Changes for page 06 Operation
Last modified by Iris on 2025/08/06 18:24
From version 42.2
edited by Joey
on 2022/06/11 15:19
on 2022/06/11 15:19
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Joey1 +XWiki.admin - Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|**No.**|**Content** 6 -|(% colspan="2" style="text-align:center; vertical-align:middle"%)Wiring7 -|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 -|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 -|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 -|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 -|5|Servo drive and servo motor must be grounded reliably. 12 -|6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 -|7|The force of all cables is within the specified range. 14 -|8|The wiring terminals have been insulated. 15 -|(% colspan="2" style="text-align:center; vertical-align:middle"%)Environment and Machinery16 -|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 -|2|The servo drive and external braking resistor are not placed on combustible objects. 18 -|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 5 +|=(% scope="row" %)**No.**|=**Content** 6 +|=(% colspan="2" %)Wiring 7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=5|Servo drive and servo motor must be grounded reliably. 12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=7|The force of all cables is within the specified range. 14 +|=8|The wiring terminals have been insulated. 15 +|=(% colspan="2" %)Environment and Machinery 16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -42,17 +42,17 @@ 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 44 45 - (% class="table-bordered" %)46 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((45 + 46 +|=(% scope="row" %)**Function code**|=**Name**|=((( 47 47 **Setting method** 48 -)))| (% style="text-align:center; vertical-align:middle" %)(((48 +)))|=((( 49 49 **Effective time** 50 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**51 -| (% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((50 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 51 +|=P10-01|JOG speed|((( 52 52 Operation setting 53 -)))|( % style="text-align:center; vertical-align:middle" %)(((53 +)))|((( 54 54 Effective immediately 55 -)))| (% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm55 +)))|100|0 to 3000|JOG speed|rpm 56 56 57 57 Table 6-2 JOG speed parameter 58 58 ... ... @@ -60,25 +60,25 @@ 60 60 61 61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 62 62 63 - (% class="table-bordered" %)64 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((63 + 64 +|=(% scope="row" %)**Function code**|=**Name**|=((( 65 65 **Setting method** 66 -)))| (% style="text-align:center; vertical-align:middle" %)(((66 +)))|=((( 67 67 **Effective time** 68 -)))| (% style="text-align:center; vertical-align:middle" %)(((68 +)))|=((( 69 69 **Default value** 70 -)))| (% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**71 -| (% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((70 +)))|=**Range**|=**Definition**|=**Unit** 71 +|=P00-04|Rotation direction|((( 72 72 Shutdown setting 73 -)))|( % style="text-align:center; vertical-align:middle" %)(((73 +)))|((( 74 74 Effective immediately 75 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((75 +)))|0|0 to 1|((( 76 76 Forward rotation: Face the motor shaft to watch 77 77 78 78 0: standard setting (CW is forward rotation) 79 79 80 80 1: reverse mode (CCW is forward rotation) 81 -)))| (% style="text-align:center; vertical-align:middle" %)-81 +)))|- 82 82 83 83 Table 6-3 Rotation direction parameters** ** 84 84 ... ... @@ -91,17 +91,16 @@ 91 91 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 92 92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 93 93 94 -(% class="table-bordered" %) 95 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 94 +|=(% scope="row" %)**Function code**|=**Name**|=((( 96 96 **Setting method** 97 -)))| (% style="text-align:center; vertical-align:middle" %)(((96 +)))|=((( 98 98 **Effective time** 99 -)))| (% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**100 -| (% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((98 +)))|=**Default**|=**Range**|=**Definition**|=**Unit** 99 +|=P00-09|Braking resistor setting|((( 101 101 Operation setting 102 -)))|( % style="text-align:center; vertical-align:middle" %)(((101 +)))|((( 103 103 Effective immediately 104 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((103 +)))|0|0 to 3|((( 105 105 0: use built-in braking resistor 106 106 107 107 1: use external braking resistor and natural cooling ... ... @@ -109,18 +109,18 @@ 109 109 2: use external braking resistor and forced air cooling; (cannot be set) 110 110 111 111 3: No braking resistor is used, it is all absorbed by capacitor. 112 -)))| (% style="text-align:center; vertical-align:middle" %)-113 -|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 114 -| (% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((111 +)))|- 112 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 113 +|=P00-10|External braking resistor value|((( 115 115 Operation setting 116 -)))|( % style="text-align:center; vertical-align:middle" %)(((115 +)))|((( 117 117 Effective immediately 118 -)))| (% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω119 -| (% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((117 +)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 118 +|=P00-11|External braking resistor power|((( 120 120 Operation setting 121 -)))|( % style="text-align:center; vertical-align:middle" %)(((120 +)))|((( 122 122 Effective immediately 123 -)))| (% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W122 +)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 124 124 125 125 Table 6-4 Braking resistor parameters 126 126 ... ... @@ -138,7 +138,7 @@ 138 138 139 139 **(3) Timing diagram of power on** 140 140 141 - (% style="text-align:center" %)140 + 142 142 [[image:image-20220608163014-1.png]] 143 143 144 144 Figure 6-1 Timing diagram of power on ... ... @@ -147,17 +147,17 @@ 147 147 148 148 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. 149 149 150 -(% class="table-bordered" %) 151 -|Shutdown mode|Shutdown description|Shutdown characteristics 152 -|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 153 -|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 154 154 150 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 151 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 152 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 153 + 155 155 Table 6-5 Comparison of two shutdown modes 156 156 157 -(% class="table-bordered" %) 158 -|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked** 159 -|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 160 160 157 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 158 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 159 + 161 161 Table 6-6 Comparison of two shutdown status 162 162 163 163 **(1) Servo enable (S-ON) OFF shutdown** ... ... @@ -164,27 +164,27 @@ 164 164 165 165 The related parameters of the servo OFF shutdown mode are shown in the table below. 166 166 167 - (% class="table-bordered" %)168 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((166 + 167 +|=(% scope="row" %)**Function code**|=**Name**|=((( 169 169 **Setting method** 170 -)))| (% style="text-align:center; vertical-align:middle" %)(((169 +)))|=((( 171 171 **Effective time** 172 -)))| (% style="text-align:center; vertical-align:middle" %)(((171 +)))|=((( 173 173 **Default value** 174 -)))| (% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**175 -| (% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((173 +)))|=**Range**|=**Definition**|=**Unit** 174 +|=P00-05|Servo OFF shutdown|((( 176 176 Shutdown 177 177 178 178 setting 179 -)))|( % style="text-align:center; vertical-align:middle" %)(((178 +)))|((( 180 180 Effective 181 181 182 182 immediately 183 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((182 +)))|0|0 to 1|((( 184 184 0: Free shutdown, and the motor shaft remains free status. 185 185 186 186 1: Zero-speed shutdown, and the motor shaft remains free status. 187 -)))| (% style="text-align:center; vertical-align:middle" %)-186 +)))|- 188 188 189 189 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 190 190 ... ... @@ -200,13 +200,13 @@ 200 200 201 201 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 202 202 203 - (% class="table-bordered" %)204 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((202 + 203 +|=(% scope="row" %)**Function code**|=**Name**|=((( 205 205 **Setting method** 206 -)))| (% style="text-align:center; vertical-align:middle" %)(((205 +)))|=((( 207 207 **Effective time** 208 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**209 -| (% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((207 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 208 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 210 210 0: OFF (not used) 211 211 212 212 01: S-ON servo enable ... ... @@ -254,32 +254,30 @@ 254 254 24: Internal multi-segment position selection 4 255 255 256 256 Others: reserved 257 -)))| (% style="text-align:center; vertical-align:middle" %)-258 -| (% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((256 +)))|- 257 +|=P06-09|DI_3 channel logic selection|Operation setting|((( 259 259 Effective immediately 260 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((259 +)))|0|0 to 1|((( 261 261 DI port input logic validity function selection. 262 262 263 263 0: Normally open input. Active low level (switch on); 264 264 265 265 1: Normally closed input. Active high level (switch off); 266 -)))| (% style="text-align:center; vertical-align:middle" %)-267 -| (% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((265 +)))|- 266 +|=P06-10|DI_3 input source selection|Operation setting|((( 268 268 Effective immediately 269 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((268 +)))|0|0 to 1|((( 270 270 Select the DI_3 port type to enable 271 271 272 272 0: Hardware DI_3 input terminal 273 273 274 274 1: virtual VDI_3 input terminal 275 -)))|(% style="text-align:center; vertical-align:middle" %)- 276 - 277 -(% class="table-bordered" %) 278 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 274 +)))|- 275 +|=P06-11|DI_4 channel function selection|((( 279 279 Operation setting 280 -)))|( % style="text-align:center; vertical-align:middle; width:195px" %)(((277 +)))|((( 281 281 again Power-on 282 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((279 +)))|4|0 to 32|((( 283 283 0 off (not used) 284 284 285 285 01: SON Servo enable ... ... @@ -327,25 +327,25 @@ 327 327 24: Internal multi-segment position selection 4 328 328 329 329 Others: reserved 330 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-331 -| (% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((327 +)))|- 328 +|=P06-12|DI_4 channel logic selection|Operation setting|((( 332 332 Effective immediately 333 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((330 +)))|0|0 to 1|((( 334 334 DI port input logic validity function selection. 335 335 336 336 0: Normally open input. Active low level (switch on); 337 337 338 338 1: Normally closed input. Active high level (switch off); 339 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-340 -| (% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((336 +)))|- 337 +|=P06-13|DI_4 input source selection|Operation setting|((( 341 341 Effective immediately 342 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((339 +)))|0|0 to 1|((( 343 343 Select the DI_4 port type to enable 344 344 345 345 0: Hardware DI_4 input terminal 346 346 347 347 1: virtual VDI_4 input terminal 348 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-345 +)))|- 349 349 350 350 Table 6-8 DI3 and DI4 channel parameters 351 351 ... ... @@ -357,9 +357,8 @@ 357 357 358 358 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 359 359 360 - (% class="table-bordered" %)357 + 361 361 |((( 362 -(% style="text-align:center" %) 363 363 [[image:image-20220611151617-1.png]] 364 364 ))) 365 365 |((( ... ... @@ -378,14 +378,13 @@ 378 378 379 379 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 380 380 381 - (% style="text-align:center" %)377 + 382 382 [[image:image-20220608163136-2.png]] 383 383 384 384 Figure 6-2 VD2B servo drive brake wiring 385 385 386 - (% class="table-bordered" %)382 + 387 387 |((( 388 -(% style="text-align:center" %) 389 389 [[image:image-20220611151642-2.png]] 390 390 ))) 391 391 |((( ... ... @@ -402,42 +402,42 @@ 402 402 403 403 Related function code is as below. 