Changes for page 06 Operation
Last modified by Iris on 2025/08/06 18:24
From version 43.1
edited by Joey
on 2022/06/11 15:24
on 2022/06/11 15:24
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Joey1 +XWiki.admin - Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|**No.**|**Content** 6 -|(% colspan="2" style="text-align:center; vertical-align:middle"%)Wiring7 -|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 -|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 -|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 -|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 -|5|Servo drive and servo motor must be grounded reliably. 12 -|6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 -|7|The force of all cables is within the specified range. 14 -|8|The wiring terminals have been insulated. 15 -|(% colspan="2" style="text-align:center; vertical-align:middle"%)Environment and Machinery16 -|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 -|2|The servo drive and external braking resistor are not placed on combustible objects. 18 -|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 5 +|=(% scope="row" %)**No.**|=**Content** 6 +|=(% colspan="2" %)Wiring 7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=5|Servo drive and servo motor must be grounded reliably. 12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=7|The force of all cables is within the specified range. 14 +|=8|The wiring terminals have been insulated. 15 +|=(% colspan="2" %)Environment and Machinery 16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -42,17 +42,17 @@ 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 44 45 - (% class="table-bordered" %)46 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((45 + 46 +|=(% scope="row" %)**Function code**|=**Name**|=((( 47 47 **Setting method** 48 -)))| (% style="text-align:center; vertical-align:middle" %)(((48 +)))|=((( 49 49 **Effective time** 50 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**51 -| (% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((50 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 51 +|=P10-01|JOG speed|((( 52 52 Operation setting 53 -)))|( % style="text-align:center; vertical-align:middle" %)(((53 +)))|((( 54 54 Effective immediately 55 -)))| (% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm55 +)))|100|0 to 3000|JOG speed|rpm 56 56 57 57 Table 6-2 JOG speed parameter 58 58 ... ... @@ -60,25 +60,25 @@ 60 60 61 61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 62 62 63 - (% class="table-bordered" %)64 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((63 + 64 +|=(% scope="row" %)**Function code**|=**Name**|=((( 65 65 **Setting method** 66 -)))| (% style="text-align:center; vertical-align:middle" %)(((66 +)))|=((( 67 67 **Effective time** 68 -)))| (% style="text-align:center; vertical-align:middle" %)(((68 +)))|=((( 69 69 **Default value** 70 -)))| (% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**71 -| (% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((70 +)))|=**Range**|=**Definition**|=**Unit** 71 +|=P00-04|Rotation direction|((( 72 72 Shutdown setting 73 -)))|( % style="text-align:center; vertical-align:middle" %)(((73 +)))|((( 74 74 Effective immediately 75 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((75 +)))|0|0 to 1|((( 76 76 Forward rotation: Face the motor shaft to watch 77 77 78 78 0: standard setting (CW is forward rotation) 79 79 80 80 1: reverse mode (CCW is forward rotation) 81 -)))| (% style="text-align:center; vertical-align:middle" %)-81 +)))|- 82 82 83 83 Table 6-3 Rotation direction parameters** ** 84 84 ... ... @@ -91,17 +91,16 @@ 91 91 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 92 92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 93 93 94 -(% class="table-bordered" %) 95 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 94 +|=(% scope="row" %)**Function code**|=**Name**|=((( 96 96 **Setting method** 97 -)))| (% style="text-align:center; vertical-align:middle" %)(((96 +)))|=((( 98 98 **Effective time** 99 -)))| (% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**100 -| (% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((98 +)))|=**Default**|=**Range**|=**Definition**|=**Unit** 99 +|=P00-09|Braking resistor setting|((( 101 101 Operation setting 102 -)))|( % style="text-align:center; vertical-align:middle" %)(((101 +)))|((( 103 103 Effective immediately 104 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((103 +)))|0|0 to 3|((( 105 105 0: use built-in braking resistor 106 106 107 107 1: use external braking resistor and natural cooling ... ... @@ -109,18 +109,18 @@ 109 109 2: use external braking resistor and forced air cooling; (cannot be set) 110 110 111 111 3: No braking resistor is used, it is all absorbed by capacitor. 112 -)))| (% style="text-align:center; vertical-align:middle" %)-113 -|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 114 -| (% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((111 +)))|- 112 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 113 +|=P00-10|External braking resistor value|((( 115 115 Operation setting 116 -)))|( % style="text-align:center; vertical-align:middle" %)(((115 +)))|((( 117 117 Effective immediately 118 -)))| (% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω119 -| (% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((117 +)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 118 +|=P00-11|External braking resistor power|((( 120 120 Operation setting 121 -)))|( % style="text-align:center; vertical-align:middle" %)(((120 +)))|((( 122 122 Effective immediately 123 -)))| (% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W122 +)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 124 124 125 125 Table 6-4 Braking resistor parameters 126 126 ... ... @@ -138,7 +138,7 @@ 138 138 139 139 **(3) Timing diagram of power on** 140 140 141 - (% style="text-align:center" %)140 + 142 142 [[image:image-20220608163014-1.png]] 143 143 144 144 Figure 6-1 Timing diagram of power on ... ... @@ -147,17 +147,17 @@ 147 147 148 148 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. 149 149 150 -(% class="table-bordered" %) 151 -|Shutdown mode|Shutdown description|Shutdown characteristics 152 -|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 153 -|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 154 154 150 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 151 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 152 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 153 + 155 155 Table 6-5 Comparison of two shutdown modes 156 156 157 -(% class="table-bordered" %) 158 -|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked** 159 -|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 160 160 157 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 158 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 159 + 161 161 Table 6-6 Comparison of two shutdown status 162 162 163 163 **(1) Servo enable (S-ON) OFF shutdown** ... ... @@ -164,27 +164,27 @@ 164 164 165 165 The related parameters of the servo OFF shutdown mode are shown in the table below. 166 166 167 - (% class="table-bordered" %)168 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((166 + 167 +|=(% scope="row" %)**Function code**|=**Name**|=((( 169 169 **Setting method** 170 -)))| (% style="text-align:center; vertical-align:middle" %)(((169 +)))|=((( 171 171 **Effective time** 172 -)))| (% style="text-align:center; vertical-align:middle" %)(((171 +)))|=((( 173 173 **Default value** 174 -)))| (% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**175 -| (% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((173 +)))|=**Range**|=**Definition**|=**Unit** 174 +|=P00-05|Servo OFF shutdown|((( 176 176 Shutdown 177 177 178 178 setting 179 -)))|( % style="text-align:center; vertical-align:middle" %)(((178 +)))|((( 180 180 Effective 181 181 182 182 immediately 183 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((182 +)))|0|0 to 1|((( 184 184 0: Free shutdown, and the motor shaft remains free status. 185 185 186 186 1: Zero-speed shutdown, and the motor shaft remains free status. 187 -)))| (% style="text-align:center; vertical-align:middle" %)-186 +)))|- 188 188 189 189 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 190 190 ... ... @@ -200,13 +200,13 @@ 200 200 201 201 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 202 202 203 - (% class="table-bordered" %)204 -|(% s tyle="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((202 + 203 +|=(% scope="row" %)**Function code**|=**Name**|=((( 205 205 **Setting method** 206 -)))| (% style="text-align:center; vertical-align:middle" %)(((205 +)))|=((( 207 207 **Effective time** 208 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**209 -| (% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((207 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 208 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 210 210 0: OFF (not used) 211 211 212 212 01: S-ON servo enable ... ... @@ -254,32 +254,31 @@ 254 254 24: Internal multi-segment position selection 4 255 255 256 256 Others: reserved 257 -)))| (% style="text-align:center; vertical-align:middle" %)-258 -| (% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((256 +)))|- 257 +|=P06-09|DI_3 channel logic selection|Operation setting|((( 259 259 Effective immediately 260 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((259 +)))|0|0 to 1|((( 261 261 DI port input logic validity function selection. 262 262 263 263 0: Normally open input. Active low level (switch on); 264 264 265 265 1: Normally closed input. Active high level (switch off); 266 -)))| (% style="text-align:center; vertical-align:middle" %)-267 -| (% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((265 +)))|- 266 +|=P06-10|DI_3 input source selection|Operation setting|((( 268 268 Effective immediately 269 -)))| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((268 +)))|0|0 to 1|((( 270 270 Select the DI_3 port type to enable 271 271 272 272 0: Hardware DI_3 input terminal 273 273 274 274 1: virtual VDI_3 input terminal 275 -)))| (% style="text-align:center; vertical-align:middle" %)-274 +)))|- 276 276 277 -(% class="table-bordered" %) 278 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 276 +|P06-11|DI_4 channel function selection|((( 279 279 Operation setting 280 -)))|( % style="text-align:center; vertical-align:middle; width:195px" %)(((278 +)))|((( 281 281 again Power-on 282 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((280 +)))|4|0 to 32|((( 283 283 0 off (not used) 284 284 285 285 01: SON Servo enable ... ... @@ -327,25 +327,25 @@ 327 327 24: Internal multi-segment position selection 4 328 328 329 329 Others: reserved 330 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-331 -| (% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((328 +)))|- 329 +|P06-12|DI_4 channel logic selection|Operation setting|((( 332 332 Effective immediately 333 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((331 +)))|0|0 to 1|((( 334 334 DI port input logic validity function selection. 335 335 336 336 0: Normally open input. Active low level (switch on); 337 337 338 338 1: Normally closed input. Active high level (switch off); 339 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-340 -| (% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((337 +)))|- 338 +|P06-13|DI_4 input source selection|Operation setting|((( 341 341 Effective immediately 342 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((340 +)))|0|0 to 1|((( 343 343 Select the DI_4 port type to enable 344 344 345 345 0: Hardware DI_4 input terminal 346 346 347 347 1: virtual VDI_4 input terminal 348 -)))| (% style="text-align:center; vertical-align:middle; width:56px" %)-346 +)))|- 349 349 350 350 Table 6-8 DI3 and DI4 channel parameters 351 351 ... ... @@ -357,9 +357,8 @@ 357 357 358 358 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 359 359 360 - (% class="table-bordered" %)358 + 361 361 |((( 362 -(% style="text-align:center" %) 363 363 [[image:image-20220611151617-1.png]] 364 364 ))) 365 365 |((( ... ... @@ -378,14 +378,13 @@ 378 378 379 379 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 380 380 381 - (% style="text-align:center" %)378 + 382 382 [[image:image-20220608163136-2.png]] 383 383 384 384 Figure 6-2 VD2B servo drive brake wiring 385 385 386 - (% class="table-bordered" %)383 + 387 387 |((( 388 -(% style="text-align:center" %) 389 389 [[image:image-20220611151642-2.png]] 390 390 ))) 391 391 |((( ... ... @@ -402,42 +402,42 @@ 402 402 403 403 Related function code is as below. 