Changes for page 06 Operation

Last modified by Iris on 2025/08/06 18:24

From version 43.1
edited by Joey
on 2022/06/11 15:24
Change comment: There is no comment for this version
To version 45.1
edited by Leo Wei
on 2022/06/11 17:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Joey
1 +XWiki.admin
Content
... ... @@ -2,20 +2,20 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|**No.**|**Content**
6 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 -|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|5|Servo drive and servo motor must be grounded reliably.
12 -|6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|7|The force of all cables is within the specified range.
14 -|8|The wiring terminals have been insulated.
15 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 -|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|2|The servo drive and external braking resistor are not placed on combustible objects.
18 -|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
5 +|=(% scope="row" %)**No.**|=**Content**
6 +|=(% colspan="2" %)Wiring
7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|=5|Servo drive and servo motor must be grounded reliably.
12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|=7|The force of all cables is within the specified range.
14 +|=8|The wiring terminals have been insulated.
15 +|=(% colspan="2" %)Environment and Machinery
16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
... ... @@ -42,17 +42,17 @@
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 44  
45 -(% class="table-bordered" %)
46 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
45 +
46 +|=(% scope="row" %)**Function code**|=**Name**|=(((
47 47  **Setting method**
48 -)))|(% style="text-align:center; vertical-align:middle" %)(((
48 +)))|=(((
49 49  **Effective time**
50 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 -|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
50 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
51 +|=P10-01|JOG speed|(((
52 52  Operation setting
53 -)))|(% style="text-align:center; vertical-align:middle" %)(((
53 +)))|(((
54 54  Effective immediately
55 -)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
55 +)))|100|0 to 3000|JOG speed|rpm
56 56  
57 57  Table 6-2 JOG speed parameter
58 58  
... ... @@ -60,25 +60,25 @@
60 60  
61 61  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62 62  
63 -(% class="table-bordered" %)
64 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
63 +
64 +|=(% scope="row" %)**Function code**|=**Name**|=(((
65 65  **Setting method**
66 -)))|(% style="text-align:center; vertical-align:middle" %)(((
66 +)))|=(((
67 67  **Effective time**
68 -)))|(% style="text-align:center; vertical-align:middle" %)(((
68 +)))|=(((
69 69  **Default value**
70 -)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 -|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
70 +)))|=**Range**|=**Definition**|=**Unit**
71 +|=P00-04|Rotation direction|(((
72 72  Shutdown setting
73 -)))|(% style="text-align:center; vertical-align:middle" %)(((
73 +)))|(((
74 74  Effective immediately
75 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
75 +)))|0|0 to 1|(((
76 76  Forward rotation: Face the motor shaft to watch
77 77  
78 78  0: standard setting (CW is forward rotation)
79 79  
80 80  1: reverse mode (CCW is forward rotation)
81 -)))|(% style="text-align:center; vertical-align:middle" %)-
81 +)))|-
82 82  
83 83  Table 6-3 Rotation direction parameters** **
84 84  
... ... @@ -91,17 +91,16 @@
91 91  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
92 92  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
93 93  
94 -(% class="table-bordered" %)
95 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
94 +|=(% scope="row" %)**Function code**|=**Name**|=(((
96 96  **Setting method**
97 -)))|(% style="text-align:center; vertical-align:middle" %)(((
96 +)))|=(((
98 98  **Effective time**
99 -)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 -|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
98 +)))|=**Default**|=**Range**|=**Definition**|=**Unit**
99 +|=P00-09|Braking resistor setting|(((
101 101  Operation setting
102 -)))|(% style="text-align:center; vertical-align:middle" %)(((
101 +)))|(((
103 103  Effective immediately
104 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
103 +)))|0|0 to 3|(((
105 105  0: use built-in braking resistor
106 106  
107 107  1: use external braking resistor and natural cooling
... ... @@ -109,18 +109,18 @@
109 109  2: use external braking resistor and forced air cooling; (cannot be set)
110 110  
111 111  3: No braking resistor is used, it is all absorbed by capacitor.
112 -)))|(% style="text-align:center; vertical-align:middle" %)-
113 -|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
114 -|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
111 +)))|-
112 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
113 +|=P00-10|External braking resistor value|(((
115 115  Operation setting
116 -)))|(% style="text-align:center; vertical-align:middle" %)(((
115 +)))|(((
117 117  Effective immediately
118 -)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 -|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
117 +)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
118 +|=P00-11|External braking resistor power|(((
120 120  Operation setting
121 -)))|(% style="text-align:center; vertical-align:middle" %)(((
120 +)))|(((
122 122  Effective immediately
123 -)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
122 +)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
124 124  
125 125  Table 6-4 Braking resistor parameters
126 126  
... ... @@ -138,7 +138,7 @@
138 138  
139 139  **(3) Timing diagram of power on**
140 140  
141 -(% style="text-align:center" %)
140 +
142 142  [[image:image-20220608163014-1.png]]
143 143  
144 144  Figure 6-1 Timing diagram of power on
... ... @@ -147,7 +147,7 @@
147 147  
148 148  According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
149 149  
150 -(% class="table-bordered" %)
149 +
151 151  |Shutdown mode|Shutdown description|Shutdown characteristics
152 152  |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
153 153  |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
... ... @@ -154,10 +154,10 @@
154 154  
155 155  Table 6-5 Comparison of two shutdown modes
156 156  
157 -(% class="table-bordered" %)
158 -|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 -|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
160 160  
157 +|**Shutdown status**|**Free operation status**|**Position locked**
158 +|Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
159 +
161 161  Table 6-6 Comparison of two shutdown status
162 162  
163 163  **(1) Servo enable (S-ON) OFF shutdown**
... ... @@ -164,27 +164,27 @@
164 164  
165 165  The related parameters of the servo OFF shutdown mode are shown in the table below.
166 166  
167 -(% class="table-bordered" %)
168 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
166 +
167 +|**Function code**|**Name**|(((
169 169  **Setting method**
170 -)))|(% style="text-align:center; vertical-align:middle" %)(((
169 +)))|(((
171 171  **Effective time**
172 -)))|(% style="text-align:center; vertical-align:middle" %)(((
171 +)))|(((
173 173  **Default value**
174 -)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 -|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
173 +)))|**Range**|**Definition**|**Unit**
174 +|P00-05|Servo OFF shutdown|(((
176 176  Shutdown
177 177  
178 178  setting
179 -)))|(% style="text-align:center; vertical-align:middle" %)(((
178 +)))|(((
180 180  Effective
181 181  
182 182  immediately
183 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
182 +)))|0|0 to 1|(((
184 184  0: Free shutdown, and the motor shaft remains free status.
185 185  
186 186  1: Zero-speed shutdown, and the motor shaft remains free status.
187 -)))|(% style="text-align:center; vertical-align:middle" %)-
186 +)))|-
188 188  
189 189  Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
190 190  
... ... @@ -200,13 +200,13 @@
200 200  
201 201  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
202 202  
203 -(% class="table-bordered" %)
204 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
202 +
203 +|**Function code**|**Name**|(((
205 205  **Setting method**
206 -)))|(% style="text-align:center; vertical-align:middle" %)(((
205 +)))|(((
207 207  **Effective time**
208 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 -|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
207 +)))|**Default value**|**Range**|**Definition**|**Unit**
208 +|P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
210 210  0: OFF (not used)
211 211  
212 212  01: S-ON servo enable
... ... @@ -254,32 +254,31 @@
254 254  24: Internal multi-segment position selection 4
255 255  
256 256  Others: reserved
257 -)))|(% style="text-align:center; vertical-align:middle" %)-
258 -|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
256 +)))|-
257 +|P06-09|DI_3 channel logic selection|Operation setting|(((
259 259  Effective immediately
260 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
259 +)))|0|0 to 1|(((
261 261  DI port input logic validity function selection.
262 262  
263 263  0: Normally open input. Active low level (switch on);
264 264  
265 265  1: Normally closed input. Active high level (switch off);
266 -)))|(% style="text-align:center; vertical-align:middle" %)-
267 -|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
265 +)))|-
266 +|P06-10|DI_3 input source selection|Operation setting|(((
268 268  Effective immediately
269 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
268 +)))|0|0 to 1|(((
270 270  Select the DI_3 port type to enable
271 271  
272 272  0: Hardware DI_3 input terminal
273 273  
274 274  1: virtual VDI_3 input terminal
275 -)))|(% style="text-align:center; vertical-align:middle" %)-
274 +)))|-
276 276  
277 -(% class="table-bordered" %)
278 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
276 +|P06-11|DI_4 channel function selection|(((
279 279  Operation setting
280 -)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
278 +)))|(((
281 281  again Power-on
282 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
280 +)))|4|0 to 32|(((
283 283  0 off (not used)
284 284  
285 285  01: SON Servo enable
... ... @@ -327,25 +327,25 @@
327 327  24: Internal multi-segment position selection 4
328 328  
329 329  Others: reserved
330 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
328 +)))|-
329 +|P06-12|DI_4 channel logic selection|Operation setting|(((
332 332  Effective immediately
333 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
331 +)))|0|0 to 1|(((
334 334  DI port input logic validity function selection.