404 404 405 - (% class="table-bordered" %)406 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((400 + 401 +|**DO function code**|**Function name**|**Function**|((( 407 407 **Effective time** 408 408 ))) 409 -| (% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((404 +|144|((( 410 410 BRK-OFF Brake output 411 -)))| (% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again406 +)))|Output the signal indicates the servo motor brake release|Power-on again 412 412 413 413 Table 6-2 Relevant function codes for brake setting 414 414 415 - (% class="table-bordered" %)416 -| (% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((410 + 411 +|**Function code**|**Name**|((( 417 417 **Setting method** 418 -)))|( % style="text-align:center; vertical-align:middle; width:173px" %)(((413 +)))|((( 419 419 **Effective time** 420 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**421 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((415 +)))|**Default value**|**Range**|**Definition**|**Unit** 416 +|P1-30|Delay from brake output to instruction reception|((( 422 422 Operation setting 423 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms424 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((418 +)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms 419 +|P1-31|In static state, delay from brake output OFF to the motor is power off|((( 425 425 Operation setting 426 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms427 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((421 +)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms 422 +|P1-32|Rotation status, when the brake output OFF, the speed threshold|((( 428 428 Operation setting 429 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((424 +)))|Effective immediately|30|0 to 3000|((( 430 430 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. 431 431 432 432 When the brake output (BRK-OFF) is not allocated, this function code has no effect. 433 -)))| (% style="text-align:center; vertical-align:middle" %)rpm434 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((428 +)))|rpm 429 +|P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|((( 435 435 Operation setting 436 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((431 +)))|Effective immediately|500|1 to 1000|((( 437 437 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. 438 438 439 439 When brake output (BRK-OFF) is not allocated, this function code has no effect. 440 -)))| (% style="text-align:center; vertical-align:middle" %)ms435 +)))|ms 441 441 442 442 Table 6-9 Brake setting function codes 443 443 ... ... @@ -451,9 +451,8 @@ 451 451 452 452 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__ 453 453 454 - (% class="table-bordered" %)449 + 455 455 |((( 456 -(% style="text-align:center" %) 457 457 [[image:image-20220611151705-3.png]] 458 458 ))) 459 459 |((( ... ... @@ -462,7 +462,6 @@ 462 462 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 463 463 ))) 464 464 465 -(% style="text-align:center" %) 466 466 [[image:image-20220608163304-3.png]] 467 467 468 468 Figure 6-3 Brake Timing of when the motor is stationary ... ... @@ -473,9 +473,8 @@ 473 473 474 474 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__. 475 475 476 - (% class="table-bordered" %)469 + 477 477 |((( 478 -(% style="text-align:center" %) 479 479 [[image:image-20220611151719-4.png]] 480 480 ))) 481 481 |((( ... ... @@ -490,7 +490,6 @@ 490 490 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 491 491 ))) 492 492 493 -(% style="text-align:center" %) 494 494 [[image:image-20220608163425-4.png]] 495 495 496 496 Figure 6-4 Brake timing when the motor rotates ... ... @@ -499,7 +499,7 @@ 499 499 500 500 The brake timing (free shutdown) in the fault status is as follows. 501 501 502 - (% style="text-align:center" %)493 + 503 503 [[image:image-20220608163541-5.png]] 504 504 505 505 Figure 6-5 The brake timing (free shutdown) in the fault state ... ... @@ -508,7 +508,7 @@ 508 508 509 509 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 510 510 511 - (% style="text-align:center" %)502 + 512 512 [[image:image-20220608163643-6.png]] 513 513 514 514 Figure 6-6 Position control diagram ... ... @@ -515,17 +515,17 @@ 515 515 516 516 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 517 517 518 - (% class="table-bordered" %)519 -| (% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((509 + 510 +|**Function code**|**Name**|((( 520 520 **Setting method** 521 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((512 +)))|((( 522 522 **Effective time** 523 -)))| (% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**524 -| (% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((514 +)))|**Default value**|**Range**|**Definition**|**Unit** 515 +|P01-01|Control mode|((( 525 525 Operation setting 526 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((517 +)))|((( 527 527 immediately Effective 528 -)))| (% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((519 +)))|0|0 to 1|((( 529 529 0: position control 530 530 531 531 2: speed control ... ... @@ -537,7 +537,7 @@ 537 537 5: position/torque mix control 538 538 539 539 6: speed /torque mix control 540 -)))| (% style="text-align:center; vertical-align:middle" %)-531 +)))|- 541 541 542 542 Table 6-10 Control mode parameters 543 543 ... ... @@ -545,21 +545,21 @@ 545 545 546 546 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 547 547 548 - (% class="table-bordered" %)549 -| (% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((539 + 540 +|**Function code**|**Name**|((( 550 550 **Setting method** 551 -)))|( % style="text-align:center; vertical-align:middle; width:189px" %)(((542 +)))|((( 552 552 **Effective time** 553 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**554 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((544 +)))|**Default value**|**Range**|**Definition**|**Unit** 545 +|P01-06|Position instruction source|((( 555 555 Operation setting 556 -)))|( % style="text-align:center; vertical-align:middle; width:189px" %)(((547 +)))|((( 557 557 immediately Effective 558 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px"%)0to 1|(% style="width:284px" %)(((549 +)))|0|0 to 1|((( 559 559 0: pulse instruction 560 560 561 561 1: internal position instruction 562 -)))| (% style="text-align:center; vertical-align:middle" %)-553 +)))|- 563 563 564 564 Table 6-11 Position instruction source parameter 565 565 ... ... @@ -567,20 +567,20 @@ 567 567 568 568 1) Low-speed pulse instruction input 569 569 570 -(% class="table-bordered" %) 571 -|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 572 -|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive 573 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting 574 574 562 +|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 563 +|VD2A and VD2B servo drives|VD2F servo drive 564 +|(% colspan="2" %)Figure 6-7 Position instruction input setting 565 + 575 575 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__. 576 576 577 577 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 578 578 579 -(% class="table-bordered" %) 580 -|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage** 581 -|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V 582 -|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V 583 583 571 +|**Pulse method**|**Maximum frequency**|**Voltage** 572 +|Open collector input|200K|24V 573 +|Differential input|500K|5V 574 + 584 584 Table 6-12 Pulse input specifications 585 585 586 586 1.Differential input ... ... @@ -587,7 +587,7 @@ 587 587 588 588 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 589 589 590 - (% style="text-align:center" %)581 + 591 591 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]] 592 592 593 593 Figure 6-8 Differential input connection ... ... @@ -598,7 +598,7 @@ 598 598 599 599 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 600 600 601 - (% style="text-align:center" %)592 + 602 602 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]] 603 603 604 604 Figure 6-9 Open collector input connection ... ... @@ -609,7 +609,7 @@ 609 609 610 610 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 611 611 612 - (% style="text-align:center" %)603 + 613 613 [[image:image-20220608163952-8.png]] 614 614 615 615 Figure 6-10 Example of filtered signal waveform ... ... @@ -616,22 +616,22 @@ 616 616 617 617 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 618 618 619 - (% class="table-bordered" %)620 -| (% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((610 + 611 +|**Function code**|**Name**|((( 621 621 **Setting method** 622 -)))|( % style="text-align:center; vertical-align:middle; width:176px" %)(((613 +)))|((( 623 623 **Effective time** 624 -)))| (% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2"style="text-align:center; vertical-align:middle; width:538px"%)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**625 -| (% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((615 +)))|**Default value**|**Range**|(% colspan="2" %)**Definition**|**Unit** 616 +|P00-13|Maximum position pulse frequency|((( 626 626 Shutdown setting 627 -)))|( % style="text-align:center; vertical-align:middle; width:176px" %)(((618 +)))|((( 628 628 Effective immediately 629 -)))| (% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2"style="width:538px"%)Set the maximum frequency of external pulse instruction|KHz630 -|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px"%)P00-14|(% rowspan="3"style="text-align:center; vertical-align:middle; width:202px"%)Position pulse anti-interference level|(% rowspan="3"style="text-align:center; vertical-align:middle; width:158px"%)(((620 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 621 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 631 631 Operation setting 632 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px"%)(((623 +)))|(% rowspan="3" %)((( 633 633 Power-on again 634 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px"%)2|(% rowspan="3"style="text-align:center; vertical-align:middle; width:87px"%)0 to 9|(% colspan="2"style="width:538px"%)(((625 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 635 635 Set the anti-interference level of external pulse instruction. 636 636 637 637 0: no filtering; ... ... @@ -651,8 +651,8 @@ 651 651 7: Filtering time 8.192us 652 652 653 653 8: Filtering time 16.384us 654 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle"%)-655 -|(% rowspan="2" style="width:4px"%)9|VD2: Filtering time 25.5us645 +)))|(% rowspan="3" %)- 646 +|(% rowspan="2" %)9|VD2: Filtering time 25.5us 656 656 |VD2F: Filtering time 25.5us 657 657 658 658 Table 6-13 Position pulse frequency and anti-interference level parameters ... ... @@ -661,17 +661,17 @@ 661 661 662 662 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 663 663 664 - (% class="table-bordered" %)665 -| (% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((655 + 656 +|**Function code**|**Name**|((( 666 666 **Setting method** 667 -)))|( % style="text-align:center; vertical-align:middle; width:135px" %)(((658 +)))|((( 668 668 **Effective time** 669 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**670 -| (% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((660 +)))|**Default value**|**Range**|**Definition**|**Unit** 661 +|P00-12|Position pulse type selection|((( 671 671 Operation setting 672 -)))|( % style="text-align:center; vertical-align:middle; width:135px" %)(((663 +)))|((( 673 673 Power-on again 674 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((665 +)))|0|0 to 5|((( 675 675 0: direction + pulse (positive logic) 676 676 677 677 1: CW/CCW ... ... @@ -683,74 +683,74 @@ 683 683 4: CW/CCW (negative logic) 684 684 685 685 5: A, B phase quadrature pulse (4 times frequency negative logic) 686 -)))| (% style="text-align:center; vertical-align:middle" %)-677 +)))|- 687 687 688 688 Table 6-14 Position pulse type selection parameter 689 689 690 - (% class="table-bordered" %)691 -| (% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**692 -| (% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((681 + 682 +|**Pulse type selection**|**Pulse type**|**Signal**|**Schematic diagram of forward pulse**|**Schematic diagram of negative pulse** 683 +|0|((( 693 693 Direction + pulse 694 694 695 695 (Positive logic) 696 -)))|( % style="text-align:center; vertical-align:middle" %)(((687 +)))|((( 697 697 PULSE 698 698 699 699 SIGN 700 -)))| (% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]701 -| (% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((691 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 692 +|1|CW/CCW|((( 702 702 PULSE (CW) 703 703 704 704 SIGN (CCW) 705 -)))|(% colspan="2" style="text-align:center; vertical-align:middle"%)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]706 -| (% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((696 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 697 +|2|((( 707 707 AB phase orthogonal 708 708 709 709 pulse (4 times frequency) 710 -)))|( % style="text-align:center; vertical-align:middle" %)(((701 +)))|((( 711 711 PULSE (Phase A) 712 712 713 713 SIGN (Phase B) 714 -)))|( % style="text-align:center; vertical-align:middle" %)(((705 +)))|((( 715 715 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]] 716 716 717 717 Phase A is 90° ahead of Phase B 718 -)))|( % style="text-align:center; vertical-align:middle" %)(((709 +)))|((( 719 719 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]] 720 720 721 721 Phase B is 90° ahead of Phase A 722 722 ))) 723 -| (% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((714 +|3|((( 724 724 Direction + pulse 725 725 726 726 (Negative logic) 727 -)))|( % style="text-align:center; vertical-align:middle" %)(((718 +)))|((( 728 728 PULSE 729 729 730 730 SIGN 731 -)))| (% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]732 -| (% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((722 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 723 +|4|((( 733 733 CW/CCW 734 734 735 735 (Negative logic) 736 -)))|( % style="text-align:center; vertical-align:middle" %)(((727 +)))|((( 737 737 PULSE (CW) 738 738 739 739 SIGN (CCW) 740 -)))|(% colspan="2" style="text-align:center; vertical-align:middle"%)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]741 -| (% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((731 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 732 +|5|((( 742 742 AB phase orthogonal 743 743 744 744 pulse (4 times frequency negative logic) 745 -)))|( % style="text-align:center; vertical-align:middle" %)(((736 +)))|((( 746 746 PULSE (Phase A) 747 747 748 748 SIGN (Phase B) 749 -)))|( % style="text-align:center; vertical-align:middle" %)(((740 +)))|((( 750 750 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]] 751 751 752 752 B phase is ahead of A phase by 90° 753 -)))|( % style="text-align:center; vertical-align:middle" %)(((744 +)))|((( 754 754 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]] 755 755 756 756 A phase is ahead of B phase by 90° ... ... @@ -764,7 +764,7 @@ 764 764 765 765 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 766 766 767 - (% style="text-align:center" %)758 + 768 768 [[image:image-20220608164116-9.png]] 769 769 770 770 Figure 6-11 The setting process of multi-segment position ... ... @@ -771,51 +771,51 @@ 771 771 772 772 1) Set multi-segment position running mode 773 773 774 - (% class="table-bordered" %)775 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((765 + 766 +|**Function code**|**Name**|((( 776 776 **Setting method** 777 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((768 +)))|((( 778 778 **Effective time** 779 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**780 -| (% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((770 +)))|**Default value**|**Range**|**Definition**|**Unit** 771 +|P07-01|Multi-segment position running mode|((( 781 781 Shutdown setting 782 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((773 +)))|((( 783 783 Effective immediately 784 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((775 +)))|0|0 to 2|((( 785 785 0: Single running 786 786 787 787 1: Cycle running 788 788 789 789 2: DI switching running 790 -)))| (% style="text-align:center; vertical-align:middle" %)-791 -| (% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((781 +)))|- 782 +|P07-02|Start segment number|((( 792 792 Shutdown setting 793 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((784 +)))|((( 794 794 Effective immediately 795 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-796 -| (% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((786 +)))|1|1 to 16|1st segment NO. in non-DI switching mode|- 787 +|P07-03|End segment number|((( 797 797 Shutdown setting 798 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((789 +)))|((( 799 799 Effective immediately 800 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-801 -| (% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((791 +)))|1|1 to 16|last segment NO. in non-DI switching mode|- 792 +|P07-04|Margin processing method|((( 802 802 Shutdown setting 803 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((794 +)))|((( 804 804 Effective immediately 805 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((796 +)))|0|0 to 1|((( 806 806 0: Run the remaining segments 807 807 808 808 1: Run again from the start segment 809 -)))| (% style="text-align:center; vertical-align:middle" %)-810 -| (% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((800 +)))|- 801 +|P07-05|Displacement instruction type|((( 811 811 Shutdown setting 812 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((803 +)))|((( 813 813 Effective immediately 814 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((805 +)))|0|0 to 1|((( 815 815 0: Relative position instruction 816 816 817 817 1: Absolute position instruction 818 -)))| (% style="text-align:center; vertical-align:middle" %)-809 +)))|- 819 819 820 820 Table 6-16 multi-segment position running mode parameters 821 821 ... ... @@ -825,7 +825,7 @@ 825 825 826 826 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 827 827 828 - (% style="text-align:center" %)819 + 829 829 [[image:image-20220608164226-10.png]] 830 830 831 831 Figure 6-12 Single running curve (P07-02=1, P07-03=2) ... ... @@ -834,12 +834,12 @@ 834 834 835 835 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 836 836 837 - (% style="text-align:center" %)828 + 838 838 [[image:image-20220608164327-11.png]] 839 839 840 840 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 841 841 842 -| (% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]833 +|[[image:image-20220611151917-5.png]] 843 843 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 844 844 845 845 3. DI switching running ... ... @@ -846,30 +846,30 @@ 846 846 847 847 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 848 848 849 -(% class="table-bordered" %) 850 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 851 -|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 852 -|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 853 -|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 854 -|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 855 855 841 +|**DI function code**|**Function name**|**Function** 842 +|21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 843 +|22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 844 +|23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 845 +|24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 846 + 856 856 Table 6-17 DI function code 857 857 858 858 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number. 859 859 860 -(% class="table-bordered" %) 861 -|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number** 862 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1 863 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2 864 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3 865 -|(% colspan="5" style="text-align:center; vertical-align:middle" %)………… 866 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16 867 867 852 +|**INPOS4**|**INPOS3**|**INPOS2**|**INPOS1**|**Running position number** 853 +|0|0|0|0|1 854 +|0|0|0|1|2 855 +|0|0|1|0|3 856 +|(% colspan="5" %)………… 857 +|1|1|1|1|16 858 + 868 868 Table 6-18 INPOS corresponds to running segment number 869 869 870 870 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__. 871 871 872 - (% style="text-align:center" %)863 + 873 873 [[image:image-20220608164545-12.png]] 874 874 875 875 Figure 6-14 DI switching running curve ... ... @@ -880,12 +880,12 @@ 880 880 881 881 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively. 882 882 883 - (% style="text-align:center" %)874 + 884 884 [[image:image-20220608164847-13.png]] 885 885 886 886 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 887 887 888 - (% style="text-align:center" %)879 + 889 889 [[image:image-20220608165032-14.png]] 890 890 891 891 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) ... ... @@ -894,12 +894,12 @@ 894 894 895 895 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively. 896 896 897 - (% style="text-align:center" %)888 + 898 898 [[image:image-20220608165343-15.png]] 899 899 900 900 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 901 901 902 - (% style="text-align:center" %)893 + 903 903 [[image:image-20220608165558-16.png]] 904 904 905 905 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) ... ... @@ -911,10 +911,8 @@ 911 911 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 912 912 913 913 |((( 914 -(% style="text-align:center" %) 915 915 [[image:image-20220608165710-17.png]] 916 916 )))|((( 917 -(% style="text-align:center" %) 918 918 [[image:image-20220608165749-18.png]] 919 919 ))) 920 920 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram ... ... @@ -924,10 +924,8 @@ 924 924 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 925 925 926 926 |((( 927 -(% style="text-align:center" %) 928 928 [[image:image-20220608165848-19.png]] 929 929 )))|((( 930 -(% style="text-align:center" %) 931 931 [[image:image-20220608170005-20.png]] 932 932 ))) 933 933 |Figure 6-21 Absolute indication|Figure 6-22 Displacement ... ... @@ -936,46 +936,46 @@ 936 936 937 937 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 938 938 939 - (% class="table-bordered" %)940 -| (% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((926 + 927 +|**Function code**|**Name**|((( 941 941 **Setting method** 942 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((929 +)))|((( 943 943 **Effective time** 944 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**945 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((931 +)))|**Default value**|**Range**|**Definition**|**Unit** 932 +|P07-09|((( 946 946 1st segment 947 947 948 948 displacement 949 -)))|( % style="text-align:center; vertical-align:middle; width:143px" %)(((936 +)))|((( 950 950 Operation setting 951 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((938 +)))|((( 952 952 Effective immediately 953 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((940 +)))|10000|((( 954 954 -2147483647 to 955 955 956 956 2147483646 957 -)))| (% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-958 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((944 +)))|Position instruction, positive and negative values could be set|- 945 +|P07-10|Maximum speed of the 1st displacement|((( 959 959 Operation setting 960 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((947 +)))|((( 961 961 Effective immediately 962 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px"%)1to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm963 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((949 +)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm 950 +|P07-11|Acceleration and deceleration of 1st segment displacement|((( 964 964 Operation setting 965 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((952 +)))|((( 966 966 Effective immediately 967 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px"%)1to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms968 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((954 +)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms 955 +|P07-12|Waiting time after completion of the 1st segment displacement|((( 969 969 Operation setting 970 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((957 +)))|((( 971 971 Effective immediately 972 -)))| (% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px"%)1to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06959 +)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06 973 973 974 974 Table 6-19 The 1st position operation curve parameters table 975 975 976 976 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 977 977 978 - (% style="text-align:center" %)965 + 979 979 [[image:image-20220608170149-21.png]] 980 980 981 981 Figure 6-23 The 1st segment running curve of motor ... ... @@ -984,16 +984,15 @@ 984 984 985 985 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 986 986 987 - (% class="table-bordered" %)988 -| (% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**989 -| (% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((974 + 975 +|**DI function code**|**Function name**|**Function** 976 +|20|ENINPOS: Internal multi-segment position enable signal|((( 990 990 DI port logic invalid: Does not affect the current operation of the servo motor. 