Changes for page 06 Operation

Last modified by Iris on 2025/08/06 18:24

From version 44.1
edited by Leo Wei
on 2022/06/11 17:54
Change comment: There is no comment for this version
To version 43.1
edited by Joey
on 2022/06/11 15:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.admin
1 +XWiki.Joey
Content
... ... @@ -2,20 +2,20 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" %)**No.**|=**Content**
6 -|=(% colspan="2" %)Wiring
7 -|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=5|Servo drive and servo motor must be grounded reliably.
12 -|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=7|The force of all cables is within the specified range.
14 -|=8|The wiring terminals have been insulated.
15 -|=(% colspan="2" %)Environment and Machinery
16 -|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 -|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
5 +|**No.**|**Content**
6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|5|Servo drive and servo motor must be grounded reliably.
12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|7|The force of all cables is within the specified range.
14 +|8|The wiring terminals have been insulated.
15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
... ... @@ -42,17 +42,17 @@
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 44  
45 -
46 -|=(% scope="row" %)**Function code**|=**Name**|=(((
45 +(% class="table-bordered" %)
46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
47 47  **Setting method**
48 -)))|=(((
48 +)))|(% style="text-align:center; vertical-align:middle" %)(((
49 49  **Effective time**
50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
51 -|=P10-01|JOG speed|(((
50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
52 52  Operation setting
53 -)))|(((
53 +)))|(% style="text-align:center; vertical-align:middle" %)(((
54 54  Effective immediately
55 -)))|100|0 to 3000|JOG speed|rpm
55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
56 56  
57 57  Table 6-2 JOG speed parameter
58 58  
... ... @@ -60,25 +60,25 @@
60 60  
61 61  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62 62  
63 -
64 -|=(% scope="row" %)**Function code**|=**Name**|=(((
63 +(% class="table-bordered" %)
64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
65 65  **Setting method**
66 -)))|=(((
66 +)))|(% style="text-align:center; vertical-align:middle" %)(((
67 67  **Effective time**
68 -)))|=(((
68 +)))|(% style="text-align:center; vertical-align:middle" %)(((
69 69  **Default value**
70 -)))|=**Range**|=**Definition**|=**Unit**
71 -|=P00-04|Rotation direction|(((
70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
72 72  Shutdown setting
73 -)))|(((
73 +)))|(% style="text-align:center; vertical-align:middle" %)(((
74 74  Effective immediately
75 -)))|0|0 to 1|(((
75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
76 76  Forward rotation: Face the motor shaft to watch
77 77  
78 78  0: standard setting (CW is forward rotation)
79 79  
80 80  1: reverse mode (CCW is forward rotation)
81 -)))|-
81 +)))|(% style="text-align:center; vertical-align:middle" %)-
82 82  
83 83  Table 6-3 Rotation direction parameters** **
84 84  
... ... @@ -91,16 +91,17 @@
91 91  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
92 92  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
93 93  
94 -|**Function code**|**Name**|(((
94 +(% class="table-bordered" %)
95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
95 95  **Setting method**
96 -)))|(((
97 +)))|(% style="text-align:center; vertical-align:middle" %)(((
97 97  **Effective time**
98 -)))|**Default**|**Range**|**Definition**|**Unit**
99 -|P00-09|Braking resistor setting|(((
99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
100 100  Operation setting
101 -)))|(((
102 +)))|(% style="text-align:center; vertical-align:middle" %)(((
102 102  Effective immediately
103 -)))|0|0 to 3|(((
104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
104 104  0: use built-in braking resistor
105 105  
106 106  1: use external braking resistor and natural cooling
... ... @@ -108,18 +108,18 @@
108 108  2: use external braking resistor and forced air cooling; (cannot be set)
109 109  
110 110  3: No braking resistor is used, it is all absorbed by capacitor.
