +1621,7 @@ 1621 1621 1622 1622 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1623 1623 1624 - (% style="text-align:center" %)1609 + 1625 1625 [[image:image-20220608171625-31.png]] 1626 1626 1627 1627 Figure 6-35 Rotation detection signal diagram ... ... @@ -1628,30 +1628,28 @@ 1628 1628 1629 1629 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1630 1630 1631 - (% class="table-bordered" %)1632 -| (% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((1616 + 1617 +|**Function code**|**Name**|((( 1633 1633 **Setting method** 1634 -)))|( % style="text-align:center; vertical-align:middle; width:160px" %)(((1619 +)))|((( 1635 1635 **Effective time** 1636 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1637 -| (% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((1621 +)))|**Default value**|**Range**|**Definition**|**Unit** 1622 +|P05-16|((( 1638 1638 Rotation detection 1639 1639 1640 1640 speed threshold 1641 -)))|( % style="text-align:center; vertical-align:middle; width:139px" %)(((1626 +)))|((( 1642 1642 Operation setting 1643 -)))|( % style="text-align:center; vertical-align:middle; width:160px" %)(((1628 +)))|((( 1644 1644 Effective immediately 1645 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm1630 +)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm 1646 1646 1647 1647 Table 6-34 Rotation detection speed threshold parameters 1648 1648 1649 -(% class="table-bordered" %) 1650 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1651 -|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)((( 1652 -T-COIN 1653 1653 1654 -rotation detection 1635 +|**DO function code**|**Function name**|**Function** 1636 +|132|((( 1637 +T-COIN rotation detection 1655 1655 )))|((( 1656 1656 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1657 1657 ... ... @@ -1664,7 +1664,7 @@ 1664 1664 1665 1665 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1666 1666 1667 - (% style="text-align:center" %)1650 + 1668 1668 [[image:image-20220608171904-32.png]] 1669 1669 1670 1670 Figure 6-36 Zero-speed signal diagram ... ... @@ -1671,25 +1671,25 @@ 1671 1671 1672 1672 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1673 1673 1674 - (% class="table-bordered" %)1675 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((1657 + 1658 +|**Function code**|**Name**|((( 1676 1676 **Setting method** 1677 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1660 +)))|((( 1678 1678 **Effective time** 1679 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1680 -| (% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((1662 +)))|**Default value**|**Range**|**Definition**|**Unit** 1663 +|P05-19|Zero speed output signal threshold|((( 1681 1681 Operation setting 1682 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1665 +)))|((( 1683 1683 Effective immediately 1684 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm1667 +)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm 1685 1685 1686 1686 Table 6-36 Zero-speed output signal threshold parameter 1687 1687 1688 - (% class="table-bordered" %)1689 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1690 -| (% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((1671 + 1672 +|**DO function code**|**Function name**|**Function** 1673 +|133|((( 1691 1691 ZSP zero speed signal 1692 -)))| (% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation1675 +)))|Output this signal indicates that the servo motor is stopping rotation 1693 1693 1694 1694 Table 6-37 DO zero-speed signal function code 1695 1695 ... ... @@ -1697,7 +1697,7 @@ 1697 1697 1698 1698 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1699 1699 1700 - (% style="text-align:center" %)1683 + 1701 1701 [[image:image-20220608172053-33.png]] 1702 1702 1703 1703 Figure 6-37 Speed consistent signal diagram ... ... @@ -1704,25 +1704,25 @@ 1704 1704 1705 1705 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1706 1706 1707 - (% class="table-bordered" %)1708 -| (% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1690 + 1691 +|**Function code**|**Name**|((( 1709 1709 **Setting method** 1710 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1693 +)))|((( 1711 1711 **Effective time** 1712 -)))| (% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1713 -| (% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1695 +)))|**Default value**|**Range**|**Definition**|**Unit** 1696 +|P05-17|Speed consistent signal threshold|((( 1714 1714 Operationsetting 1715 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1698 +)))|((( 1716 1716 Effective immediately 1717 -)))| (% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm1700 +)))|10|0 to 100|Set speed consistent signal threshold|rpm 1718 1718 1719 1719 Table 6-38 Speed consistent signal threshold parameters 1720 1720 1721 - (% class="table-bordered" %)1722 -| (% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**1723 -| (% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((1704 + 1705 +|**DO Function code**|**Function name**|**Function** 1706 +|136|((( 1724 1724 