404 404 405 - (% class="table-bordered" %)406 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((401 + 402 +|**DO function code**|**Function name**|**Function**|((( 407 407 **Effective time** 408 408 ))) 409 -| (% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((405 +|144|((( 410 410 BRK-OFF Brake output 411 -)))| (% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again407 +)))|Output the signal indicates the servo motor brake release|Power-on again 412 412 413 413 Table 6-2 Relevant function codes for brake setting 414 414 415 - (% class="table-bordered" %)416 -| (% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((411 + 412 +|**Function code**|**Name**|((( 417 417 **Setting method** 418 -)))|( % style="text-align:center; vertical-align:middle; width:173px" %)(((414 +)))|((( 419 419 **Effective time** 420 -)))| (% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**421 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((416 +)))|**Default value**|**Range**|**Definition**|**Unit** 417 +|P1-30|Delay from brake output to instruction reception|((( 422 422 Operation setting 423 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms424 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((419 +)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms 420 +|P1-31|In static state, delay from brake output OFF to the motor is power off|((( 425 425 Operation setting 426 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms427 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((422 +)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms 423 +|P1-32|Rotation status, when the brake output OFF, the speed threshold|((( 428 428 Operation setting 429 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((425 +)))|Effective immediately|30|0 to 3000|((( 430 430 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. 431 431 432 432 When the brake output (BRK-OFF) is not allocated, this function code has no effect. 433 -)))| (% style="text-align:center; vertical-align:middle" %)rpm434 -| (% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((429 +)))|rpm 430 +|P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|((( 435 435 Operation setting 436 -)))| (% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((432 +)))|Effective immediately|500|1 to 1000|((( 437 437 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. 438 438 439 439 When brake output (BRK-OFF) is not allocated, this function code has no effect. 440 -)))| (% style="text-align:center; vertical-align:middle" %)ms436 +)))|ms 441 441 442 442 Table 6-9 Brake setting function codes 443 443 ... ... @@ -451,9 +451,8 @@ 451 451 452 452 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__ 453 453 454 - (% class="table-bordered" %)450 + 455 455 |((( 456 -(% style="text-align:center" %) 457 457 [[image:image-20220611151705-3.png]] 458 458 ))) 459 459 |((( ... ... @@ -462,7 +462,6 @@ 462 462 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 463 463 ))) 464 464 465 -(% style="text-align:center" %) 466 466 [[image:image-20220608163304-3.png]] 467 467 468 468 Figure 6-3 Brake Timing of when the motor is stationary ... ... @@ -473,9 +473,8 @@ 473 473 474 474 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__. 475 475 476 - (% class="table-bordered" %)470 + 477 477 |((( 478 -(% style="text-align:center" %) 479 479 [[image:image-20220611151719-4.png]] 480 480 ))) 481 481 |((( ... ... @@ -490,7 +490,6 @@ 490 490 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 491 491 ))) 492 492 493 -(% style="text-align:center" %) 494 494 [[image:image-20220608163425-4.png]] 495 495 496 496 Figure 6-4 Brake timing when the motor rotates ... ... @@ -499,7 +499,7 @@ 499 499 500 500 The brake timing (free shutdown) in the fault status is as follows. 501 501 502 - (% style="text-align:center" %)494 + 503 503 [[image:image-20220608163541-5.png]] 504 504 505 505 Figure 6-5 The brake timing (free shutdown) in the fault state ... ... @@ -508,7 +508,7 @@ 508 508 509 509 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 510 510 511 - (% style="text-align:center" %)503 + 512 512 [[image:image-20220608163643-6.png]] 513 513 514 514 Figure 6-6 Position control diagram ... ... @@ -515,17 +515,17 @@ 515 515 516 516 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 517 517 518 - (% class="table-bordered" %)519 -| (% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((510 + 511 +|**Function code**|**Name**|((( 520 520 **Setting method** 521 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((513 +)))|((( 522 522 **Effective time** 523 -)))| (% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**524 -| (% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((515 +)))|**Default value**|**Range**|**Definition**|**Unit** 516 +|P01-01|Control mode|((( 525 525 Operation setting 526 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((518 +)))|((( 527 527 immediately Effective 528 -)))| (% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((520 +)))|0|0 to 1|((( 529 529 0: position control 530 530 531 531 2: speed control ... ... @@ -537,7 +537,7 @@ 537 537 5: position/torque mix control 538 538 539 539 6: speed /torque mix control 540 -)))| (% style="text-align:center; vertical-align:middle" %)-532 +)))|- 541 541 542 542 Table 6-10 Control mode parameters 543 543 ... ... @@ -545,21 +545,21 @@ 545 545 546 546 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 547 547 548 - (% class="table-bordered" %)549 -| (% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((540 + 541 +|**Function code**|**Name**|((( 550 550 **Setting method** 551 -)))|( % style="text-align:center; vertical-align:middle; width:189px" %)(((543 +)))|((( 552 552 **Effective time** 553 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**554 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((545 +)))|**Default value**|**Range**|**Definition**|**Unit** 546 +|P01-06|Position instruction source|((( 555 555 Operation setting 556 -)))|( % style="text-align:center; vertical-align:middle; width:189px" %)(((548 +)))|((( 557 557 immediately Effective 558 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px"%)0to 1|(% style="width:284px" %)(((550 +)))|0|0 to 1|((( 559 559 0: pulse instruction 560 560 561 561 1: internal position instruction 562 -)))| (% style="text-align:center; vertical-align:middle" %)-554 +)))|- 563 563 564 564 Table 6-11 Position instruction source parameter 565 565 ... ... @@ -567,20 +567,20 @@ 567 567 568 568 1) Low-speed pulse instruction input 569 569 570 -(% class="table-bordered" %) 571 -|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 572 -|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive 573 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting 574 574 563 +|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 564 +|VD2A and VD2B servo drives|VD2F servo drive 565 +|(% colspan="2" %)Figure 6-7 Position instruction input setting 566 + 575 575 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__. 576 576 577 577 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 578 578 579 -(% class="table-bordered" %) 580 -|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage** 581 -|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V 582 -|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V 583 583 572 +|**Pulse method**|**Maximum frequency**|**Voltage** 573 +|Open collector input|200K|24V 574 +|Differential input|500K|5V 575 + 584 584 Table 6-12 Pulse input specifications 585 585 586 586 1.Differential input ... ... @@ -587,7 +587,7 @@ 587 587 588 588 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 589 589 590 - (% style="text-align:center" %)582 + 591 591 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]] 592 592 593 593 Figure 6-8 Differential input connection ... ... @@ -598,7 +598,7 @@ 598 598 599 599 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 600 600 601 - (% style="text-align:center" %)593 + 602 602 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]] 603 603 604 604 Figure 6-9 Open collector input connection ... ... @@ -609,7 +609,7 @@ 609 609 610 610 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 611 611 612 - (% style="text-align:center" %)604 + 613 613 [[image:image-20220608163952-8.png]] 614 614 615 615 Figure 6-10 Example of filtered signal waveform ... ... @@ -616,22 +616,22 @@ 616 616 617 617 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 618 618 619 - (% class="table-bordered" %)620 -| (% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((611 + 612 +|**Function code**|**Name**|((( 621 621 **Setting method** 622 -)))|( % style="text-align:center; vertical-align:middle; width:176px" %)(((614 +)))|((( 623 623 **Effective time** 624 -)))| (% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2"style="text-align:center; vertical-align:middle; width:538px"%)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**625 -| (% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((616 +)))|**Default value**|**Range**|(% colspan="2" %)**Definition**|**Unit** 617 +|P00-13|Maximum position pulse frequency|((( 626 626 Shutdown setting 627 -)))|( % style="text-align:center; vertical-align:middle; width:176px" %)(((619 +)))|((( 628 628 Effective immediately 629 -)))| (% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2"style="width:538px"%)Set the maximum frequency of external pulse instruction|KHz630 -|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px"%)P00-14|(% rowspan="3"style="text-align:center; vertical-align:middle; width:202px"%)Position pulse anti-interference level|(% rowspan="3"style="text-align:center; vertical-align:middle; width:158px"%)(((621 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 622 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 631 631 Operation setting 632 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px"%)(((624 +)))|(% rowspan="3" %)((( 633 633 Power-on again 634 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px"%)2|(% rowspan="3"style="text-align:center; vertical-align:middle; width:87px"%)0 to 9|(% colspan="2"style="width:538px"%)(((626 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 635 635 Set the anti-interference level of external pulse instruction. 636 636 637 637 0: no filtering; ... ... @@ -651,8 +651,8 @@ 651 651 7: Filtering time 8.192us 652 652 653 653 8: Filtering time 16.384us 654 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle"%)-655 -|(% rowspan="2" style="width:4px"%)9|VD2: Filtering time 25.5us646 +)))|(% rowspan="3" %)- 647 +|(% rowspan="2" %)9|VD2: Filtering time 25.5us 656 656 |VD2F: Filtering time 25.5us 657 657 658 658 Table 6-13 Position pulse frequency and anti-interference level parameters ... ... @@ -661,17 +661,17 @@ 661 661 662 662 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 663 663 664 - (% class="table-bordered" %)665 -| (% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((656 + 657 +|**Function code**|**Name**|((( 666 666 **Setting method** 667 -)))|( % style="text-align:center; vertical-align:middle; width:135px" %)(((659 +)))|((( 668 668 **Effective time** 669 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**670 -| (% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((661 +)))|**Default value**|**Range**|**Definition**|**Unit** 662 +|P00-12|Position pulse type selection|((( 671 671 Operation setting 672 -)))|( % style="text-align:center; vertical-align:middle; width:135px" %)(((664 +)))|((( 673 673 Power-on again 674 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((666 +)))|0|0 to 5|((( 675 675 0: direction + pulse (positive logic) 676 676 677 677 1: CW/CCW ... ... @@ -683,74 +683,74 @@ 683 683 4: CW/CCW (negative logic) 684 684 685 685 5: A, B phase quadrature pulse (4 times frequency negative logic) 686 -)))| (% style="text-align:center; vertical-align:middle" %)-678 +)))|- 687 687 688 688 Table 6-14 Position pulse type selection parameter 689 689 690 - (% class="table-bordered" %)691 -| (% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**692 -| (% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((682 + 683 +|**Pulse type selection**|**Pulse type**|**Signal**|**Schematic diagram of forward pulse**|**Schematic diagram of negative pulse** 684 +|0|((( 693 693 Direction + pulse 694 694 695 695 (Positive logic) 696 -)))|( % style="text-align:center; vertical-align:middle" %)(((688 +)))|((( 697 697 PULSE 698 698 699 699 SIGN 700 -)))| (% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]701 -| (% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((692 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 693 +|1|CW/CCW|((( 702 702 PULSE (CW) 703 703 704 704 SIGN (CCW) 705 -)))|(% colspan="2" style="text-align:center; vertical-align:middle"%)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]706 -| (% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((697 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 698 +|2|((( 707 707 AB phase orthogonal 708 708 709 709 pulse (4 times frequency) 710 -)))|( % style="text-align:center; vertical-align:middle" %)(((702 +)))|((( 711 