335 335  
336 336  0: Normally open input. Active low level (switch on);
337 337  
338 338  1: Normally closed input. Active high level (switch off);
339 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
337 +)))|-
338 +|P06-13|DI_4 input source selection|Operation setting|(((
341 341  Effective immediately
342 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
340 +)))|0|0 to 1|(((
343 343  Select the DI_4 port type to enable
344 344  
345 345  0: Hardware DI_4 input terminal
346 346  
347 347  1: virtual VDI_4 input terminal
348 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
346 +)))|-
349 349  
350 350  Table 6-8 DI3 and DI4 channel parameters
351 351  
... ... @@ -357,9 +357,8 @@
357 357  
358 358  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
359 359  
360 -(% class="table-bordered" %)
358 +
361 361  |(((
362 -(% style="text-align:center" %)
363 363  [[image:image-20220611151617-1.png]]
364 364  )))
365 365  |(((
... ... @@ -378,14 +378,13 @@
378 378  
379 379  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
380 380  
381 -(% style="text-align:center" %)
378 +
382 382  [[image:image-20220608163136-2.png]]
383 383  
384 384  Figure 6-2 VD2B servo drive brake wiring
385 385  
386 -(% class="table-bordered" %)
383 +
387 387  |(((
388 -(% style="text-align:center" %)
389 389  [[image:image-20220611151642-2.png]]
390 390  )))
391 391  |(((
... ... @@ -402,42 +402,42 @@
402 402  
403 403  Related function code is as below.
404 404  
405 -(% class="table-bordered" %)
406 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
401 +
402 +|**DO function code**|**Function name**|**Function**|(((
407 407  **Effective time**
408 408  )))
409 -|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
405 +|144|(((
410 410  BRK-OFF Brake output
411 -)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
407 +)))|Output the signal indicates the servo motor brake release|Power-on again
412 412  
413 413  Table 6-2 Relevant function codes for brake setting
414 414  
415 -(% class="table-bordered" %)
416 -|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
411 +
412 +|**Function code**|**Name**|(((
417 417  **Setting method**
418 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
414 +)))|(((
419 419  **Effective time**
420 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
416 +)))|**Default value**|**Range**|**Definition**|**Unit**
417 +|P1-30|Delay from brake output to instruction reception|(((
422 422  Operation setting
423 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
419 +)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
420 +|P1-31|In static state, delay from brake output OFF to the motor is power off|(((
425 425  Operation setting
426 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
422 +)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
423 +|P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
428 428  Operation setting
429 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
425 +)))|Effective immediately|30|0 to 3000|(((
430 430  When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
431 431  
432 432  When the brake output (BRK-OFF) is not allocated, this function code has no effect.
433 -)))|(% style="text-align:center; vertical-align:middle" %)rpm
434 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
429 +)))|rpm
430 +|P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
435 435  Operation setting
436 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
432 +)))|Effective immediately|500|1 to 1000|(((
437 437  When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
438 438  
439 439  When brake output (BRK-OFF) is not allocated, this function code has no effect.
440 -)))|(% style="text-align:center; vertical-align:middle" %)ms
436 +)))|ms
441 441  
442 442  Table 6-9 Brake setting function codes
443 443  
... ... @@ -451,9 +451,8 @@
451 451  
452 452  When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
453 453  
454 -(% class="table-bordered" %)
450 +
455 455  |(((
456 -(% style="text-align:center" %)
457 457  [[image:image-20220611151705-3.png]]
458 458  )))
459 459  |(((
... ... @@ -462,7 +462,6 @@
462 462  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
463 463  )))
464 464  
465 -(% style="text-align:center" %)
466 466  [[image:image-20220608163304-3.png]]
467 467  
468 468  Figure 6-3 Brake Timing of when the motor is stationary
... ... @@ -473,9 +473,8 @@
473 473  
474 474  When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
475 475  
476 -(% class="table-bordered" %)
470 +
477 477  |(((
478 -(% style="text-align:center" %)
479 479  [[image:image-20220611151719-4.png]]
480 480  )))
481 481  |(((
... ... @@ -490,7 +490,6 @@
490 490  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
491 491  )))
492 492  
493 -(% style="text-align:center" %)
494 494  [[image:image-20220608163425-4.png]]
495 495  
496 496  Figure 6-4 Brake timing when the motor rotates
... ... @@ -499,7 +499,7 @@
499 499  
500 500  The brake timing (free shutdown) in the fault status is as follows.
501 501  
502 -(% style="text-align:center" %)
494 +
503 503  [[image:image-20220608163541-5.png]]
504 504  
505 505   Figure 6-5 The brake timing (free shutdown) in the fault state
... ... @@ -508,7 +508,7 @@
508 508  
509 509  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
510 510  
511 -(% style="text-align:center" %)
503 +
512 512  [[image:image-20220608163643-6.png]]
513 513  
514 514  Figure 6-6 Position control diagram
... ... @@ -515,17 +515,17 @@
515 515  
516 516  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
517 517  
518 -(% class="table-bordered" %)
519 -|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
510 +
511 +|**Function code**|**Name**|(((
520 520  **Setting method**
521 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
513 +)))|(((
522 522  **Effective time**
523 -)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 -|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
515 +)))|**Default value**|**Range**|**Definition**|**Unit**
516 +|P01-01|Control mode|(((
525 525  Operation setting
526 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
518 +)))|(((
527 527  immediately Effective
528 -)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
520 +)))|0|0 to 1|(((
529 529  0: position control
530 530  
531 531  2: speed control
... ... @@ -537,7 +537,7 @@
537 537  5: position/torque mix control
538 538  
539 539  6: speed /torque mix control
540 -)))|(% style="text-align:center; vertical-align:middle" %)-
532 +)))|-
541 541  
542 542  Table 6-10 Control mode parameters
543 543  
... ... @@ -545,21 +545,21 @@
545 545  
546 546  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
547 547  
548 -(% class="table-bordered" %)
549 -|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
540 +
541 +|**Function code**|**Name**|(((
550 550  **Setting method**
551 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
543 +)))|(((
552 552  **Effective time**
553 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
545 +)))|**Default value**|**Range**|**Definition**|**Unit**
546 +|P01-06|Position instruction source|(((
555 555  Operation setting
556 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
548 +)))|(((
557 557  immediately Effective
558 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
550 +)))|0|0 to 1|(((
559 559  0: pulse instruction
560 560  
561 561  1: internal position instruction
562 -)))|(% style="text-align:center; vertical-align:middle" %)-
554 +)))|-
563 563  
564 564  Table 6-11 Position instruction source parameter
565 565  
... ... @@ -567,20 +567,20 @@
567 567  
568 568  1) Low-speed pulse instruction input
569 569  
570 -(% class="table-bordered" %)
571 -|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 -|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
574 574  
563 +|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
564 +|VD2A and VD2B servo drives|VD2F servo drive
565 +|(% colspan="2" %)Figure 6-7 Position instruction input setting
566 +
575 575  VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
576 576  
577 577  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
578 578  
579 -(% class="table-bordered" %)
580 -|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 -|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 -|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
583 583  
572 +|**Pulse method**|**Maximum frequency**|**Voltage**
573 +|Open collector input|200K|24V
574 +|Differential input|500K|5V
575 +
584 584  Table 6-12 Pulse input specifications
585 585  
586 586  1.Differential input
... ... @@ -587,7 +587,7 @@
587 587  
588 588  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
589 589  
590 -(% style="text-align:center" %)
582 +
591 591  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
592 592  
593 593  Figure 6-8 Differential input connection
... ... @@ -598,7 +598,7 @@
598 598  
599 599  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
600 600  
601 -(% style="text-align:center" %)
593 +
602 602  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
603 603  
604 604  Figure 6-9 Open collector input connection
... ... @@ -609,7 +609,7 @@
609 609  
610 610  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
611 611  
612 -(% style="text-align:center" %)
604 +
613 613  [[image:image-20220608163952-8.png]]
614 614  
615 615  Figure 6-10 Example of filtered signal waveform
... ... @@ -616,22 +616,22 @@
616 616  
617 617  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
618 618  
619 -(% class="table-bordered" %)
620 -|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
611 +
612 +|**Function code**|**Name**|(((
621 621  **Setting method**
622 -)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
614 +)))|(((
623 623  **Effective time**
624 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
616 +)))|**Default value**|**Range**|(% colspan="2" %)**Definition**|**Unit**
617 +|P00-13|Maximum position pulse frequency|(((
626 626  Shutdown setting
627 -)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
619 +)))|(((
628 628  Effective immediately
629 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 -|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
621 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
622 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
631 631  Operation setting
632 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
624 +)))|(% rowspan="3" %)(((
633 633  Power-on again
634 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
626 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
635 635  Set the anti-interference level of external pulse instruction.