U-COIN consistent speed 1725 -)))| (% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value1708 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1726 1726 1727 1727 Table 6-39 DO speed consistent function code 1728 1728 ... ... @@ -1730,7 +1730,7 @@ 1730 1730 1731 1731 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1732 1732 1733 - (% style="text-align:center" %)1716 + 1734 1734 [[image:image-20220608172207-34.png]] 1735 1735 1736 1736 Figure 6-38 Speed approaching signal diagram ... ... @@ -1737,25 +1737,25 @@ 1737 1737 1738 1738 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1739 1739 1740 - (% class="table-bordered" %)1741 -| (% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((1723 + 1724 +|**Function code**|**Name**|((( 1742 1742 **Setting method** 1743 -)))|( % style="text-align:center; vertical-align:middle; width:180px" %)(((1726 +)))|((( 1744 1744 **Effective time** 1745 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1746 -| (% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((1728 +)))|**Default value**|**Range**|**Definition**|**Unit** 1729 +|P05-18|Speed approach signal threshold|((( 1747 1747 Operation setting 1748 -)))|( % style="text-align:center; vertical-align:middle; width:180px" %)(((1731 +)))|((( 1749 1749 Effective immediately 1750 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm1733 +)))|100|10 to 6000|Set speed approach signal threshold|rpm 1751 1751 1752 1752 Table 6-40 Speed approaching signal threshold parameters 1753 1753 1754 - (% class="table-bordered" %)1755 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**1756 -| (% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((1737 + 1738 +|**DO function code**|**Function name**|**Function** 1739 +|137|((( 1757 1757 V-NEAR speed approach 1758 -)))| (% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value1741 +)))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1759 1759 1760 1760 Table 6-41 DO speed approach function code 1761 1761 ... ... @@ -1763,7 +1763,7 @@ 1763 1763 1764 1764 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1765 1765 1766 - (% style="text-align:center" %)1749 + 1767 1767 [[image:image-20220608172405-35.png]] 1768 1768 1769 1769 Figure 6-39 Torque mode diagram ... ... @@ -1772,21 +1772,21 @@ 1772 1772 1773 1773 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1774 1774 1775 - (% class="table-bordered" %)1776 -| (% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1758 + 1759 +|**Function code**|**Name**|((( 1777 1777 **Setting method** 1778 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1761 +)))|((( 1779 1779 **Effective time** 1780 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1781 -| (% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1763 +)))|**Default value**|**Range**|**Definition**|**Unit** 1764 +|P01-08|Torque instruction source|((( 1782 1782 Shutdown setting 1783 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1766 +)))|((( 1784 1784 Effective immediately 1785 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((1768 +)))|0|0 to 1|((( 1786 1786 0: internal torque instruction 1787 1787 1788 1788 1: AI_1 analog input(not supported by VD2F) 1789 -)))| (% style="text-align:center; vertical-align:middle" %)-1772 +)))|- 1790 1790 1791 1791 Table 6-42 Torque instruction source parameter 1792 1792 ... ... @@ -1794,17 +1794,17 @@ 1794 1794 1795 1795 Torque instruction source is from inside, the value is set by function code P01-08. 1796 1796 1797 - (% class="table-bordered" %)1798 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((1780 + 1781 +|**Function code**|**Name**|((( 1799 1799 **Setting method** 1800 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((1783 +)))|((( 1801 1801 **Effective time** 1802 -)))| (% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1803 -| (% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((1785 +)))|**Default value**|**Range**|**Definition**|**Unit** 1786 +|P01-08|Torque instruction keyboard set value|((( 1804 1804 Operation setting 1805 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((1788 +)))|((( 1806 1806 Effective immediately 1807 -)))| (% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%1790 +)))|0|-3000 to 3000|-300.0% to 300.0%|0.1% 1808 1808 1809 1809 Table 6-43 Torque instruction keyboard set value 1810 1810 ... ... @@ -1812,7 +1812,7 @@ 1812 1812 1813 1813 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1814 1814 1815 - (% style="text-align:center" %)1798 + 1816 1816 [[image:image-20220608153646-7.png||height="213" width="408"]] 1817 1817 1818 1818 Figure 6-40 Analog input circuit ... ... @@ -1819,7 +1819,7 @@ 1819 1819 1820 1820 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1821 1821 1822 - (% style="text-align:center" %)1805 + 1823 1823 [[image:image-20220608172502-36.png]] 1824 1824 1825 1825 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1832,18 +1832,18 @@ 1832 1832 1833 1833 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1834 1834 1835 - (% style="text-align:center" %)1818 + 1836 1836 [[image:image-20220608172611-37.png]] 1837 1837 1838 1838 Figure 6-42 AI_1 diagram before and after bias 1839 1839 1840 -(% class="table-bordered" %) 1841 -|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1842 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV 1843 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms 1844 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV 1845 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV 1846 1846 1824 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1825 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1826 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1827 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1828 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1829 + 1847 1847 Table 6-44 AI_1 parameters 1848 1848 1849 1849 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1852,23 +1852,23 @@ 1852 1852 1853 1853 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1854 1854 1855 - (% class="table-bordered" %)1856 -| (% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((1838 + 1839 +|**Function code**|**Name**|((( 1857 1857 **Setting method** 1858 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1841 +)))|((( 1859 1859 **Effective time** 1860 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1861 -| (% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((1843 +)))|**Default value**|**Range**|**Definition**|**Unit** 1844 +|P04-04|Torque filtering time constant|((( 1862 1862 Operation setting 1863 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1846 +)))|((( 1864 1864 Effective immediately 1865 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms1848 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1866 1866 1867 1867 Table 6-45 Torque filtering time constant parameter details 1868 1868 1869 1869 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1870 1870 1871 - (% style="text-align:center" %)1854 + 1872 1872 [[image:image-20220608172646-38.png]] 1873 1873 1874 1874 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1879,7 +1879,7 @@ 1879 1879 1880 1880 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1881 1881 1882 - (% style="text-align:center" %)1865 + 1883 1883 [[image:image-20220608172806-39.png]] 1884 1884 1885 1885 Figure 6-44 Torque instruction limit diagram ... ... @@ -1888,50 +1888,50 @@ 1888 1888 1889 1889 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1890 1890 1891 - (% class="table-bordered" %)1892 -| (% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((1874 + 1875 +|**Function code**|**Name**|((( 1893 1893 **Setting method** 1894 -)))|( % style="text-align:center; vertical-align:middle; width:167px" %)(((1877 +)))|((( 1895 1895 **Effective time** 1896 -)))| (% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1897 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1879 +)))|**Default value**|**Range**|**Definition**|**Unit** 1880 +|P01-14|((( 1898 1898 Torque limit source 1899 -)))|( % style="text-align:center; vertical-align:middle; width:134px" %)(((1882 +)))|((( 1900 1900 Shutdown setting 1901 -)))|( % style="text-align:center; vertical-align:middle; width:167px" %)(((1884 +)))|((( 1902 1902 Effective immediately 1903 -)))| (% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((1886 +)))|0|0 to 1|((( 1904 1904 0: internal value 1905 1905 1906 1906 1: AI_1 analog input 1907 1907 1908 1908 (not supported by VD2F) 1909 -)))| (% style="text-align:center; vertical-align:middle" %)-1892 +)))|- 1910 1910 1911 1911 1) Torque limit source is internal torque instruction (P01-14=0) 1912 1912 1913 1913 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1914 1914 1915 - (% class="table-bordered" %)1916 -| (% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1898 + 1899 +|**Function code**|**Name**|((( 1917 1917 **Setting method** 1918 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1901 +)))|((( 1919 1919 **Effective time** 1920 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**1921 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((1903 +)))|**Default value**|**Range**|**Definition**|**Unit** 1904 +|P01-15|((( 1922 1922 Forward torque limit 1923 -)))|( % style="text-align:center; vertical-align:middle; width:136px" %)(((1906 +)))|((( 1924 1924 Operation setting 1925 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1908 +)))|((( 1926 1926 Effective immediately 1927 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%1928 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1911 +|P01-16|((( 1929 1929 Reverse torque limit 1930 -)))|( % style="text-align:center; vertical-align:middle; width:136px" %)(((1913 +)))|((( 1931 1931 Operation setting 1932 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1915 +)))|((( 1933 1933 Effective immediately 1934 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%1917 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1935 1935 1936 1936 Table 6-46 Torque limit parameter details 1937 1937 ... ... @@ -1943,11 +1943,11 @@ 1943 1943 1944 1944 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1945 1945 1946 - (% class="table-bordered" %)1947 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**1948 -| (% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((1929 + 1930 +|**DO function code**|**Function name**|**Function** 1931 +|139|((( 1949 1949 T-LIMIT in torque limit 1950 -)))| (% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited1933 +)))|Output of this signal indicates that the servo motor torque is limited 1951 1951 1952 1952 Table 6-47 DO torque limit function codes 1953 1953 ... ... @@ -1958,46 +1958,43 @@ 1958 1958 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__. 