991 991 992 992 DI port logic valid: Motor runs multi-segment position 993 993 ))) 994 994 995 -(% style="text-align:center" %) 996 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]] 982 +[[image:image-20220611152020-6.png]] 997 997 998 998 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 999 999 ... ... @@ -1007,13 +1007,13 @@ 1007 1007 1008 1008 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 1009 1009 1010 - (% style="text-align:center" %)996 + 1011 1011 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]] 1012 1012 1013 - (% style="text-align:center" %)999 + 1014 1014 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]] 1015 1015 1016 - (% style="text-align:center" %)1002 + 1017 1017 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]] 1018 1018 1019 1019 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! ... ... @@ -1020,7 +1020,7 @@ 1020 1020 1021 1021 **(2) Setting steps of electronic gear ratio** 1022 1022 1023 - (% style="text-align:center" %)1009 + 1024 1024 [[image:image-20220608170320-22.png]] 1025 1025 1026 1026 Figure 6-24 Setting steps of electronic gear ratio ... ... @@ -1035,6 +1035,7 @@ 1035 1035 1036 1036 Step5: Calculate the value of electronic gear ratio according to formula below. 1037 1037 1024 + 1038 1038 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]] 1039 1039 1040 1040 **(3) lectronic gear ratio switch setting** ... ... @@ -1042,59 +1042,59 @@ 1042 1042 1043 1043 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 1044 1044 1045 - (% class="table-bordered" %)1046 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1032 + 1033 +|**Function code**|**Name**|((( 1047 1047 **Setting method** 1048 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1035 +)))|((( 1049 1049 **Effective time** 1050 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1051 -| (% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1037 +)))|**Default value**|**Range**|**Definition**|**Unit** 1038 +|P00-16|Number of instruction pulses when the motor rotates one circle|((( 1052 1052 Shutdown setting 1053 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1040 +)))|((( 1054 1054 Effective immediately 1055 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((1042 +)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|((( 1056 1056 Instruction pulse 1057 1057 1058 1058 unit 1059 1059 ))) 1060 -| (% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1047 +|P00-17|((( 1061 1061 Electronic gear 1 1062 1062 1063 1063 numerator 1064 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1051 +)))|Operation setting|((( 1065 1065 Effective immediately 1066 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px"%)1to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1067 -| (% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1053 +)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1054 +|P00-18|((( 1068 1068 Electronic gear 1 1069 1069 1070 1070 denominator 1071 -)))|( % style="text-align:center; vertical-align:middle; width:156px" %)(((1058 +)))|((( 1072 1072 Operation setting 1073 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1060 +)))|((( 1074 1074 Effective immediately 1075 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px"%)1to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1076 -| (% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1062 +)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1063 +|P00-19|((( 1077 1077 Electronic gear 2 1078 1078 1079 1079 numerator 1080 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1067 +)))|Operation setting|((( 1081 1081 Effective immediately 1082 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px"%)1to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1083 -| (% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1069 +)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1070 +|P00-20|((( 1084 1084 Electronic gear 2 1085 1085 1086 1086 denominator 1087 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1074 +)))|Operation setting|((( 1088 1088 Effective immediately 1089 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px"%)1to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1076 +)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1090 1090 1091 1091 Table 6-20 Electronic gear ratio function code 1092 1092 1093 1093 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1094 1094 1095 - (% class="table-bordered" %)1096 -| (% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1097 -| (% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((1082 + 1083 +|**DI function code**|**Function name**|**Function** 1084 +|09|GEAR-SEL electronic gear switch 1|((( 1098 1098 DI port logic invalid: electronic gear ratio 1 1099 1099 1100 1100 DI port logic valid: electronic gear ratio 2 ... ... @@ -1102,10 +1102,10 @@ 1102 1102 1103 1103 Table 6-21 Switching conditions of electronic gear ratio group 1104 1104 1105 -| (% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]1106 -|(% rowspan="2" style="text-align:center; vertical-align:middle"%)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]1107 -| (% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]1108 -| (% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]1092 +|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] 1093 +|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]] 1094 +|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1095 +|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1109 1109 1110 1110 Table 6-22 Application of electronic gear ratio 1111 1111 ... ... @@ -1123,32 +1123,32 @@ 1123 1123 1124 1124 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1125 1125 1126 - (% style="text-align:center" %)1113 + 1127 1127 [[image:image-20220608170455-23.png]] 1128 1128 1129 1129 Figure 6-25 Position instruction filtering diagram 1130 1130 1131 - (% class="table-bordered" %)1132 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((1118 + 1119 +|**Function code**|**Name**|((( 1133 1133 **Setting method** 1134 -)))|( % style="text-align:center; vertical-align:middle; width:209px" %)(((1121 +)))|((( 1135 1135 **Effective time** 1136 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**1137 -| (% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((1123 +)))|**Default value**|**Range**|**Definition**|**Unit** 1124 +|P04-01|Pulse instruction filtering method|((( 1138 1138 Shutdown setting 1139 -)))|( % style="text-align:center; vertical-align:middle; width:209px" %)(((1126 +)))|((( 1140 1140 Effective immediately 1141 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((1128 +)))|0|0 to 1|((( 1142 1142 0: 1st-order low-pass filtering 1143 1143 1144 1144 1: average filtering 1145 -)))| (% style="text-align:center; vertical-align:middle; width:72px" %)-1146 -| (% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((1132 +)))|- 1133 +|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1147 1147 Effective immediately 1148 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms1149 -| (% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((1135 +)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms 1136 +|P04-03|Position instruction average filtering time constant|Shutdown setting|((( 1150 1150 Effective immediately 1151 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms1138 +)))|0|0 to 128|Position instruction average filtering time constant|ms 1152 1152 1153 1153 Table 6-23 Position instruction filter function code 1154 1154 ... ... @@ -1168,7 +1168,7 @@ 1168 1168 (% class="wikigeneratedid" %) 1169 1169 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1170 1170 1171 - (% style="text-align:center" %)1158 + 1172 1172 [[image:image-20220608170550-24.png]] 1173 1173 1174 1174 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1177,46 +1177,46 @@ 1177 1177 1178 1178 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1179 1179 1180 - (% style="text-align:center" %)1167 + 1181 1181 [[image:image-20220608170650-25.png]] 1182 1182 1183 1183 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1184 1184 1185 - (% class="table-bordered" %)1186 -| (% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1172 + 1173 +|**Function code**|**Name**|((( 1187 1187 **Setting method** 1188 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1175 +)))|((( 1189 1189 **Effective time** 1190 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1191 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1177 +)))|**Default value**|**Range**|**Definition**|**Unit** 1178 +|P05-12|Positioning completion threshold|((( 1192 1192 Operation setting 1193 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1180 +)))|((( 1194 1194 Effective immediately 1195 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px"%)1to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit1196 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1182 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1183 +|P05-13|Positioning approach threshold|((( 1197 1197 Operation setting 1198 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1185 +)))|((( 1199 1199 Effective immediately 1200 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px"%)1to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit1201 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1187 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1188 +|P05-14|Position detection window time|((( 1202 1202 Operation setting 1203 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1190 +)))|((( 1204 1204 Effective immediately 1205 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px"%)0to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms1206 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1192 +)))|10|0 to 20000|Set positioning completion detection window time|ms 1193 +|P05-15|Positioning signal hold time|((( 1207 1207 Operation setting 1208 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1195 +)))|((( 1209 1209 Effective immediately 1210 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px"%)0to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms1197 +)))|100|0 to 20000|Set positioning completion output hold time|ms 1211 1211 1212 1212 Table 6-24 Function code parameters of positioning completion 1213 1213 1214 - (% class="table-bordered" %)1215 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1216 -| (% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.1217 -| (% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((1201 + 1202 +|**DO function code**|**Function name**|**Function** 1203 +|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1204 +|135|((( 1218 1218 P-NEAR positioning close 1219 -)))|( % style="text-align:center; vertical-align:middle" %)(((1206 +)))|((( 1220 1220 Output this signal indicates that the servo drive position is close. 1221 1221 ))) 1222 1222 ... ... @@ -1226,7 +1226,7 @@ 1226 1226 1227 1227 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1228 1228 1229 - (% style="text-align:center" %)1216 + 1230 1230 [[image:6.28.jpg||height="260" width="806"]] 1231 1231 1232 1232 Figure 6-28 Speed control block diagram ... ... @@ -1235,21 +1235,21 @@ 1235 1235 1236 1236 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1237 1237 1238 - (% class="table-bordered" %)1239 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((1225 + 1226 +|**Function code**|**Name**|((( 1240 1240 **Setting method** 1241 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1228 +)))|((( 1242 1242 **Effective time** 1243 -)))| (% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1244 -| (% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((1230 +)))|**Default value**|**Range**|**Definition**|**Unit** 1231 +|P01-01|Speed instruction source|((( 1245 1245 Shutdown setting 1246 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1233 +)))|((( 1247 1247 Effective immediately 1248 -)))| (% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((1235 +)))|1|1 to 6|((( 1249 1249 0: internal speed instruction 1250 1250 1251 1251 1: AI_1 analog input (not supported by VD2F) 1252 -)))| (% style="text-align:center; vertical-align:middle" %)-1239 +)))|- 1253 1253 1254 1254 Table 6-26 Speed instruction source parameter 1255 1255 ... ... @@ -1257,19 +1257,19 @@ 1257 1257 1258 1258 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below. 