Changes for page 06 Operation

Last modified by Iris on 2025/08/06 18:24

From version 42.2
edited by Joey
on 2022/06/11 15:19
Change comment: There is no comment for this version
To version 47.1
edited by Leo Wei
on 2022/06/11 17:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Joey
1 +XWiki.admin
Content
... ... @@ -2,20 +2,20 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|**No.**|**Content**
6 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 -|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|5|Servo drive and servo motor must be grounded reliably.
12 -|6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|7|The force of all cables is within the specified range.
14 -|8|The wiring terminals have been insulated.
15 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 -|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|2|The servo drive and external braking resistor are not placed on combustible objects.
18 -|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
5 +|=(% scope="row" %)**No.**|=**Content**
6 +|=(% colspan="2" %)Wiring
7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|=5|Servo drive and servo motor must be grounded reliably.
12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|=7|The force of all cables is within the specified range.
14 +|=8|The wiring terminals have been insulated.
15 +|=(% colspan="2" %)Environment and Machinery
16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
... ... @@ -42,17 +42,17 @@
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 44  
45 -(% class="table-bordered" %)
46 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
45 +
46 +|=(% scope="row" %)**Function code**|=**Name**|=(((
47 47  **Setting method**
48 -)))|(% style="text-align:center; vertical-align:middle" %)(((
48 +)))|=(((
49 49  **Effective time**
50 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 -|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
50 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
51 +|=P10-01|JOG speed|(((
52 52  Operation setting
53 -)))|(% style="text-align:center; vertical-align:middle" %)(((
53 +)))|(((
54 54  Effective immediately
55 -)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
55 +)))|100|0 to 3000|JOG speed|rpm
56 56  
57 57  Table 6-2 JOG speed parameter
58 58  
... ... @@ -60,25 +60,25 @@
60 60  
61 61  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62 62  
63 -(% class="table-bordered" %)
64 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
63 +
64 +|=(% scope="row" %)**Function code**|=**Name**|=(((
65 65  **Setting method**
66 -)))|(% style="text-align:center; vertical-align:middle" %)(((
66 +)))|=(((
67 67  **Effective time**
68 -)))|(% style="text-align:center; vertical-align:middle" %)(((
68 +)))|=(((
69 69  **Default value**
70 -)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 -|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
70 +)))|=**Range**|=**Definition**|=**Unit**
71 +|=P00-04|Rotation direction|(((
72 72  Shutdown setting
73 -)))|(% style="text-align:center; vertical-align:middle" %)(((
73 +)))|(((
74 74  Effective immediately
75 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
75 +)))|0|0 to 1|(((
76 76  Forward rotation: Face the motor shaft to watch
77 77  
78 78  0: standard setting (CW is forward rotation)
79 79  
80 80  1: reverse mode (CCW is forward rotation)
81 -)))|(% style="text-align:center; vertical-align:middle" %)-
81 +)))|-
82 82  
83 83  Table 6-3 Rotation direction parameters** **
84 84  
... ... @@ -91,17 +91,16 @@
91 91  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
92 92  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
93 93  
94 -(% class="table-bordered" %)
95 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
94 +|=(% scope="row" %)**Function code**|=**Name**|=(((
96 96  **Setting method**
97 -)))|(% style="text-align:center; vertical-align:middle" %)(((
96 +)))|=(((
98 98  **Effective time**
99 -)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 -|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
98 +)))|=**Default**|=**Range**|=**Definition**|=**Unit**
99 +|=P00-09|Braking resistor setting|(((
101 101  Operation setting
102 -)))|(% style="text-align:center; vertical-align:middle" %)(((
101 +)))|(((
103 103  Effective immediately
104 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
103 +)))|0|0 to 3|(((
105 105  0: use built-in braking resistor
106 106  
107 107  1: use external braking resistor and natural cooling
... ... @@ -109,18 +109,18 @@
109 109  2: use external braking resistor and forced air cooling; (cannot be set)
110 110  
111 111  3: No braking resistor is used, it is all absorbed by capacitor.
112 -)))|(% style="text-align:center; vertical-align:middle" %)-
113 -|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
114 -|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
111 +)))|-
112 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
113 +|=P00-10|External braking resistor value|(((
115 115  Operation setting
116 -)))|(% style="text-align:center; vertical-align:middle" %)(((
115 +)))|(((
117 117  Effective immediately
118 -)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 -|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
117 +)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
118 +|=P00-11|External braking resistor power|(((
120 120  Operation setting
121 -)))|(% style="text-align:center; vertical-align:middle" %)(((
120 +)))|(((
122 122  Effective immediately
123 -)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
122 +)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
124 124  
125 125  Table 6-4 Braking resistor parameters
126 126  
... ... @@ -138,7 +138,7 @@
138 138  
139 139  **(3) Timing diagram of power on**
140 140  
141 -(% style="text-align:center" %)
140 +
142 142  [[image:image-20220608163014-1.png]]
143 143  
144 144  Figure 6-1 Timing diagram of power on
... ... @@ -147,17 +147,17 @@
147 147  
148 148  According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
149 149  
150 -(% class="table-bordered" %)
151 -|Shutdown mode|Shutdown description|Shutdown characteristics
152 -|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
153 -|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
154 154  
150 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
151 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
152 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
153 +
155 155  Table 6-5 Comparison of two shutdown modes
156 156  
157 -(% class="table-bordered" %)
158 -|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 -|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
160 160  
157 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
158 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
159 +
161 161  Table 6-6 Comparison of two shutdown status
162 162  
163 163  **(1) Servo enable (S-ON) OFF shutdown**
... ... @@ -164,27 +164,27 @@
164 164  
165 165  The related parameters of the servo OFF shutdown mode are shown in the table below.
166 166  
167 -(% class="table-bordered" %)
168 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
166 +
167 +|=(% scope="row" %)**Function code**|=**Name**|=(((
169 169  **Setting method**
170 -)))|(% style="text-align:center; vertical-align:middle" %)(((
169 +)))|=(((
171 171  **Effective time**
172 -)))|(% style="text-align:center; vertical-align:middle" %)(((
171 +)))|=(((
173 173  **Default value**
174 -)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 -|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
173 +)))|=**Range**|=**Definition**|=**Unit**
174 +|=P00-05|Servo OFF shutdown|(((
176 176  Shutdown
177 177  
178 178  setting
179 -)))|(% style="text-align:center; vertical-align:middle" %)(((
178 +)))|(((
180 180  Effective
181 181  
182 182  immediately
183 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
182 +)))|0|0 to 1|(((
184 184  0: Free shutdown, and the motor shaft remains free status.
185 185  
186 186  1: Zero-speed shutdown, and the motor shaft remains free status.
187 -)))|(% style="text-align:center; vertical-align:middle" %)-
186 +)))|-
188 188  
189 189  Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
190 190  
... ... @@ -200,13 +200,13 @@
200 200  
201 201  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
202 202  
203 -(% class="table-bordered" %)
204 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
202 +
203 +|=(% scope="row" %)**Function code**|=**Name**|=(((
205 205  **Setting method**
206 -)))|(% style="text-align:center; vertical-align:middle" %)(((
205 +)))|=(((
207 207  **Effective time**
208 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 -|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
207 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
208 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
210 210  0: OFF (not used)
211 211  
212 212  01: S-ON servo enable
... ... @@ -254,32 +254,30 @@
254 254  24: Internal multi-segment position selection 4
255 255  
256 256  Others: reserved
257 -)))|(% style="text-align:center; vertical-align:middle" %)-
258 -|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
256 +)))|-
257 +|=P06-09|DI_3 channel logic selection|Operation setting|(((
259 259  Effective immediately
260 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
259 +)))|0|0 to 1|(((
261 261  DI port input logic validity function selection.
262 262  
263 263  0: Normally open input. Active low level (switch on);
264 264  
265 265  1: Normally closed input. Active high level (switch off);
266 -)))|(% style="text-align:center; vertical-align:middle" %)-
267 -|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
265 +)))|-
266 +|=P06-10|DI_3 input source selection|Operation setting|(((
268 268  Effective immediately
269 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
268 +)))|0|0 to 1|(((
270 270  Select the DI_3 port type to enable
271 271  
272 272  0: Hardware DI_3 input terminal
273 273  
274 274  1: virtual VDI_3 input terminal
275 -)))|(% style="text-align:center; vertical-align:middle" %)-
276 -
277 -(% class="table-bordered" %)
278 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
274 +)))|-
275 +|=P06-11|DI_4 channel function selection|(((
279 279  Operation setting
280 -)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
277 +)))|(((
281 281  again Power-on
282 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
279 +)))|4|0 to 32|(((
283 283  0 off (not used)
284 284  
285 285  01: SON Servo enable
... ... @@ -327,25 +327,25 @@
327 327  24: Internal multi-segment position selection 4
328 328  
329 329  Others: reserved
330 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
327 +)))|-
328 +|=P06-12|DI_4 channel logic selection|Operation setting|(((
332 332  Effective immediately
333 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
330 +)))|0|0 to 1|(((
334 334  DI port input logic validity function selection.