711 PULSE (Phase A) 712 712 713 713 SIGN (Phase B) 714 -)))|( % style="text-align:center; vertical-align:middle" %)(((706 +)))|((( 715 715 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]] 716 716 717 717 Phase A is 90° ahead of Phase B 718 -)))|( % style="text-align:center; vertical-align:middle" %)(((710 +)))|((( 719 719 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]] 720 720 721 721 Phase B is 90° ahead of Phase A 722 722 ))) 723 -| (% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((715 +|3|((( 724 724 Direction + pulse 725 725 726 726 (Negative logic) 727 -)))|( % style="text-align:center; vertical-align:middle" %)(((719 +)))|((( 728 728 PULSE 729 729 730 730 SIGN 731 -)))| (% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]732 -| (% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((723 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 724 +|4|((( 733 733 CW/CCW 734 734 735 735 (Negative logic) 736 -)))|( % style="text-align:center; vertical-align:middle" %)(((728 +)))|((( 737 737 PULSE (CW) 738 738 739 739 SIGN (CCW) 740 -)))|(% colspan="2" style="text-align:center; vertical-align:middle"%)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]741 -| (% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((732 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 733 +|5|((( 742 742 AB phase orthogonal 743 743 744 744 pulse (4 times frequency negative logic) 745 -)))|( % style="text-align:center; vertical-align:middle" %)(((737 +)))|((( 746 746 PULSE (Phase A) 747 747 748 748 SIGN (Phase B) 749 -)))|( % style="text-align:center; vertical-align:middle" %)(((741 +)))|((( 750 750 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]] 751 751 752 752 B phase is ahead of A phase by 90° 753 -)))|( % style="text-align:center; vertical-align:middle" %)(((745 +)))|((( 754 754 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]] 755 755 756 756 A phase is ahead of B phase by 90° ... ... @@ -764,7 +764,7 @@ 764 764 765 765 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 766 766 767 - (% style="text-align:center" %)759 + 768 768 [[image:image-20220608164116-9.png]] 769 769 770 770 Figure 6-11 The setting process of multi-segment position ... ... @@ -771,51 +771,51 @@ 771 771 772 772 1) Set multi-segment position running mode 773 773 774 - (% class="table-bordered" %)775 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((766 + 767 +|**Function code**|**Name**|((( 776 776 **Setting method** 777 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((769 +)))|((( 778 778 **Effective time** 779 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**780 -| (% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((771 +)))|**Default value**|**Range**|**Definition**|**Unit** 772 +|P07-01|Multi-segment position running mode|((( 781 781 Shutdown setting 782 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((774 +)))|((( 783 783 Effective immediately 784 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((776 +)))|0|0 to 2|((( 785 785 0: Single running 786 786 787 787 1: Cycle running 788 788 789 789 2: DI switching running 790 -)))| (% style="text-align:center; vertical-align:middle" %)-791 -| (% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((782 +)))|- 783 +|P07-02|Start segment number|((( 792 792 Shutdown setting 793 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((785 +)))|((( 794 794 Effective immediately 795 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-796 -| (% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((787 +)))|1|1 to 16|1st segment NO. in non-DI switching mode|- 788 +|P07-03|End segment number|((( 797 797 Shutdown setting 798 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((790 +)))|((( 799 799 Effective immediately 800 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-801 -| (% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((792 +)))|1|1 to 16|last segment NO. in non-DI switching mode|- 793 +|P07-04|Margin processing method|((( 802 802 Shutdown setting 803 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((795 +)))|((( 804 804 Effective immediately 805 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((797 +)))|0|0 to 1|((( 806 806 0: Run the remaining segments 807 807 808 808 1: Run again from the start segment 809 -)))| (% style="text-align:center; vertical-align:middle" %)-810 -| (% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((801 +)))|- 802 +|P07-05|Displacement instruction type|((( 811 811 Shutdown setting 812 -)))|( % style="text-align:center; vertical-align:middle; width:200px" %)(((804 +)))|((( 813 813 Effective immediately 814 -)))| (% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((806 +)))|0|0 to 1|((( 815 815 0: Relative position instruction 816 816 817 817 1: Absolute position instruction 818 -)))| (% style="text-align:center; vertical-align:middle" %)-810 +)))|- 819 819 820 820 Table 6-16 multi-segment position running mode parameters 821 821 ... ... @@ -825,7 +825,7 @@ 825 825 826 826 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 827 827 828 - (% style="text-align:center" %)820 + 829 829 [[image:image-20220608164226-10.png]] 830 830 831 831 Figure 6-12 Single running curve (P07-02=1, P07-03=2) ... ... @@ -834,12 +834,12 @@ 834 834 835 835 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 836 836 837 - (% style="text-align:center" %)829 + 838 838 [[image:image-20220608164327-11.png]] 839 839 840 840 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 841 841 842 -| (% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]834 +|[[image:image-20220611151917-5.png]] 843 843 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 844 844 845 845 3. DI switching running ... ... @@ -846,30 +846,30 @@ 846 846 847 847 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 848 848 849 -(% class="table-bordered" %) 850 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 851 -|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 852 -|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 853 -|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 854 -|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 855 855 842 +|**DI function code**|**Function name**|**Function** 843 +|21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 844 +|22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 845 +|23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 846 +|24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 847 + 856 856 Table 6-17 DI function code 857 857 858 858 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number. 859 859 860 -(% class="table-bordered" %) 861 -|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number** 862 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1 863 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2 864 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3 865 -|(% colspan="5" style="text-align:center; vertical-align:middle" %)………… 866 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16 867 867 853 +|**INPOS4**|**INPOS3**|**INPOS2**|**INPOS1**|**Running position number** 854 +|0|0|0|0|1 855 +|0|0|0|1|2 856 +|0|0|1|0|3 857 +|(% colspan="5" %)………… 858 +|1|1|1|1|16 859 + 868 868 Table 6-18 INPOS corresponds to running segment number 869 869 870 870 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__. 871 871 872 - (% style="text-align:center" %)864 + 873 873 [[image:image-20220608164545-12.png]] 874 874 875 875 Figure 6-14 DI switching running curve ... ... @@ -880,12 +880,12 @@ 880 880 881 881 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively. 882 882 883 - (% style="text-align:center" %)875 + 884 884 [[image:image-20220608164847-13.png]] 885 885 886 886 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 887 887 888 - (% style="text-align:center" %)880 + 889 889 [[image:image-20220608165032-14.png]] 890 890 891 891 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) ... ... @@ -894,12 +894,12 @@ 894 894 895 895 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively. 896 896 897 - (% style="text-align:center" %)889 + 898 898 [[image:image-20220608165343-15.png]] 899 899 900 900 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 901 901 902 - (% style="text-align:center" %)894 + 903 903 [[image:image-20220608165558-16.png]] 904 904 905 905 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) ... ... @@ -911,10 +911,8 @@ 911 911 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 912 912 913 913 |((( 914 -(% style="text-align:center" %) 915 915 [[image:image-20220608165710-17.png]] 916 916 )))|((( 917 -(% style="text-align:center" %) 918 918 [[image:image-20220608165749-18.png]] 919 919 ))) 920 920 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram ... ... @@ -924,10 +924,8 @@ 924 924 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 925 925 926 926 |((( 927 -(% style="text-align:center" %) 928 928 [[image:image-20220608165848-19.png]] 929 929 )))|((( 930 -(% style="text-align:center" %) 931 931 [[image:image-20220608170005-20.png]] 932 932 ))) 933 933 |Figure 6-21 Absolute indication|Figure 6-22 Displacement ... ... @@ -936,46 +936,46 @@ 936 936 937 937 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 938 938 939 - (% class="table-bordered" %)940 -| (% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((927 + 928 +|**Function code**|**Name**|((( 941 941 **Setting method** 942 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((930 +)))|((( 943 943 **Effective time** 944 -)))| (% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**945 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((932 +)))|**Default value**|**Range**|**Definition**|**Unit** 933 +|P07-09|((( 946 946 1st segment 947 947 948 948 displacement 949 -)))|( % style="text-align:center; vertical-align:middle; width:143px" %)(((937 +)))|((( 950 950 Operation setting 951 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((939 +)))|((( 952 952 Effective immediately 953 -)))| (% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)(((941 +)))|10000|((( 954 954 -2147483647 to 955 955 956 956 2147483646 957 -)))| (% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-958 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((945 +)))|Position instruction, positive and negative values could be set|- 946 +|P07-10|Maximum speed of the 1st displacement|((( 959 959 Operation setting 960 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((948 +)))|((( 961 961 Effective immediately 962 -)))| (% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px"%)1to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm963 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((950 +)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm 951 +|P07-11|Acceleration and deceleration of 1st segment displacement|((( 964 964 Operation setting 965 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((953 +)))|((( 966 966 Effective immediately 967 -)))| (% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px"%)1to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms968 -| (% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((955 +)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms 956 +|P07-12|Waiting time after completion of the 1st segment displacement|((( 969 969 Operation setting 970 -)))|( % style="text-align:center; vertical-align:middle; width:187px" %)(((958 +)))|((( 971 971 Effective immediately 972 -)))| (% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px"%)1to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06960 +)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06 973 973 974 974 Table 6-19 The 1st position operation curve parameters table 975 975 976 976 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 977 977 978 - (% style="text-align:center" %)966 + 979 979 [[image:image-20220608170149-21.png]] 980 980 981 981 Figure 6-23 The 1st segment running curve of motor ... ... @@ -984,15 +984,14 @@ 984 984 985 985 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 986 986 987 - (% class="table-bordered" %)988 -| (% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**989 -| (% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((975 + 976 +|**DI function code**|**Function name**|**Function** 977 +|20|ENINPOS: Internal multi-segment position enable signal|((( 990 990 DI port logic invalid: Does not affect the current operation of the servo motor. 