1259 1259 1260 - (% class="table-bordered" %)1261 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((1247 + 1248 +|**Function code**|**Name**|((( 1262 1262 **Setting method** 1263 -)))|( % style="text-align:center; vertical-align:middle; width:160px" %)(((1250 +)))|((( 1264 1264 **Effective time** 1265 -)))| (% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1266 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-02|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1252 +)))|**Default value**|**Range**|**Definition**|**Unit** 1253 +|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1267 1267 Internal speed Instruction 0 1268 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1255 +)))|(% rowspan="2" %)((( 1269 1269 Operation setting 1270 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px"%)(((1257 +)))|(% rowspan="2" %)((( 1271 1271 Effective immediately 1272 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1259 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1273 1273 Internal speed instruction 0 1274 1274 1275 1275 When DI input port: ... ... @@ -1281,15 +1281,15 @@ 1281 1281 13-INSPD1: 0, 1282 1282 1283 1283 select this speed instruction to be effective. 1284 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1285 -| (% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*1286 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-23|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1271 +)))|(% rowspan="2" %)rpm 1272 +|-5000 to 5000* 1273 +|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1287 1287 Internal speed Instruction 1 1288 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1275 +)))|(% rowspan="2" %)((( 1289 1289 Operation setting 1290 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px"%)(((1277 +)))|(% rowspan="2" %)((( 1291 1291 Effective immediately 1292 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1279 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1293 1293 Internal speed instruction 1 1294 1294 1295 1295 When DI input port: ... ... @@ -1301,15 +1301,15 @@ 1301 1301 13-INSPD1: 1, 1302 1302 1303 1303 Select this speed instruction to be effective. 1304 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1305 -| (% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*1306 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-24|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1291 +)))|(% rowspan="2" %)rpm 1292 +|-5000 to 5000* 1293 +|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1307 1307 Internal speed Instruction 2 1308 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1295 +)))|(% rowspan="2" %)((( 1309 1309 Operation setting 1310 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px"%)(((1297 +)))|(% rowspan="2" %)((( 1311 1311 Effective immediately 1312 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1299 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1313 1313 Internal speed instruction 2 1314 1314 1315 1315 When DI input port: ... ... @@ -1321,15 +1321,15 @@ 1321 1321 13-INSPD1: 0, 1322 1322 1323 1323 Select this speed instruction to be effective. 1324 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1325 -| (% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*1326 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-25|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1311 +)))|(% rowspan="2" %)rpm 1312 +|-5000 to 5000* 1313 +|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1327 1327 Internal speed Instruction 3 1328 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1315 +)))|(% rowspan="2" %)((( 1329 1329 Operation setting 1330 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px"%)(((1317 +)))|(% rowspan="2" %)((( 1331 1331 Effective immediately 1332 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1319 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1333 1333 Internal speed instruction 3 1334 1334 1335 1335 When DI input port: ... ... @@ -1341,17 +1341,16 @@ 1341 1341 13-INSPD1: 1, 1342 1342 1343 1343 Select this speed instruction to be effective. 1344 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1345 -| (% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*1331 +)))|(% rowspan="2" %)rpm 1332 +|-5000 to 5000* 1346 1346 1347 -(% class="table-bordered" %) 1348 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1334 +|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1349 1349 Internal speed Instruction 4 1350 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1336 +)))|(% rowspan="2" %)((( 1351 1351 Operation setting 1352 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1338 +)))|(% rowspan="2" %)((( 1353 1353 Effective immediately 1354 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1340 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1355 1355 Internal speed instruction 4 1356 1356 1357 1357 When DI input port: ... ... @@ -1363,15 +1363,15 @@ 1363 1363 13-INSPD1: 0, 1364 1364 1365 1365 Select this speed instruction to be effective. 1366 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1367 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1368 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-27|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1352 +)))|(% rowspan="2" %)rpm 1353 +|-5000 to 5000* 1354 +|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1369 1369 Internal speed Instruction 5 1370 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1356 +)))|(% rowspan="2" %)((( 1371 1371 Operation setting 1372 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1358 +)))|(% rowspan="2" %)((( 1373 1373 Effective immediately 1374 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1360 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1375 1375 Internal speed instruction 5 1376 1376 1377 1377 When DI input port: ... ... @@ -1383,15 +1383,15 @@ 1383 1383 13-INSPD1: 1, 1384 1384 1385 1385 Select this speed instruction to be effective. 1386 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1387 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1388 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-28|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1372 +)))|(% rowspan="2" %)rpm 1373 +|-5000 to 5000* 1374 +|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1389 1389 Internal speed Instruction 6 1390 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1376 +)))|(% rowspan="2" %)((( 1391 1391 Operation setting 1392 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1378 +)))|(% rowspan="2" %)((( 1393 1393 Effective immediately 1394 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1380 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1395 1395 Internal speed instruction 6 1396 1396 1397 1397 When DI input port: ... ... @@ -1403,15 +1403,15 @@ 1403 1403 13-INSPD1: 0, 1404 1404 1405 1405 Select this speed instruction to be effective. 1406 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1407 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1408 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-29|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1392 +)))|(% rowspan="2" %)rpm 1393 +|-5000 to 5000* 1394 +|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1409 1409 Internal speed Instruction 7 1410 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1396 +)))|(% rowspan="2" %)((( 1411 1411 Operation setting 1412 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1398 +)))|(% rowspan="2" %)((( 1413 1413 Effective immediately 1414 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1400 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1415 1415 Internal speed instruction 7 1416 1416 1417 1417 When DI input port: ... ... @@ -1423,34 +1423,34 @@ 1423 1423 13-INSPD1: 1, 1424 1424 1425 1425 Select this speed instruction to be effective. 1426 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1427 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1412 +)))|(% rowspan="2" %)rpm 1413 +|-5000 to 5000* 1428 1428 1429 1429 Table 6-27 Internal speed instruction parameters 1430 1430 1431 1431 ✎**Note: **“*” means the set range of VD2F servo drive. 1432 1432 1433 -(% class="table-bordered" %) 1434 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1435 -|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1436 -|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1437 -|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1438 1438 1420 +|**DI function code**|**function name**|**Function** 1421 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1422 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1423 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1424 + 1439 1439 Table 6-28 DI multi-speed function code description 1440 1440 1441 1441 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1442 1442 1443 - (% class="table-bordered" %)1444 -| (% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**1445 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)01446 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)11447 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)21429 + 1430 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1431 +|0|0|0|1|0 1432 +|0|0|1|2|1 1433 +|0|1|0|3|2 1448 1448 |(% colspan="5" %)...... 1449 -| (% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)71435 +|1|1|1|8|7 1450 1450 1451 1451 Table 6-29 Correspondence between INSPD bits and segment numbers 1452 1452 1453 - (% style="text-align:center" %)1439 + 1454 1454 [[image:image-20220608170845-26.png]] 1455 1455 1456 1456 Figure 6-29 Multi-segment speed running curve ... ... @@ -1459,7 +1459,7 @@ 1459 1459 1460 1460 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1461 1461 1462 - (% style="text-align:center" %)1448 + 1463 1463 [[image:image-20220608153341-5.png]] 1464 1464 1465 1465 Figure 6-30 Analog input circuit ... ... @@ -1466,7 +1466,7 @@ 1466 1466 1467 1467 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1468 1468 1469 - (% style="text-align:center" %)1455 + 1470 1470 [[image:image-20220608170955-27.png]] 1471 1471 1472 1472 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1479,18 +1479,18 @@ 1479 1479 1480 1480 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1481 1481 1482 - (% style="text-align:center" %)1468 + 1483 1483 [[image:image-20220608171124-28.png]] 1484 1484 1485 1485 Figure 6-32 AI_1 diagram before and after bias 1486 1486 1487 -(% class="table-bordered" %) 1488 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit** 1489 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1490 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms 1491 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1492 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1493 1493 1474 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1475 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1476 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1477 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1478 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1479 + 1494 1494 Table 6-30 AI_1 parameters 1495 1495 1496 1496 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1501,7 +1501,7 @@ 1501 1501 1502 1502 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1503 1503 1504 - (% style="text-align:center" %)1490 + 1505 1505 [[image:image-20220608171314-29.png]] 1506 1506 1507 1507 Figure 6-33 of acceleration and deceleration time diagram ... ... @@ -1510,22 +1510,22 @@ 1510 1510 1511 1511 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1512 1512 1513 - (% class="table-bordered" %)1514 -| (% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1499 + 1500 +|**Function code**|**Name**|((( 1515 1515 **Setting method** 1516 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1502 +)))|((( 1517 1517 **Effective time** 1518 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**1519 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1504 +)))|**Default value**|**Range**|**Definition**|**Unit** 1505 +|P01-03|Acceleration time|((( 1520 1520 Operation setting 1521 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1507 +)))|((( 1522 1522 Effective immediately 1523 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms1524 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1509 +)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1510 +|P01-04|Deceleration time|((( 1525 1525 Operation setting 1526 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1512 +)))|((( 1527 1527 Effective immediately 1528 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms1514 +)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms 1529 1529 1530 1530 Table 6-31 Acceleration and deceleration time parameters 1531 1531 ... ... @@ -1544,27 +1544,27 @@ 1544 1544 1545 1545 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1546 1546 1547 - (% class="table-bordered" %)1548 -| (% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1533 + 1534 +|**Function code**|**Name**|((( 1549 1549 **Setting method** 1550 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1536 +)))|((( 1551 1551 **Effective time** 1552 