335 335  
336 336  0: Normally open input. Active low level (switch on);
337 337  
338 338  1: Normally closed input. Active high level (switch off);
339 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
336 +)))|-
337 +|=P06-13|DI_4 input source selection|Operation setting|(((
341 341  Effective immediately
342 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
339 +)))|0|0 to 1|(((
343 343  Select the DI_4 port type to enable
344 344  
345 345  0: Hardware DI_4 input terminal
346 346  
347 347  1: virtual VDI_4 input terminal
348 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
345 +)))|-
349 349  
350 350  Table 6-8 DI3 and DI4 channel parameters
351 351  
... ... @@ -357,9 +357,8 @@
357 357  
358 358  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
359 359  
360 -(% class="table-bordered" %)
357 +
361 361  |(((
362 -(% style="text-align:center" %)
363 363  [[image:image-20220611151617-1.png]]
364 364  )))
365 365  |(((
... ... @@ -378,14 +378,13 @@
378 378  
379 379  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
380 380  
381 -(% style="text-align:center" %)
377 +
382 382  [[image:image-20220608163136-2.png]]
383 383  
384 384  Figure 6-2 VD2B servo drive brake wiring
385 385  
386 -(% class="table-bordered" %)
382 +
387 387  |(((
388 -(% style="text-align:center" %)
389 389  [[image:image-20220611151642-2.png]]
390 390  )))
391 391  |(((
... ... @@ -402,42 +402,42 @@
402 402  
403 403  Related function code is as below.
404 404  
405 -(% class="table-bordered" %)
406 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
400 +
401 +|**DO function code**|**Function name**|**Function**|(((
407 407  **Effective time**
408 408  )))
409 -|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
404 +|144|(((
410 410  BRK-OFF Brake output
411 -)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
406 +)))|Output the signal indicates the servo motor brake release|Power-on again
412 412  
413 413  Table 6-2 Relevant function codes for brake setting
414 414  
415 -(% class="table-bordered" %)
416 -|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
410 +
411 +|**Function code**|**Name**|(((
417 417  **Setting method**
418 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
413 +)))|(((
419 419  **Effective time**
420 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
415 +)))|**Default value**|**Range**|**Definition**|**Unit**
416 +|P1-30|Delay from brake output to instruction reception|(((
422 422  Operation setting
423 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
418 +)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
419 +|P1-31|In static state, delay from brake output OFF to the motor is power off|(((
425 425  Operation setting
426 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
421 +)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
422 +|P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
428 428  Operation setting
429 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
424 +)))|Effective immediately|30|0 to 3000|(((
430 430  When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
431 431  
432 432  When the brake output (BRK-OFF) is not allocated, this function code has no effect.
433 -)))|(% style="text-align:center; vertical-align:middle" %)rpm
434 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
428 +)))|rpm
429 +|P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
435 435  Operation setting
436 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
431 +)))|Effective immediately|500|1 to 1000|(((
437 437  When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
438 438  
439 439  When brake output (BRK-OFF) is not allocated, this function code has no effect.
440 -)))|(% style="text-align:center; vertical-align:middle" %)ms
435 +)))|ms
441 441  
442 442  Table 6-9 Brake setting function codes
443 443  
... ... @@ -451,9 +451,8 @@
451 451  
452 452  When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
453 453  
454 -(% class="table-bordered" %)
449 +
455 455  |(((
456 -(% style="text-align:center" %)
457 457  [[image:image-20220611151705-3.png]]
458 458  )))
459 459  |(((
... ... @@ -462,7 +462,6 @@
462 462  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
463 463  )))
464 464  
465 -(% style="text-align:center" %)
466 466  [[image:image-20220608163304-3.png]]
467 467  
468 468  Figure 6-3 Brake Timing of when the motor is stationary
... ... @@ -473,9 +473,8 @@
473 473  
474 474  When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
475 475  
476 -(% class="table-bordered" %)
469 +
477 477  |(((
478 -(% style="text-align:center" %)
479 479  [[image:image-20220611151719-4.png]]
480 480  )))
481 481  |(((
... ... @@ -490,7 +490,6 @@
490 490  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
491 491  )))
492 492  
493 -(% style="text-align:center" %)
494 494  [[image:image-20220608163425-4.png]]
495 495  
496 496  Figure 6-4 Brake timing when the motor rotates
... ... @@ -499,7 +499,7 @@
499 499  
500 500  The brake timing (free shutdown) in the fault status is as follows.
501 501  
502 -(% style="text-align:center" %)
493 +
503 503  [[image:image-20220608163541-5.png]]
504 504  
505 505   Figure 6-5 The brake timing (free shutdown) in the fault state
... ... @@ -508,7 +508,7 @@
508 508  
509 509  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
510 510  
511 -(% style="text-align:center" %)
502 +
512 512  [[image:image-20220608163643-6.png]]
513 513  
514 514  Figure 6-6 Position control diagram
... ... @@ -515,17 +515,17 @@
515 515  
516 516  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
517 517  
518 -(% class="table-bordered" %)
519 -|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
509 +
510 +|**Function code**|**Name**|(((
520 520  **Setting method**
521 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
512 +)))|(((
522 522  **Effective time**
523 -)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 -|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
514 +)))|**Default value**|**Range**|**Definition**|**Unit**
515 +|P01-01|Control mode|(((
525 525  Operation setting
526 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
517 +)))|(((
527 527  immediately Effective
528 -)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
519 +)))|0|0 to 1|(((
529 529  0: position control
530 530  
531 531  2: speed control
... ... @@ -537,7 +537,7 @@
537 537  5: position/torque mix control
538 538  
539 539  6: speed /torque mix control
540 -)))|(% style="text-align:center; vertical-align:middle" %)-
531 +)))|-
541 541  
542 542  Table 6-10 Control mode parameters
543 543  
... ... @@ -545,21 +545,21 @@
545 545  
546 546  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
547 547  
548 -(% class="table-bordered" %)
549 -|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
539 +
540 +|**Function code**|**Name**|(((
550 550  **Setting method**
551 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
542 +)))|(((
552 552  **Effective time**
553 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
544 +)))|**Default value**|**Range**|**Definition**|**Unit**
545 +|P01-06|Position instruction source|(((
555 555  Operation setting
556 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
547 +)))|(((
557 557  immediately Effective
558 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
549 +)))|0|0 to 1|(((
559 559  0: pulse instruction
560 560  
561 561  1: internal position instruction
562 -)))|(% style="text-align:center; vertical-align:middle" %)-
553 +)))|-
563 563  
564 564  Table 6-11 Position instruction source parameter
565 565  
... ... @@ -567,20 +567,20 @@
567 567  
568 568  1) Low-speed pulse instruction input
569 569  
570 -(% class="table-bordered" %)
571 -|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 -|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
574 574  
562 +|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
563 +|VD2A and VD2B servo drives|VD2F servo drive
564 +|(% colspan="2" %)Figure 6-7 Position instruction input setting
565 +
575 575  VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
576 576  
577 577  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
578 578  
579 -(% class="table-bordered" %)
580 -|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 -|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 -|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
583 583  
571 +|**Pulse method**|**Maximum frequency**|**Voltage**
572 +|Open collector input|200K|24V
573 +|Differential input|500K|5V
574 +
584 584  Table 6-12 Pulse input specifications
585 585  
586 586  1.Differential input
... ... @@ -587,7 +587,7 @@
587 587  
588 588  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
589 589  
590 -(% style="text-align:center" %)
581 +
591 591  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
592 592  
593 593  Figure 6-8 Differential input connection
... ... @@ -598,7 +598,7 @@
598 598  
599 599  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
600 600  
601 -(% style="text-align:center" %)
592 +
602 602  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
603 603  
604 604  Figure 6-9 Open collector input connection
... ... @@ -609,7 +609,7 @@
609 609  
610 610  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
611 611  
612 -(% style="text-align:center" %)
603 +
613 613  [[image:image-20220608163952-8.png]]
614 614  
615 615  Figure 6-10 Example of filtered signal waveform
... ... @@ -616,22 +616,22 @@
616 616  
617 617  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
618 618  
619 -(% class="table-bordered" %)
620 -|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
610 +
611 +|**Function code**|**Name**|(((
621 621  **Setting method**
622 -)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
613 +)))|(((
623 623  **Effective time**
624 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
615 +)))|**Default value**|**Range**|(% colspan="2" %)**Definition**|**Unit**
616 +|P00-13|Maximum position pulse frequency|(((
626 626  Shutdown setting
627 -)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
618 +)))|(((
628 628  Effective immediately
629 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 -|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
620 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
621 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
631 631  Operation setting
632 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
623 +)))|(% rowspan="3" %)(((
633 633  Power-on again
634 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
625 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
635 635  Set the anti-interference level of external pulse instruction.