991 991 992 992 DI port logic valid: Motor runs multi-segment position 993 993 ))) 994 994 995 -(% style="text-align:center" %) 996 996 [[image:image-20220611152020-6.png]] 997 997 998 998 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! ... ... @@ -1007,13 +1007,13 @@ 1007 1007 1008 1008 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 1009 1009 1010 - (% style="text-align:center" %)997 + 1011 1011 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]] 1012 1012 1013 - (% style="text-align:center" %)1000 + 1014 1014 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]] 1015 1015 1016 - (% style="text-align:center" %)1003 + 1017 1017 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]] 1018 1018 1019 1019 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! ... ... @@ -1020,7 +1020,7 @@ 1020 1020 1021 1021 **(2) Setting steps of electronic gear ratio** 1022 1022 1023 - (% style="text-align:center" %)1010 + 1024 1024 [[image:image-20220608170320-22.png]] 1025 1025 1026 1026 Figure 6-24 Setting steps of electronic gear ratio ... ... @@ -1035,7 +1035,7 @@ 1035 1035 1036 1036 Step5: Calculate the value of electronic gear ratio according to formula below. 1037 1037 1038 - (% style="text-align:center" %)1025 + 1039 1039 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]] 1040 1040 1041 1041 **(3) lectronic gear ratio switch setting** ... ... @@ -1043,59 +1043,59 @@ 1043 1043 1044 1044 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 1045 1045 1046 - (% class="table-bordered" %)1047 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1033 + 1034 +|**Function code**|**Name**|((( 1048 1048 **Setting method** 1049 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1036 +)))|((( 1050 1050 **Effective time** 1051 -)))| (% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1052 -| (% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1038 +)))|**Default value**|**Range**|**Definition**|**Unit** 1039 +|P00-16|Number of instruction pulses when the motor rotates one circle|((( 1053 1053 Shutdown setting 1054 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1041 +)))|((( 1055 1055 Effective immediately 1056 -)))| (% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((1043 +)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|((( 1057 1057 Instruction pulse 1058 1058 1059 1059 unit 1060 1060 ))) 1061 -| (% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1048 +|P00-17|((( 1062 1062 Electronic gear 1 1063 1063 1064 1064 numerator 1065 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1052 +)))|Operation setting|((( 1066 1066 Effective immediately 1067 -)))| (% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1068 -| (% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1054 +)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1055 +|P00-18|((( 1069 1069 Electronic gear 1 1070 1070 1071 1071 denominator 1072 -)))|( % style="text-align:center; vertical-align:middle; width:156px" %)(((1059 +)))|((( 1073 1073 Operation setting 1074 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1061 +)))|((( 1075 1075 Effective immediately 1076 -)))| (% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1077 -| (% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1063 +)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1064 +|P00-19|((( 1078 1078 Electronic gear 2 1079 1079 1080 1080 numerator 1081 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1068 +)))|Operation setting|((( 1082 1082 Effective immediately 1083 -)))| (% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1084 -| (% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((1070 +)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1071 +|P00-20|((( 1085 1085 Electronic gear 2 1086 1086 1087 1087 denominator 1088 -)))| (% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((1075 +)))|Operation setting|((( 1089 1089 Effective immediately 1090 -)))| (% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-1077 +)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1091 1091 1092 1092 Table 6-20 Electronic gear ratio function code 1093 1093 1094 1094 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1095 1095 1096 - (% class="table-bordered" %)1097 -| (% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1098 -| (% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((1083 + 1084 +|**DI function code**|**Function name**|**Function** 1085 +|09|GEAR-SEL electronic gear switch 1|((( 1099 1099 DI port logic invalid: electronic gear ratio 1 1100 1100 1101 1101 DI port logic valid: electronic gear ratio 2 ... ... @@ -1103,10 +1103,10 @@ 1103 1103 1104 1104 Table 6-21 Switching conditions of electronic gear ratio group 1105 1105 1106 -| (% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]1107 -|(% rowspan="2" style="text-align:center; vertical-align:middle"%)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]1108 -| (% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]1109 -| (% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]1093 +|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] 1094 +|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]] 1095 +|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1096 +|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1110 1110 1111 1111 Table 6-22 Application of electronic gear ratio 1112 1112 ... ... @@ -1124,32 +1124,32 @@ 1124 1124 1125 1125 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1126 1126 1127 - (% style="text-align:center" %)1114 + 1128 1128 [[image:image-20220608170455-23.png]] 1129 1129 1130 1130 Figure 6-25 Position instruction filtering diagram 1131 1131 1132 - (% class="table-bordered" %)1133 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((1119 + 1120 +|**Function code**|**Name**|((( 1134 1134 **Setting method** 1135 -)))|( % style="text-align:center; vertical-align:middle; width:209px" %)(((1122 +)))|((( 1136 1136 **Effective time** 1137 -)))| (% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**1138 -| (% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((1124 +)))|**Default value**|**Range**|**Definition**|**Unit** 1125 +|P04-01|Pulse instruction filtering method|((( 1139 1139 Shutdown setting 1140 -)))|( % style="text-align:center; vertical-align:middle; width:209px" %)(((1127 +)))|((( 1141 1141 Effective immediately 1142 -)))| (% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px"%)0to 1|(% style="width:253px" %)(((1129 +)))|0|0 to 1|((( 1143 1143 0: 1st-order low-pass filtering 1144 1144 1145 1145 1: average filtering 1146 -)))| (% style="text-align:center; vertical-align:middle; width:72px" %)-1147 -| (% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((1133 +)))|- 1134 +|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1148 1148 Effective immediately 1149 -)))| (% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px"%)0to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms1150 -| (% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((1136 +)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms 1137 +|P04-03|Position instruction average filtering time constant|Shutdown setting|((( 1151 1151 Effective immediately 1152 -)))| (% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px"%)0to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms1139 +)))|0|0 to 128|Position instruction average filtering time constant|ms 1153 1153 1154 1154 Table 6-23 Position instruction filter function code 1155 1155 ... ... @@ -1169,7 +1169,7 @@ 1169 1169 (% class="wikigeneratedid" %) 1170 1170 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1171 1171 1172 - (% style="text-align:center" %)1159 + 1173 1173 [[image:image-20220608170550-24.png]] 1174 1174 1175 1175 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1178,46 +1178,46 @@ 1178 1178 1179 1179 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1180 1180 1181 - (% style="text-align:center" %)1168 + 1182 1182 [[image:image-20220608170650-25.png]] 1183 1183 1184 1184 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1185 1185 1186 - (% class="table-bordered" %)1187 -| (% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1173 + 1174 +|**Function code**|**Name**|((( 1188 1188 **Setting method** 1189 -)))|( % style="text-align:center; vertical-align:middle; width:224px" %)(((1176 +)))|((( 1190 1190 **Effective time** 1191 -)))| (% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit**1192 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1178 +)))|**Default value**|**Range**|**Definition**|**Unit** 1179 +|P05-12|Positioning completion threshold|((( 1193 1193 Operation setting 1194 -)))|( % style="text-align:center; vertical-align:middle; width:224px" %)(((1181 +)))|((( 1195 1195 Effective immediately 1196 -)))| (% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px"%)1to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit1197 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1183 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1184 +|P05-13|Positioning approach threshold|((( 1198 1198 Operation setting 1199 -)))|( % style="text-align:center; vertical-align:middle; width:224px" %)(((1186 +)))|((( 1200 1200 Effective immediately 1201 -)))| (% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px"%)1to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit1202 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1188 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1189 +|P05-14|Position detection window time|((( 1203 1203 Operation setting 1204 -)))|( % style="text-align:center; vertical-align:middle; width:224px" %)(((1191 +)))|((( 1205 1205 Effective immediately 1206 -)))| (% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px"%)0to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms1207 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1193 +)))|10|0 to 20000|Set positioning completion detection window time|ms 1194 +|P05-15|Positioning signal hold time|((( 1208 1208 Operation setting 1209 -)))|( % style="text-align:center; vertical-align:middle; width:224px" %)(((1196 +)))|((( 1210 1210 Effective immediately 1211 -)))| (% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px"%)0to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms1198 +)))|100|0 to 20000|Set positioning completion output hold time|ms 1212 1212 1213 1213 Table 6-24 Function code parameters of positioning completion 1214 1214 1215 - (% class="table-bordered" %)1216 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1217 -| (% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.1218 -| (% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((1202 + 1203 +|**DO function code**|**Function name**|**Function** 1204 +|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1205 +|135|((( 1219 1219 P-NEAR positioning close 1220 -)))|( % style="text-align:center; vertical-align:middle" %)(((1207 +)))|((( 1221 1221 Output this signal indicates that the servo drive position is close. 1222 1222 ))) 1223 1223 ... ... @@ -1227,7 +1227,7 @@ 1227 1227 1228 1228 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1229 1229 1230 - (% style="text-align:center" %)1217 + 1231 1231 [[image:6.28.jpg||height="260" width="806"]] 1232 1232 1233 1233 Figure 6-28 Speed control block diagram ... ... @@ -1236,21 +1236,21 @@ 1236 1236 1237 1237 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1238 1238 1239 - (% class="table-bordered" %)1240 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((1226 + 1227 +|**Function code**|**Name**|((( 1241 1241 **Setting method** 1242 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1229 +)))|((( 1243 1243 **Effective time** 1244 -)))| (% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1245 -| (% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((1231 +)))|**Default value**|**Range**|**Definition**|**Unit** 1232 +|P01-01|Speed instruction source|((( 1246 1246 Shutdown setting 1247 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1234 +)))|((( 1248 1248 Effective immediately 1249 -)))| (% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((1236 +)))|1|1 to 6|((( 1250 1250 0: internal speed instruction 1251 1251 1252 1252 1: AI_1 analog input (not supported by VD2F) 1253 -)))| (% style="text-align:center; vertical-align:middle" %)-1240 +)))|- 1254 1254 1255 1255 Table 6-26 Speed instruction source parameter 1256 1256 ... ... @@ -1258,19 +1258,19 @@ 1258 1258 1259 1259 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below. 1260 1260 1261 - (% class="table-bordered" %)1262 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((1248 + 1249 +|**Function code**|**Name**|((( 1263 1263 **Setting method** 1264 -)))|( % style="text-align:center; vertical-align:middle; width:191px" %)(((1251 +)))|((( 1265 1265 **Effective time** 1266 -)))| (% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit**1267 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-02|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1253 +)))|**Default value**|**Range**|**Definition**|**Unit** 1254 +|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1268 1268 Internal speed Instruction 0 1269 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1256 +)))|(% rowspan="2" %)((( 1270 1270 Operation setting 1271 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px"%)(((1258 +)))|(% rowspan="2" %)((( 1272 1272 Effective immediately 1273 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px"%)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2"style="width:287px"%)(((1260 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1274 1274 Internal speed instruction 0 1275 1275 1276 1276 When DI input port: ... ... @@ -1282,15 +1282,15 @@ 1282 1282 13-INSPD1: 0, 1283 1283 1284 1284 select this speed instruction to be effective. 