636 636  
637 637  0: no filtering;
... ... @@ -651,8 +651,8 @@
651 651  7: Filtering time 8.192us
652 652  
653 653  8: Filtering time 16.384us
654 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 -|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
646 +)))|(% rowspan="3" %)-
647 +|(% rowspan="2" %)9|VD2: Filtering time 25.5us
656 656  |VD2F: Filtering time 25.5us
657 657  
658 658  Table 6-13 Position pulse frequency and anti-interference level parameters
... ... @@ -661,17 +661,17 @@
661 661  
662 662  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
663 663  
664 -(% class="table-bordered" %)
665 -|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
656 +
657 +|**Function code**|**Name**|(((
666 666  **Setting method**
667 -)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
659 +)))|(((
668 668  **Effective time**
669 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 -|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
661 +)))|**Default value**|**Range**|**Definition**|**Unit**
662 +|P00-12|Position pulse type selection|(((
671 671  Operation setting
672 -)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
664 +)))|(((
673 673  Power-on again
674 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
666 +)))|0|0 to 5|(((
675 675  0: direction + pulse (positive logic)
676 676  
677 677  1: CW/CCW
... ... @@ -683,74 +683,74 @@
683 683  4: CW/CCW (negative logic)
684 684  
685 685  5: A, B phase quadrature pulse (4 times frequency negative logic)
686 -)))|(% style="text-align:center; vertical-align:middle" %)-
678 +)))|-
687 687  
688 688  Table 6-14 Position pulse type selection parameter
689 689  
690 -(% class="table-bordered" %)
691 -|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 -|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
682 +
683 +|**Pulse type selection**|**Pulse type**|**Signal**|**Schematic diagram of forward pulse**|**Schematic diagram of negative pulse**
684 +|0|(((
693 693  Direction + pulse
694 694  
695 695  (Positive logic)
696 -)))|(% style="text-align:center; vertical-align:middle" %)(((
688 +)))|(((
697 697  PULSE
698 698  
699 699  SIGN
700 -)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 -|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
692 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
693 +|1|CW/CCW|(((
702 702  PULSE (CW)
703 703  
704 704  SIGN (CCW)
705 -)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 -|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
697 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
698 +|2|(((
707 707  AB phase orthogonal
708 708  
709 709  pulse (4 times frequency)
710 -)))|(% style="text-align:center; vertical-align:middle" %)(((
702 +)))|(((
711 711  PULSE (Phase A)
712 712  
713 713  SIGN (Phase B)
714 -)))|(% style="text-align:center; vertical-align:middle" %)(((
706 +)))|(((
715 715  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
716 716  
717 717  Phase A is 90° ahead of Phase B
718 -)))|(% style="text-align:center; vertical-align:middle" %)(((
710 +)))|(((
719 719  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
720 720  
721 721  Phase B is 90° ahead of Phase A
722 722  )))
723 -|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
715 +|3|(((
724 724  Direction + pulse
725 725  
726 726  (Negative logic)
727 -)))|(% style="text-align:center; vertical-align:middle" %)(((
719 +)))|(((
728 728  PULSE
729 729  
730 730  SIGN
731 -)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 -|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
723 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
724 +|4|(((
733 733  CW/CCW
734 734  
735 735  (Negative logic)
736 -)))|(% style="text-align:center; vertical-align:middle" %)(((
728 +)))|(((
737 737  PULSE (CW)
738 738  
739 739  SIGN (CCW)
740 -)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 -|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
732 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
733 +|5|(((
742 742  AB phase orthogonal
743 743  
744 744  pulse (4 times frequency negative logic)
745 -)))|(% style="text-align:center; vertical-align:middle" %)(((
737 +)))|(((
746 746  PULSE (Phase A)
747 747  
748 748  SIGN (Phase B)
749 -)))|(% style="text-align:center; vertical-align:middle" %)(((
741 +)))|(((
750 750  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
751 751  
752 752  B phase is ahead of A phase by 90°
753 -)))|(% style="text-align:center; vertical-align:middle" %)(((
745 +)))|(((
754 754  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
755 755  
756 756  A phase is ahead of B phase by 90°
... ... @@ -764,7 +764,7 @@
764 764  
765 765  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
766 766  
767 -(% style="text-align:center" %)
759 +
768 768  [[image:image-20220608164116-9.png]]
769 769  
770 770  Figure 6-11 The setting process of multi-segment position
... ... @@ -771,51 +771,51 @@
771 771  
772 772  1) Set multi-segment position running mode
773 773  
774 -(% class="table-bordered" %)
775 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
766 +
767 +|**Function code**|**Name**|(((
776 776  **Setting method**
777 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
769 +)))|(((
778 778  **Effective time**
779 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 -|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
771 +)))|**Default value**|**Range**|**Definition**|**Unit**
772 +|P07-01|Multi-segment position running mode|(((
781 781  Shutdown setting
782 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
774 +)))|(((
783 783  Effective immediately
784 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
776 +)))|0|0 to 2|(((
785 785  0: Single running
786 786  
787 787  1: Cycle running
788 788  
789 789  2: DI switching running
790 -)))|(% style="text-align:center; vertical-align:middle" %)-
791 -|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
782 +)))|-
783 +|P07-02|Start segment number|(((
792 792  Shutdown setting
793 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
785 +)))|(((
794 794  Effective immediately
795 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 -|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
787 +)))|1|1 to 16|1st segment NO. in non-DI switching mode|-
788 +|P07-03|End segment number|(((
797 797  Shutdown setting
798 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
790 +)))|(((
799 799  Effective immediately
800 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 -|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
792 +)))|1|1 to 16|last segment NO. in non-DI switching mode|-
793 +|P07-04|Margin processing method|(((
802 802  Shutdown setting
803 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
795 +)))|(((
804 804  Effective immediately
805 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
797 +)))|0|0 to 1|(((
806 806  0: Run the remaining segments
807 807  
808 808  1: Run again from the start segment
809 -)))|(% style="text-align:center; vertical-align:middle" %)-
810 -|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
801 +)))|-
802 +|P07-05|Displacement instruction type|(((
811 811  Shutdown setting
812 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
804 +)))|(((
813 813  Effective immediately
814 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
806 +)))|0|0 to 1|(((
815 815  0: Relative position instruction
816 816  
817 817  1: Absolute position instruction
818 -)))|(% style="text-align:center; vertical-align:middle" %)-
810 +)))|-
819 819  
820 820  Table 6-16 multi-segment position running mode parameters
821 821  
... ... @@ -825,7 +825,7 @@
825 825  
826 826  In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
827 827  
828 -(% style="text-align:center" %)
820 +
829 829  [[image:image-20220608164226-10.png]]
830 830  
831 831  Figure 6-12 Single running curve (P07-02=1, P07-03=2)
... ... @@ -834,12 +834,12 @@
834 834  
835 835  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
836 836  
837 -(% style="text-align:center" %)
829 +
838 838  [[image:image-20220608164327-11.png]]
839 839  
840 840  Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
841 841  
842 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
834 +|[[image:image-20220611151917-5.png]]
843 843  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
844 844  
845 845  3. DI switching running
... ... @@ -846,30 +846,30 @@
846 846  
847 847  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
848 848  
849 -(% class="table-bordered" %)
850 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 -|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 -|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 -|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 -|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
855 855  
842 +|**DI function code**|**Function name**|**Function**
843 +|21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
844 +|22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
845 +|23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
846 +|24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
847 +
856 856  Table 6-17 DI function code
857 857  
858 858  The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
859 859  
860 -(% class="table-bordered" %)
861 -|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 -|(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
867 867  
853 +|**INPOS4**|**INPOS3**|**INPOS2**|**INPOS1**|**Running position number**
854 +|0|0|0|0|1
855 +|0|0|0|1|2
856 +|0|0|1|0|3
857 +|(% colspan="5" %)…………
858 +|1|1|1|1|16
859 +
868 868  Table 6-18 INPOS corresponds to running segment number
869 869  
870 870  The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
871 871  
872 -(% style="text-align:center" %)
864 +
873 873  [[image:image-20220608164545-12.png]]
874 874  
875 875  Figure 6-14 DI switching running curve
... ... @@ -880,12 +880,12 @@
880 880  
881 881  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
882 882  
883 -(% style="text-align:center" %)
875 +
884 884  [[image:image-20220608164847-13.png]]
885 885  
886 886  Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
887 887  
888 -(% style="text-align:center" %)
880 +
889 889  [[image:image-20220608165032-14.png]]
890 890  
891 891  Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
... ... @@ -894,12 +894,12 @@
894 894  
895 895  In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
896 896  
897 -(% style="text-align:center" %)
889 +
898 898  [[image:image-20220608165343-15.png]]
899 899  
900 900  Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
901 901  
902 -(% style="text-align:center" %)
894 +
903 903  [[image:image-20220608165558-16.png]]
904 904  
905 905  Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
... ... @@ -911,10 +911,8 @@
911 911  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
912 912  
913 913  |(((
914 -(% style="text-align:center" %)
915 915  [[image:image-20220608165710-17.png]]
916 916  )))|(((
917 -(% style="text-align:center" %)
918 918  [[image:image-20220608165749-18.png]]
919 919  )))
920 920  |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
... ... @@ -924,10 +924,8 @@
924 924  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
925 925  
926 926  |(((
927 -(% style="text-align:center" %)
928 928  [[image:image-20220608165848-19.png]]
929 929  )))|(((
930 -(% style="text-align:center" %)
931 931  [[image:image-20220608170005-20.png]]
932 932  )))
933 933  |Figure 6-21 Absolute indication|Figure 6-22 Displacement
... ... @@ -936,46 +936,46 @@
936 936  
937 937  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
938 938  
939 -(% class="table-bordered" %)
940 -|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
927 +
928 +|**Function code**|**Name**|(((
941 941  **Setting method**
942 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
930 +)))|(((
943 943  **Effective time**
944 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
932 +)))|**Default value**|**Range**|**Definition**|**Unit**
933 +|P07-09|(((
946 946  1st segment
947 947  
948 948  displacement
949 -)))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
937 +)))|(((
950 950  Operation setting
951 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
939 +)))|(((
952 952  Effective immediately
953 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)(((
941 +)))|10000|(((
954 954  -2147483647 to
955 955  
956 956  2147483646
957 -)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
945 +)))|Position instruction, positive and negative values could be set|-
946 +|P07-10|Maximum speed of the 1st displacement|(((
959 959  Operation setting
960 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
948 +)))|(((
961 961  Effective immediately
962 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
950 +)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
951 +|P07-11|Acceleration and deceleration of 1st segment displacement|(((
964 964  Operation setting
965 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
953 +)))|(((
966 966  Effective immediately
967 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
955 +)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
956 +|P07-12|Waiting time after completion of the 1st segment displacement|(((
969 969  Operation setting
970 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
958 +)))|(((
971 971  Effective immediately
972 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
960 +)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
973 973  
974 974  Table 6-19 The 1st position operation curve parameters table
975 975  
976 976  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
977 977  
978 -(% style="text-align:center" %)
966 +
979 979  [[image:image-20220608170149-21.png]]
980 980  
981 981  Figure 6-23 The 1st segment running curve of motor
... ... @@ -984,15 +984,14 @@
984 984  
985 985  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
986 986  
987 -(% class="table-bordered" %)
988 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 -|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
975 +
976 +|**DI function code**|**Function name**|**Function**
977 +|20|ENINPOS: Internal multi-segment position enable signal|(((
990 990  DI port logic invalid: Does not affect the current operation of the servo motor.