636 636  
637 637  0: no filtering;
... ... @@ -651,8 +651,8 @@
651 651  7: Filtering time 8.192us
652 652  
653 653  8: Filtering time 16.384us
654 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 -|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
645 +)))|(% rowspan="3" %)-
646 +|(% rowspan="2" %)9|VD2: Filtering time 25.5us
656 656  |VD2F: Filtering time 25.5us
657 657  
658 658  Table 6-13 Position pulse frequency and anti-interference level parameters
... ... @@ -661,17 +661,17 @@
661 661  
662 662  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
663 663  
664 -(% class="table-bordered" %)
665 -|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
655 +
656 +|**Function code**|**Name**|(((
666 666  **Setting method**
667 -)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
658 +)))|(((
668 668  **Effective time**
669 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 -|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
660 +)))|**Default value**|**Range**|**Definition**|**Unit**
661 +|P00-12|Position pulse type selection|(((
671 671  Operation setting
672 -)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
663 +)))|(((
673 673  Power-on again
674 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
665 +)))|0|0 to 5|(((
675 675  0: direction + pulse (positive logic)
676 676  
677 677  1: CW/CCW
... ... @@ -683,74 +683,74 @@
683 683  4: CW/CCW (negative logic)
684 684  
685 685  5: A, B phase quadrature pulse (4 times frequency negative logic)
686 -)))|(% style="text-align:center; vertical-align:middle" %)-
677 +)))|-
687 687  
688 688  Table 6-14 Position pulse type selection parameter
689 689  
690 -(% class="table-bordered" %)
691 -|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 -|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
681 +
682 +|**Pulse type selection**|**Pulse type**|**Signal**|**Schematic diagram of forward pulse**|**Schematic diagram of negative pulse**
683 +|0|(((
693 693  Direction + pulse
694 694  
695 695  (Positive logic)
696 -)))|(% style="text-align:center; vertical-align:middle" %)(((
687 +)))|(((
697 697  PULSE
698 698  
699 699  SIGN
700 -)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 -|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
691 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
692 +|1|CW/CCW|(((
702 702  PULSE (CW)
703 703  
704 704  SIGN (CCW)
705 -)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 -|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
696 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
697 +|2|(((
707 707  AB phase orthogonal
708 708  
709 709  pulse (4 times frequency)
710 -)))|(% style="text-align:center; vertical-align:middle" %)(((
701 +)))|(((
711 711  PULSE (Phase A)
712 712  
713 713  SIGN (Phase B)
714 -)))|(% style="text-align:center; vertical-align:middle" %)(((
705 +)))|(((
715 715  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
716 716  
717 717  Phase A is 90° ahead of Phase B
718 -)))|(% style="text-align:center; vertical-align:middle" %)(((
709 +)))|(((
719 719  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
720 720  
721 721  Phase B is 90° ahead of Phase A
722 722  )))
723 -|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
714 +|3|(((
724 724  Direction + pulse
725 725  
726 726  (Negative logic)
727 -)))|(% style="text-align:center; vertical-align:middle" %)(((
718 +)))|(((
728 728  PULSE
729 729  
730 730  SIGN
731 -)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 -|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
722 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
723 +|4|(((
733 733  CW/CCW
734 734  
735 735  (Negative logic)
736 -)))|(% style="text-align:center; vertical-align:middle" %)(((
727 +)))|(((
737 737  PULSE (CW)
738 738  
739 739  SIGN (CCW)
740 -)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 -|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
731 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
732 +|5|(((
742 742  AB phase orthogonal
743 743  
744 744  pulse (4 times frequency negative logic)
745 -)))|(% style="text-align:center; vertical-align:middle" %)(((
736 +)))|(((
746 746  PULSE (Phase A)
747 747  
748 748  SIGN (Phase B)
749 -)))|(% style="text-align:center; vertical-align:middle" %)(((
740 +)))|(((
750 750  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
751 751  
752 752  B phase is ahead of A phase by 90°
753 -)))|(% style="text-align:center; vertical-align:middle" %)(((
744 +)))|(((
754 754  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
755 755  
756 756  A phase is ahead of B phase by 90°
... ... @@ -764,7 +764,7 @@
764 764  
765 765  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
766 766  
767 -(% style="text-align:center" %)
758 +
768 768  [[image:image-20220608164116-9.png]]
769 769  
770 770  Figure 6-11 The setting process of multi-segment position
... ... @@ -771,51 +771,51 @@
771 771  
772 772  1) Set multi-segment position running mode
773 773  
774 -(% class="table-bordered" %)
775 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
765 +
766 +|**Function code**|**Name**|(((
776 776  **Setting method**
777 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
768 +)))|(((
778 778  **Effective time**
779 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 -|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
770 +)))|**Default value**|**Range**|**Definition**|**Unit**
771 +|P07-01|Multi-segment position running mode|(((
781 781  Shutdown setting
782 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
773 +)))|(((
783 783  Effective immediately
784 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
775 +)))|0|0 to 2|(((
785 785  0: Single running
786 786  
787 787  1: Cycle running
788 788  
789 789  2: DI switching running
790 -)))|(% style="text-align:center; vertical-align:middle" %)-
791 -|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
781 +)))|-
782 +|P07-02|Start segment number|(((
792 792  Shutdown setting
793 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
784 +)))|(((
794 794  Effective immediately
795 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 -|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
786 +)))|1|1 to 16|1st segment NO. in non-DI switching mode|-
787 +|P07-03|End segment number|(((
797 797  Shutdown setting
798 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
789 +)))|(((
799 799  Effective immediately
800 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 -|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
791 +)))|1|1 to 16|last segment NO. in non-DI switching mode|-
792 +|P07-04|Margin processing method|(((
802 802  Shutdown setting
803 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
794 +)))|(((
804 804  Effective immediately
805 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
796 +)))|0|0 to 1|(((
806 806  0: Run the remaining segments
807 807  
808 808  1: Run again from the start segment
809 -)))|(% style="text-align:center; vertical-align:middle" %)-
810 -|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
800 +)))|-
801 +|P07-05|Displacement instruction type|(((
811 811  Shutdown setting
812 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
803 +)))|(((
813 813  Effective immediately
814 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
805 +)))|0|0 to 1|(((
815 815  0: Relative position instruction
816 816  
817 817  1: Absolute position instruction
818 -)))|(% style="text-align:center; vertical-align:middle" %)-
809 +)))|-
819 819  
820 820  Table 6-16 multi-segment position running mode parameters
821 821  
... ... @@ -825,7 +825,7 @@
825 825  
826 826  In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
827 827  
828 -(% style="text-align:center" %)
819 +
829 829  [[image:image-20220608164226-10.png]]
830 830  
831 831  Figure 6-12 Single running curve (P07-02=1, P07-03=2)
... ... @@ -834,12 +834,12 @@
834 834  
835 835  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
836 836  
837 -(% style="text-align:center" %)
828 +
838 838  [[image:image-20220608164327-11.png]]
839 839  
840 840  Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
841 841  
842 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
833 +|[[image:image-20220611151917-5.png]]
843 843  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
844 844  
845 845  3. DI switching running
... ... @@ -846,30 +846,30 @@
846 846  
847 847  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
848 848  
849 -(% class="table-bordered" %)
850 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 -|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 -|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 -|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 -|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
855 855  
841 +|**DI function code**|**Function name**|**Function**
842 +|21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
843 +|22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
844 +|23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
845 +|24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
846 +
856 856  Table 6-17 DI function code
857 857  
858 858  The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
859 859  
860 -(% class="table-bordered" %)
861 -|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 -|(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
867 867  
852 +|**INPOS4**|**INPOS3**|**INPOS2**|**INPOS1**|**Running position number**
853 +|0|0|0|0|1
854 +|0|0|0|1|2
855 +|0|0|1|0|3
856 +|(% colspan="5" %)…………
857 +|1|1|1|1|16
858 +
868 868  Table 6-18 INPOS corresponds to running segment number
869 869  
870 870  The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
871 871  
872 -(% style="text-align:center" %)
863 +
873 873  [[image:image-20220608164545-12.png]]
874 874  
875 875  Figure 6-14 DI switching running curve
... ... @@ -880,12 +880,12 @@
880 880  
881 881  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
882 882  
883 -(% style="text-align:center" %)
874 +
884 884  [[image:image-20220608164847-13.png]]
885 885  
886 886  Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
887 887  
888 -(% style="text-align:center" %)
879 +
889 889  [[image:image-20220608165032-14.png]]
890 890  
891 891  Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
... ... @@ -894,12 +894,12 @@
894 894  
895 895  In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
896 896  
897 -(% style="text-align:center" %)
888 +
898 898  [[image:image-20220608165343-15.png]]
899 899  
900 900  Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
901 901  
902 -(% style="text-align:center" %)
893 +
903 903  [[image:image-20220608165558-16.png]]
904 904  
905 905  Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
... ... @@ -911,10 +911,8 @@
911 911  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
912 912  
913 913  |(((
914 -(% style="text-align:center" %)
915 915  [[image:image-20220608165710-17.png]]
916 916  )))|(((
917 -(% style="text-align:center" %)
918 918  [[image:image-20220608165749-18.png]]
919 919  )))
920 920  |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
... ... @@ -924,10 +924,8 @@
924 924  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
925 925  
926 926  |(((
927 -(% style="text-align:center" %)
928 928  [[image:image-20220608165848-19.png]]
929 929  )))|(((
930 -(% style="text-align:center" %)
931 931  [[image:image-20220608170005-20.png]]
932 932  )))
933 933  |Figure 6-21 Absolute indication|Figure 6-22 Displacement
... ... @@ -936,46 +936,46 @@
936 936  
937 937  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
938 938  
939 -(% class="table-bordered" %)
940 -|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
926 +
927 +|**Function code**|**Name**|(((
941 941  **Setting method**
942 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
929 +)))|(((
943 943  **Effective time**
944 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
931 +)))|**Default value**|**Range**|**Definition**|**Unit**
932 +|P07-09|(((
946 946  1st segment
947 947  
948 948  displacement
949 -)))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
936 +)))|(((
950 950  Operation setting
951 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
938 +)))|(((
952 952  Effective immediately
953 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
940 +)))|10000|(((
954 954  -2147483647 to
955 955  
956 956  2147483646
957 -)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
944 +)))|Position instruction, positive and negative values could be set|-
945 +|P07-10|Maximum speed of the 1st displacement|(((
959 959  Operation setting
960 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
947 +)))|(((
961 961  Effective immediately
962 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
949 +)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
950 +|P07-11|Acceleration and deceleration of 1st segment displacement|(((
964 964  Operation setting
965 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
952 +)))|(((
966 966  Effective immediately
967 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
954 +)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
955 +|P07-12|Waiting time after completion of the 1st segment displacement|(((
969 969  Operation setting
970 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
957 +)))|(((
971 971  Effective immediately
972 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
959 +)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
973 973  
974 974  Table 6-19 The 1st position operation curve parameters table
975 975  
976 976  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
977 977  
978 -(% style="text-align:center" %)
965 +
979 979  [[image:image-20220608170149-21.png]]
980 980  
981 981  Figure 6-23 The 1st segment running curve of motor
... ... @@ -984,16 +984,15 @@
984 984  
985 985  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
986 986  
987 -(% class="table-bordered" %)
988 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 -|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
974 +
975 +|**DI function code**|**Function name**|**Function**
976 +|20|ENINPOS: Internal multi-segment position enable signal|(((
990 990  DI port logic invalid: Does not affect the current operation of the servo motor.