111 -)))|-
112 +)))|(% style="text-align:center; vertical-align:middle" %)-
112 112  |(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
113 -|P00-10|External braking resistor value|(((
114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
114 114  Operation setting
115 -)))|(((
116 +)))|(% style="text-align:center; vertical-align:middle" %)(((
116 116  Effective immediately
117 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
118 -|P00-11|External braking resistor power|(((
118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
119 119  Operation setting
120 -)))|(((
121 +)))|(% style="text-align:center; vertical-align:middle" %)(((
121 121  Effective immediately
122 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
123 123  
124 124  Table 6-4 Braking resistor parameters
125 125  
... ... @@ -137,7 +137,7 @@
137 137  
138 138  **(3) Timing diagram of power on**
139 139  
140 -
141 +(% style="text-align:center" %)
141 141  [[image:image-20220608163014-1.png]]
142 142  
143 143  Figure 6-1 Timing diagram of power on
... ... @@ -146,7 +146,7 @@
146 146  
147 147  According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
148 148  
149 -
150 +(% class="table-bordered" %)
150 150  |Shutdown mode|Shutdown description|Shutdown characteristics
151 151  |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
152 152  |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
... ... @@ -153,10 +153,10 @@
153 153  
154 154  Table 6-5 Comparison of two shutdown modes
155 155  
157 +(% class="table-bordered" %)
158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
156 156  
157 -|**Shutdown status**|**Free operation status**|**Position locked**
158 -|Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
159 -
160 160  Table 6-6 Comparison of two shutdown status
161 161  
162 162  **(1) Servo enable (S-ON) OFF shutdown**
... ... @@ -163,27 +163,27 @@
163 163  
164 164  The related parameters of the servo OFF shutdown mode are shown in the table below.
165 165  
166 -
167 -|**Function code**|**Name**|(((
167 +(% class="table-bordered" %)
168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
168 168  **Setting method**
169 -)))|(((
170 +)))|(% style="text-align:center; vertical-align:middle" %)(((
170 170  **Effective time**
171 -)))|(((
172 +)))|(% style="text-align:center; vertical-align:middle" %)(((
172 172  **Default value**
173 -)))|**Range**|**Definition**|**Unit**
174 -|P00-05|Servo OFF shutdown|(((
174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
175 175  Shutdown
176 176  
177 177  setting
178 -)))|(((
179 +)))|(% style="text-align:center; vertical-align:middle" %)(((
179 179  Effective
180 180  
181 181  immediately
182 -)))|0|0 to 1|(((
183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
183 183  0: Free shutdown, and the motor shaft remains free status.
184 184  
185 185  1: Zero-speed shutdown, and the motor shaft remains free status.
186 -)))|-
187 +)))|(% style="text-align:center; vertical-align:middle" %)-
187 187  
188 188  Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
189 189  
... ... @@ -199,13 +199,13 @@
199 199  
200 200  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
201 201  
202 -
203 -|**Function code**|**Name**|(((
203 +(% class="table-bordered" %)
204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
204 204  **Setting method**
205 -)))|(((
206 +)))|(% style="text-align:center; vertical-align:middle" %)(((
206 206  **Effective time**
207 -)))|**Default value**|**Range**|**Definition**|**Unit**
208 -|P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
209 209  0: OFF (not used)
210 210  
211 211  01: S-ON servo enable
... ... @@ -253,31 +253,32 @@
253 253  24: Internal multi-segment position selection 4
254 254  
255 255  Others: reserved
256 -)))|-
257 -|P06-09|DI_3 channel logic selection|Operation setting|(((
257 +)))|(% style="text-align:center; vertical-align:middle" %)-
258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
258 258  Effective immediately
259 -)))|0|0 to 1|(((
260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
260 260  DI port input logic validity function selection.
261 261  
262 262  0: Normally open input. Active low level (switch on);
263 263  
264 264  1: Normally closed input. Active high level (switch off);
265 -)))|-
266 -|P06-10|DI_3 input source selection|Operation setting|(((
266 +)))|(% style="text-align:center; vertical-align:middle" %)-
267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
267 267  Effective immediately
268 -)))|0|0 to 1|(((
269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
269 269  Select the DI_3 port type to enable
270 270  
271 271  0: Hardware DI_3 input terminal
272 272  
273 273  1: virtual VDI_3 input terminal
274 -)))|-
275 +)))|(% style="text-align:center; vertical-align:middle" %)-
275 275  
276 -|P06-11|DI_4 channel function selection|(((
277 +(% class="table-bordered" %)
278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
277 277  Operation setting
278 -)))|(((
280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
279 279  again Power-on
280 -)))|4|0 to 32|(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
281 281  0 off (not used)
282 282  
283 283  01: SON Servo enable
... ... @@ -325,25 +325,25 @@
325 325  24: Internal multi-segment position selection 4
326 326  
327 327  Others: reserved
328 -)))|-
329 -|P06-12|DI_4 channel logic selection|Operation setting|(((
330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
330 330  Effective immediately
331 -)))|0|0 to 1|(((
333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
332 332  DI port input logic validity function selection.