991 991  
992 992  DI port logic valid: Motor runs multi-segment position
993 993  )))
994 994  
995 -(% style="text-align:center" %)
996 996  [[image:image-20220611152020-6.png]]
997 997  
998 998  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
... ... @@ -1007,13 +1007,13 @@
1007 1007  
1008 1008  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1009 1009  
1010 -(% style="text-align:center" %)
997 +
1011 1011  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
1012 1012  
1013 -(% style="text-align:center" %)
1000 +
1014 1014  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
1015 1015  
1016 -(% style="text-align:center" %)
1003 +
1017 1017  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1018 1018  
1019 1019  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
... ... @@ -1020,7 +1020,7 @@
1020 1020  
1021 1021  **(2) Setting steps of electronic gear ratio**
1022 1022  
1023 -(% style="text-align:center" %)
1010 +
1024 1024  [[image:image-20220608170320-22.png]]
1025 1025  
1026 1026  Figure 6-24 Setting steps of electronic gear ratio
... ... @@ -1035,7 +1035,7 @@
1035 1035  
1036 1036  Step5: Calculate the value of electronic gear ratio according to formula below.
1037 1037  
1038 -(% style="text-align:center" %)
1025 +
1039 1039  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1040 1040  
1041 1041  **(3) lectronic gear ratio switch setting**
... ... @@ -1043,59 +1043,59 @@
1043 1043  
1044 1044  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1045 1045  
1046 -(% class="table-bordered" %)
1047 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1033 +
1034 +|**Function code**|**Name**|(((
1048 1048  **Setting method**
1049 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1036 +)))|(((
1050 1050  **Effective time**
1051 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 -|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1038 +)))|**Default value**|**Range**|**Definition**|**Unit**
1039 +|P00-16|Number of instruction pulses when the motor rotates one circle|(((
1053 1053  Shutdown setting
1054 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1041 +)))|(((
1055 1055  Effective immediately
1056 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1043 +)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1057 1057  Instruction pulse
1058 1058  
1059 1059  unit
1060 1060  )))
1061 -|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1048 +|P00-17|(((
1062 1062  Electronic gear 1
1063 1063  
1064 1064  numerator
1065 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1052 +)))|Operation setting|(((
1066 1066  Effective immediately
1067 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 -|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1054 +)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1055 +|P00-18|(((
1069 1069  Electronic gear 1
1070 1070  
1071 1071  denominator
1072 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1059 +)))|(((
1073 1073  Operation setting
1074 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1061 +)))|(((
1075 1075  Effective immediately
1076 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 -|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1063 +)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1064 +|P00-19|(((
1078 1078  Electronic gear 2
1079 1079  
1080 1080  numerator
1081 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1068 +)))|Operation setting|(((
1082 1082  Effective immediately
1083 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 -|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1070 +)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1071 +|P00-20|(((
1085 1085  Electronic gear 2
1086 1086  
1087 1087  denominator
1088 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1075 +)))|Operation setting|(((
1089 1089  Effective immediately
1090 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 +)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1091 1091  
1092 1092  Table 6-20 Electronic gear ratio function code
1093 1093  
1094 1094  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1095 1095  
1096 -(% class="table-bordered" %)
1097 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 -|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1083 +
1084 +|**DI function code**|**Function name**|**Function**
1085 +|09|GEAR-SEL electronic gear switch 1|(((
1099 1099  DI port logic invalid: electronic gear ratio 1
1100 1100  
1101 1101  DI port logic valid: electronic gear ratio 2
... ... @@ -1103,10 +1103,10 @@
1103 1103  
1104 1104  Table 6-21 Switching conditions of electronic gear ratio group
1105 1105  
1106 -|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 -|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 -|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1093 +|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1094 +|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1095 +|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1096 +|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1110 1110  
1111 1111  Table 6-22 Application of electronic gear ratio
1112 1112  
... ... @@ -1124,32 +1124,32 @@
1124 1124  
1125 1125  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1126 1126  
1127 -(% style="text-align:center" %)
1114 +
1128 1128  [[image:image-20220608170455-23.png]]
1129 1129  
1130 1130  Figure 6-25 Position instruction filtering diagram
1131 1131  
1132 -(% class="table-bordered" %)
1133 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1119 +
1120 +|**Function code**|**Name**|(((
1134 1134  **Setting method**
1135 -)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1122 +)))|(((
1136 1136  **Effective time**
1137 -)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 -|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1124 +)))|**Default value**|**Range**|**Definition**|**Unit**
1125 +|P04-01|Pulse instruction filtering method|(((
1139 1139  Shutdown setting
1140 -)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1127 +)))|(((
1141 1141  Effective immediately
1142 -)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)(((
1129 +)))|0|0 to 1|(((
1143 1143  0: 1st-order low-pass filtering
1144 1144  
1145 1145  1: average filtering
1146 -)))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 -|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1133 +)))|-
1134 +|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1148 1148  Effective immediately
1149 -)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 -|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1136 +)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1137 +|P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1151 1151  Effective immediately
1152 -)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1139 +)))|0|0 to 128|Position instruction average filtering time constant|ms
1153 1153  
1154 1154  Table 6-23 Position instruction filter function code
1155 1155  
... ... @@ -1169,7 +1169,7 @@
1169 1169  (% class="wikigeneratedid" %)
1170 1170  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1171 1171  
1172 -(% style="text-align:center" %)
1159 +
1173 1173  [[image:image-20220608170550-24.png]]
1174 1174  
1175 1175  Figure 6-26 Positioning completion signal output diagram
... ... @@ -1178,46 +1178,46 @@
1178 1178  
1179 1179  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1180 1180  
1181 -(% style="text-align:center" %)
1168 +
1182 1182  [[image:image-20220608170650-25.png]]
1183 1183  
1184 1184  Figure 6-27 Positioning completion signal output with increased window filter time diagram
1185 1185  
1186 -(% class="table-bordered" %)
1187 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1173 +
1174 +|**Function code**|**Name**|(((
1188 1188  **Setting method**
1189 -)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1176 +)))|(((
1190 1190  **Effective time**
1191 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit**
1192 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1178 +)))|**Default value**|**Range**|**Definition**|**Unit**
1179 +|P05-12|Positioning completion threshold|(((
1193 1193  Operation setting
1194 -)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1181 +)))|(((
1195 1195  Effective immediately
1196 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1197 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1183 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1184 +|P05-13|Positioning approach threshold|(((
1198 1198  Operation setting
1199 -)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1186 +)))|(((
1200 1200  Effective immediately
1201 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1202 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1188 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1189 +|P05-14|Position detection window time|(((
1203 1203  Operation setting
1204 -)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1191 +)))|(((
1205 1205  Effective immediately
1206 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1207 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1193 +)))|10|0 to 20000|Set positioning completion detection window time|ms
1194 +|P05-15|Positioning signal hold time|(((
1208 1208  Operation setting
1209 -)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1196 +)))|(((
1210 1210  Effective immediately
1211 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1198 +)))|100|0 to 20000|Set positioning completion output hold time|ms
1212 1212  
1213 1213  Table 6-24 Function code parameters of positioning completion
1214 1214  
1215 -(% class="table-bordered" %)
1216 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 -|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 -|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1202 +
1203 +|**DO function code**|**Function name**|**Function**
1204 +|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1205 +|135|(((
1219 1219  P-NEAR positioning close
1220 -)))|(% style="text-align:center; vertical-align:middle" %)(((
1207 +)))|(((
1221 1221  Output this signal indicates that the servo drive position is close.
1222 1222  )))
1223 1223  
... ... @@ -1227,7 +1227,7 @@
1227 1227  
1228 1228  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1229 1229  
1230 -(% style="text-align:center" %)
1217 +
1231 1231  [[image:6.28.jpg||height="260" width="806"]]
1232 1232  
1233 1233  Figure 6-28 Speed control block diagram
... ... @@ -1236,21 +1236,21 @@
1236 1236  
1237 1237  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1238 1238  
1239 -(% class="table-bordered" %)
1240 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1226 +
1227 +|**Function code**|**Name**|(((
1241 1241  **Setting method**
1242 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1229 +)))|(((
1243 1243  **Effective time**
1244 -)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 -|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1231 +)))|**Default value**|**Range**|**Definition**|**Unit**
1232 +|P01-01|Speed instruction source|(((
1246 1246  Shutdown setting
1247 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1234 +)))|(((
1248 1248  Effective immediately
1249 -)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1236 +)))|1|1 to 6|(((
1250 1250  0: internal speed instruction
1251 1251  
1252 1252  1: AI_1 analog input (not supported by VD2F)
1253 -)))|(% style="text-align:center; vertical-align:middle" %)-
1240 +)))|-
1254 1254  
1255 1255  Table 6-26 Speed instruction source parameter
1256 1256  
... ... @@ -1258,19 +1258,19 @@
1258 1258  
1259 1259  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1260 1260  
1261 -(% class="table-bordered" %)
1262 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1248 +
1249 +|**Function code**|**Name**|(((
1263 1263  **Setting method**
1264 -)))|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
1251 +)))|(((
1265 1265  **Effective time**
1266 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit**
1267 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1253 +)))|**Default value**|**Range**|**Definition**|**Unit**
1254 +|(% rowspan="2" %)P01-02|(% rowspan="2" %)(((
1268 1268  Internal speed Instruction 0
1269 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1256 +)))|(% rowspan="2" %)(((
1270 1270  Operation setting
1271 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1258 +)))|(% rowspan="2" %)(((
1272 1272  Effective immediately
1273 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1260 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1274 1274  Internal speed instruction 0
1275 1275  
1276 1276  When DI input port:
... ... @@ -1282,15 +1282,15 @@
1282 1282  13-INSPD1: 0,
1283 1283  
1284 1284  select this speed instruction to be effective.