1959 1959 1960 1960 |((( 1961 -(% style="text-align:center" %) 1962 1962 [[image:image-20220608172910-40.png]] 1963 1963 )))|((( 1964 -(% style="text-align:center" %) 1965 1965 [[image:image-20220608173155-41.png]] 1966 1966 ))) 1967 1967 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1968 1968 1969 -(% class="table-bordered" %) 1970 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1950 +|**Function code**|**Name**|((( 1971 1971 **Setting method** 1972 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1952 +)))|((( 1973 1973 **Effective time** 1974 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1975 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((1954 +)))|**Default value**|**Range**|**Definition**|**Unit** 1955 +|P01-17|((( 1976 1976 Forward torque 1977 1977 1978 1978 limit in torque mode 1979 -)))|( % style="text-align:center; vertical-align:middle; width:140px" %)(((1959 +)))|((( 1980 1980 Operation setting 1981 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1961 +)))|((( 1982 1982 Effective immediately 1983 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((1963 +)))|3000|0 to 5000|((( 1984 1984 Forward torque 1985 1985 1986 1986 limit in torque mode 1987 -)))| (% style="text-align:center; vertical-align:middle" %)0.1%1988 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((1967 +)))|0.1% 1968 +|P01-18|((( 1989 1989 Reverse torque 1990 1990 1991 1991 limit in torque mode 1992 -)))|( % style="text-align:center; vertical-align:middle; width:140px" %)(((1972 +)))|((( 1993 1993 Operation setting 1994 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1974 +)))|((( 1995 1995 Effective immediately 1996 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((1976 +)))|3000|0 to 5000|((( 1997 1997 Reverse torque 1998 1998 1999 1999 limit in torque mode 2000 -)))| (% style="text-align:center; vertical-align:middle" %)0.1%1980 +)))|0.1% 2001 2001 2002 2002 Table 6-48 Speed limit parameters in torque mode 2003 2003 ... ... @@ -2011,7 +2011,7 @@ 2011 2011 2012 2012 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 2013 2013 2014 - (% style="text-align:center" %)1994 + 2015 2015 [[image:image-20220608173541-42.png]] 2016 2016 2017 2017 Figure 6-47 Torque arrival output diagram ... ... @@ -2018,44 +2018,44 @@ 2018 2018 2019 2019 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 2020 2020 2021 - (% class="table-bordered" %)2022 -| (% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((2001 + 2002 +|**Function code**|**Name**|((( 2023 2023 **Setting method** 2024 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2004 +)))|((( 2025 2025 **Effective time** 2026 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2027 -| (% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((2006 +)))|**Default value**|**Range**|**Definition**|**Unit** 2007 +|P05-20|((( 2028 2028 Torque arrival 2029 2029 2030 2030 threshold 2031 -)))|( % style="text-align:center; vertical-align:middle; width:137px" %)(((2011 +)))|((( 2032 2032 Operation setting 2033 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2013 +)))|((( 2034 2034 Effective immediately 2035 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((2015 +)))|100|0 to 300|((( 2036 2036 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2037 2037 2038 2038 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; 2039 2039 2040 2040 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2041 -)))| (%style="text-align:center; vertical-align:middle" %)%2042 -| (% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((2021 +)))|% 2022 +|P05-21|((( 2043 2043 Torque arrival 2044 2044 2045 2045 hysteresis 2046 -)))|( % style="text-align:center; vertical-align:middle; width:137px" %)(((2026 +)))|((( 2047 2047 Operation setting 2048 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2028 +)))|((( 2049 2049 Effective immediately 2050 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(%style="text-align:center; vertical-align:middle" %)%2030 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2051 2051 2052 2052 Table 6-49 Torque arrival parameters 2053 2053 2054 - (% class="table-bordered" %)2055 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**2056 -| (% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((2034 + 2035 +|**DO function code**|**Function name**|**Function** 2036 +|138|((( 