333 333  
334 334  0: Normally open input. Active low level (switch on);
335 335  
336 336  1: Normally closed input. Active high level (switch off);
337 -)))|-
338 -|P06-13|DI_4 input source selection|Operation setting|(((
339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
339 339  Effective immediately
340 -)))|0|0 to 1|(((
342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
341 341  Select the DI_4 port type to enable
342 342  
343 343  0: Hardware DI_4 input terminal
344 344  
345 345  1: virtual VDI_4 input terminal
346 -)))|-
348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
347 347  
348 348  Table 6-8 DI3 and DI4 channel parameters
349 349  
... ... @@ -355,8 +355,9 @@
355 355  
356 356  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
357 357  
358 -
360 +(% class="table-bordered" %)
359 359  |(((
362 +(% style="text-align:center" %)
360 360  [[image:image-20220611151617-1.png]]
361 361  )))
362 362  |(((
... ... @@ -375,13 +375,14 @@
375 375  
376 376  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
377 377  
378 -
381 +(% style="text-align:center" %)
379 379  [[image:image-20220608163136-2.png]]
380 380  
381 381  Figure 6-2 VD2B servo drive brake wiring
382 382  
383 -
386 +(% class="table-bordered" %)
384 384  |(((
388 +(% style="text-align:center" %)
385 385  [[image:image-20220611151642-2.png]]
386 386  )))
387 387  |(((
... ... @@ -398,42 +398,42 @@
398 398  
399 399  Related function code is as below.
400 400  
401 -
402 -|**DO function code**|**Function name**|**Function**|(((
405 +(% class="table-bordered" %)
406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
403 403  **Effective time**
404 404  )))
405 -|144|(((
409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
406 406  BRK-OFF Brake output
407 -)))|Output the signal indicates the servo motor brake release|Power-on again
411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
408 408  
409 409  Table 6-2 Relevant function codes for brake setting
410 410  
411 -
412 -|**Function code**|**Name**|(((
415 +(% class="table-bordered" %)
416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
413 413  **Setting method**
414 -)))|(((
418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
415 415  **Effective time**
416 -)))|**Default value**|**Range**|**Definition**|**Unit**
417 -|P1-30|Delay from brake output to instruction reception|(((
420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
418 418  Operation setting
419 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
420 -|P1-31|In static state, delay from brake output OFF to the motor is power off|(((
423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
421 421  Operation setting
422 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
423 -|P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
424 424  Operation setting
425 -)))|Effective immediately|30|0 to 3000|(((
429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
426 426  When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
427 427  
428 428  When the brake output (BRK-OFF) is not allocated, this function code has no effect.
429 -)))|rpm
430 -|P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm
434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
431 431  Operation setting
432 -)))|Effective immediately|500|1 to 1000|(((
436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
433 433  When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
434 434  
435 435  When brake output (BRK-OFF) is not allocated, this function code has no effect.
436 -)))|ms
440 +)))|(% style="text-align:center; vertical-align:middle" %)ms
437 437  
438 438  Table 6-9 Brake setting function codes
439 439  
... ... @@ -447,8 +447,9 @@
447 447  
448 448  When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
449 449  
450 -
454 +(% class="table-bordered" %)
451 451  |(((
456 +(% style="text-align:center" %)
452 452  [[image:image-20220611151705-3.png]]
453 453  )))
454 454  |(((
... ... @@ -457,6 +457,7 @@
457 457  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
458 458  )))
459 459  
465 +(% style="text-align:center" %)
460 460  [[image:image-20220608163304-3.png]]
461 461  
462 462  Figure 6-3 Brake Timing of when the motor is stationary
... ... @@ -467,8 +467,9 @@
467 467  
468 468  When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
469 469  
470 -
476 +(% class="table-bordered" %)
471 471  |(((
478 +(% style="text-align:center" %)
472 472  [[image:image-20220611151719-4.png]]
473 473  )))
474 474  |(((
... ... @@ -483,6 +483,7 @@
483 483  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
484 484  )))
485 485  
493 +(% style="text-align:center" %)
486 486  [[image:image-20220608163425-4.png]]
487 487  
488 488  Figure 6-4 Brake timing when the motor rotates
... ... @@ -491,7 +491,7 @@
491 491  
492 492  The brake timing (free shutdown) in the fault status is as follows.