1285 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1286 -|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1287 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1272 +)))|(% rowspan="2" %)rpm
1273 +|-5000 to 5000*
1274 +|(% rowspan="2" %)P01-23|(% rowspan="2" %)(((
1288 1288  Internal speed Instruction 1
1289 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1276 +)))|(% rowspan="2" %)(((
1290 1290  Operation setting
1291 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1278 +)))|(% rowspan="2" %)(((
1292 1292  Effective immediately
1293 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1280 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1294 1294  Internal speed instruction 1
1295 1295  
1296 1296  When DI input port:
... ... @@ -1302,15 +1302,15 @@
1302 1302  13-INSPD1: 1,
1303 1303  
1304 1304  Select this speed instruction to be effective.
1305 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1306 -|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1307 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1292 +)))|(% rowspan="2" %)rpm
1293 +|-5000 to 5000*
1294 +|(% rowspan="2" %)P01-24|(% rowspan="2" %)(((
1308 1308  Internal speed Instruction 2
1309 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1296 +)))|(% rowspan="2" %)(((
1310 1310  Operation setting
1311 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1298 +)))|(% rowspan="2" %)(((
1312 1312  Effective immediately
1313 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1300 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1314 1314  Internal speed instruction 2
1315 1315  
1316 1316  When DI input port:
... ... @@ -1322,15 +1322,15 @@
1322 1322  13-INSPD1: 0,
1323 1323  
1324 1324  Select this speed instruction to be effective.
1325 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1326 -|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1327 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1312 +)))|(% rowspan="2" %)rpm
1313 +|-5000 to 5000*
1314 +|(% rowspan="2" %)P01-25|(% rowspan="2" %)(((
1328 1328  Internal speed Instruction 3
1329 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1316 +)))|(% rowspan="2" %)(((
1330 1330  Operation setting
1331 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1318 +)))|(% rowspan="2" %)(((
1332 1332  Effective immediately
1333 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1320 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1334 1334  Internal speed instruction 3
1335 1335  
1336 1336  When DI input port:
... ... @@ -1342,17 +1342,16 @@
1342 1342  13-INSPD1: 1,
1343 1343  
1344 1344  Select this speed instruction to be effective.
1345 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1346 -|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1332 +)))|(% rowspan="2" %)rpm
1333 +|-5000 to 5000*
1347 1347  
1348 -(% class="table-bordered" %)
1349 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1335 +|(% rowspan="2" %)P01-26|(% rowspan="2" %)(((
1350 1350  Internal speed Instruction 4
1351 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1337 +)))|(% rowspan="2" %)(((
1352 1352  Operation setting
1353 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1339 +)))|(% rowspan="2" %)(((
1354 1354  Effective immediately
1355 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1341 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1356 1356  Internal speed instruction 4
1357 1357  
1358 1358  When DI input port:
... ... @@ -1364,15 +1364,15 @@
1364 1364  13-INSPD1: 0,
1365 1365  
1366 1366  Select this speed instruction to be effective.
1367 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1353 +)))|(% rowspan="2" %)rpm
1354 +|-5000 to 5000*
1355 +|(% rowspan="2" %)P01-27|(% rowspan="2" %)(((
1370 1370  Internal speed Instruction 5
1371 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1357 +)))|(% rowspan="2" %)(((
1372 1372  Operation setting
1373 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1359 +)))|(% rowspan="2" %)(((
1374 1374  Effective immediately
1375 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1361 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1376 1376  Internal speed instruction 5
1377 1377  
1378 1378  When DI input port:
... ... @@ -1384,15 +1384,15 @@
1384 1384  13-INSPD1: 1,
1385 1385  
1386 1386  Select this speed instruction to be effective.
1387 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1373 +)))|(% rowspan="2" %)rpm
1374 +|-5000 to 5000*
1375 +|(% rowspan="2" %)P01-28|(% rowspan="2" %)(((
1390 1390  Internal speed Instruction 6
1391 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1377 +)))|(% rowspan="2" %)(((
1392 1392  Operation setting
1393 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1379 +)))|(% rowspan="2" %)(((
1394 1394  Effective immediately
1395 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1381 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1396 1396  Internal speed instruction 6
1397 1397  
1398 1398  When DI input port:
... ... @@ -1404,15 +1404,15 @@
1404 1404  13-INSPD1: 0,
1405 1405  
1406 1406  Select this speed instruction to be effective.
1407 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1393 +)))|(% rowspan="2" %)rpm
1394 +|-5000 to 5000*
1395 +|(% rowspan="2" %)P01-29|(% rowspan="2" %)(((
1410 1410  Internal speed Instruction 7
1411 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1397 +)))|(% rowspan="2" %)(((
1412 1412  Operation setting
1413 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1399 +)))|(% rowspan="2" %)(((
1414 1414  Effective immediately
1415 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1401 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1416 1416  Internal speed instruction 7
1417 1417  
1418 1418  When DI input port:
... ... @@ -1424,34 +1424,34 @@
1424 1424  13-INSPD1: 1,
1425 1425  
1426 1426  Select this speed instruction to be effective.
1427 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1413 +)))|(% rowspan="2" %)rpm
1414 +|-5000 to 5000*
1429 1429  
1430 1430  Table 6-27 Internal speed instruction parameters
1431 1431  
1432 1432  ✎**Note: **“*” means the set range of VD2F servo drive.
1433 1433  
1434 -(% class="table-bordered" %)
1435 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 -|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 -|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 -|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1439 1439  
1421 +|**DI function code**|**function name**|**Function**
1422 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1423 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1424 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1425 +
1440 1440  Table 6-28 DI multi-speed function code description
1441 1441  
1442 1442  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1443 1443  
1444 -(% class="table-bordered" %)
1445 -|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1430 +
1431 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1432 +|0|0|0|1|0
1433 +|0|0|1|2|1
1434 +|0|1|0|3|2
1449 1449  |(% colspan="5" %)......
1450 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1436 +|1|1|1|8|7
1451 1451  
1452 1452  Table 6-29 Correspondence between INSPD bits and segment numbers
1453 1453  
1454 -(% style="text-align:center" %)
1440 +
1455 1455  [[image:image-20220608170845-26.png]]
1456 1456  
1457 1457  Figure 6-29 Multi-segment speed running curve
... ... @@ -1460,7 +1460,7 @@
1460 1460  
1461 1461  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1462 1462  
1463 -(% style="text-align:center" %)
1449 +
1464 1464  [[image:image-20220608153341-5.png]]
1465 1465  
1466 1466  Figure 6-30 Analog input circuit
... ... @@ -1467,7 +1467,7 @@
1467 1467  
1468 1468  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1469 1469  
1470 -(% style="text-align:center" %)
1456 +
1471 1471  [[image:image-20220608170955-27.png]]
1472 1472  
1473 1473  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1480,18 +1480,18 @@
1480 1480  
1481 1481  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1482 1482  
1483 -(% style="text-align:center" %)
1469 +
1484 1484  [[image:image-20220608171124-28.png]]
1485 1485  
1486 1486  Figure 6-32 AI_1 diagram before and after bias
1487 1487  
1488 -(% class="table-bordered" %)
1489 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1494 1494  
1475 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1476 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1477 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1478 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1479 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1480 +
1495 1495  Table 6-30 AI_1 parameters
1496 1496  
1497 1497  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1502,7 +1502,7 @@
1502 1502  
1503 1503  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1504 1504  
1505 -(% style="text-align:center" %)
1491 +
1506 1506  [[image:image-20220608171314-29.png]]
1507 1507  
1508 1508  Figure 6-33 of acceleration and deceleration time diagram
... ... @@ -1511,22 +1511,22 @@
1511 1511  
1512 1512  Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1513 1513  
1514 -(% class="table-bordered" %)
1515 -|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1500 +
1501 +|**Function code**|**Name**|(((
1516 1516  **Setting method**
1517 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1503 +)))|(((
1518 1518  **Effective time**
1519 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1505 +)))|**Default value**|**Range**|**Definition**|**Unit**
1506 +|P01-03|Acceleration time|(((
1521 1521  Operation setting
1522 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1508 +)))|(((
1523 1523  Effective immediately
1524 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1510 +)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1511 +|P01-04|Deceleration time|(((
1526 1526  Operation setting
1527 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1513 +)))|(((
1528 1528  Effective immediately
1529 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1515 +)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1530 1530  
1531 1531  Table 6-31 Acceleration and deceleration time parameters
1532 1532  
... ... @@ -1545,27 +1545,27 @@
1545 1545  
1546 1546  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1547 1547  
1548 -(% class="table-bordered" %)
1549 -|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1534 +
1535 +|**Function code**|**Name**|(((
1550 1550  **Setting method**
1551 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1537 +)))|(((
1552 1552  **Effective time**
1553 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1539 +)))|**Default value**|**Range**|**Definition**|**Unit**
1540 +|P01-10|Maximum speed threshold|(((
1555 1555  Operation setting
1556 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1542 +)))|(((
1557 1557  Effective immediately
1558 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1544 +)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1545 +|P01-12|Forward speed threshold|(((