2057 2057 T-COIN torque arrival 2058 -)))| (% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range2038 +)))|Used to determine whether the actual torque instruction has reached the set range 2059 2059 2060 2060 Table 6-50 DO Torque Arrival Function Code 2061 2061 ... ... @@ -2071,17 +2071,17 @@ 2071 2071 2072 2072 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2073 2073 2074 - (% class="table-bordered" %)2075 -| (% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((2054 + 2055 +|**Function code**|**Name**|((( 2076 2076 **Setting method** 2077 -)))|( % style="text-align:center; vertical-align:middle; width:142px" %)(((2057 +)))|((( 2078 2078 **Effective time** 2079 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2080 -| (% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((2059 +)))|**Default value**|**Range**|**Definition**|**Unit** 2060 +|P00-01|Control mode|((( 2081 2081 Shutdown setting 2082 -)))|( % style="text-align:center; vertical-align:middle; width:142px" %)(((2062 +)))|((( 2083 2083 Shutdown setting 2084 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((2064 +)))|1|1 to 6|((( 2085 2085 1: Position control 2086 2086 2087 2087 2: Speed control ... ... @@ -2093,23 +2093,22 @@ 2093 2093 5: Position/torque mixed control 2094 2094 2095 2095 6: Speed/torque mixed control 2096 -)))| (% style="text-align:center; vertical-align:middle" %)-2076 +)))|- 2097 2097 2098 2098 Table 6-51 Mixed control mode parameters 2099 2099 2100 2100 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2101 2101 2102 -(% class="table-bordered" %) 2103 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2104 -|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2105 -(% class="table-bordered" %) 2106 -|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode** 2107 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2108 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2109 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2110 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2111 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2112 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2082 + 2083 +|**DI function code**|**Name**|**Function name**|**Function** 2084 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2085 +|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2086 +|(% rowspan="2" %)4|Valid|Speed mode 2087 +|invalid|Position mode 2088 +|(% rowspan="2" %)5|Valid|Torque mode 2089 +|invalid|Position mode 2090 +|(% rowspan="2" %)6|Valid|Torque mode 2091 +|invalid|Speed mode 2113 2113 ))) 2114 2114 2115 2115 Table 6-52 Description of DI function codes in control mode ... ... @@ -2128,15 +2128,15 @@ 2128 2128 2129 2129 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2130 2130 2131 -(% class="table-bordered" %) 2132 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2133 -|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2134 2134 2111 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2112 +|A1 (single-turn magnetic encoder)|17|0 to 131071 2113 + 2135 2135 Table 6-53 Single-turn absolute encoder information 2136 2136 2137 2137 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2138 2138 2139 - (% style="text-align:center" %)2118 + 2140 2140 [[image:image-20220608173618-43.png]] 2141 2141 2142 2142 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2145,16 +2145,16 @@ 2145 2145 2146 2146 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2147 2147 2148 -(% class="table-bordered" %) 2149 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2150 -|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2151 -|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607 2152 2152 2128 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2129 +|C1 (multi-turn magnetic encoder)|17|0 to 131071 2130 +|D2 (multi-turn Optical encoder)|23|0 to 8388607 2131 + 2153 2153 Table 6-54 Multi-turn absolute encoder information 2154 2154 2155 2155 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2156 2156 2157 - (% style="text-align:center" %)2136 + 2158 2158 [[image:image-20220608173701-44.png]] 2159 2159 2160 2160 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2163,12 +2163,12 @@ 2163 2163 2164 2164 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2165 2165 2166 -(% class="table-bordered" %) 2167 -|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type** 2168 -|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2169 -|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit 2170 -|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2171 2171 2146 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2147 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2148 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2149 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2150 + 2172 2172 Table 6-55 Encoder feedback data 2173 2173 2174 2174 == **Absolute value system encoder battery box use precautions** == ... ... @@ -2175,7 +2175,7 @@ 2175 2175 2176 2176 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2177 