1285 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px"%)rpm1286 -| (% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*1287 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-23|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1272 +)))|(% rowspan="2" %)rpm 1273 +|-5000 to 5000* 1274 +|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1288 1288 Internal speed Instruction 1 1289 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1276 +)))|(% rowspan="2" %)((( 1290 1290 Operation setting 1291 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px"%)(((1278 +)))|(% rowspan="2" %)((( 1292 1292 Effective immediately 1293 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px"%)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2"style="width:287px"%)(((1280 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1294 1294 Internal speed instruction 1 1295 1295 1296 1296 When DI input port: ... ... @@ -1302,15 +1302,15 @@ 1302 1302 13-INSPD1: 1, 1303 1303 1304 1304 Select this speed instruction to be effective. 1305 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px"%)rpm1306 -| (% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*1307 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-24|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1292 +)))|(% rowspan="2" %)rpm 1293 +|-5000 to 5000* 1294 +|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1308 1308 Internal speed Instruction 2 1309 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1296 +)))|(% rowspan="2" %)((( 1310 1310 Operation setting 1311 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px"%)(((1298 +)))|(% rowspan="2" %)((( 1312 1312 Effective immediately 1313 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px"%)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2"style="width:287px"%)(((1300 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1314 1314 Internal speed instruction 2 1315 1315 1316 1316 When DI input port: ... ... @@ -1322,15 +1322,15 @@ 1322 1322 13-INSPD1: 0, 1323 1323 1324 1324 Select this speed instruction to be effective. 1325 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px"%)rpm1326 -| (% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*1327 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px"%)P01-25|(% rowspan="2"style="text-align:center; vertical-align:middle; width:212px"%)(((1312 +)))|(% rowspan="2" %)rpm 1313 +|-5000 to 5000* 1314 +|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1328 1328 Internal speed Instruction 3 1329 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1316 +)))|(% rowspan="2" %)((( 1330 1330 Operation setting 1331 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px"%)(((1318 +)))|(% rowspan="2" %)((( 1332 1332 Effective immediately 1333 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px"%)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2"style="width:287px"%)(((1320 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1334 1334 Internal speed instruction 3 1335 1335 1336 1336 When DI input port: ... ... @@ -1342,17 +1342,16 @@ 1342 1342 13-INSPD1: 1, 1343 1343 1344 1344 Select this speed instruction to be effective. 1345 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px"%)rpm1346 -| (% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*1332 +)))|(% rowspan="2" %)rpm 1333 +|-5000 to 5000* 1347 1347 1348 -(% class="table-bordered" %) 1349 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1335 +|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1350 1350 Internal speed Instruction 4 1351 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1337 +)))|(% rowspan="2" %)((( 1352 1352 Operation setting 1353 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1339 +)))|(% rowspan="2" %)((( 1354 1354 Effective immediately 1355 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1341 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1356 1356 Internal speed instruction 4 1357 1357 1358 1358 When DI input port: ... ... @@ -1364,15 +1364,15 @@ 1364 1364 13-INSPD1: 0, 1365 1365 1366 1366 Select this speed instruction to be effective. 1367 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1368 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1369 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-27|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1353 +)))|(% rowspan="2" %)rpm 1354 +|-5000 to 5000* 1355 +|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1370 1370 Internal speed Instruction 5 1371 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1357 +)))|(% rowspan="2" %)((( 1372 1372 Operation setting 1373 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1359 +)))|(% rowspan="2" %)((( 1374 1374 Effective immediately 1375 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1361 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1376 1376 Internal speed instruction 5 1377 1377 1378 1378 When DI input port: ... ... @@ -1384,15 +1384,15 @@ 1384 1384 13-INSPD1: 1, 1385 1385 1386 1386 Select this speed instruction to be effective. 1387 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1388 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1389 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-28|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1373 +)))|(% rowspan="2" %)rpm 1374 +|-5000 to 5000* 1375 +|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1390 1390 Internal speed Instruction 6 1391 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1377 +)))|(% rowspan="2" %)((( 1392 1392 Operation setting 1393 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1379 +)))|(% rowspan="2" %)((( 1394 1394 Effective immediately 1395 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1381 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1396 1396 Internal speed instruction 6 1397 1397 1398 1398 When DI input port: ... ... @@ -1404,15 +1404,15 @@ 1404 1404 13-INSPD1: 0, 1405 1405 1406 1406 Select this speed instruction to be effective. 1407 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1408 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1409 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px"%)P01-29|(% rowspan="2"style="text-align:center; vertical-align:middle; width:214px"%)(((1393 +)))|(% rowspan="2" %)rpm 1394 +|-5000 to 5000* 1395 +|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1410 1410 Internal speed Instruction 7 1411 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px"%)(((1397 +)))|(% rowspan="2" %)((( 1412 1412 Operation setting 1413 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px"%)(((1399 +)))|(% rowspan="2" %)((( 1414 1414 Effective immediately 1415 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px"%)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2"style="width:302px"%)(((1401 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1416 1416 Internal speed instruction 7 1417 1417 1418 1418 When DI input port: ... ... @@ -1424,34 +1424,34 @@ 1424 1424 13-INSPD1: 1, 1425 1425 1426 1426 Select this speed instruction to be effective. 1427 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle"%)rpm1428 -| (% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*1413 +)))|(% rowspan="2" %)rpm 1414 +|-5000 to 5000* 1429 1429 1430 1430 Table 6-27 Internal speed instruction parameters 1431 1431 1432 1432 ✎**Note: **“*” means the set range of VD2F servo drive. 1433 1433 1434 -(% class="table-bordered" %) 1435 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1436 -|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1437 -|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1438 -|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1439 1439 1421 +|**DI function code**|**function name**|**Function** 1422 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1423 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1424 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1425 + 1440 1440 Table 6-28 DI multi-speed function code description 1441 1441 1442 1442 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1443 1443 1444 - (% class="table-bordered" %)1445 -| (% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**1446 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)01447 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)11448 -| (% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)21430 + 1431 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1432 +|0|0|0|1|0 1433 +|0|0|1|2|1 1434 +|0|1|0|3|2 1449 1449 |(% colspan="5" %)...... 1450 -| (% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)71436 +|1|1|1|8|7 1451 1451 1452 1452 Table 6-29 Correspondence between INSPD bits and segment numbers 1453 1453 1454 - (% style="text-align:center" %)1440 + 1455 1455 [[image:image-20220608170845-26.png]] 1456 1456 1457 1457 Figure 6-29 Multi-segment speed running curve ... ... @@ -1460,7 +1460,7 @@ 1460 1460 1461 1461 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1462 1462 1463 - (% style="text-align:center" %)1449 + 1464 1464 [[image:image-20220608153341-5.png]] 1465 1465 1466 1466 Figure 6-30 Analog input circuit ... ... @@ -1467,7 +1467,7 @@ 1467 1467 1468 1468 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1469 1469 1470 - (% style="text-align:center" %)1456 + 1471 1471 [[image:image-20220608170955-27.png]] 1472 1472 1473 1473 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1480,18 +1480,18 @@ 1480 1480 1481 1481 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1482 1482 1483 - (% style="text-align:center" %)1469 + 1484 1484 [[image:image-20220608171124-28.png]] 1485 1485 1486 1486 Figure 6-32 AI_1 diagram before and after bias 1487 1487 1488 -(% class="table-bordered" %) 1489 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit** 1490 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1491 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms 1492 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1493 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1494 1494 1475 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1476 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1477 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1478 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1479 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1480 + 1495 1495 Table 6-30 AI_1 parameters 1496 1496 1497 1497 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1502,7 +1502,7 @@ 1502 1502 1503 1503 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1504 1504 1505 - (% style="text-align:center" %)1491 + 1506 1506 [[image:image-20220608171314-29.png]] 1507 1507 1508 1508 Figure 6-33 of acceleration and deceleration time diagram ... ... @@ -1511,22 +1511,22 @@ 1511 1511 1512 1512 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1513 1513 1514 - (% class="table-bordered" %)1515 -| (% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1500 + 1501 +|**Function code**|**Name**|((( 1516 1516 **Setting method** 1517 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1503 +)))|((( 1518 1518 **Effective time** 1519 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**1520 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1505 +)))|**Default value**|**Range**|**Definition**|**Unit** 1506 +|P01-03|Acceleration time|((( 1521 1521 Operation setting 1522 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1508 +)))|((( 1523 1523 Effective immediately 1524 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms1525 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1510 +)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1511 +|P01-04|Deceleration time|((( 1526 1526 Operation setting 1527 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1513 +)))|((( 1528 1528 Effective immediately 1529 -)))| (% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms1515 +)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms 1530 1530 1531 1531 Table 6-31 Acceleration and deceleration time parameters 1532 1532 ... ... @@ -1545,27 +1545,27 @@ 1545 1545 1546 1546 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1547 1547 1548 - (% class="table-bordered" %)1549 -| (% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1534 + 1535 +|**Function code**|**Name**|((( 1550 1550 **Setting method** 1551 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1537 +)))|((( 1552 1552 **Effective time** 1553 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**1554 