1560 1560  Operation setting
1561 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1547 +)))|(((
1562 1562  Effective immediately
1563 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1549 +)))|3000|0 to 5000|Set forward speed limit value|rpm
1550 +|P01-13|Reverse speed threshold|(((
1565 1565  Operation setting
1566 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1552 +)))|(((
1567 1567  Effective immediately
1568 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1554 +)))|3000|0 to 5000|Set reverse speed limit value|rpm
1569 1569  
1570 1570  Table 6-32 Rotation speed related function codes
1571 1571  
... ... @@ -1575,19 +1575,19 @@
1575 1575  
1576 1576  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1577 1577  
1578 -(% class="table-bordered" %)
1579 -|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1564 +
1565 +|**Function code**|**Name**|(((
1580 1580  **Setting method**
1581 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1567 +)))|(((
1582 1582  **Effective time**
1583 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1569 +)))|**Default value**|**Range**|**Definition**|**Unit**
1570 +|P01-21|(((
1585 1585  Zero-speed clamp function selection
1586 -)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1572 +)))|(((
1587 1587  Operation setting
1588 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1574 +)))|(((
1589 1589  Effective immediately
1590 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1576 +)))|0|0 to 3|(((
1591 1591  Set the zero-speed clamp function. In speed mode:
1592 1592  
1593 1593  0: Force the speed to 0;
... ... @@ -1597,18 +1597,18 @@
1597 1597  2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1598 1598  
1599 1599  3: Invalid, ignore zero-speed clamp input
1600 -)))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1586 +)))|-
1587 +|P01-22|(((
1602 1602  Zero-speed clamp speed threshold
1603 -)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1589 +)))|(((
1604 1604  Operation setting
1605 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1591 +)))|(((
1606 1606  Effective immediately
1607 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1593 +)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1608 1608  
1609 1609  Table 6-33 Zero-speed clamp related parameters
1610 1610  
1611 -(% style="text-align:center" %)
1597 +
1612 1612  [[image:image-20220608171549-30.png]]
1613 1613  
1614 1614  Figure 6-34 Zero-speed clamp diagram
... ... @@ -1621,7 +1621,7 @@
1621 1621  
1622 1622  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1623 1623  
1624 -(% style="text-align:center" %)
1610 +
1625 1625  [[image:image-20220608171625-31.png]]
1626 1626  
1627 1627  Figure 6-35 Rotation detection signal diagram
... ... @@ -1628,29 +1628,29 @@
1628 1628  
1629 1629  To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1630 1630  
1631 -(% class="table-bordered" %)
1632 -|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1617 +
1618 +|**Function code**|**Name**|(((
1633 1633  **Setting method**
1634 -)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1620 +)))|(((
1635 1635  **Effective time**
1636 -)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit**
1637 -|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1622 +)))|**Default value**|**Range**|**Definition**|**Unit**
1623 +|P05-16|(((
1638 1638  Rotation detection
1639 1639  
1640 1640  speed threshold
1641 -)))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1627 +)))|(((
1642 1642  Operation setting
1643 -)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1629 +)))|(((
1644 1644  Effective immediately
1645 -)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm
1631 +)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1646 1646  
1647 1647  Table 6-34 Rotation detection speed threshold parameters
1648 1648  
1649 -(% class="table-bordered" %)
1650 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function**
1651 -|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)(((
1635 +
1636 +|**DO function code**|**Function name**|**Function**
1637 +|132|(((
1652 1652  T-COIN rotation detection
1653 -)))|(% style="width:879px" %)(((
1639 +)))|(((
1654 1654  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1655 1655  
1656 1656  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1662,7 +1662,7 @@
1662 1662  
1663 1663  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1664 1664  
1665 -(% style="text-align:center" %)
1651 +
1666 1666  [[image:image-20220608171904-32.png]]
1667 1667  
1668 1668  Figure 6-36 Zero-speed signal diagram
... ... @@ -1669,25 +1669,25 @@
1669 1669  
1670 1670  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1671 1671  
1672 -(% class="table-bordered" %)
1673 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1658 +
1659 +|**Function code**|**Name**|(((
1674 1674  **Setting method**
1675 -)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1661 +)))|(((
1676 1676  **Effective time**
1677 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit**
1678 -|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1663 +)))|**Default value**|**Range**|**Definition**|**Unit**
1664 +|P05-19|Zero speed output signal threshold|(((
1679 1679  Operation setting
1680 -)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1666 +)))|(((
1681 1681  Effective immediately
1682 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm
1668 +)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1683 1683  
1684 1684  Table 6-36 Zero-speed output signal threshold parameter
1685 1685  
1686 -(% class="table-bordered" %)
1687 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1688 -|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1672 +
1673 +|**DO function code**|**Function name**|**Function**
1674 +|133|(((
1689 1689  ZSP zero speed signal
1690 -)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1676 +)))|Output this signal indicates that the servo motor is stopping rotation
1691 1691  
1692 1692  Table 6-37 DO zero-speed signal function code
1693 1693  
... ... @@ -1695,7 +1695,7 @@
1695 1695  
1696 1696  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1697 1697  
1698 -(% style="text-align:center" %)
1684 +
1699 1699  [[image:image-20220608172053-33.png]]
1700 1700  
1701 1701  Figure 6-37 Speed consistent signal diagram
... ... @@ -1702,25 +1702,25 @@
1702 1702  
1703 1703  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1704 1704  
1705 -(% class="table-bordered" %)
1706 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1691 +
1692 +|**Function code**|**Name**|(((
1707 1707  **Setting method**
1708 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1694 +)))|(((
1709 1709  **Effective time**
1710 -)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit**
1711 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1696 +)))|**Default value**|**Range**|**Definition**|**Unit**
1697 +|P05-17|Speed consistent signal threshold|(((
1712 1712  Operationsetting
1713 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1699 +)))|(((
1714 1714  Effective immediately
1715 -)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm
1701 +)))|10|0 to 100|Set speed consistent signal threshold|rpm
1716 1716  
1717 1717  Table 6-38 Speed consistent signal threshold parameters
1718 1718  
1719 -(% class="table-bordered" %)
1720 -|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1721 -|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1705 +
1706 +|**DO Function code**|**Function name**|**Function**
1707 +|136|(((
1722 1722  U-COIN consistent speed
1723 -)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1709 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1724 1724  
1725 1725  Table 6-39 DO speed consistent function code
1726 1726  
... ... @@ -1728,7 +1728,7 @@
1728 1728  
1729 1729  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1730 1730  
1731 -(% style="text-align:center" %)
1717 +
1732 1732  [[image:image-20220608172207-34.png]]
1733 1733  
1734 1734  Figure 6-38 Speed approaching signal diagram
... ... @@ -1735,25 +1735,25 @@
1735 1735  
1736 1736  To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1737 1737  
1738 -(% class="table-bordered" %)
1739 -|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1724 +
1725 +|**Function code**|**Name**|(((
1740 1740  **Setting method**
1741 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1727 +)))|(((
1742 1742  **Effective time**
1743 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1744 -|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1729 +)))|**Default value**|**Range**|**Definition**|**Unit**
1730 +|P05-18|Speed approach signal threshold|(((
1745 1745  Operation setting
1746 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1732 +)))|(((
1747 1747  Effective immediately
1748 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1734 +)))|100|10 to 6000|Set speed approach signal threshold|rpm
1749 1749  
1750 1750  Table 6-40 Speed approaching signal threshold parameters
1751 1751  
1752 -(% class="table-bordered" %)
1753 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1754 -|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1738 +
1739 +|**DO function code**|**Function name**|**Function**
1740 +|137|(((
1755 1755  V-NEAR speed approach
1756 -)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1742 +)))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1757 1757  
1758 1758  Table 6-41 DO speed approach function code
1759 1759  
... ... @@ -1761,7 +1761,7 @@
1761 1761  
1762 1762  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1763 1763  
1764 -(% style="text-align:center" %)
1750 +
1765 1765  [[image:image-20220608172405-35.png]]
1766 1766  
1767 1767  Figure 6-39 Torque mode diagram
... ... @@ -1770,21 +1770,21 @@
1770 1770  
1771 1771  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1772 1772  
1773 -(% class="table-bordered" %)
1774 -|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1759 +
1760 +|**Function code**|**Name**|(((
1775 1775  **Setting method**
1776 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1762 +)))|(((
1777 1777  **Effective time**
1778 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1779 -|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1764 +)))|**Default value**|**Range**|**Definition**|**Unit**
1765 +|P01-08|Torque instruction source|(((
1780 1780  Shutdown setting
1781 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1767 +)))|(((
1782 1782  Effective immediately
1783 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1769 +)))|0|0 to 1|(((
1784 1784  0: internal torque instruction
1785 1785  
1786 1786  1: AI_1 analog input(not supported by VD2F)
1787 -)))|(% style="text-align:center; vertical-align:middle" %)-
1773 +)))|-
1788 1788  
1789 1789  Table 6-42 Torque instruction source parameter
1790 1790  
... ... @@ -1792,17 +1792,17 @@
1792 1792  
1793 1793  Torque instruction source is from inside, the value is set by function code P01-08.