2177 2178 - (% style="text-align:center" %)2157 + 2179 2179 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]] 2180 2180 2181 2181 Figure 6-50 the encoder battery box ... ... @@ -2188,23 +2188,23 @@ 2188 2188 2189 2189 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2190 2190 2191 - (% class="table-bordered" %)2192 -| (% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((2170 + 2171 +|**Function code**|**Name**|((( 2193 2193 **Setting method** 2194 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((2173 +)))|((( 2195 2195 **Effective time** 2196 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2197 -| (% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((2175 +)))|**Default value**|**Range**|**Definition**|**Unit** 2176 +|P10-06|Multi-turn absolute encoder reset|((( 2198 2198 Shutdown setting 2199 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((2178 +)))|((( 2200 2200 Effective immediately 2201 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((2180 +)))|0|0 to 1|((( 2202 2202 0: No operation 2203 2203 2204 2204 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2205 2205 2206 2206 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2207 -)))| (% style="text-align:center; vertical-align:middle" %)-2186 +)))|- 2208 2208 2209 2209 Table 6-56 Absolute encoder reset enable parameter 2210 2210 ... ... @@ -2222,18 +2222,18 @@ 2222 2222 2223 2223 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2224 2224 2225 - (% style="text-align:center" %)2204 + 2226 2226 [[image:image-20220608173804-46.png]] 2227 2227 2228 2228 Figure 6-51 VDI_1 setting steps 2229 2229 2230 - (% class="table-bordered" %)2231 -| (% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((2209 + 2210 +|**Function code**|**Name**|((( 2232 2232 **Setting method** 2233 -)))|( % style="text-align:center; vertical-align:middle; width:213px" %)(((2212 +)))|((( 2234 2234 **Effective time** 2235 -)))| (% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2236 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2214 +)))|**Default value**|**Range**|**Definition**|**Unit** 2215 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2237 2237 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2238 2238 2239 2239 VDI_1 input level: ... ... @@ -2241,8 +2241,8 @@ 2241 2241 0: low level 2242 2242 2243 2243 1: high level 2244 -)))| (% style="text-align:center; vertical-align:middle" %)-2245 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2223 +)))|- 2224 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2246 2246 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2247 2247 2248 2248 VDI_2 input level: ... ... @@ -2250,8 +2250,8 @@ 2250 2250 0: low level 2251 2251 2252 2252 1: high level 2253 -)))| (% style="text-align:center; vertical-align:middle" %)-2254 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2232 +)))|- 2233 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2255 2255 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2256 2256 2257 2257 VDI_3 input level: ... ... @@ -2259,8 +2259,8 @@ 2259 2259 0: low level 2260 2260 2261 2261 1: high level 2262 -)))| (% style="text-align:center; vertical-align:middle" %)-2263 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2241 +)))|- 2242 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2264 2264 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2265 2265 2266 2266 VDI_4 input level: ... ... @@ -2268,8 +2268,8 @@ 2268 2268 0: low level 2269 2269 2270 2270 1: high level 2271 -)))| (% style="text-align:center; vertical-align:middle" %)-2272 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2250 +)))|- 2251 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2273 2273 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2274 2274 2275 2275 VDI_5 input level: ... ... @@ -2277,8 +2277,8 @@ 2277 2277 0: low level 2278 2278 2279 2279 1: high level 2280 -)))| (% style="text-align:center; vertical-align:middle" %)-2281 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2259 +)))|- 2260 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2282 2282 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2283 2283 2284 2284 VDI_6 input level: ... ... @@ -2286,8 +2286,8 @@ 2286 2286 0: low level 2287 2287 2288 2288 1: high level 2289 -)))| (% style="text-align:center; vertical-align:middle" %)-2290 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2268 +)))|- 2269 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2291 2291 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2292 2292 2293 2293 VDI_7 input level: ... ... @@ -2295,8 +2295,8 @@ 2295 2295 0: low level 2296 2296 2297 2297 1: high level 2298 -)))| (% style="text-align:center; vertical-align:middle" %)-2299 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2277 +)))|- 2278 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2300 2300 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2301 2301 2302 2302 VDI_8 input level: ... ... @@ -2304,7 +2304,7 @@ 2304 2304 0: low level 2305 2305 