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**1553 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1538 +)))|**Default value**|**Range**|**Definition**|**Unit** 1539 +|P01-10|Maximum speed threshold|((( 1554 1554 Operation setting 1555 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1541 +)))|((( 1556 1556 Effective immediately 1557 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1558 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1543 +)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1544 +|P01-12|Forward speed threshold|((( 1559 1559 Operation setting 1560 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1546 +)))|((( 1561 1561 Effective immediately 1562 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1563 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1548 +)))|3000|0 to 5000|Set forward speed limit value|rpm 1549 +|P01-13|Reverse speed threshold|((( 1564 1564 Operation setting 1565 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1551 +)))|((( 1566 1566 Effective immediately 1567 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1553 +)))|3000|0 to 5000|Set reverse speed limit value|rpm 1568 1568 1569 1569 Table 6-32 Rotation speed related function codes 1570 1570 ... ... @@ -1574,19 +1574,19 @@ 1574 1574 1575 1575 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1576 1576 1577 - (% class="table-bordered" %)1578 -| (% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((1563 + 1564 +|**Function code**|**Name**|((( 1579 1579 **Setting method** 1580 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1566 +)))|((( 1581 1581 **Effective time** 1582 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**1583 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((1568 +)))|**Default value**|**Range**|**Definition**|**Unit** 1569 +|P01-21|((( 1584 1584 Zero-speed clamp function selection 1585 -)))|( % style="text-align:center; vertical-align:middle; width:147px" %)(((1571 +)))|((( 1586 1586 Operation setting 1587 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1573 +)))|((( 1588 1588 Effective immediately 1589 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((1575 +)))|0|0 to 3|((( 1590 1590 Set the zero-speed clamp function. In speed mode: 1591 1591 1592 1592 0: Force the speed to 0; ... ... @@ -1596,18 +1596,18 @@ 1596 1596 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1597 1597 1598 1598 3: Invalid, ignore zero-speed clamp input 1599 -)))| (% style="text-align:center; vertical-align:middle; width:58px" %)-1600 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((1585 +)))|- 1586 +|P01-22|((( 1601 1601 Zero-speed clamp speed threshold 1602 -)))|( % style="text-align:center; vertical-align:middle; width:147px" %)(((1588 +)))|((( 1603 1603 Operation setting 1604 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1590 +)))|((( 1605 1605 Effective immediately 1606 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm1592 +)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm 1607 1607 1608 1608 Table 6-33 Zero-speed clamp related parameters 1609 1609 1610 - (% style="text-align:center" %)1596 + 1611 1611 [[image:image-20220608171549-30.png]] 1612 1612 1613 1613 Figure 6-34 Zero-speed clamp diagram ... ... @@ -1620,7 +1620,7 @@ 1620 1620 1621 1621 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1622 1622 1623 - (% style="text-align:center" %)1609 + 1624 1624 [[image:image-20220608171625-31.png]] 1625 1625 1626 1626 Figure 6-35 Rotation detection signal diagram ... ... @@ -1627,30 +1627,28 @@ 1627 1627 1628 1628 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1629 1629 1630 - (% class="table-bordered" %)1631 -| (% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((1616 + 1617 +|**Function code**|**Name**|((( 1632 1632 **Setting method** 1633 -)))|( % style="text-align:center; vertical-align:middle; width:160px" %)(((1619 +)))|((( 1634 1634 **Effective time** 1635 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1636 -| (% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((1621 +)))|**Default value**|**Range**|**Definition**|**Unit** 1622 +|P05-16|((( 1637 1637 Rotation detection 1638 1638 1639 1639 speed threshold 1640 -)))|( % style="text-align:center; vertical-align:middle; width:139px" %)(((1626 +)))|((( 1641 1641 Operation setting 1642 -)))|( % style="text-align:center; vertical-align:middle; width:160px" %)(((1628 +)))|((( 1643 1643 Effective immediately 1644 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm1630 +)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm 1645 1645 1646 1646 Table 6-34 Rotation detection speed threshold parameters 1647 1647 1648 -(% class="table-bordered" %) 1649 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1650 -|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)((( 1651 -T-COIN 1652 1652 1653 -rotation detection 1635 +|**DO function code**|**Function name**|**Function** 1636 +|132|((( 1637 +T-COIN rotation detection 1654 1654 )))|((( 1655 1655 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1656 1656 ... ... @@ -1663,7 +1663,7 @@ 1663 1663 1664 1664 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1665 1665 1666 - (% style="text-align:center" %)1650 + 1667 1667 [[image:image-20220608171904-32.png]] 1668 1668 1669 1669 Figure 6-36 Zero-speed signal diagram ... ... @@ -1670,25 +1670,25 @@ 1670 1670 1671 1671 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1672 1672 1673 - (% class="table-bordered" %)1674 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((1657 + 1658 +|**Function code**|**Name**|((( 1675 1675 **Setting method** 1676 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1660 +)))|((( 1677 1677 **Effective time** 1678 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1679 -| (% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((1662 +)))|**Default value**|**Range**|**Definition**|**Unit** 1663 +|P05-19|Zero speed output signal threshold|((( 1680 1680 Operation setting 1681 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1665 +)))|((( 1682 1682 Effective immediately 1683 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm1667 +)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm 1684 1684 1685 1685 Table 6-36 Zero-speed output signal threshold parameter 1686 1686 1687 - (% class="table-bordered" %)1688 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1689 -| (% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((1671 + 1672 +|**DO function code**|**Function name**|**Function** 1673 +|133|((( 1690 1690 ZSP zero speed signal 1691 -)))| (% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation1675 +)))|Output this signal indicates that the servo motor is stopping rotation 1692 1692 1693 1693 Table 6-37 DO zero-speed signal function code 1694 1694 ... ... @@ -1696,7 +1696,7 @@ 1696 1696 1697 1697 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1698 1698 1699 - (% style="text-align:center" %)1683 + 1700 1700 [[image:image-20220608172053-33.png]] 1701 1701 1702 1702 Figure 6-37 Speed consistent signal diagram ... ... @@ -1703,25 +1703,25 @@ 1703 1703 1704 1704 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1705 1705 1706 - (% class="table-bordered" %)1707 -| (% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1690 + 1691 +|**Function code**|**Name**|((( 1708 1708 **Setting method** 1709 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1693 +)))|((( 1710 1710 **Effective time** 1711 -)))| (% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1712 -| (% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1695 +)))|**Default value**|**Range**|**Definition**|**Unit** 1696 +|P05-17|Speed consistent signal threshold|((( 1713 1713 Operationsetting 1714 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1698 +)))|((( 1715 1715 Effective immediately 1716 -)))| (% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm1700 +)))|10|0 to 100|Set speed consistent signal threshold|rpm 1717 1717 1718 1718 Table 6-38 Speed consistent signal threshold parameters 1719 1719 1720 - (% class="table-bordered" %)1721 -| (% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**1722 -| (% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((1704 + 1705 +|**DO Function code**|**Function name**|**Function** 1706 +|136|((( 1723 1723 U-COIN consistent speed 1724 -)))| (% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value1708 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1725 1725 1726 1726 Table 6-39 DO speed consistent function code 1727 1727 ... ... @@ -1729,7 +1729,7 @@ 1729 1729 1730 1730 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1731 1731 1732 - (% style="text-align:center" %)1716 + 1733 1733 [[image:image-20220608172207-34.png]] 1734 1734 1735 1735 Figure 6-38 Speed approaching signal diagram ... ... @@ -1736,25 +1736,25 @@ 1736 1736 1737 1737 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1738 1738 1739 - (% class="table-bordered" %)1740 -| (% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((1723 + 1724 +|**Function code**|**Name**|((( 1741 1741 **Setting method** 1742 -)))|( % style="text-align:center; vertical-align:middle; width:180px" %)(((1726 +)))|((( 1743 1743 **Effective time** 1744 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1745 -| (% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((1728 +)))|**Default value**|**Range**|**Definition**|**Unit** 1729 +|P05-18|Speed approach signal threshold|((( 1746 1746 Operation setting 1747 -)))|( % style="text-align:center; vertical-align:middle; width:180px" %)(((1731 +)))|((( 1748 1748 Effective immediately 1749 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm1733 +)))|100|10 to 6000|Set speed approach signal threshold|rpm 1750 1750 1751 1751 Table 6-40 Speed approaching signal threshold parameters 1752 1752 1753 - (% class="table-bordered" %)1754 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**1755 -| (% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((1737 + 1738 +|**DO function code**|**Function name**|**Function** 1739 +|137|((( 1756 1756 V-NEAR speed approach 1757 -)))| (% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value1741 +)))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1758 1758 1759 1759 Table 6-41 DO speed approach function code 1760 1760 ... ... @@ -1762,7 +1762,7 @@ 1762 1762 1763 1763 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1764 1764 1765 - (% style="text-align:center" %)1749 + 1766 1766 [[image:image-20220608172405-35.png]] 1767 1767 1768 1768 Figure 6-39 Torque mode diagram ... ... @@ -1771,21 +1771,21 @@ 1771 1771 1772 1772 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1773 1773 1774 - (% class="table-bordered" %)1775 -| (% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1758 + 1759 +|**Function code**|**Name**|((( 1776 1776 **Setting method** 1777 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1761 +)))|((( 1778 1778 **Effective time** 1779 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1780 -| (% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1763 +)))|**Default value**|**Range**|**Definition**|**Unit** 1764 +|P01-08|Torque instruction source|((( 1781 1781 Shutdown setting 1782 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1766 +)))|((( 1783 1783 Effective immediately 1784 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((1768 +)))|0|0 to 1|((( 1785 1785 0: internal torque instruction 1786 1786 1787 1787 1: AI_1 analog input(not supported by VD2F) 1788 -)))| (% style="text-align:center; vertical-align:middle" %)-1772 +)))|- 1789 1789 1790 1790 Table 6-42 Torque instruction source parameter 1791 1791 ... ... @@ -1793,17 +1793,17 @@ 1793 1793 1794 1794 Torque instruction source is from inside, the value is set by function code P01-08. 