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1539 +)))|**Default value**|**Range**|**Definition**|**Unit** 1540 +|P01-10|Maximum speed threshold|((( 1555 1555 Operation setting 1556 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1542 +)))|((( 1557 1557 Effective immediately 1558 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1559 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1544 +)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1545 +|P01-12|Forward speed threshold|((( 1560 1560 Operation setting 1561 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1547 +)))|((( 1562 1562 Effective immediately 1563 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1564 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((1549 +)))|3000|0 to 5000|Set forward speed limit value|rpm 1550 +|P01-13|Reverse speed threshold|((( 1565 1565 Operation setting 1566 -)))|( % style="text-align:center; vertical-align:middle; width:163px" %)(((1552 +)))|((( 1567 1567 Effective immediately 1568 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm1554 +)))|3000|0 to 5000|Set reverse speed limit value|rpm 1569 1569 1570 1570 Table 6-32 Rotation speed related function codes 1571 1571 ... ... @@ -1575,19 +1575,19 @@ 1575 1575 1576 1576 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1577 1577 1578 - (% class="table-bordered" %)1579 -| (% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((1564 + 1565 +|**Function code**|**Name**|((( 1580 1580 **Setting method** 1581 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1567 +)))|((( 1582 1582 **Effective time** 1583 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**1584 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((1569 +)))|**Default value**|**Range**|**Definition**|**Unit** 1570 +|P01-21|((( 1585 1585 Zero-speed clamp function selection 1586 -)))|( % style="text-align:center; vertical-align:middle; width:147px" %)(((1572 +)))|((( 1587 1587 Operation setting 1588 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1574 +)))|((( 1589 1589 Effective immediately 1590 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((1576 +)))|0|0 to 3|((( 1591 1591 Set the zero-speed clamp function. In speed mode: 1592 1592 1593 1593 0: Force the speed to 0; ... ... @@ -1597,18 +1597,18 @@ 1597 1597 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1598 1598 1599 1599 3: Invalid, ignore zero-speed clamp input 1600 -)))| (% style="text-align:center; vertical-align:middle; width:58px" %)-1601 -| (% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((1586 +)))|- 1587 +|P01-22|((( 1602 1602 Zero-speed clamp speed threshold 1603 -)))|( % style="text-align:center; vertical-align:middle; width:147px" %)(((1589 +)))|((( 1604 1604 Operation setting 1605 -)))|( % style="text-align:center; vertical-align:middle; width:166px" %)(((1591 +)))|((( 1606 1606 Effective immediately 1607 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm1593 +)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm 1608 1608 1609 1609 Table 6-33 Zero-speed clamp related parameters 1610 1610 1611 - (% style="text-align:center" %)1597 + 1612 1612 [[image:image-20220608171549-30.png]] 1613 1613 1614 1614 Figure 6-34 Zero-speed clamp diagram ... ... @@ -1621,7 +1621,7 @@ 1621 1621 1622 1622 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1623 1623 1624 - (% style="text-align:center" %)1610 + 1625 1625 [[image:image-20220608171625-31.png]] 1626 1626 1627 1627 Figure 6-35 Rotation detection signal diagram ... ... @@ -1628,29 +1628,29 @@ 1628 1628 1629 1629 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1630 1630 1631 - (% class="table-bordered" %)1632 -| (% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((1617 + 1618 +|**Function code**|**Name**|((( 1633 1633 **Setting method** 1634 -)))|( % style="text-align:center; vertical-align:middle; width:175px" %)(((1620 +)))|((( 1635 1635 **Effective time** 1636 -)))| (% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit**1637 -| (% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((1622 +)))|**Default value**|**Range**|**Definition**|**Unit** 1623 +|P05-16|((( 1638 1638 Rotation detection 1639 1639 1640 1640 speed threshold 1641 -)))|( % style="text-align:center; vertical-align:middle; width:139px" %)(((1627 +)))|((( 1642 1642 Operation setting 1643 -)))|( % style="text-align:center; vertical-align:middle; width:175px" %)(((1629 +)))|((( 1644 1644 Effective immediately 1645 -)))| (% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm1631 +)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm 1646 1646 1647 1647 Table 6-34 Rotation detection speed threshold parameters 1648 1648 1649 - (% class="table-bordered" %)1650 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function**1651 -| (% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)(((1635 + 1636 +|**DO function code**|**Function name**|**Function** 1637 +|132|((( 1652 1652 T-COIN rotation detection 1653 -)))|( % style="width:879px" %)(((1639 +)))|((( 1654 1654 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1655 1655 1656 1656 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1662,7 +1662,7 @@ 1662 1662 1663 1663 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1664 1664 1665 - (% style="text-align:center" %)1651 + 1666 1666 [[image:image-20220608171904-32.png]] 1667 1667 1668 1668 Figure 6-36 Zero-speed signal diagram ... ... @@ -1669,25 +1669,25 @@ 1669 1669 1670 1670 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1671 1671 1672 - (% class="table-bordered" %)1673 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((1658 + 1659 +|**Function code**|**Name**|((( 1674 1674 **Setting method** 1675 -)))|( % style="text-align:center; vertical-align:middle; width:194px" %)(((1661 +)))|((( 1676 1676 **Effective time** 1677 -)))| (% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit**1678 -| (% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((1663 +)))|**Default value**|**Range**|**Definition**|**Unit** 1664 +|P05-19|Zero speed output signal threshold|((( 1679 1679 Operation setting 1680 -)))|( % style="text-align:center; vertical-align:middle; width:194px" %)(((1666 +)))|((( 1681 1681 Effective immediately 1682 -)))| (% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px"%)0to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm1668 +)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm 1683 1683 1684 1684 Table 6-36 Zero-speed output signal threshold parameter 1685 1685 1686 - (% class="table-bordered" %)1687 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**1688 -| (% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((1672 + 1673 +|**DO function code**|**Function name**|**Function** 1674 +|133|((( 1689 1689 ZSP zero speed signal 1690 -)))| (% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation1676 +)))|Output this signal indicates that the servo motor is stopping rotation 1691 1691 1692 1692 Table 6-37 DO zero-speed signal function code 1693 1693 ... ... @@ -1695,7 +1695,7 @@ 1695 1695 1696 1696 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1697 1697 1698 - (% style="text-align:center" %)1684 + 1699 1699 [[image:image-20220608172053-33.png]] 1700 1700 1701 1701 Figure 6-37 Speed consistent signal diagram ... ... @@ -1702,25 +1702,25 @@ 1702 1702 1703 1703 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1704 1704 1705 - (% class="table-bordered" %)1706 -| (% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1691 + 1692 +|**Function code**|**Name**|((( 1707 1707 **Setting method** 1708 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1694 +)))|((( 1709 1709 **Effective time** 1710 -)))| (% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit**1711 -| (% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((1696 +)))|**Default value**|**Range**|**Definition**|**Unit** 1697 +|P05-17|Speed consistent signal threshold|((( 1712 1712 Operationsetting 1713 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1699 +)))|((( 1714 1714 Effective immediately 1715 -)))| (% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px"%)0to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm1701 +)))|10|0 to 100|Set speed consistent signal threshold|rpm 1716 1716 1717 1717 Table 6-38 Speed consistent signal threshold parameters 1718 1718 1719 - (% class="table-bordered" %)1720 -| (% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**1721 -| (% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((1705 + 1706 +|**DO Function code**|**Function name**|**Function** 1707 +|136|((( 1722 1722 U-COIN consistent speed 1723 -)))| (% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value1709 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1724 1724 1725 1725 Table 6-39 DO speed consistent function code 1726 1726 ... ... @@ -1728,7 +1728,7 @@ 1728 1728 1729 1729 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1730 1730 1731 - (% style="text-align:center" %)1717 + 1732 1732 [[image:image-20220608172207-34.png]] 1733 1733 1734 1734 Figure 6-38 Speed approaching signal diagram ... ... @@ -1735,25 +1735,25 @@ 1735 1735 1736 1736 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1737 1737 1738 - (% class="table-bordered" %)1739 -| (% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((1724 + 1725 +|**Function code**|**Name**|((( 1740 1740 **Setting method** 1741 -)))|( % style="text-align:center; vertical-align:middle; width:180px" %)(((1727 +)))|((( 1742 1742 **Effective time** 1743 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1744 -| (% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((1729 +)))|**Default value**|**Range**|**Definition**|**Unit** 1730 +|P05-18|Speed approach signal threshold|((( 1745 1745 Operation setting 1746 -)))|( % style="text-align:center; vertical-align:middle; width:180px" %)(((1732 +)))|((( 1747 1747 Effective immediately 1748 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm1734 +)))|100|10 to 6000|Set speed approach signal threshold|rpm 1749 1749 1750 1750 Table 6-40 Speed approaching signal threshold parameters 1751 1751 1752 - (% class="table-bordered" %)1753 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**1754 -| (% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((1738 + 1739 +|**DO function code**|**Function name**|**Function** 1740 +|137|((( 1755 1755 V-NEAR speed approach 1756 -)))| (% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value1742 +)))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1757 1757 1758 1758 Table 6-41 DO speed approach function code 1759 1759 ... ... @@ -1761,7 +1761,7 @@ 1761 1761 1762 1762 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1763 1763 1764 - (% style="text-align:center" %)1750 + 1765 1765 [[image:image-20220608172405-35.png]] 1766 1766 1767 1767 Figure 6-39 Torque mode diagram ... ... @@ -1770,21 +1770,21 @@ 1770 1770 1771 1771 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1772 1772 1773 - (% class="table-bordered" %)1774 -| (% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1759 + 1760 +|**Function code**|**Name**|((( 1775 1775 **Setting method** 1776 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1762 +)))|((( 1777 1777 **Effective time** 1778 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1779 -| (% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1764 +)))|**Default value**|**Range**|**Definition**|**Unit** 1765 +|P01-08|Torque instruction source|((( 1780 1780 Shutdown setting 1781 -)))|( % style="text-align:center; vertical-align:middle; width:162px" %)(((1767 +)))|((( 1782 1782 Effective immediately 1783 -)))| (% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((1769 +)))|0|0 to 1|((( 1784 1784 0: internal torque instruction 1785 1785 1786 1786 1: AI_1 analog input(not supported by VD2F) 1787 -)))| (% style="text-align:center; vertical-align:middle" %)-1773 +)))|- 1788 1788 1789 1789 Table 6-42 Torque instruction source parameter 1790 1790 ... ... @@ -1792,17 +1792,17 @@ 1792 1792 1793 1793 Torque instruction source is from inside, the value is set by function code P01-08. 