2306 2306 1: high level 2307 -)))| (% style="text-align:center; vertical-align:middle" %)-2286 +)))|- 2308 2308 2309 2309 Table 6-57 Virtual VDI parameters 2310 2310 ... ... @@ -2314,11 +2314,11 @@ 2314 2314 2315 2315 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2316 2316 2317 -(% class="table-bordered" %) 2318 -|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration** 2319 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2320 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2321 2321 2297 +|**Setting value**|**DI channel logic selection**|**Illustration** 2298 +|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2299 +|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2300 + 2322 2322 Table 6-58 DI terminal channel logic selection 2323 2323 2324 2324 == **VDO** == ... ... @@ -2327,55 +2327,55 @@ 2327 2327 2328 2328 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2329 2329 2330 - (% style="text-align:center" %)2309 + 2331 2331 [[image:image-20220608173957-48.png]] 2332 2332 2333 2333 Figure 6-52 VDO_2 setting steps 2334 2334 2335 - (% class="table-bordered" %)2336 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((2314 + 2315 +|**Function code**|**Name**|((( 2337 2337 **Setting method** 2338 -)))|( % style="text-align:center; vertical-align:middle" %)(((2317 +)))|((( 2339 2339 **Effective time** 2340 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2341 -| (% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2319 +)))|**Default value**|**Range**|**Definition**|**Unit** 2320 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2342 2342 VDO_1 output level: 2343 2343 2344 2344 0: low level 2345 2345 2346 2346 1: high level 2347 -)))| (% style="text-align:center; vertical-align:middle" %)-2348 -| (% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2326 +)))|- 2327 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2349 2349 VDO_2 output level: 2350 2350 2351 2351 0: low level 2352 2352 2353 2353 1: high level 2354 -)))| (% style="text-align:center; vertical-align:middle" %)-2355 -| (% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2333 +)))|- 2334 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2356 2356 VDO_3 output level: 2357 2357 2358 2358 0: low level 2359 2359 2360 2360 1: high level 2361 -)))| (% style="text-align:center; vertical-align:middle" %)-2362 -| (% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2340 +)))|- 2341 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2363 2363 VDO_4 output level: 2364 2364 2365 2365 0: low level 2366 2366 2367 2367 1: high level 2368 -)))| (% style="text-align:center; vertical-align:middle" %)-2347 +)))|- 2369 2369 2370 2370 Table 6-59 Communication control DO function parameters 2371 2371 2372 -(% class="table-bordered" %) 2373 -|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2374 -|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2375 -|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2376 -|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2377 -|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2378 2378 2352 +|**DO function number**|**Function name**|**Function** 2353 +|145|COM_VDO1 communication VDO1 output|Use communication VDO 2354 +|146|COM_VDO1 communication VDO2 output|Use communication VDO 2355 +|147|COM_VDO1 communication VDO3 output|Use communication VDO 2356 +|148|COM_VDO1 communication VDO4output|Use communication VDO 2357 + 2379 2379 Table 6-60 VDO function number 2380 2380 2381 2381 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation ... ... @@ -2386,17 +2386,17 @@ 2386 2386 2387 2387 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2388 2388 2389 - (% class="table-bordered" %)2390 -| (% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((2368 + 2369 +|**Function code**|**Name**|((( 2391 2391 **Setting method** 2392 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((2371 +)))|((( 2393 2393 **Effective time** 2394 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2395 -| (% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((2373 +)))|**Default value**|**Range**|**Definition**|**Unit** 2374 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2396 2396 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2397 2397 2398 2398 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled 2399 -)))| (%style="text-align:center; vertical-align:middle" %)%2378 +)))|% 2400 2400 2401 2401 In the following cases, it could be modified according to the actual heat generation of the motor 2402 2402
- image-20220611151617-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content
- image-20220611151642-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content
- image-20220611151705-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content
- image-20220611151719-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content
- image-20220611151917-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content
- image-20220611152020-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content