991 991  
992 992  DI port logic valid: Motor runs multi-segment position
993 993  )))
994 994  
995 -(% style="text-align:center" %)
996 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]]
982 +[[image:image-20220611152020-6.png]]
997 997  
998 998  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
999 999  
... ... @@ -1007,13 +1007,13 @@
1007 1007  
1008 1008  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1009 1009  
1010 -(% style="text-align:center" %)
996 +
1011 1011  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
1012 1012  
1013 -(% style="text-align:center" %)
999 +
1014 1014  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
1015 1015  
1016 -(% style="text-align:center" %)
1002 +
1017 1017  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1018 1018  
1019 1019  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
... ... @@ -1020,7 +1020,7 @@
1020 1020  
1021 1021  **(2) Setting steps of electronic gear ratio**
1022 1022  
1023 -(% style="text-align:center" %)
1009 +
1024 1024  [[image:image-20220608170320-22.png]]
1025 1025  
1026 1026  Figure 6-24 Setting steps of electronic gear ratio
... ... @@ -1035,6 +1035,7 @@
1035 1035  
1036 1036  Step5: Calculate the value of electronic gear ratio according to formula below.
1037 1037  
1024 +
1038 1038  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1039 1039  
1040 1040  **(3) lectronic gear ratio switch setting**
... ... @@ -1042,59 +1042,59 @@
1042 1042  
1043 1043  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1044 1044  
1045 -(% class="table-bordered" %)
1046 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1032 +
1033 +|**Function code**|**Name**|(((
1047 1047  **Setting method**
1048 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1035 +)))|(((
1049 1049  **Effective time**
1050 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1051 -|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1037 +)))|**Default value**|**Range**|**Definition**|**Unit**
1038 +|P00-16|Number of instruction pulses when the motor rotates one circle|(((
1052 1052  Shutdown setting
1053 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1040 +)))|(((
1054 1054  Effective immediately
1055 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1042 +)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1056 1056  Instruction pulse
1057 1057  
1058 1058  unit
1059 1059  )))
1060 -|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1047 +|P00-17|(((
1061 1061  Electronic gear 1
1062 1062  
1063 1063  numerator
1064 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1051 +)))|Operation setting|(((
1065 1065  Effective immediately
1066 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1067 -|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1053 +)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1054 +|P00-18|(((
1068 1068  Electronic gear 1
1069 1069  
1070 1070  denominator
1071 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1058 +)))|(((
1072 1072  Operation setting
1073 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1060 +)))|(((
1074 1074  Effective immediately
1075 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1076 -|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1062 +)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1063 +|P00-19|(((
1077 1077  Electronic gear 2
1078 1078  
1079 1079  numerator
1080 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1067 +)))|Operation setting|(((
1081 1081  Effective immediately
1082 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1083 -|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1069 +)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1070 +|P00-20|(((
1084 1084  Electronic gear 2
1085 1085  
1086 1086  denominator
1087 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1074 +)))|Operation setting|(((
1088 1088  Effective immediately
1089 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1076 +)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1090 1090  
1091 1091  Table 6-20 Electronic gear ratio function code
1092 1092  
1093 1093  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1094 1094  
1095 -(% class="table-bordered" %)
1096 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1097 -|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1082 +
1083 +|**DI function code**|**Function name**|**Function**
1084 +|09|GEAR-SEL electronic gear switch 1|(((
1098 1098  DI port logic invalid: electronic gear ratio 1
1099 1099  
1100 1100  DI port logic valid: electronic gear ratio 2
... ... @@ -1102,10 +1102,10 @@
1102 1102  
1103 1103  Table 6-21 Switching conditions of electronic gear ratio group
1104 1104  
1105 -|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1106 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1107 -|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1108 -|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1092 +|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1093 +|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1094 +|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1095 +|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1109 1109  
1110 1110  Table 6-22 Application of electronic gear ratio
1111 1111  
... ... @@ -1123,32 +1123,32 @@
1123 1123  
1124 1124  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1125 1125  
1126 -(% style="text-align:center" %)
1113 +
1127 1127  [[image:image-20220608170455-23.png]]
1128 1128  
1129 1129  Figure 6-25 Position instruction filtering diagram
1130 1130  
1131 -(% class="table-bordered" %)
1132 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1118 +
1119 +|**Function code**|**Name**|(((
1133 1133  **Setting method**
1134 -)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1121 +)))|(((
1135 1135  **Effective time**
1136 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1137 -|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1123 +)))|**Default value**|**Range**|**Definition**|**Unit**
1124 +|P04-01|Pulse instruction filtering method|(((
1138 1138  Shutdown setting
1139 -)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1126 +)))|(((
1140 1140  Effective immediately
1141 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((
1128 +)))|0|0 to 1|(((
1142 1142  0: 1st-order low-pass filtering
1143 1143  
1144 1144  1: average filtering
1145 -)))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1146 -|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1132 +)))|-
1133 +|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1147 1147  Effective immediately
1148 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1149 -|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1135 +)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1136 +|P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1150 1150  Effective immediately
1151 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1138 +)))|0|0 to 128|Position instruction average filtering time constant|ms
1152 1152  
1153 1153  Table 6-23 Position instruction filter function code
1154 1154  
... ... @@ -1168,7 +1168,7 @@
1168 1168  (% class="wikigeneratedid" %)
1169 1169  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1170 1170  
1171 -(% style="text-align:center" %)
1158 +
1172 1172  [[image:image-20220608170550-24.png]]
1173 1173  
1174 1174  Figure 6-26 Positioning completion signal output diagram
... ... @@ -1177,46 +1177,46 @@
1177 1177  
1178 1178  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1179 1179  
1180 -(% style="text-align:center" %)
1167 +
1181 1181  [[image:image-20220608170650-25.png]]
1182 1182  
1183 1183  Figure 6-27 Positioning completion signal output with increased window filter time diagram
1184 1184  
1185 -(% class="table-bordered" %)
1186 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1172 +
1173 +|**Function code**|**Name**|(((
1187 1187  **Setting method**
1188 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1175 +)))|(((
1189 1189  **Effective time**
1190 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1191 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1177 +)))|**Default value**|**Range**|**Definition**|**Unit**
1178 +|P05-12|Positioning completion threshold|(((
1192 1192  Operation setting
1193 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1180 +)))|(((
1194 1194  Effective immediately
1195 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1196 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1182 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1183 +|P05-13|Positioning approach threshold|(((
1197 1197  Operation setting
1198 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1185 +)))|(((
1199 1199  Effective immediately
1200 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1201 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1187 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1188 +|P05-14|Position detection window time|(((
1202 1202  Operation setting
1203 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1190 +)))|(((
1204 1204  Effective immediately
1205 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms
1206 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1192 +)))|10|0 to 20000|Set positioning completion detection window time|ms
1193 +|P05-15|Positioning signal hold time|(((
1207 1207  Operation setting
1208 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1195 +)))|(((
1209 1209  Effective immediately
1210 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms
1197 +)))|100|0 to 20000|Set positioning completion output hold time|ms
1211 1211  
1212 1212  Table 6-24 Function code parameters of positioning completion
1213 1213  
1214 -(% class="table-bordered" %)
1215 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1216 -|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1217 -|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1201 +
1202 +|**DO function code**|**Function name**|**Function**
1203 +|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1204 +|135|(((
1218 1218  P-NEAR positioning close
1219 -)))|(% style="text-align:center; vertical-align:middle" %)(((
1206 +)))|(((
1220 1220  Output this signal indicates that the servo drive position is close.
1221 1221  )))
1222 1222  
... ... @@ -1226,7 +1226,7 @@
1226 1226  
1227 1227  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1228 1228  
1229 -(% style="text-align:center" %)
1216 +
1230 1230  [[image:6.28.jpg||height="260" width="806"]]
1231 1231  
1232 1232  Figure 6-28 Speed control block diagram
... ... @@ -1235,21 +1235,21 @@
1235 1235  
1236 1236  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1237 1237  
1238 -(% class="table-bordered" %)
1239 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1225 +
1226 +|**Function code**|**Name**|(((
1240 1240  **Setting method**
1241 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1228 +)))|(((
1242 1242  **Effective time**
1243 -)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1244 -|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1230 +)))|**Default value**|**Range**|**Definition**|**Unit**
1231 +|P01-01|Speed instruction source|(((
1245 1245  Shutdown setting
1246 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1233 +)))|(((
1247 1247  Effective immediately
1248 -)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1235 +)))|1|1 to 6|(((
1249 1249  0: internal speed instruction
1250 1250  
1251 1251  1: AI_1 analog input (not supported by VD2F)
1252 -)))|(% style="text-align:center; vertical-align:middle" %)-
1239 +)))|-
1253 1253  
1254 1254  Table 6-26 Speed instruction source parameter
1255 1255  
... ... @@ -1257,19 +1257,19 @@
1257 1257  
1258 1258  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1259 1259  
1260 -(% class="table-bordered" %)
1261 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1247 +
1248 +|**Function code**|**Name**|(((
1262 1262  **Setting method**
1263 -)))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1250 +)))|(((
1264 1264  **Effective time**
1265 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1266 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1252 +)))|**Default value**|**Range**|**Definition**|**Unit**
1253 +|(% rowspan="2" %)P01-02|(% rowspan="2" %)(((
1267 1267  Internal speed Instruction 0
1268 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1255 +)))|(% rowspan="2" %)(((
1269 1269  Operation setting
1270 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1257 +)))|(% rowspan="2" %)(((
1271 1271  Effective immediately
1272 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1259 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1273 1273  Internal speed instruction 0
1274 1274  
1275 1275  When DI input port:
... ... @@ -1281,15 +1281,15 @@
1281 1281  13-INSPD1: 0,
1282 1282  
1283 1283  select this speed instruction to be effective.