1794 1794  
1795 -(% class="table-bordered" %)
1796 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1781 +
1782 +|**Function code**|**Name**|(((
1797 1797  **Setting method**
1798 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1784 +)))|(((
1799 1799  **Effective time**
1800 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1801 -|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1786 +)))|**Default value**|**Range**|**Definition**|**Unit**
1787 +|P01-08|Torque instruction keyboard set value|(((
1802 1802  Operation setting
1803 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1789 +)))|(((
1804 1804  Effective immediately
1805 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1791 +)))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1806 1806  
1807 1807  Table 6-43 Torque instruction keyboard set value
1808 1808  
... ... @@ -1810,7 +1810,7 @@
1810 1810  
1811 1811  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1812 1812  
1813 -(% style="text-align:center" %)
1799 +
1814 1814  [[image:image-20220608153646-7.png||height="213" width="408"]]
1815 1815  
1816 1816  Figure 6-40 Analog input circuit
... ... @@ -1817,7 +1817,7 @@
1817 1817  
1818 1818  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1819 1819  
1820 -(% style="text-align:center" %)
1806 +
1821 1821  [[image:image-20220608172502-36.png]]
1822 1822  
1823 1823  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1830,18 +1830,18 @@
1830 1830  
1831 1831  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1832 1832  
1833 -(% style="text-align:center" %)
1819 +
1834 1834  [[image:image-20220608172611-37.png]]
1835 1835  
1836 1836  Figure 6-42 AI_1 diagram before and after bias
1837 1837  
1838 -(% class="table-bordered" %)
1839 -|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1840 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1841 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1842 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1843 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1844 1844  
1825 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1826 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1827 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1828 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1829 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1830 +
1845 1845  Table 6-44 AI_1 parameters
1846 1846  
1847 1847  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1850,23 +1850,23 @@
1850 1850  
1851 1851  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1852 1852  
1853 -(% class="table-bordered" %)
1854 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1839 +
1840 +|**Function code**|**Name**|(((
1855 1855  **Setting method**
1856 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1842 +)))|(((
1857 1857  **Effective time**
1858 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1859 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1844 +)))|**Default value**|**Range**|**Definition**|**Unit**
1845 +|P04-04|Torque filtering time constant|(((
1860 1860  Operation setting
1861 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1847 +)))|(((
1862 1862  Effective immediately
1863 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1849 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1864 1864  
1865 1865  Table 6-45 Torque filtering time constant parameter details
1866 1866  
1867 1867  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1868 1868  
1869 -(% style="text-align:center" %)
1855 +
1870 1870  [[image:image-20220608172646-38.png]]
1871 1871  
1872 1872  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1877,7 +1877,7 @@
1877 1877  
1878 1878  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1879 1879  
1880 -(% style="text-align:center" %)
1866 +
1881 1881  [[image:image-20220608172806-39.png]]
1882 1882  
1883 1883  Figure 6-44 Torque instruction limit diagram
... ... @@ -1886,50 +1886,50 @@
1886 1886  
1887 1887  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1888 1888  
1889 -(% class="table-bordered" %)
1890 -|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1875 +
1876 +|**Function code**|**Name**|(((
1891 1891  **Setting method**
1892 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1878 +)))|(((
1893 1893  **Effective time**
1894 -)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1895 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1880 +)))|**Default value**|**Range**|**Definition**|**Unit**
1881 +|P01-14|(((
1896 1896  Torque limit source
1897 -)))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1883 +)))|(((
1898 1898  Shutdown setting
1899 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1885 +)))|(((
1900 1900  Effective immediately
1901 -)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1887 +)))|0|0 to 1|(((
1902 1902  0: internal value
1903 1903  
1904 1904  1: AI_1 analog input
1905 1905  
1906 1906  (not supported by VD2F)
1907 -)))|(% style="text-align:center; vertical-align:middle" %)-
1893 +)))|-
1908 1908  
1909 1909  1) Torque limit source is internal torque instruction (P01-14=0)
1910 1910  
1911 1911  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1912 1912  
1913 -(% class="table-bordered" %)
1914 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1899 +
1900 +|**Function code**|**Name**|(((
1915 1915  **Setting method**
1916 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1902 +)))|(((
1917 1917  **Effective time**
1918 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1919 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1904 +)))|**Default value**|**Range**|**Definition**|**Unit**
1905 +|P01-15|(((
1920 1920  Forward torque limit
1921 -)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1907 +)))|(((
1922 1922  Operation setting
1923 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1909 +)))|(((
1924 1924  Effective immediately
1925 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1926 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1911 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1912 +|P01-16|(((
1927 1927  Reverse torque limit
1928 -)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1914 +)))|(((
1929 1929  Operation setting
1930 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1916 +)))|(((
1931 1931  Effective immediately
1932 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1918 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1933 1933  
1934 1934  Table 6-46 Torque limit parameter details
1935 1935  
... ... @@ -1941,11 +1941,11 @@
1941 1941  
1942 1942  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1943 1943  
1944 -(% class="table-bordered" %)
1945 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1946 -|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1930 +
1931 +|**DO function code**|**Function name**|**Function**
1932 +|139|(((
1947 1947  T-LIMIT in torque limit
1948 -)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1934 +)))|Output of this signal indicates that the servo motor torque is limited
1949 1949  
1950 1950  Table 6-47 DO torque limit function codes
1951 1951  
... ... @@ -1956,46 +1956,43 @@
1956 1956  In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1957 1957  
1958 1958  |(((
1959 -(% style="text-align:center" %)
1960 1960  [[image:image-20220608172910-40.png]]
1961 1961  )))|(((
1962 -(% style="text-align:center" %)
1963 1963  [[image:image-20220608173155-41.png]]
1964 1964  )))
1965 1965  |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1966 1966  
1967 -(% class="table-bordered" %)
1968 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1951 +|**Function code**|**Name**|(((
1969 1969  **Setting method**
1970 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1953 +)))|(((
1971 1971  **Effective time**
1972 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1973 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1955 +)))|**Default value**|**Range**|**Definition**|**Unit**
1956 +|P01-17|(((
1974 1974  Forward torque
1975 1975  
1976 1976  limit in torque mode
1977 -)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1960 +)))|(((
1978 1978  Operation setting
1979 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1962 +)))|(((
1980 1980  Effective immediately
1981 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1964 +)))|3000|0 to 5000|(((
1982 1982  Forward torque
1983 1983  
1984 1984  limit in torque mode
1985 -)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1986 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1968 +)))|0.1%
1969 +|P01-18|(((
1987 1987  Reverse torque
1988 1988  
1989 1989  limit in torque mode
1990 -)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1973 +)))|(((
1991 1991  Operation setting
1992 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1975 +)))|(((
1993 1993  Effective immediately
1994 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1977 +)))|3000|0 to 5000|(((
1995 1995  Reverse torque
1996 1996  
1997 1997  limit in torque mode
1998 -)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1981 +)))|0.1%
1999 1999  
2000 2000  Table 6-48 Speed limit parameters in torque mode
2001 2001  
... ... @@ -2009,7 +2009,7 @@
2009 2009  
2010 2010  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2011 2011  
2012 -(% style="text-align:center" %)
1995 +
2013 2013  [[image:image-20220608173541-42.png]]
2014 2014  
2015 2015  Figure 6-47 Torque arrival output diagram
... ... @@ -2016,44 +2016,44 @@
2016 2016  
2017 2017  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2018 2018  
2019 -(% class="table-bordered" %)
2020 -|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2002 +
2003 +|**Function code**|**Name**|(((
2021 2021  **Setting method**
2022 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2005 +)))|(((
2023 2023  **Effective time**
2024 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2025 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2007 +)))|**Default value**|**Range**|**Definition**|**Unit**
2008 +|P05-20|(((
2026 2026  Torque arrival
2027 2027  
2028 2028  threshold
2029 -)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2012 +)))|(((
2030 2030  Operation setting
2031 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2014 +)))|(((
2032 2032  Effective immediately
2033 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2016 +)))|100|0 to 300|(((
2034 2034  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2035 2035  
2036 2036  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2037 2037  
2038 2038  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2039 -)))|(% style="text-align:center; vertical-align:middle" %)%
2040 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2022 +)))|%
2023 +|P05-21|(((
2041 2041  Torque arrival
2042 2042  
2043 2043  hysteresis
2044 -)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2027 +)))|(((
2045 2045  Operation setting
2046 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2029 +)))|(((
2047 2047  Effective immediately
2048 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2031 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2049 2049  
2050 2050  Table 6-49 Torque arrival parameters
2051 2051  
2052 -(% class="table-bordered" %)
2053 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2054 -|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2035 +
2036 +|**DO function code**|**Function name**|**Function**
2037 +|138|(((
2055 2055  T-COIN torque arrival
2056 -)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2039 +)))|Used to determine whether the actual torque instruction has reached the set range
2057 2057  
2058 2058  Table 6-50 DO Torque Arrival Function Code
2059 2059  
... ... @@ -2069,17 +2069,17 @@
2069 2069  
2070 2070  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2071 2071  
2072 -(% class="table-bordered" %)
2073 -|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2055 +
2056 +|**Function code**|**Name**|(((
2074 2074  **Setting method**
2075 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2058 +)))|(((
2076 2076  **Effective time**
2077 -)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2078 -|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2060 +)))|**Default value**|**Range**|**Definition**|**Unit**
2061 +|P00-01|Control mode|(((
2079 2079  Shutdown setting
2080 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2063 +)))|(((
2081 2081  Shutdown setting
2082 -)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)(((
2065 +)))|1|1 to 6|(((
2083 2083  1: Position control
2084 2084  
2085 2085  2: Speed control
... ... @@ -2091,23 +2091,22 @@
2091 2091  5: Position/torque mixed control
2092 2092  
2093 2093  6: Speed/torque mixed control
2094 -)))|(% style="text-align:center; vertical-align:middle" %)-
2077 +)))|-
2095 2095  
2096 2096  Table 6-51 Mixed control mode parameters
2097 2097  
2098 2098  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2099 2099  