1795 1795 1796 - (% class="table-bordered" %)1797 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((1780 + 1781 +|**Function code**|**Name**|((( 1798 1798 **Setting method** 1799 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((1783 +)))|((( 1800 1800 **Effective time** 1801 -)))| (% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1802 -| (% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((1785 +)))|**Default value**|**Range**|**Definition**|**Unit** 1786 +|P01-08|Torque instruction keyboard set value|((( 1803 1803 Operation setting 1804 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((1788 +)))|((( 1805 1805 Effective immediately 1806 -)))| (% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%1790 +)))|0|-3000 to 3000|-300.0% to 300.0%|0.1% 1807 1807 1808 1808 Table 6-43 Torque instruction keyboard set value 1809 1809 ... ... @@ -1811,7 +1811,7 @@ 1811 1811 1812 1812 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1813 1813 1814 - (% style="text-align:center" %)1798 + 1815 1815 [[image:image-20220608153646-7.png||height="213" width="408"]] 1816 1816 1817 1817 Figure 6-40 Analog input circuit ... ... @@ -1818,7 +1818,7 @@ 1818 1818 1819 1819 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1820 1820 1821 - (% style="text-align:center" %)1805 + 1822 1822 [[image:image-20220608172502-36.png]] 1823 1823 1824 1824 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1831,18 +1831,18 @@ 1831 1831 1832 1832 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1833 1833 1834 - (% style="text-align:center" %)1818 + 1835 1835 [[image:image-20220608172611-37.png]] 1836 1836 1837 1837 Figure 6-42 AI_1 diagram before and after bias 1838 1838 1839 -(% class="table-bordered" %) 1840 -|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1841 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV 1842 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms 1843 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV 1844 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV 1845 1845 1824 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1825 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1826 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1827 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1828 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1829 + 1846 1846 Table 6-44 AI_1 parameters 1847 1847 1848 1848 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1851,23 +1851,23 @@ 1851 1851 1852 1852 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1853 1853 1854 - (% class="table-bordered" %)1855 -| (% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((1838 + 1839 +|**Function code**|**Name**|((( 1856 1856 **Setting method** 1857 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1841 +)))|((( 1858 1858 **Effective time** 1859 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1860 -| (% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((1843 +)))|**Default value**|**Range**|**Definition**|**Unit** 1844 +|P04-04|Torque filtering time constant|((( 1861 1861 Operation setting 1862 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1846 +)))|((( 1863 1863 Effective immediately 1864 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms1848 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1865 1865 1866 1866 Table 6-45 Torque filtering time constant parameter details 1867 1867 1868 1868 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1869 1869 1870 - (% style="text-align:center" %)1854 + 1871 1871 [[image:image-20220608172646-38.png]] 1872 1872 1873 1873 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1878,7 +1878,7 @@ 1878 1878 1879 1879 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1880 1880 1881 - (% style="text-align:center" %)1865 + 1882 1882 [[image:image-20220608172806-39.png]] 1883 1883 1884 1884 Figure 6-44 Torque instruction limit diagram ... ... @@ -1887,50 +1887,50 @@ 1887 1887 1888 1888 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1889 1889 1890 - (% class="table-bordered" %)1891 -| (% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((1874 + 1875 +|**Function code**|**Name**|((( 1892 1892 **Setting method** 1893 -)))|( % style="text-align:center; vertical-align:middle; width:167px" %)(((1877 +)))|((( 1894 1894 **Effective time** 1895 -)))| (% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1896 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1879 +)))|**Default value**|**Range**|**Definition**|**Unit** 1880 +|P01-14|((( 1897 1897 Torque limit source 1898 -)))|( % style="text-align:center; vertical-align:middle; width:134px" %)(((1882 +)))|((( 1899 1899 Shutdown setting 1900 -)))|( % style="text-align:center; vertical-align:middle; width:167px" %)(((1884 +)))|((( 1901 1901 Effective immediately 1902 -)))| (% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((1886 +)))|0|0 to 1|((( 1903 1903 0: internal value 1904 1904 1905 1905 1: AI_1 analog input 1906 1906 1907 1907 (not supported by VD2F) 1908 -)))| (% style="text-align:center; vertical-align:middle" %)-1892 +)))|- 1909 1909 1910 1910 1) Torque limit source is internal torque instruction (P01-14=0) 1911 1911 1912 1912 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1913 1913 1914 - (% class="table-bordered" %)1915 -| (% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1898 + 1899 +|**Function code**|**Name**|((( 1916 1916 **Setting method** 1917 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1901 +)))|((( 1918 1918 **Effective time** 1919 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**1920 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((1903 +)))|**Default value**|**Range**|**Definition**|**Unit** 1904 +|P01-15|((( 1921 1921 Forward torque limit 1922 -)))|( % style="text-align:center; vertical-align:middle; width:136px" %)(((1906 +)))|((( 1923 1923 Operation setting 1924 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1908 +)))|((( 1925 1925 Effective immediately 1926 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%1927 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1911 +|P01-16|((( 1928 1928 Reverse torque limit 1929 -)))|( % style="text-align:center; vertical-align:middle; width:136px" %)(((1913 +)))|((( 1930 1930 Operation setting 1931 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1915 +)))|((( 1932 1932 Effective immediately 1933 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%1917 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1934 1934 1935 1935 Table 6-46 Torque limit parameter details 1936 1936 ... ... @@ -1942,11 +1942,11 @@ 1942 1942 1943 1943 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1944 1944 1945 - (% class="table-bordered" %)1946 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**1947 -| (% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((1929 + 1930 +|**DO function code**|**Function name**|**Function** 1931 +|139|((( 1948 1948 T-LIMIT in torque limit 1949 -)))| (% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited1933 +)))|Output of this signal indicates that the servo motor torque is limited 1950 1950 1951 1951 Table 6-47 DO torque limit function codes 1952 1952 ... ... @@ -1957,46 +1957,43 @@ 1957 1957 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__. 1958 1958 1959 1959 |((( 1960 -(% style="text-align:center" %) 1961 1961 [[image:image-20220608172910-40.png]] 1962 1962 )))|((( 1963 -(% style="text-align:center" %) 1964 1964 [[image:image-20220608173155-41.png]] 1965 1965 ))) 1966 1966 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1967 1967 1968 -(% class="table-bordered" %) 1969 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1950 +|**Function code**|**Name**|((( 1970 1970 **Setting method** 1971 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1952 +)))|((( 1972 1972 **Effective time** 1973 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1974 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((1954 +)))|**Default value**|**Range**|**Definition**|**Unit** 1955 +|P01-17|((( 1975 1975 Forward torque 1976 1976 1977 1977 limit in torque mode 1978 -)))|( % style="text-align:center; vertical-align:middle; width:140px" %)(((1959 +)))|((( 1979 1979 Operation setting 1980 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1961 +)))|((( 1981 1981 Effective immediately 1982 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((1963 +)))|3000|0 to 5000|((( 1983 1983 Forward torque 1984 1984 1985 1985 limit in torque mode 1986 -)))| (% style="text-align:center; vertical-align:middle" %)0.1%1987 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((1967 +)))|0.1% 1968 +|P01-18|((( 1988 1988 Reverse torque 1989 1989 1990 1990 limit in torque mode 1991 -)))|( % style="text-align:center; vertical-align:middle; width:140px" %)(((1972 +)))|((( 1992 1992 Operation setting 1993 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1974 +)))|((( 1994 1994 Effective immediately 1995 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((1976 +)))|3000|0 to 5000|((( 1996 1996 Reverse torque 1997 1997 1998 1998 limit in torque mode 1999 -)))| (% style="text-align:center; vertical-align:middle" %)0.1%1980 +)))|0.1% 2000 2000 2001 2001 Table 6-48 Speed limit parameters in torque mode 2002 2002 ... ... @@ -2010,7 +2010,7 @@ 2010 2010 2011 2011 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 2012 2012 2013 - (% style="text-align:center" %)1994 + 2014 2014 [[image:image-20220608173541-42.png]] 2015 2015 2016 2016 Figure 6-47 Torque arrival output diagram ... ... @@ -2017,44 +2017,44 @@ 2017 2017 2018 2018 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 2019 2019 2020 - (% class="table-bordered" %)2021 -| (% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((2001 + 2002 +|**Function code**|**Name**|((( 2022 2022 **Setting method** 2023 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2004 +)))|((( 2024 2024 **Effective time** 2025 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2026 -| (% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((2006 +)))|**Default value**|**Range**|**Definition**|**Unit** 2007 +|P05-20|((( 2027 2027 Torque arrival 2028 2028 2029 2029 threshold 2030 -)))|( % style="text-align:center; vertical-align:middle; width:137px" %)(((2011 +)))|((( 2031 2031 Operation setting 2032 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2013 +)))|((( 2033 2033 Effective immediately 2034 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((2015 +)))|100|0 to 300|((( 2035 2035 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2036 2036 2037 2037 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; 2038 2038 2039 2039 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2040 -)))| (%style="text-align:center; vertical-align:middle" %)%2041 -| (% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((2021 +)))|% 2022 +|P05-21|((( 2042 2042 Torque arrival 2043 2043 2044 2044 hysteresis 2045 -)))|( % style="text-align:center; vertical-align:middle; width:137px" %)(((2026 +)))|((( 2046 2046 Operation setting 2047 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2028 +)))|((( 2048 2048 Effective immediately 2049 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(%style="text-align:center; vertical-align:middle" %)%2030 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2050 2050 2051 2051 Table 6-49 Torque arrival parameters 2052 2052 2053 - (% class="table-bordered" %)2054 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**2055 -| (% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((2034 + 2035 +|**DO function code**|**Function name**|**Function** 2036 +|138|((( 2056 2056 T-COIN torque arrival 2057 -)))| (% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range2038 +)))|Used to determine whether the actual torque instruction has reached the set range 2058 2058 2059 2059 Table 6-50 DO Torque Arrival Function Code 2060 2060 ... ... @@ -2070,17 +2070,17 @@ 2070 2070 2071 2071 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2072 2072 2073 - (% class="table-bordered" %)2074 -| (% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((2054 + 2055 +|**Function code**|**Name**|((( 2075 2075 **Setting method** 2076 -)))|( % style="text-align:center; vertical-align:middle; width:142px" %)(((2057 +)))|((( 2077 2077 **Effective time** 2078 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2079 -| (% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((2059 +)))|**Default value**|**Range**|**Definition**|**Unit** 2060 +|P00-01|Control mode|((( 2080 2080 Shutdown setting 2081 -)))|( % style="text-align:center; vertical-align:middle; width:142px" %)(((2062 +)))|((( 2082 2082 Shutdown setting 2083 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((2064 +)))|1|1 to 6|((( 2084 2084 1: Position control 2085 2085 2086 2086 2: Speed control ... ... @@ -2092,23 +2092,22 @@ 2092 2092 5: Position/torque mixed control 2093 2093 2094 2094 6: Speed/torque mixed control 2095 -)))| (% style="text-align:center; vertical-align:middle" %)-2076 +)))|- 2096 2096 2097 2097 Table 6-51 Mixed control mode parameters 2098 2098 2099 2099 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2100 2100 2101 -(% class="table-bordered" %) 2102 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2103 -|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2104 -(% class="table-bordered" %) 2105 -|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode** 2106 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2107 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2108 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2109 