1284 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1285 -|(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1286 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1271 +)))|(% rowspan="2" %)rpm
1272 +|-5000 to 5000*
1273 +|(% rowspan="2" %)P01-23|(% rowspan="2" %)(((
1287 1287  Internal speed Instruction 1
1288 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1275 +)))|(% rowspan="2" %)(((
1289 1289  Operation setting
1290 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1277 +)))|(% rowspan="2" %)(((
1291 1291  Effective immediately
1292 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1279 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1293 1293  Internal speed instruction 1
1294 1294  
1295 1295  When DI input port:
... ... @@ -1301,15 +1301,15 @@
1301 1301  13-INSPD1: 1,
1302 1302  
1303 1303  Select this speed instruction to be effective.
1304 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1305 -|(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1306 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1291 +)))|(% rowspan="2" %)rpm
1292 +|-5000 to 5000*
1293 +|(% rowspan="2" %)P01-24|(% rowspan="2" %)(((
1307 1307  Internal speed Instruction 2
1308 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1295 +)))|(% rowspan="2" %)(((
1309 1309  Operation setting
1310 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1297 +)))|(% rowspan="2" %)(((
1311 1311  Effective immediately
1312 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1299 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1313 1313  Internal speed instruction 2
1314 1314  
1315 1315  When DI input port:
... ... @@ -1321,15 +1321,15 @@
1321 1321  13-INSPD1: 0,
1322 1322  
1323 1323  Select this speed instruction to be effective.
1324 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1325 -|(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1326 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1311 +)))|(% rowspan="2" %)rpm
1312 +|-5000 to 5000*
1313 +|(% rowspan="2" %)P01-25|(% rowspan="2" %)(((
1327 1327  Internal speed Instruction 3
1328 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1315 +)))|(% rowspan="2" %)(((
1329 1329  Operation setting
1330 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1317 +)))|(% rowspan="2" %)(((
1331 1331  Effective immediately
1332 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1319 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1333 1333  Internal speed instruction 3
1334 1334  
1335 1335  When DI input port:
... ... @@ -1341,17 +1341,16 @@
1341 1341  13-INSPD1: 1,
1342 1342  
1343 1343  Select this speed instruction to be effective.
1344 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1345 -|(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1331 +)))|(% rowspan="2" %)rpm
1332 +|-5000 to 5000*
1346 1346  
1347 -(% class="table-bordered" %)
1348 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1334 +|(% rowspan="2" %)P01-26|(% rowspan="2" %)(((
1349 1349  Internal speed Instruction 4
1350 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1336 +)))|(% rowspan="2" %)(((
1351 1351  Operation setting
1352 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1338 +)))|(% rowspan="2" %)(((
1353 1353  Effective immediately
1354 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1340 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1355 1355  Internal speed instruction 4
1356 1356  
1357 1357  When DI input port:
... ... @@ -1363,15 +1363,15 @@
1363 1363  13-INSPD1: 0,
1364 1364  
1365 1365  Select this speed instruction to be effective.
1366 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1367 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1368 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1352 +)))|(% rowspan="2" %)rpm
1353 +|-5000 to 5000*
1354 +|(% rowspan="2" %)P01-27|(% rowspan="2" %)(((
1369 1369  Internal speed Instruction 5
1370 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1356 +)))|(% rowspan="2" %)(((
1371 1371  Operation setting
1372 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1358 +)))|(% rowspan="2" %)(((
1373 1373  Effective immediately
1374 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1360 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1375 1375  Internal speed instruction 5
1376 1376  
1377 1377  When DI input port:
... ... @@ -1383,15 +1383,15 @@
1383 1383  13-INSPD1: 1,
1384 1384  
1385 1385  Select this speed instruction to be effective.
1386 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1387 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1388 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1372 +)))|(% rowspan="2" %)rpm
1373 +|-5000 to 5000*
1374 +|(% rowspan="2" %)P01-28|(% rowspan="2" %)(((
1389 1389  Internal speed Instruction 6
1390 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1376 +)))|(% rowspan="2" %)(((
1391 1391  Operation setting
1392 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1378 +)))|(% rowspan="2" %)(((
1393 1393  Effective immediately
1394 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1380 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1395 1395  Internal speed instruction 6
1396 1396  
1397 1397  When DI input port:
... ... @@ -1403,15 +1403,15 @@
1403 1403  13-INSPD1: 0,
1404 1404  
1405 1405  Select this speed instruction to be effective.
1406 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1407 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1408 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1392 +)))|(% rowspan="2" %)rpm
1393 +|-5000 to 5000*
1394 +|(% rowspan="2" %)P01-29|(% rowspan="2" %)(((
1409 1409  Internal speed Instruction 7
1410 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1396 +)))|(% rowspan="2" %)(((
1411 1411  Operation setting
1412 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1398 +)))|(% rowspan="2" %)(((
1413 1413  Effective immediately
1414 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1400 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1415 1415  Internal speed instruction 7
1416 1416  
1417 1417  When DI input port:
... ... @@ -1423,34 +1423,34 @@
1423 1423  13-INSPD1: 1,
1424 1424  
1425 1425  Select this speed instruction to be effective.
1426 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1427 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1412 +)))|(% rowspan="2" %)rpm
1413 +|-5000 to 5000*
1428 1428  
1429 1429  Table 6-27 Internal speed instruction parameters
1430 1430  
1431 1431  ✎**Note: **“*” means the set range of VD2F servo drive.
1432 1432  
1433 -(% class="table-bordered" %)
1434 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1435 -|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1436 -|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1437 -|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1438 1438  
1420 +|**DI function code**|**function name**|**Function**
1421 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1422 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1423 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1424 +
1439 1439  Table 6-28 DI multi-speed function code description
1440 1440  
1441 1441  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1442 1442  
1443 -(% class="table-bordered" %)
1444 -|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1445 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1446 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1447 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1429 +
1430 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1431 +|0|0|0|1|0
1432 +|0|0|1|2|1
1433 +|0|1|0|3|2
1448 1448  |(% colspan="5" %)......
1449 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1435 +|1|1|1|8|7
1450 1450  
1451 1451  Table 6-29 Correspondence between INSPD bits and segment numbers
1452 1452  
1453 -(% style="text-align:center" %)
1439 +
1454 1454  [[image:image-20220608170845-26.png]]
1455 1455  
1456 1456  Figure 6-29 Multi-segment speed running curve
... ... @@ -1459,7 +1459,7 @@
1459 1459  
1460 1460  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1461 1461  
1462 -(% style="text-align:center" %)
1448 +
1463 1463  [[image:image-20220608153341-5.png]]
1464 1464  
1465 1465  Figure 6-30 Analog input circuit
... ... @@ -1466,7 +1466,7 @@
1466 1466  
1467 1467  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1468 1468  
1469 -(% style="text-align:center" %)
1455 +
1470 1470  [[image:image-20220608170955-27.png]]
1471 1471  
1472 1472  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1479,18 +1479,18 @@
1479 1479  
1480 1480  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1481 1481  
1482 -(% style="text-align:center" %)
1468 +
1483 1483  [[image:image-20220608171124-28.png]]
1484 1484  
1485 1485  Figure 6-32 AI_1 diagram before and after bias
1486 1486  
1487 -(% class="table-bordered" %)
1488 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1489 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1490 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1491 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1492 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 1493  
1474 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1475 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1476 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1477 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1478 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1479 +
1494 1494  Table 6-30 AI_1 parameters
1495 1495  
1496 1496  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1501,7 +1501,7 @@
1501 1501  
1502 1502  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1503 1503  
1504 -(% style="text-align:center" %)
1490 +
1505 1505  [[image:image-20220608171314-29.png]]
1506 1506  
1507 1507  Figure 6-33 of acceleration and deceleration time diagram
... ... @@ -1510,22 +1510,22 @@
1510 1510  
1511 1511  Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1512 1512  
1513 -(% class="table-bordered" %)
1514 -|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1499 +
1500 +|**Function code**|**Name**|(((
1515 1515  **Setting method**
1516 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1502 +)))|(((
1517 1517  **Effective time**
1518 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1519 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1504 +)))|**Default value**|**Range**|**Definition**|**Unit**
1505 +|P01-03|Acceleration time|(((
1520 1520  Operation setting
1521 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1507 +)))|(((
1522 1522  Effective immediately
1523 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1524 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1509 +)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1510 +|P01-04|Deceleration time|(((
1525 1525  Operation setting
1526 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1512 +)))|(((
1527 1527  Effective immediately
1528 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1514 +)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1529 1529  
1530 1530  Table 6-31 Acceleration and deceleration time parameters
1531 1531  
... ... @@ -1544,27 +1544,27 @@
1544 1544  
1545 1545  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1546 1546  
1547 -(% class="table-bordered" %)
1548 -|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1533 +
1534 +|**Function code**|**Name**|(((
1549 1549  **Setting method**
1550 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1536 +)))|(((
1551 1551  **Effective time**