2100 -(% class="table-bordered" %)
2101 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2102 -|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2103 -(% class="table-bordered" %)
2104 -|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2105 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2106 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2107 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2108 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2083 +
2084 +|**DI function code**|**Name**|**Function name**|**Function**
2085 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2086 +|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2087 +|(% rowspan="2" %)4|Valid|Speed mode
2088 +|invalid|Position mode
2089 +|(% rowspan="2" %)5|Valid|Torque mode
2090 +|invalid|Position mode
2091 +|(% rowspan="2" %)6|Valid|Torque mode
2092 +|invalid|Speed mode
2111 2111  )))
2112 2112  
2113 2113  Table 6-52 Description of DI function codes in control mode
... ... @@ -2126,15 +2126,15 @@
2126 2126  
2127 2127  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2128 2128  
2129 -(% class="table-bordered" %)
2130 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2131 -|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2132 2132  
2112 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2113 +|A1 (single-turn magnetic encoder)|17|0 to 131071
2114 +
2133 2133  Table 6-53 Single-turn absolute encoder information
2134 2134  
2135 2135  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2136 2136  
2137 -(% style="text-align:center" %)
2119 +
2138 2138  [[image:image-20220608173618-43.png]]
2139 2139  
2140 2140  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2143,16 +2143,16 @@
2143 2143  
2144 2144  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2145 2145  
2146 -(% class="table-bordered" %)
2147 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2148 -|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2149 -|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2150 2150  
2129 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2130 +|C1 (multi-turn magnetic encoder)|17|0 to 131071
2131 +|D2 (multi-turn Optical encoder)|23|0 to 8388607
2132 +
2151 2151  Table 6-54 Multi-turn absolute encoder information
2152 2152  
2153 2153  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2154 2154  
2155 -(% style="text-align:center" %)
2137 +
2156 2156  [[image:image-20220608173701-44.png]]
2157 2157  
2158 2158  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2161,12 +2161,12 @@
2161 2161  
2162 2162  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2163 2163  
2164 -(% class="table-bordered" %)
2165 -|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2166 -|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2167 -|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2168 -|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2169 2169  
2147 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2148 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2149 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2150 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2151 +
2170 2170  Table 6-55 Encoder feedback data
2171 2171  
2172 2172  == **Absolute value system encoder battery box use precautions** ==
... ... @@ -2173,7 +2173,7 @@
2173 2173  
2174 2174  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2175 2175  
2176 -(% style="text-align:center" %)
2158 +
2177 2177  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2178 2178  
2179 2179  Figure 6-50 the encoder battery box
... ... @@ -2186,23 +2186,23 @@
2186 2186  
2187 2187  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2188 2188  
2189 -(% class="table-bordered" %)
2190 -|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2171 +
2172 +|**Function code**|**Name**|(((
2191 2191  **Setting method**
2192 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2174 +)))|(((
2193 2193  **Effective time**
2194 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2195 -|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2176 +)))|**Default value**|**Range**|**Definition**|**Unit**
2177 +|P10-06|Multi-turn absolute encoder reset|(((
2196 2196  Shutdown setting
2197 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2179 +)))|(((
2198 2198  Effective immediately
2199 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2181 +)))|0|0 to 1|(((
2200 2200  0: No operation
2201 2201  
2202 2202  1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2203 2203  
2204 2204  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2205 -)))|(% style="text-align:center; vertical-align:middle" %)-
2187 +)))|-
2206 2206  
2207 2207  Table 6-56 Absolute encoder reset enable parameter
2208 2208  
... ... @@ -2220,18 +2220,18 @@
2220 2220  
2221 2221  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2222 2222  
2223 -(% style="text-align:center" %)
2205 +
2224 2224  [[image:image-20220608173804-46.png]]
2225 2225  
2226 2226  Figure 6-51 VDI_1 setting steps
2227 2227  
2228 -(% class="table-bordered" %)
2229 -|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2210 +
2211 +|**Function code**|**Name**|(((
2230 2230  **Setting method**
2231 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2213 +)))|(((
2232 2232  **Effective time**
2233 -)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2234 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2215 +)))|**Default value**|**Range**|**Definition**|**Unit**
2216 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2235 2235  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2236 2236  
2237 2237  VDI_1 input level:
... ... @@ -2239,8 +2239,8 @@
2239 2239  0: low level
2240 2240  
2241 2241  1: high level
2242 -)))|(% style="text-align:center; vertical-align:middle" %)-
2243 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2224 +)))|-
2225 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2244 2244  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2245 2245  
2246 2246  VDI_2 input level:
... ... @@ -2248,8 +2248,8 @@
2248 2248  0: low level
2249 2249  
2250 2250  1: high level
2251 -)))|(% style="text-align:center; vertical-align:middle" %)-
2252 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2233 +)))|-
2234 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2253 2253  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2254 2254  
2255 2255  VDI_3 input level:
... ... @@ -2257,8 +2257,8 @@
2257 2257  0: low level
2258 2258  
2259 2259  1: high level
2260 -)))|(% style="text-align:center; vertical-align:middle" %)-
2261 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2242 +)))|-
2243 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2262 2262  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2263 2263  
2264 2264  VDI_4 input level:
... ... @@ -2266,8 +2266,8 @@
2266 2266  0: low level
2267 2267  
2268 2268  1: high level
2269 -)))|(% style="text-align:center; vertical-align:middle" %)-
2270 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2251 +)))|-
2252 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2271 2271  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2272 2272  
2273 2273  VDI_5 input level:
... ... @@ -2275,8 +2275,8 @@
2275 2275  0: low level
2276 2276  
2277 2277  1: high level
2278 -)))|(% style="text-align:center; vertical-align:middle" %)-
2279 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2260 +)))|-
2261 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2280 2280  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2281 2281  
2282 2282  VDI_6 input level:
... ... @@ -2284,8 +2284,8 @@
2284 2284  0: low level
2285 2285  
2286 2286  1: high level
2287 -)))|(% style="text-align:center; vertical-align:middle" %)-
2288 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2269 +)))|-
2270 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2289 2289  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2290 2290  
2291 2291  VDI_7 input level:
... ... @@ -2293,8 +2293,8 @@
2293 2293  0: low level
2294 2294  
2295 2295  1: high level
2296 -)))|(% style="text-align:center; vertical-align:middle" %)-
2297 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2278 +)))|-
2279 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2298 2298  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2299 2299  
2300 2300  VDI_8 input level:
... ... @@ -2302,7 +2302,7 @@
2302 2302  0: low level
2303 2303  
2304 2304  1: high level
2305 -)))|(% style="text-align:center; vertical-align:middle" %)-
2287 +)))|-
2306 2306  
2307 2307  Table 6-57 Virtual VDI parameters
2308 2308  
... ... @@ -2312,11 +2312,11 @@
2312 2312  
2313 2313  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2314 2314  
2315 -(% class="table-bordered" %)
2316 -|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2317 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2318 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2319 2319  
2298 +|**Setting value**|**DI channel logic selection**|**Illustration**
2299 +|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2300 +|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2301 +
2320 2320  Table 6-58 DI terminal channel logic selection
2321 2321  
2322 2322  == **VDO** ==
... ... @@ -2325,55 +2325,55 @@
2325 2325  
2326 2326  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2327 2327  
2328 -(% style="text-align:center" %)
2310 +
2329 2329  [[image:image-20220608173957-48.png]]
2330 2330  
2331 2331  Figure 6-52 VDO_2 setting steps
2332 2332  
2333 -(% class="table-bordered" %)
2334 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2315 +
2316 +|**Function code**|**Name**|(((
2335 2335  **Setting method**
2336 -)))|(% style="text-align:center; vertical-align:middle" %)(((
2318 +)))|(((
2337 2337  **Effective time**
2338 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2339 -|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2320 +)))|**Default value**|**Range**|**Definition**|**Unit**
2321 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2340 2340  VDO_1 output level:
2341 2341  
2342 2342  0: low level
2343 2343  
2344 2344  1: high level
2345 -)))|(% style="text-align:center; vertical-align:middle" %)-
2346 -|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2327 +)))|-
2328 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2347 2347  VDO_2 output level:
2348 2348  
2349 2349  0: low level
2350 2350  
2351 2351  1: high level
2352 -)))|(% style="text-align:center; vertical-align:middle" %)-
2353 -|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2334 +)))|-
2335 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2354 2354  VDO_3 output level:
2355 2355  
2356 2356  0: low level
2357 2357  
2358 2358  1: high level
2359 -)))|(% style="text-align:center; vertical-align:middle" %)-
2360 -|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2341 +)))|-
2342 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2361 2361  VDO_4 output level:
2362 2362  
2363 2363  0: low level
2364 2364  
2365 2365  1: high level
2366 -)))|(% style="text-align:center; vertical-align:middle" %)-
2348 +)))|-
2367 2367  
2368 2368  Table 6-59 Communication control DO function parameters
2369 2369  
2370 -(% class="table-bordered" %)
2371 -|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2372 -|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373 -|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 -|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 -|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2376 2376  
2353 +|**DO function number**|**Function name**|**Function**
2354 +|145|COM_VDO1 communication VDO1 output|Use communication VDO
2355 +|146|COM_VDO1 communication VDO2 output|Use communication VDO
2356 +|147|COM_VDO1 communication VDO3 output|Use communication VDO
2357 +|148|COM_VDO1 communication VDO4output|Use communication VDO
2358 +
2377 2377  Table 6-60 VDO function number
2378 2378  
2379 2379  ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
... ... @@ -2384,17 +2384,17 @@
2384 2384  
2385 2385  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2386 2386  
2387 -(% class="table-bordered" %)
2388 -|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2369 +
2370 +|**Function code**|**Name**|(((
2389 2389  **Setting method**
2390 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2372 +)))|(((
2391 2391  **Effective time**
2392 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2393 -|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2374 +)))|**Default value**|**Range**|**Definition**|**Unit**
2375 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2394 2394  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2395 2395  
2396 2396  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2397 -)))|(% style="text-align:center; vertical-align:middle" %)%
2379 +)))|%
2398 2398  
2399 2399  In the following cases, it could be modified according to the actual heat generation of the motor
2400 2400