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2110 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2111 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2082 + 2083 +|**DI function code**|**Name**|**Function name**|**Function** 2084 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2085 +|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2086 +|(% rowspan="2" %)4|Valid|Speed mode 2087 +|invalid|Position mode 2088 +|(% rowspan="2" %)5|Valid|Torque mode 2089 +|invalid|Position mode 2090 +|(% rowspan="2" %)6|Valid|Torque mode 2091 +|invalid|Speed mode 2112 2112 ))) 2113 2113 2114 2114 Table 6-52 Description of DI function codes in control mode ... ... @@ -2127,15 +2127,15 @@ 2127 2127 2128 2128 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2129 2129 2130 -(% class="table-bordered" %) 2131 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2132 -|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2133 2133 2111 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2112 +|A1 (single-turn magnetic encoder)|17|0 to 131071 2113 + 2134 2134 Table 6-53 Single-turn absolute encoder information 2135 2135 2136 2136 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2137 2137 2138 - (% style="text-align:center" %)2118 + 2139 2139 [[image:image-20220608173618-43.png]] 2140 2140 2141 2141 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2144,16 +2144,16 @@ 2144 2144 2145 2145 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2146 2146 2147 -(% class="table-bordered" %) 2148 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2149 -|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2150 -|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607 2151 2151 2128 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2129 +|C1 (multi-turn magnetic encoder)|17|0 to 131071 2130 +|D2 (multi-turn Optical encoder)|23|0 to 8388607 2131 + 2152 2152 Table 6-54 Multi-turn absolute encoder information 2153 2153 2154 2154 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2155 2155 2156 - (% style="text-align:center" %)2136 + 2157 2157 [[image:image-20220608173701-44.png]] 2158 2158 2159 2159 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2162,12 +2162,12 @@ 2162 2162 2163 2163 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2164 2164 2165 -(% class="table-bordered" %) 2166 -|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type** 2167 -|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2168 -|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit 2169 -|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2170 2170 2146 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2147 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2148 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2149 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2150 + 2171 2171 Table 6-55 Encoder feedback data 2172 2172 2173 2173 == **Absolute value system encoder battery box use precautions** == ... ... @@ -2174,7 +2174,7 @@ 2174 2174 2175 2175 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2176 2176 2177 - (% style="text-align:center" %)2157 + 2178 2178 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]] 2179 2179 2180 2180 Figure 6-50 the encoder battery box ... ... @@ -2187,23 +2187,23 @@ 2187 2187 2188 2188 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2189 2189 2190 - (% class="table-bordered" %)2191 -| (% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((2170 + 2171 +|**Function code**|**Name**|((( 2192 2192 **Setting method** 2193 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((2173 +)))|((( 2194 2194 **Effective time** 2195 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2196 -| (% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((2175 +)))|**Default value**|**Range**|**Definition**|**Unit** 2176 +|P10-06|Multi-turn absolute encoder reset|((( 2197 2197 Shutdown setting 2198 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((2178 +)))|((( 2199 2199 Effective immediately 2200 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((2180 +)))|0|0 to 1|((( 2201 2201 0: No operation 2202 2202 2203 2203 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2204 2204 2205 2205 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2206 -)))| (% style="text-align:center; vertical-align:middle" %)-2186 +)))|- 2207 2207 2208 2208 Table 6-56 Absolute encoder reset enable parameter 2209 2209 ... ... @@ -2221,18 +2221,18 @@ 2221 2221 2222 2222 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2223 2223 2224 - (% style="text-align:center" %)2204 + 2225 2225 [[image:image-20220608173804-46.png]] 2226 2226 2227 2227 Figure 6-51 VDI_1 setting steps 2228 2228 2229 - (% class="table-bordered" %)2230 -| (% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((2209 + 2210 +|**Function code**|**Name**|((( 2231 2231 **Setting method** 2232 -)))|( % style="text-align:center; vertical-align:middle; width:213px" %)(((2212 +)))|((( 2233 2233 **Effective time** 2234 -)))| (% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2235 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2214 +)))|**Default value**|**Range**|**Definition**|**Unit** 2215 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2236 2236 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2237 2237 2238 2238 VDI_1 input level: ... ... @@ -2240,8 +2240,8 @@ 2240 2240 0: low level 2241 2241 2242 2242 1: high level 2243 -)))| (% style="text-align:center; vertical-align:middle" %)-2244 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2223 +)))|- 2224 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2245 2245 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2246 2246 2247 2247 VDI_2 input level: ... ... @@ -2249,8 +2249,8 @@ 2249 2249 0: low level 2250 2250 2251 2251 1: high level 2252 -)))| (% style="text-align:center; vertical-align:middle" %)-2253 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2232 +)))|- 2233 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2254 2254 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2255 2255 2256 2256 VDI_3 input level: ... ... @@ -2258,8 +2258,8 @@ 2258 2258 0: low level 2259 2259 2260 2260 1: high level 2261 -)))| (% style="text-align:center; vertical-align:middle" %)-2262 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2241 +)))|- 2242 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2263 2263 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2264 2264 2265 2265 VDI_4 input level: ... ... @@ -2267,8 +2267,8 @@ 2267 2267 0: low level 2268 2268 2269 2269 1: high level 2270 -)))| (% style="text-align:center; vertical-align:middle" %)-2271 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2250 +)))|- 2251 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2272 2272 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2273 2273 2274 2274 VDI_5 input level: ... ... @@ -2276,8 +2276,8 @@ 2276 2276 0: low level 2277 2277 2278 2278 1: high level 2279 -)))| (% style="text-align:center; vertical-align:middle" %)-2280 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2259 +)))|- 2260 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2281 2281 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2282 2282 2283 2283 VDI_6 input level: ... ... @@ -2285,8 +2285,8 @@ 2285 2285 0: low level 2286 2286 2287 2287 1: high level 2288 -)))| (% style="text-align:center; vertical-align:middle" %)-2289 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2268 +)))|- 2269 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2290 2290 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2291 2291 2292 2292 VDI_7 input level: ... ... @@ -2294,8 +2294,8 @@ 2294 2294 0: low level 2295 2295 2296 2296 1: high level 2297 -)))| (% style="text-align:center; vertical-align:middle" %)-2298 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2277 +)))|- 2278 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2299 2299 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2300 2300 2301 2301 VDI_8 input level: ... ... @@ -2303,7 +2303,7 @@ 2303 2303 0: low level 2304 2304 2305 2305 1: high level 2306 -)))| (% style="text-align:center; vertical-align:middle" %)-2286 +)))|- 2307 2307 2308 2308 Table 6-57 Virtual VDI parameters 2309 2309 ... ... @@ -2313,11 +2313,11 @@ 2313 2313 2314 2314 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2315 2315 2316 -(% class="table-bordered" %) 2317 -|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration** 2318 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2319 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2320 2320 2297 +|**Setting value**|**DI channel logic selection**|**Illustration** 2298 +|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2299 +|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2300 + 2321 2321 Table 6-58 DI terminal channel logic selection 2322 2322 2323 2323 == **VDO** == ... ... @@ -2326,55 +2326,55 @@ 2326 2326 2327 2327 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2328 2328 2329 - (% style="text-align:center" %)2309 + 2330 2330 [[image:image-20220608173957-48.png]] 2331 2331 2332 2332 Figure 6-52 VDO_2 setting steps 2333 2333 2334 - (% class="table-bordered" %)2335 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((2314 + 2315 +|**Function code**|**Name**|((( 2336 2336 **Setting method** 2337 -)))|( % style="text-align:center; vertical-align:middle" %)(((2317 +)))|((( 2338 2338 **Effective time** 2339 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2340 -| (% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2319 +)))|**Default value**|**Range**|**Definition**|**Unit** 2320 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2341 2341 VDO_1 output level: 2342 2342 2343 2343 0: low level 2344 2344 2345 2345 1: high level 2346 -)))| (% style="text-align:center; vertical-align:middle" %)-2347 -| (% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2326 +)))|- 2327 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2348 2348 VDO_2 output level: 2349 2349 2350 2350 0: low level 2351 2351 2352 2352 1: high level 2353 -)))| (% style="text-align:center; vertical-align:middle" %)-2354 -| (% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2333 +)))|- 2334 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2355 2355 VDO_3 output level: 2356 2356 2357 2357 0: low level 2358 2358 2359 2359 1: high level 2360 -)))| (% style="text-align:center; vertical-align:middle" %)-2361 -| (% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2340 +)))|- 2341 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2362 2362 VDO_4 output level: 2363 2363 2364 2364 0: low level 2365 2365 2366 2366 1: high level 2367 -)))| (% style="text-align:center; vertical-align:middle" %)-2347 +)))|- 2368 2368 2369 2369 Table 6-59 Communication control DO function parameters 2370 2370 2371 -(% class="table-bordered" %) 2372 -|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2373 -|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2374 -|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2375 -|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2376 -|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2377 2377 2352 +|**DO function number**|**Function name**|**Function** 2353 +|145|COM_VDO1 communication VDO1 output|Use communication VDO 2354 +|146|COM_VDO1 communication VDO2 output|Use communication VDO 2355 +|147|COM_VDO1 communication VDO3 output|Use communication VDO 2356 +|148|COM_VDO1 communication VDO4output|Use communication VDO 2357 + 2378 2378 Table 6-60 VDO function number 2379 2379 2380 2380 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation ... ... @@ -2385,17 +2385,17 @@ 2385 2385 2386 2386 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2387 2387 2388 - (% class="table-bordered" %)2389 -| (% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((2368 + 2369 +|**Function code**|**Name**|((( 2390 2390 **Setting method** 2391 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((2371 +)))|((( 2392 2392 **Effective time** 2393 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2394 -| (% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((2373 +)))|**Default value**|**Range**|**Definition**|**Unit** 2374 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2395 2395 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2396 2396 2397 2397 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled 2398 -)))| (%style="text-align:center; vertical-align:middle" %)%2378 +)))|% 2399 2399 2400 2400 In the following cases, it could be modified according to the actual heat generation of the motor 2401 2401
- image-20220611152020-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content