1552 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1553 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1538 +)))|**Default value**|**Range**|**Definition**|**Unit**
1539 +|P01-10|Maximum speed threshold|(((
1554 1554  Operation setting
1555 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1541 +)))|(((
1556 1556  Effective immediately
1557 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1558 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1543 +)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1544 +|P01-12|Forward speed threshold|(((
1559 1559  Operation setting
1560 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1546 +)))|(((
1561 1561  Effective immediately
1562 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1563 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1548 +)))|3000|0 to 5000|Set forward speed limit value|rpm
1549 +|P01-13|Reverse speed threshold|(((
1564 1564  Operation setting
1565 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1551 +)))|(((
1566 1566  Effective immediately
1567 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1553 +)))|3000|0 to 5000|Set reverse speed limit value|rpm
1568 1568  
1569 1569  Table 6-32 Rotation speed related function codes
1570 1570  
... ... @@ -1574,19 +1574,19 @@
1574 1574  
1575 1575  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1576 1576  
1577 -(% class="table-bordered" %)
1578 -|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1563 +
1564 +|**Function code**|**Name**|(((
1579 1579  **Setting method**
1580 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1566 +)))|(((
1581 1581  **Effective time**
1582 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1583 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1568 +)))|**Default value**|**Range**|**Definition**|**Unit**
1569 +|P01-21|(((
1584 1584  Zero-speed clamp function selection
1585 -)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1571 +)))|(((
1586 1586  Operation setting
1587 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1573 +)))|(((
1588 1588  Effective immediately
1589 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1575 +)))|0|0 to 3|(((
1590 1590  Set the zero-speed clamp function. In speed mode:
1591 1591  
1592 1592  0: Force the speed to 0;
... ... @@ -1596,18 +1596,18 @@
1596 1596  2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1597 1597  
1598 1598  3: Invalid, ignore zero-speed clamp input
1599 -)))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1600 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1585 +)))|-
1586 +|P01-22|(((
1601 1601  Zero-speed clamp speed threshold
1602 -)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1588 +)))|(((
1603 1603  Operation setting
1604 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1590 +)))|(((
1605 1605  Effective immediately
1606 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1592 +)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1607 1607  
1608 1608  Table 6-33 Zero-speed clamp related parameters
1609 1609  
1610 -(% style="text-align:center" %)
1596 +
1611 1611  [[image:image-20220608171549-30.png]]
1612 1612  
1613 1613  Figure 6-34 Zero-speed clamp diagram
... ... @@ -1620,7 +1620,7 @@
1620 1620  
1621 1621  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1622 1622  
1623 -(% style="text-align:center" %)
1609 +
1624 1624  [[image:image-20220608171625-31.png]]
1625 1625  
1626 1626  Figure 6-35 Rotation detection signal diagram
... ... @@ -1627,30 +1627,28 @@
1627 1627  
1628 1628  To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1629 1629  
1630 -(% class="table-bordered" %)
1631 -|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1616 +
1617 +|**Function code**|**Name**|(((
1632 1632  **Setting method**
1633 -)))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1619 +)))|(((
1634 1634  **Effective time**
1635 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1636 -|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1621 +)))|**Default value**|**Range**|**Definition**|**Unit**
1622 +|P05-16|(((
1637 1637  Rotation detection
1638 1638  
1639 1639  speed threshold
1640 -)))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1626 +)))|(((
1641 1641  Operation setting
1642 -)))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1628 +)))|(((
1643 1643  Effective immediately
1644 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1630 +)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1645 1645  
1646 1646  Table 6-34 Rotation detection speed threshold parameters
1647 1647  
1648 -(% class="table-bordered" %)
1649 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1650 -|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)(((
1651 -T-COIN
1652 1652  
1653 -rotation detection
1635 +|**DO function code**|**Function name**|**Function**
1636 +|132|(((
1637 +T-COIN rotation detection
1654 1654  )))|(((
1655 1655  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1656 1656  
... ... @@ -1663,7 +1663,7 @@
1663 1663  
1664 1664  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1665 1665  
1666 -(% style="text-align:center" %)
1650 +
1667 1667  [[image:image-20220608171904-32.png]]
1668 1668  
1669 1669  Figure 6-36 Zero-speed signal diagram
... ... @@ -1670,25 +1670,25 @@
1670 1670  
1671 1671  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1672 1672  
1673 -(% class="table-bordered" %)
1674 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1657 +
1658 +|**Function code**|**Name**|(((
1675 1675  **Setting method**
1676 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1660 +)))|(((
1677 1677  **Effective time**
1678 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1679 -|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1662 +)))|**Default value**|**Range**|**Definition**|**Unit**
1663 +|P05-19|Zero speed output signal threshold|(((
1680 1680  Operation setting
1681 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1665 +)))|(((
1682 1682  Effective immediately
1683 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1667 +)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1684 1684  
1685 1685  Table 6-36 Zero-speed output signal threshold parameter
1686 1686  
1687 -(% class="table-bordered" %)
1688 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1689 -|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1671 +
1672 +|**DO function code**|**Function name**|**Function**
1673 +|133|(((
1690 1690  ZSP zero speed signal
1691 -)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1675 +)))|Output this signal indicates that the servo motor is stopping rotation
1692 1692  
1693 1693  Table 6-37 DO zero-speed signal function code
1694 1694  
... ... @@ -1696,7 +1696,7 @@
1696 1696  
1697 1697  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1698 1698  
1699 -(% style="text-align:center" %)
1683 +
1700 1700  [[image:image-20220608172053-33.png]]
1701 1701  
1702 1702  Figure 6-37 Speed consistent signal diagram
... ... @@ -1703,25 +1703,25 @@
1703 1703  
1704 1704  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1705 1705  
1706 -(% class="table-bordered" %)
1707 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1690 +
1691 +|**Function code**|**Name**|(((
1708 1708  **Setting method**
1709 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1693 +)))|(((
1710 1710  **Effective time**
1711 -)))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1712 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1695 +)))|**Default value**|**Range**|**Definition**|**Unit**
1696 +|P05-17|Speed consistent signal threshold|(((
1713 1713  Operationsetting
1714 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1698 +)))|(((
1715 1715  Effective immediately
1716 -)))|(% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1700 +)))|10|0 to 100|Set speed consistent signal threshold|rpm
1717 1717  
1718 1718  Table 6-38 Speed consistent signal threshold parameters
1719 1719  
1720 -(% class="table-bordered" %)
1721 -|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1722 -|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1704 +
1705 +|**DO Function code**|**Function name**|**Function**
1706 +|136|(((
1723 1723  U-COIN consistent speed
1724 -)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1708 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1725 1725  
1726 1726  Table 6-39 DO speed consistent function code
1727 1727  
... ... @@ -1729,7 +1729,7 @@
1729 1729  
1730 1730  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1731 1731  
1732 -(% style="text-align:center" %)
1716 +
1733 1733  [[image:image-20220608172207-34.png]]
1734 1734  
1735 1735  Figure 6-38 Speed approaching signal diagram
... ... @@ -1736,25 +1736,25 @@
1736 1736  
1737 1737  To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1738 1738  
1739 -(% class="table-bordered" %)
1740 -|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1723 +
1724 +|**Function code**|**Name**|(((
1741 1741  **Setting method**
1742 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1726 +)))|(((
1743 1743  **Effective time**
1744 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1745 -|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1728 +)))|**Default value**|**Range**|**Definition**|**Unit**
1729 +|P05-18|Speed approach signal threshold|(((
1746 1746  Operation setting
1747 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1731 +)))|(((
1748 1748  Effective immediately
1749 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1733 +)))|100|10 to 6000|Set speed approach signal threshold|rpm
1750 1750  
1751 1751  Table 6-40 Speed approaching signal threshold parameters
1752 1752  
1753 -(% class="table-bordered" %)
1754 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1755 -|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1737 +
1738 +|**DO function code**|**Function name**|**Function**
1739 +|137|(((
1756 1756  V-NEAR speed approach
1757 -)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1741 +)))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1758 1758  
1759 1759  Table 6-41 DO speed approach function code
1760 1760  
... ... @@ -1762,7 +1762,7 @@
1762 1762  
1763 1763  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1764 1764  
1765 -(% style="text-align:center" %)
1749 +
1766 1766  [[image:image-20220608172405-35.png]]
1767 1767  
1768 1768  Figure 6-39 Torque mode diagram
... ... @@ -1771,21 +1771,21 @@
1771 1771  
1772 1772  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1773 1773  
1774 -(% class="table-bordered" %)
1775 -|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1758 +
1759 +|**Function code**|**Name**|(((
1776 1776  **Setting method**
1777 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1761 +)))|(((
1778 1778  **Effective time**
1779 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1780 -|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1763 +)))|**Default value**|**Range**|**Definition**|**Unit**
1764 +|P01-08|Torque instruction source|(((
1781 1781  Shutdown setting
1782 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1766 +)))|(((
1783 1783  Effective immediately
1784 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1768 +)))|0|0 to 1|(((
1785 1785  0: internal torque instruction
1786 1786  
1787 1787  1: AI_1 analog input(not supported by VD2F)
1788 -)))|(% style="text-align:center; vertical-align:middle" %)-
1772 +)))|-
1789 1789  
1790 1790  Table 6-42 Torque instruction source parameter
1791 1791  
... ... @@ -1793,17 +1793,17 @@
1793 1793  
1794 1794  Torque instruction source is from inside, the value is set by function code P01-08.