1794 1794 1795 - (% class="table-bordered" %)1796 -| (% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((1781 + 1782 +|**Function code**|**Name**|((( 1797 1797 **Setting method** 1798 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((1784 +)))|((( 1799 1799 **Effective time** 1800 -)))| (% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1801 -| (% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((1786 +)))|**Default value**|**Range**|**Definition**|**Unit** 1787 +|P01-08|Torque instruction keyboard set value|((( 1802 1802 Operation setting 1803 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((1789 +)))|((( 1804 1804 Effective immediately 1805 -)))| (% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%1791 +)))|0|-3000 to 3000|-300.0% to 300.0%|0.1% 1806 1806 1807 1807 Table 6-43 Torque instruction keyboard set value 1808 1808 ... ... @@ -1810,7 +1810,7 @@ 1810 1810 1811 1811 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1812 1812 1813 - (% style="text-align:center" %)1799 + 1814 1814 [[image:image-20220608153646-7.png||height="213" width="408"]] 1815 1815 1816 1816 Figure 6-40 Analog input circuit ... ... @@ -1817,7 +1817,7 @@ 1817 1817 1818 1818 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1819 1819 1820 - (% style="text-align:center" %)1806 + 1821 1821 [[image:image-20220608172502-36.png]] 1822 1822 1823 1823 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1830,18 +1830,18 @@ 1830 1830 1831 1831 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1832 1832 1833 - (% style="text-align:center" %)1819 + 1834 1834 [[image:image-20220608172611-37.png]] 1835 1835 1836 1836 Figure 6-42 AI_1 diagram before and after bias 1837 1837 1838 -(% class="table-bordered" %) 1839 -|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1840 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV 1841 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms 1842 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV 1843 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV 1844 1844 1825 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1826 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1827 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1828 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1829 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1830 + 1845 1845 Table 6-44 AI_1 parameters 1846 1846 1847 1847 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1850,23 +1850,23 @@ 1850 1850 1851 1851 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1852 1852 1853 - (% class="table-bordered" %)1854 -| (% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((1839 + 1840 +|**Function code**|**Name**|((( 1855 1855 **Setting method** 1856 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1842 +)))|((( 1857 1857 **Effective time** 1858 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1859 -| (% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((1844 +)))|**Default value**|**Range**|**Definition**|**Unit** 1845 +|P04-04|Torque filtering time constant|((( 1860 1860 Operation setting 1861 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((1847 +)))|((( 1862 1862 Effective immediately 1863 -)))| (% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms1849 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1864 1864 1865 1865 Table 6-45 Torque filtering time constant parameter details 1866 1866 1867 1867 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1868 1868 1869 - (% style="text-align:center" %)1855 + 1870 1870 [[image:image-20220608172646-38.png]] 1871 1871 1872 1872 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1877,7 +1877,7 @@ 1877 1877 1878 1878 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1879 1879 1880 - (% style="text-align:center" %)1866 + 1881 1881 [[image:image-20220608172806-39.png]] 1882 1882 1883 1883 Figure 6-44 Torque instruction limit diagram ... ... @@ -1886,50 +1886,50 @@ 1886 1886 1887 1887 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1888 1888 1889 - (% class="table-bordered" %)1890 -| (% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((1875 + 1876 +|**Function code**|**Name**|((( 1891 1891 **Setting method** 1892 -)))|( % style="text-align:center; vertical-align:middle; width:167px" %)(((1878 +)))|((( 1893 1893 **Effective time** 1894 -)))| (% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1895 -| (% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((1880 +)))|**Default value**|**Range**|**Definition**|**Unit** 1881 +|P01-14|((( 1896 1896 Torque limit source 1897 -)))|( % style="text-align:center; vertical-align:middle; width:134px" %)(((1883 +)))|((( 1898 1898 Shutdown setting 1899 -)))|( % style="text-align:center; vertical-align:middle; width:167px" %)(((1885 +)))|((( 1900 1900 Effective immediately 1901 -)))| (% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((1887 +)))|0|0 to 1|((( 1902 1902 0: internal value 1903 1903 1904 1904 1: AI_1 analog input 1905 1905 1906 1906 (not supported by VD2F) 1907 -)))| (% style="text-align:center; vertical-align:middle" %)-1893 +)))|- 1908 1908 1909 1909 1) Torque limit source is internal torque instruction (P01-14=0) 1910 1910 1911 1911 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1912 1912 1913 - (% class="table-bordered" %)1914 -| (% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((1899 + 1900 +|**Function code**|**Name**|((( 1915 1915 **Setting method** 1916 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1902 +)))|((( 1917 1917 **Effective time** 1918 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**1919 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((1904 +)))|**Default value**|**Range**|**Definition**|**Unit** 1905 +|P01-15|((( 1920 1920 Forward torque limit 1921 -)))|( % style="text-align:center; vertical-align:middle; width:136px" %)(((1907 +)))|((( 1922 1922 Operation setting 1923 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1909 +)))|((( 1924 1924 Effective immediately 1925 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%1926 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((1911 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1912 +|P01-16|((( 1927 1927 Reverse torque limit 1928 -)))|( % style="text-align:center; vertical-align:middle; width:136px" %)(((1914 +)))|((( 1929 1929 Operation setting 1930 -)))|( % style="text-align:center; vertical-align:middle; width:169px" %)(((1916 +)))|((( 1931 1931 Effective immediately 1932 -)))| (% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%1918 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1933 1933 1934 1934 Table 6-46 Torque limit parameter details 1935 1935 ... ... @@ -1941,11 +1941,11 @@ 1941 1941 1942 1942 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1943 1943 1944 - (% class="table-bordered" %)1945 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**1946 -| (% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((1930 + 1931 +|**DO function code**|**Function name**|**Function** 1932 +|139|((( 1947 1947 T-LIMIT in torque limit 1948 -)))| (% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited1934 +)))|Output of this signal indicates that the servo motor torque is limited 1949 1949 1950 1950 Table 6-47 DO torque limit function codes 1951 1951 ... ... @@ -1956,46 +1956,43 @@ 1956 1956 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__. 1957 1957 1958 1958 |((( 1959 -(% style="text-align:center" %) 1960 1960 [[image:image-20220608172910-40.png]] 1961 1961 )))|((( 1962 -(% style="text-align:center" %) 1963 1963 [[image:image-20220608173155-41.png]] 1964 1964 ))) 1965 1965 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1966 1966 1967 -(% class="table-bordered" %) 1968 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1951 +|**Function code**|**Name**|((( 1969 1969 **Setting method** 1970 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1953 +)))|((( 1971 1971 **Effective time** 1972 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**1973 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((1955 +)))|**Default value**|**Range**|**Definition**|**Unit** 1956 +|P01-17|((( 1974 1974 Forward torque 1975 1975 1976 1976 limit in torque mode 1977 -)))|( % style="text-align:center; vertical-align:middle; width:140px" %)(((1960 +)))|((( 1978 1978 Operation setting 1979 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1962 +)))|((( 1980 1980 Effective immediately 1981 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((1964 +)))|3000|0 to 5000|((( 1982 1982 Forward torque 1983 1983 1984 1984 limit in torque mode 1985 -)))| (% style="text-align:center; vertical-align:middle" %)0.1%1986 -| (% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((1968 +)))|0.1% 1969 +|P01-18|((( 1987 1987 Reverse torque 1988 1988 1989 1989 limit in torque mode 1990 -)))|( % style="text-align:center; vertical-align:middle; width:140px" %)(((1973 +)))|((( 1991 1991 Operation setting 1992 -)))|( % style="text-align:center; vertical-align:middle; width:161px" %)(((1975 +)))|((( 1993 1993 Effective immediately 1994 -)))| (% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((1977 +)))|3000|0 to 5000|((( 1995 1995 Reverse torque 1996 1996 1997 1997 limit in torque mode 1998 -)))| (% style="text-align:center; vertical-align:middle" %)0.1%1981 +)))|0.1% 1999 1999 2000 2000 Table 6-48 Speed limit parameters in torque mode 2001 2001 ... ... @@ -2009,7 +2009,7 @@ 2009 2009 2010 2010 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 2011 2011 2012 - (% style="text-align:center" %)1995 + 2013 2013 [[image:image-20220608173541-42.png]] 2014 2014 2015 2015 Figure 6-47 Torque arrival output diagram ... ... @@ -2016,44 +2016,44 @@ 2016 2016 2017 2017 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 2018 2018 2019 - (% class="table-bordered" %)2020 -| (% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((2002 + 2003 +|**Function code**|**Name**|((( 2021 2021 **Setting method** 2022 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2005 +)))|((( 2023 2023 **Effective time** 2024 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2025 -| (% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((2007 +)))|**Default value**|**Range**|**Definition**|**Unit** 2008 +|P05-20|((( 2026 2026 Torque arrival 2027 2027 2028 2028 threshold 2029 -)))|( % style="text-align:center; vertical-align:middle; width:137px" %)(((2012 +)))|((( 2030 2030 Operation setting 2031 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2014 +)))|((( 2032 2032 Effective immediately 2033 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((2016 +)))|100|0 to 300|((( 2034 2034 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2035 2035 2036 2036 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; 2037 2037 2038 2038 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2039 -)))| (%style="text-align:center; vertical-align:middle" %)%2040 -| (% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((2022 +)))|% 2023 +|P05-21|((( 2041 2041 Torque arrival 2042 2042 2043 2043 hysteresis 2044 -)))|( % style="text-align:center; vertical-align:middle; width:137px" %)(((2027 +)))|((( 2045 2045 Operation setting 2046 -)))|( % style="text-align:center; vertical-align:middle; width:174px" %)(((2029 +)))|((( 2047 2047 Effective immediately 2048 -)))| (% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(%style="text-align:center; vertical-align:middle" %)%2031 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2049 2049 2050 2050 Table 6-49 Torque arrival parameters 2051 2051 2052 - (% class="table-bordered" %)2053 -| (% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**2054 -| (% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((2035 + 2036 +|**DO function code**|**Function name**|**Function** 2037 +|138|((( 2055 2055 T-COIN torque arrival 2056 -)))| (% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range2039 +)))|Used to determine whether the actual torque instruction has reached the set range 2057 2057 2058 2058 Table 6-50 DO Torque Arrival Function Code 2059 2059 ... ... @@ -2069,17 +2069,17 @@ 2069 2069 2070 2070 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2071 2071 2072 - (% class="table-bordered" %)2073 -| (% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((2055 + 2056 +|**Function code**|**Name**|((( 2074 2074 **Setting method** 2075 -)))|( % style="text-align:center; vertical-align:middle; width:142px" %)(((2058 +)))|((( 2076 2076 **Effective time** 2077 -)))| (% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2078 -| (% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((2060 +)))|**Default value**|**Range**|**Definition**|**Unit** 2061 +|P00-01|Control mode|((( 2079 2079 Shutdown setting 2080 -)))|( % style="text-align:center; vertical-align:middle; width:142px" %)(((2063 +)))|((( 2081 2081 Shutdown setting 2082 -)))| (% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)(((2065 +)))|1|1 to 6|((( 2083 2083 1: Position control 2084 2084 2085 2085 2: Speed control ... ... @@ -2091,23 +2091,22 @@ 2091 2091 5: Position/torque mixed control 2092 2092 2093 2093 6: Speed/torque mixed control 2094 -)))| (% style="text-align:center; vertical-align:middle" %)-2077 +)))|- 2095 2095 2096 2096 Table 6-51 Mixed control mode parameters 2097 2097 2098 2098 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2099 2099 2100 -(% class="table-bordered" %) 2101 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2102 -|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2103 -(% class="table-bordered" %) 2104 -|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode** 2105 