1795 1795  
1796 -(% class="table-bordered" %)
1797 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1780 +
1781 +|**Function code**|**Name**|(((
1798 1798  **Setting method**
1799 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1783 +)))|(((
1800 1800  **Effective time**
1801 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1802 -|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1785 +)))|**Default value**|**Range**|**Definition**|**Unit**
1786 +|P01-08|Torque instruction keyboard set value|(((
1803 1803  Operation setting
1804 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1788 +)))|(((
1805 1805  Effective immediately
1806 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1790 +)))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1807 1807  
1808 1808  Table 6-43 Torque instruction keyboard set value
1809 1809  
... ... @@ -1811,7 +1811,7 @@
1811 1811  
1812 1812  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1813 1813  
1814 -(% style="text-align:center" %)
1798 +
1815 1815  [[image:image-20220608153646-7.png||height="213" width="408"]]
1816 1816  
1817 1817  Figure 6-40 Analog input circuit
... ... @@ -1818,7 +1818,7 @@
1818 1818  
1819 1819  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1820 1820  
1821 -(% style="text-align:center" %)
1805 +
1822 1822  [[image:image-20220608172502-36.png]]
1823 1823  
1824 1824  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1831,18 +1831,18 @@
1831 1831  
1832 1832  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1833 1833  
1834 -(% style="text-align:center" %)
1818 +
1835 1835  [[image:image-20220608172611-37.png]]
1836 1836  
1837 1837  Figure 6-42 AI_1 diagram before and after bias
1838 1838  
1839 -(% class="table-bordered" %)
1840 -|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1841 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1842 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1843 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1844 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1845 1845  
1824 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1825 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1826 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1827 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1828 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1829 +
1846 1846  Table 6-44 AI_1 parameters
1847 1847  
1848 1848  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1851,23 +1851,23 @@
1851 1851  
1852 1852  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1853 1853  
1854 -(% class="table-bordered" %)
1855 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1838 +
1839 +|**Function code**|**Name**|(((
1856 1856  **Setting method**
1857 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1841 +)))|(((
1858 1858  **Effective time**
1859 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1860 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1843 +)))|**Default value**|**Range**|**Definition**|**Unit**
1844 +|P04-04|Torque filtering time constant|(((
1861 1861  Operation setting
1862 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1846 +)))|(((
1863 1863  Effective immediately
1864 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1848 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1865 1865  
1866 1866  Table 6-45 Torque filtering time constant parameter details
1867 1867  
1868 1868  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1869 1869  
1870 -(% style="text-align:center" %)
1854 +
1871 1871  [[image:image-20220608172646-38.png]]
1872 1872  
1873 1873  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1878,7 +1878,7 @@
1878 1878  
1879 1879  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1880 1880  
1881 -(% style="text-align:center" %)
1865 +
1882 1882  [[image:image-20220608172806-39.png]]
1883 1883  
1884 1884  Figure 6-44 Torque instruction limit diagram
... ... @@ -1887,50 +1887,50 @@
1887 1887  
1888 1888  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1889 1889  
1890 -(% class="table-bordered" %)
1891 -|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1874 +
1875 +|**Function code**|**Name**|(((
1892 1892  **Setting method**
1893 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1877 +)))|(((
1894 1894  **Effective time**
1895 -)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1896 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1879 +)))|**Default value**|**Range**|**Definition**|**Unit**
1880 +|P01-14|(((
1897 1897  Torque limit source
1898 -)))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1882 +)))|(((
1899 1899  Shutdown setting
1900 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1884 +)))|(((
1901 1901  Effective immediately
1902 -)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1886 +)))|0|0 to 1|(((
1903 1903  0: internal value
1904 1904  
1905 1905  1: AI_1 analog input
1906 1906  
1907 1907  (not supported by VD2F)
1908 -)))|(% style="text-align:center; vertical-align:middle" %)-
1892 +)))|-
1909 1909  
1910 1910  1) Torque limit source is internal torque instruction (P01-14=0)
1911 1911  
1912 1912  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1913 1913  
1914 -(% class="table-bordered" %)
1915 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1898 +
1899 +|**Function code**|**Name**|(((
1916 1916  **Setting method**
1917 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1901 +)))|(((
1918 1918  **Effective time**
1919 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1920 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1903 +)))|**Default value**|**Range**|**Definition**|**Unit**
1904 +|P01-15|(((
1921 1921  Forward torque limit
1922 -)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1906 +)))|(((
1923 1923  Operation setting
1924 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1908 +)))|(((
1925 1925  Effective immediately
1926 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1927 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1911 +|P01-16|(((
1928 1928  Reverse torque limit
1929 -)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1913 +)))|(((
1930 1930  Operation setting
1931 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1915 +)))|(((
1932 1932  Effective immediately
1933 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1917 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1934 1934  
1935 1935  Table 6-46 Torque limit parameter details
1936 1936  
... ... @@ -1942,11 +1942,11 @@
1942 1942  
1943 1943  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1944 1944  
1945 -(% class="table-bordered" %)
1946 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1947 -|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1929 +
1930 +|**DO function code**|**Function name**|**Function**
1931 +|139|(((
1948 1948  T-LIMIT in torque limit
1949 -)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1933 +)))|Output of this signal indicates that the servo motor torque is limited
1950 1950  
1951 1951  Table 6-47 DO torque limit function codes
1952 1952  
... ... @@ -1957,46 +1957,43 @@
1957 1957  In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1958 1958  
1959 1959  |(((
1960 -(% style="text-align:center" %)
1961 1961  [[image:image-20220608172910-40.png]]
1962 1962  )))|(((
1963 -(% style="text-align:center" %)
1964 1964  [[image:image-20220608173155-41.png]]
1965 1965  )))
1966 1966  |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1967 1967  
1968 -(% class="table-bordered" %)
1969 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1950 +|**Function code**|**Name**|(((
1970 1970  **Setting method**
1971 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1952 +)))|(((
1972 1972  **Effective time**
1973 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1974 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1954 +)))|**Default value**|**Range**|**Definition**|**Unit**
1955 +|P01-17|(((
1975 1975  Forward torque
1976 1976  
1977 1977  limit in torque mode
1978 -)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1959 +)))|(((
1979 1979  Operation setting
1980 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1961 +)))|(((
1981 1981  Effective immediately
1982 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1963 +)))|3000|0 to 5000|(((
1983 1983  Forward torque
1984 1984  
1985 1985  limit in torque mode
1986 -)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1987 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1967 +)))|0.1%
1968 +|P01-18|(((
1988 1988  Reverse torque
1989 1989  
1990 1990  limit in torque mode
1991 -)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1972 +)))|(((
1992 1992  Operation setting
1993 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1974 +)))|(((
1994 1994  Effective immediately
1995 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1976 +)))|3000|0 to 5000|(((
1996 1996  Reverse torque
1997 1997  
1998 1998  limit in torque mode
1999 -)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1980 +)))|0.1%
2000 2000  
2001 2001  Table 6-48 Speed limit parameters in torque mode
2002 2002  
... ... @@ -2010,7 +2010,7 @@
2010 2010  
2011 2011  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2012 2012  
2013 -(% style="text-align:center" %)
1994 +
2014 2014  [[image:image-20220608173541-42.png]]
2015 2015  
2016 2016  Figure 6-47 Torque arrival output diagram
... ... @@ -2017,44 +2017,44 @@
2017 2017  
2018 2018  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2019 2019  
2020 -(% class="table-bordered" %)
2021 -|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2001 +
2002 +|**Function code**|**Name**|(((
2022 2022  **Setting method**
2023 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2004 +)))|(((
2024 2024  **Effective time**
2025 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2026 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2006 +)))|**Default value**|**Range**|**Definition**|**Unit**
2007 +|P05-20|(((
2027 2027  Torque arrival
2028 2028  
2029 2029  threshold
2030 -)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2011 +)))|(((
2031 2031  Operation setting
2032 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2013 +)))|(((
2033 2033  Effective immediately
2034 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2015 +)))|100|0 to 300|(((
2035 2035  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2036 2036  
2037 2037  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2038 2038  
2039 2039  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2040 -)))|(% style="text-align:center; vertical-align:middle" %)%
2041 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2021 +)))|%
2022 +|P05-21|(((
2042 2042  Torque arrival
2043 2043  
2044 2044  hysteresis
2045 -)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2026 +)))|(((
2046 2046  Operation setting
2047 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2028 +)))|(((
2048 2048  Effective immediately
2049 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2030 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2050 2050  
2051 2051  Table 6-49 Torque arrival parameters
2052 2052  
2053 -(% class="table-bordered" %)
2054 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2055 -|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2034 +
2035 +|**DO function code**|**Function name**|**Function**
2036 +|138|(((
2056 2056  T-COIN torque arrival
2057 -)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2038 +)))|Used to determine whether the actual torque instruction has reached the set range
2058 2058  
2059 2059  Table 6-50 DO Torque Arrival Function Code
2060 2060  
... ... @@ -2070,17 +2070,17 @@
2070 2070  
2071 2071  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2072 2072  
2073 -(% class="table-bordered" %)
2074 -|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2054 +
2055 +|**Function code**|**Name**|(((
2075 2075  **Setting method**
2076 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2057 +)))|(((
2077 2077  **Effective time**
2078 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2079 -|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2059 +)))|**Default value**|**Range**|**Definition**|**Unit**
2060 +|P00-01|Control mode|(((
2080 2080  Shutdown setting
2081 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2062 +)))|(((
2082 2082  Shutdown setting
2083 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((
2064 +)))|1|1 to 6|(((
2084 2084  1: Position control
2085 2085  
2086 2086  2: Speed control
... ... @@ -2092,23 +2092,22 @@
2092 2092  5: Position/torque mixed control
2093 2093  
2094 2094  6: Speed/torque mixed control
2095 -)))|(% style="text-align:center; vertical-align:middle" %)-
2076 +)))|-
2096 2096  
2097 2097  Table 6-51 Mixed control mode parameters
2098 2098  
2099 2099  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2100 2100  
2101 -(% class="table-bordered" %)
2102 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2103 -|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2104 -(% class="table-bordered" %)
2105 -|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2106 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2107 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2108 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2109 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2110 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2111 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2082 +
2083 +|**DI function code**|**Name**|**Function name**|**Function**
2084 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2085 +|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2086 +|(% rowspan="2" %)4|Valid|Speed mode
2087 +|invalid|Position mode
2088 +|(% rowspan="2" %)5|Valid|Torque mode
2089 +|invalid|Position mode
2090 +|(% rowspan="2" %)6|Valid|Torque mode
2091 +|invalid|Speed mode
2112 2112  )))
2113 2113  
2114 2114  Table 6-52 Description of DI function codes in control mode
... ... @@ -2127,15 +2127,15 @@
2127 2127  
2128 2128  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2129 2129  
2130 -(% class="table-bordered" %)
2131 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2132 -|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2133 2133  
2111 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2112 +|A1 (single-turn magnetic encoder)|17|0 to 131071
2113 +
2134 2134  Table 6-53 Single-turn absolute encoder information
2135 2135  
2136 2136  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2137 2137  
2138 -(% style="text-align:center" %)
2118 +
2139 2139  [[image:image-20220608173618-43.png]]
2140 2140  
2141 2141  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2144,16 +2144,16 @@
2144 2144  
2145 2145  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2146 2146  
2147 -(% class="table-bordered" %)
2148 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2149 -|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2150 -|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2151 2151  
2128 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2129 +|C1 (multi-turn magnetic encoder)|17|0 to 131071
2130 +|D2 (multi-turn Optical encoder)|23|0 to 8388607
2131 +
2152 2152  Table 6-54 Multi-turn absolute encoder information
2153 2153  
2154 2154  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2155 2155  
2156 -(% style="text-align:center" %)
2136 +
2157 2157  [[image:image-20220608173701-44.png]]
2158 2158  
2159 2159  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2162,12 +2162,12 @@
2162 2162  
2163 2163  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2164 2164  
2165 -(% class="table-bordered" %)
2166 -|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2167 -|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2168 -|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2169 -|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2170 2170  
2146 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2147 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2148 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2149 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2150 +
2171 2171  Table 6-55 Encoder feedback data
2172 2172  
2173 2173  == **Absolute value system encoder battery box use precautions** ==
... ... @@ -2174,7 +2174,7 @@
2174 2174  
2175 2175  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2176 2176  
2177 -(% style="text-align:center" %)
2157 +
2178 2178  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2179 2179  
2180 2180  Figure 6-50 the encoder battery box
... ... @@ -2187,23 +2187,23 @@
2187 2187  
2188 2188  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2189 2189  
2190 -(% class="table-bordered" %)
2191 -|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2170 +
2171 +|**Function code**|**Name**|(((
2192 2192  **Setting method**
2193 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2173 +)))|(((
2194 2194  **Effective time**
2195 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2196 -|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2175 +)))|**Default value**|**Range**|**Definition**|**Unit**
2176 +|P10-06|Multi-turn absolute encoder reset|(((
2197 2197  Shutdown setting
2198 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2178 +)))|(((
2199 2199  Effective immediately
2200 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2180 +)))|0|0 to 1|(((
2201 2201  0: No operation
2202 2202  
2203 2203  1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2204 2204  
2205 2205  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2206 -)))|(% style="text-align:center; vertical-align:middle" %)-
2186 +)))|-
2207 2207  
2208 2208  Table 6-56 Absolute encoder reset enable parameter
2209 2209  
... ... @@ -2221,18 +2221,18 @@
2221 2221  
2222 2222  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2223 2223  
2224 -(% style="text-align:center" %)
2204 +
2225 2225  [[image:image-20220608173804-46.png]]
2226 2226  
2227 2227  Figure 6-51 VDI_1 setting steps
2228 2228  
2229 -(% class="table-bordered" %)
2230 -|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2209 +
2210 +|**Function code**|**Name**|(((
2231 2231  **Setting method**
2232 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2212 +)))|(((
2233 2233  **Effective time**
2234 -)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2235 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2214 +)))|**Default value**|**Range**|**Definition**|**Unit**
2215 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2236 2236  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2237 2237  
2238 2238  VDI_1 input level:
... ... @@ -2240,8 +2240,8 @@
2240 2240  0: low level
2241 2241  
2242 2242  1: high level
2243 -)))|(% style="text-align:center; vertical-align:middle" %)-
2244 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2223 +)))|-
2224 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2245 2245  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2246 2246  
2247 2247  VDI_2 input level:
... ... @@ -2249,8 +2249,8 @@
2249 2249  0: low level
2250 2250  
2251 2251  1: high level
2252 -)))|(% style="text-align:center; vertical-align:middle" %)-
2253 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2232 +)))|-
2233 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2254 2254  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2255 2255  
2256 2256  VDI_3 input level:
... ... @@ -2258,8 +2258,8 @@
2258 2258  0: low level
2259 2259  
2260 2260  1: high level
2261 -)))|(% style="text-align:center; vertical-align:middle" %)-
2262 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2241 +)))|-
2242 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2263 2263  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2264 2264  
2265 2265  VDI_4 input level:
... ... @@ -2267,8 +2267,8 @@
2267 2267  0: low level
2268 2268  
2269 2269  1: high level
2270 -)))|(% style="text-align:center; vertical-align:middle" %)-
2271 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2250 +)))|-
2251 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2272 2272  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2273 2273  
2274 2274  VDI_5 input level:
... ... @@ -2276,8 +2276,8 @@
2276 2276  0: low level
2277 2277  
2278 2278  1: high level
2279 -)))|(% style="text-align:center; vertical-align:middle" %)-
2280 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2259 +)))|-
2260 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2281 2281  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2282 2282  
2283 2283  VDI_6 input level:
... ... @@ -2285,8 +2285,8 @@
2285 2285  0: low level
2286 2286  
2287 2287  1: high level
2288 -)))|(% style="text-align:center; vertical-align:middle" %)-
2289 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2268 +)))|-
2269 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2290 2290  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2291 2291  
2292 2292  VDI_7 input level:
... ... @@ -2294,8 +2294,8 @@
2294 2294  0: low level
2295 2295  
2296 2296  1: high level
2297 -)))|(% style="text-align:center; vertical-align:middle" %)-
2298 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2277 +)))|-
2278 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2299 2299  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2300 2300  
2301 2301  VDI_8 input level:
... ... @@ -2303,7 +2303,7 @@
2303 2303  0: low level
2304 2304  
2305 2305  1: high level
2306 -)))|(% style="text-align:center; vertical-align:middle" %)-
2286 +)))|-
2307 2307  
2308 2308  Table 6-57 Virtual VDI parameters
2309 2309  
... ... @@ -2313,11 +2313,11 @@
2313 2313  
2314 2314  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2315 2315  
2316 -(% class="table-bordered" %)
2317 -|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2318 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2319 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2320 2320  
2297 +|**Setting value**|**DI channel logic selection**|**Illustration**
2298 +|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2299 +|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2300 +
2321 2321  Table 6-58 DI terminal channel logic selection
2322 2322  
2323 2323  == **VDO** ==
... ... @@ -2326,55 +2326,55 @@
2326 2326  
2327 2327  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2328 2328  
2329 -(% style="text-align:center" %)
2309 +
2330 2330  [[image:image-20220608173957-48.png]]
2331 2331  
2332 2332  Figure 6-52 VDO_2 setting steps
2333 2333  
2334 -(% class="table-bordered" %)
2335 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2314 +
2315 +|**Function code**|**Name**|(((
2336 2336  **Setting method**
2337 -)))|(% style="text-align:center; vertical-align:middle" %)(((
2317 +)))|(((
2338 2338  **Effective time**
2339 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2340 -|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2319 +)))|**Default value**|**Range**|**Definition**|**Unit**
2320 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2341 2341  VDO_1 output level:
2342 2342  
2343 2343  0: low level
2344 2344  
2345 2345  1: high level
2346 -)))|(% style="text-align:center; vertical-align:middle" %)-
2347 -|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2326 +)))|-
2327 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2348 2348  VDO_2 output level:
2349 2349  
2350 2350  0: low level
2351 2351  
2352 2352  1: high level
2353 -)))|(% style="text-align:center; vertical-align:middle" %)-
2354 -|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2333 +)))|-
2334 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2355 2355  VDO_3 output level:
2356 2356  
2357 2357  0: low level
2358 2358  
2359 2359  1: high level
2360 -)))|(% style="text-align:center; vertical-align:middle" %)-
2361 -|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2340 +)))|-
2341 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2362 2362  VDO_4 output level:
2363 2363  
2364 2364  0: low level
2365 2365  
2366 2366  1: high level
2367 -)))|(% style="text-align:center; vertical-align:middle" %)-
2347 +)))|-
2368 2368  
2369 2369  Table 6-59 Communication control DO function parameters
2370 2370  
2371 -(% class="table-bordered" %)
2372 -|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2373 -|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 -|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 -|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2376 -|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2377 2377  
2352 +|**DO function number**|**Function name**|**Function**
2353 +|145|COM_VDO1 communication VDO1 output|Use communication VDO
2354 +|146|COM_VDO1 communication VDO2 output|Use communication VDO
2355 +|147|COM_VDO1 communication VDO3 output|Use communication VDO
2356 +|148|COM_VDO1 communication VDO4output|Use communication VDO
2357 +
2378 2378  Table 6-60 VDO function number
2379 2379  
2380 2380  ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
... ... @@ -2385,17 +2385,17 @@
2385 2385  
2386 2386  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2387 2387  
2388 -(% class="table-bordered" %)
2389 -|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2368 +
2369 +|**Function code**|**Name**|(((
2390 2390  **Setting method**
2391 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2371 +)))|(((
2392 2392  **Effective time**
2393 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2394 -|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2373 +)))|**Default value**|**Range**|**Definition**|**Unit**
2374 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2395 2395  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2396 2396  
2397 2397  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2398 -)))|(% style="text-align:center; vertical-align:middle" %)%
2378 +)))|%
2399 2399  
2400 2400  In the following cases, it could be modified according to the actual heat generation of the motor
2401 2401  
image-20220611152020-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content