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2106 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2107 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2108 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2109 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2110 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2083 + 2084 +|**DI function code**|**Name**|**Function name**|**Function** 2085 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2086 +|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2087 +|(% rowspan="2" %)4|Valid|Speed mode 2088 +|invalid|Position mode 2089 +|(% rowspan="2" %)5|Valid|Torque mode 2090 +|invalid|Position mode 2091 +|(% rowspan="2" %)6|Valid|Torque mode 2092 +|invalid|Speed mode 2111 2111 ))) 2112 2112 2113 2113 Table 6-52 Description of DI function codes in control mode ... ... @@ -2126,15 +2126,15 @@ 2126 2126 2127 2127 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2128 2128 2129 -(% class="table-bordered" %) 2130 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2131 -|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2132 2132 2112 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2113 +|A1 (single-turn magnetic encoder)|17|0 to 131071 2114 + 2133 2133 Table 6-53 Single-turn absolute encoder information 2134 2134 2135 2135 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2136 2136 2137 - (% style="text-align:center" %)2119 + 2138 2138 [[image:image-20220608173618-43.png]] 2139 2139 2140 2140 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2143,16 +2143,16 @@ 2143 2143 2144 2144 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2145 2145 2146 -(% class="table-bordered" %) 2147 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2148 -|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2149 -|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607 2150 2150 2129 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2130 +|C1 (multi-turn magnetic encoder)|17|0 to 131071 2131 +|D2 (multi-turn Optical encoder)|23|0 to 8388607 2132 + 2151 2151 Table 6-54 Multi-turn absolute encoder information 2152 2152 2153 2153 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2154 2154 2155 - (% style="text-align:center" %)2137 + 2156 2156 [[image:image-20220608173701-44.png]] 2157 2157 2158 2158 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2161,12 +2161,12 @@ 2161 2161 2162 2162 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2163 2163 2164 -(% class="table-bordered" %) 2165 -|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type** 2166 -|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2167 -|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit 2168 -|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2169 2169 2147 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2148 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2149 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2150 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2151 + 2170 2170 Table 6-55 Encoder feedback data 2171 2171 2172 2172 == **Absolute value system encoder battery box use precautions** == ... ... @@ -2173,7 +2173,7 @@ 2173 2173 2174 2174 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2175 2175 2176 - (% style="text-align:center" %)2158 + 2177 2177 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]] 2178 2178 2179 2179 Figure 6-50 the encoder battery box ... ... @@ -2186,23 +2186,23 @@ 2186 2186 2187 2187 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2188 2188 2189 - (% class="table-bordered" %)2190 -| (% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((2171 + 2172 +|**Function code**|**Name**|((( 2191 2191 **Setting method** 2192 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((2174 +)))|((( 2193 2193 **Effective time** 2194 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2195 -| (% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((2176 +)))|**Default value**|**Range**|**Definition**|**Unit** 2177 +|P10-06|Multi-turn absolute encoder reset|((( 2196 2196 Shutdown setting 2197 -)))|( % style="text-align:center; vertical-align:middle; width:165px" %)(((2179 +)))|((( 2198 2198 Effective immediately 2199 -)))| (% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((2181 +)))|0|0 to 1|((( 2200 2200 0: No operation 2201 2201 2202 2202 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2203 2203 2204 2204 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2205 -)))| (% style="text-align:center; vertical-align:middle" %)-2187 +)))|- 2206 2206 2207 2207 Table 6-56 Absolute encoder reset enable parameter 2208 2208 ... ... @@ -2220,18 +2220,18 @@ 2220 2220 2221 2221 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2222 2222 2223 - (% style="text-align:center" %)2205 + 2224 2224 [[image:image-20220608173804-46.png]] 2225 2225 2226 2226 Figure 6-51 VDI_1 setting steps 2227 2227 2228 - (% class="table-bordered" %)2229 -| (% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((2210 + 2211 +|**Function code**|**Name**|((( 2230 2230 **Setting method** 2231 -)))|( % style="text-align:center; vertical-align:middle; width:213px" %)(((2213 +)))|((( 2232 2232 **Effective time** 2233 -)))| (% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2234 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2215 +)))|**Default value**|**Range**|**Definition**|**Unit** 2216 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2235 2235 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2236 2236 2237 2237 VDI_1 input level: ... ... @@ -2239,8 +2239,8 @@ 2239 2239 0: low level 2240 2240 2241 2241 1: high level 2242 -)))| (% style="text-align:center; vertical-align:middle" %)-2243 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2224 +)))|- 2225 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2244 2244 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2245 2245 2246 2246 VDI_2 input level: ... ... @@ -2248,8 +2248,8 @@ 2248 2248 0: low level 2249 2249 2250 2250 1: high level 2251 -)))| (% style="text-align:center; vertical-align:middle" %)-2252 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2233 +)))|- 2234 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2253 2253 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2254 2254 2255 2255 VDI_3 input level: ... ... @@ -2257,8 +2257,8 @@ 2257 2257 0: low level 2258 2258 2259 2259 1: high level 2260 -)))| (% style="text-align:center; vertical-align:middle" %)-2261 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2242 +)))|- 2243 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2262 2262 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2263 2263 2264 2264 VDI_4 input level: ... ... @@ -2266,8 +2266,8 @@ 2266 2266 0: low level 2267 2267 2268 2268 1: high level 2269 -)))| (% style="text-align:center; vertical-align:middle" %)-2270 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2251 +)))|- 2252 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2271 2271 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2272 2272 2273 2273 VDI_5 input level: ... ... @@ -2275,8 +2275,8 @@ 2275 2275 0: low level 2276 2276 2277 2277 1: high level 2278 -)))| (% style="text-align:center; vertical-align:middle" %)-2279 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2260 +)))|- 2261 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2280 2280 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2281 2281 2282 2282 VDI_6 input level: ... ... @@ -2284,8 +2284,8 @@ 2284 2284 0: low level 2285 2285 2286 2286 1: high level 2287 -)))| (% style="text-align:center; vertical-align:middle" %)-2288 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2269 +)))|- 2270 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2289 2289 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2290 2290 2291 2291 VDI_7 input level: ... ... @@ -2293,8 +2293,8 @@ 2293 2293 0: low level 2294 2294 2295 2295 1: high level 2296 -)))| (% style="text-align:center; vertical-align:middle" %)-2297 -| (% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((2278 +)))|- 2279 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2298 2298 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2299 2299 2300 2300 VDI_8 input level: ... ... @@ -2302,7 +2302,7 @@ 2302 2302 0: low level 2303 2303 2304 2304 1: high level 2305 -)))| (% style="text-align:center; vertical-align:middle" %)-2287 +)))|- 2306 2306 2307 2307 Table 6-57 Virtual VDI parameters 2308 2308 ... ... @@ -2312,11 +2312,11 @@ 2312 2312 2313 2313 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2314 2314 2315 -(% class="table-bordered" %) 2316 -|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration** 2317 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2318 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2319 2319 2298 +|**Setting value**|**DI channel logic selection**|**Illustration** 2299 +|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2300 +|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2301 + 2320 2320 Table 6-58 DI terminal channel logic selection 2321 2321 2322 2322 == **VDO** == ... ... @@ -2325,55 +2325,55 @@ 2325 2325 2326 2326 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2327 2327 2328 - (% style="text-align:center" %)2310 + 2329 2329 [[image:image-20220608173957-48.png]] 2330 2330 2331 2331 Figure 6-52 VDO_2 setting steps 2332 2332 2333 - (% class="table-bordered" %)2334 -| (% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((2315 + 2316 +|**Function code**|**Name**|((( 2335 2335 **Setting method** 2336 -)))|( % style="text-align:center; vertical-align:middle" %)(((2318 +)))|((( 2337 2337 **Effective time** 2338 -)))| (% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2339 -| (% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2320 +)))|**Default value**|**Range**|**Definition**|**Unit** 2321 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2340 2340 VDO_1 output level: 2341 2341 2342 2342 0: low level 2343 2343 2344 2344 1: high level 2345 -)))| (% style="text-align:center; vertical-align:middle" %)-2346 -| (% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2327 +)))|- 2328 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2347 2347 VDO_2 output level: 2348 2348 2349 2349 0: low level 2350 2350 2351 2351 1: high level 2352 -)))| (% style="text-align:center; vertical-align:middle" %)-2353 -| (% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2334 +)))|- 2335 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2354 2354 VDO_3 output level: 2355 2355 2356 2356 0: low level 2357 2357 2358 2358 1: high level 2359 -)))| (% style="text-align:center; vertical-align:middle" %)-2360 -| (% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((2341 +)))|- 2342 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2361 2361 VDO_4 output level: 2362 2362 2363 2363 0: low level 2364 2364 2365 2365 1: high level 2366 -)))| (% style="text-align:center; vertical-align:middle" %)-2348 +)))|- 2367 2367 2368 2368 Table 6-59 Communication control DO function parameters 2369 2369 2370 -(% class="table-bordered" %) 2371 -|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2372 -|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2373 -|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2374 -|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2375 -|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2376 2376 2353 +|**DO function number**|**Function name**|**Function** 2354 +|145|COM_VDO1 communication VDO1 output|Use communication VDO 2355 +|146|COM_VDO1 communication VDO2 output|Use communication VDO 2356 +|147|COM_VDO1 communication VDO3 output|Use communication VDO 2357 +|148|COM_VDO1 communication VDO4output|Use communication VDO 2358 + 2377 2377 Table 6-60 VDO function number 2378 2378 2379 2379 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation ... ... @@ -2384,17 +2384,17 @@ 2384 2384 2385 2385 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2386 2386 2387 - (% class="table-bordered" %)2388 -| (% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((2369 + 2370 +|**Function code**|**Name**|((( 2389 2389 **Setting method** 2390 -)))|( % style="text-align:center; vertical-align:middle; width:157px" %)(((2372 +)))|((( 2391 2391 **Effective time** 2392 -)))| (% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**2393 -| (% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((2374 +)))|**Default value**|**Range**|**Definition**|**Unit** 2375 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2394 2394 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2395 2395 2396 2396 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled 2397 -)))| (%style="text-align:center; vertical-align:middle" %)%2379 +)))|% 2398 2398 2399 2399 In the following cases, it could be modified according to the actual heat generation of the motor 2400 2400