493 493  
494 -
502 +(% style="text-align:center" %)
495 495  [[image:image-20220608163541-5.png]]
496 496  
497 497   Figure 6-5 The brake timing (free shutdown) in the fault state
... ... @@ -500,7 +500,7 @@
500 500  
501 501  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
502 502  
503 -
511 +(% style="text-align:center" %)
504 504  [[image:image-20220608163643-6.png]]
505 505  
506 506  Figure 6-6 Position control diagram
... ... @@ -507,17 +507,17 @@
507 507  
508 508  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
509 509  
510 -
511 -|**Function code**|**Name**|(((
518 +(% class="table-bordered" %)
519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
512 512  **Setting method**
513 -)))|(((
521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
514 514  **Effective time**
515 -)))|**Default value**|**Range**|**Definition**|**Unit**
516 -|P01-01|Control mode|(((
523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
517 517  Operation setting
518 -)))|(((
526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
519 519  immediately Effective
520 -)))|0|0 to 1|(((
528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
521 521  0: position control
522 522  
523 523  2: speed control
... ... @@ -529,7 +529,7 @@
529 529  5: position/torque mix control
530 530  
531 531  6: speed /torque mix control
532 -)))|-
540 +)))|(% style="text-align:center; vertical-align:middle" %)-
533 533  
534 534  Table 6-10 Control mode parameters
535 535  
... ... @@ -537,21 +537,21 @@
537 537  
538 538  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
539 539  
540 -
541 -|**Function code**|**Name**|(((
548 +(% class="table-bordered" %)
549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
542 542  **Setting method**
543 -)))|(((
551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
544 544  **Effective time**
545 -)))|**Default value**|**Range**|**Definition**|**Unit**
546 -|P01-06|Position instruction source|(((
553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
547 547  Operation setting
548 -)))|(((
556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
549 549  immediately Effective
550 -)))|0|0 to 1|(((
558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
551 551  0: pulse instruction
552 552  
553 553  1: internal position instruction
554 -)))|-
562 +)))|(% style="text-align:center; vertical-align:middle" %)-
555 555  
556 556  Table 6-11 Position instruction source parameter
557 557  
... ... @@ -559,20 +559,20 @@
559 559  
560 560  1) Low-speed pulse instruction input
561 561  
570 +(% class="table-bordered" %)
571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
562 562  
563 -|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
564 -|VD2A and VD2B servo drives|VD2F servo drive
565 -|(% colspan="2" %)Figure 6-7 Position instruction input setting
566 -
567 567  VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
568 568  
569 569  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
570 570  
579 +(% class="table-bordered" %)
580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
571 571  
572 -|**Pulse method**|**Maximum frequency**|**Voltage**
573 -|Open collector input|200K|24V
574 -|Differential input|500K|5V
575 -
576 576  Table 6-12 Pulse input specifications
577 577  
578 578  1.Differential input
... ... @@ -579,7 +579,7 @@
579 579  
580 580  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
581 581  
582 -
590 +(% style="text-align:center" %)
583 583  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
584 584  
585 585  Figure 6-8 Differential input connection
... ... @@ -590,7 +590,7 @@
590 590  
591 591  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
592 592  
593 -
601 +(% style="text-align:center" %)
594 594  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
595 595  
596 596  Figure 6-9 Open collector input connection
... ... @@ -601,7 +601,7 @@
601 601  
602 602  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
603 603  
604 -
612 +(% style="text-align:center" %)
605 605  [[image:image-20220608163952-8.png]]
606 606  
607 607  Figure 6-10 Example of filtered signal waveform
... ... @@ -608,22 +608,22 @@
608 608  
609 609  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
610 610  
611 -
612 -|**Function code**|**Name**|(((
619 +(% class="table-bordered" %)
620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
613 613  **Setting method**
614 -)))|(((
622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
615 615  **Effective time**
616 -)))|**Default value**|**Range**|(% colspan="2" %)**Definition**|**Unit**
617 -|P00-13|Maximum position pulse frequency|(((
624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
618 618  Shutdown setting
619 -)))|(((
627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
620 620  Effective immediately
621 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
622 -|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
623 623  Operation setting
624 -)))|(% rowspan="3" %)(((
632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
625 625  Power-on again
626 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
627 627  Set the anti-interference level of external pulse instruction.
628 628  
629 629  0: no filtering;
... ... @@ -643,8 +643,8 @@
643 643  7: Filtering time 8.192us
644 644  
645 645  8: Filtering time 16.384us
646 -)))|(% rowspan="3" %)-
647 -|(% rowspan="2" %)9|VD2: Filtering time 25.5us
654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
648 648  |VD2F: Filtering time 25.5us
649 649  
650 650  Table 6-13 Position pulse frequency and anti-interference level parameters
... ... @@ -653,17 +653,17 @@
653 653  
654 654  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
655 655  
656 -
657 -|**Function code**|**Name**|(((
664 +(% class="table-bordered" %)
665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
658 658  **Setting method**
659 -)))|(((
667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
660 660  **Effective time**
661 -)))|**Default value**|**Range**|**Definition**|**Unit**
662 -|P00-12|Position pulse type selection|(((
669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
663 663  Operation setting
664 -)))|(((
672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
665 665  Power-on again
666 -)))|0|0 to 5|(((
674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
667 667  0: direction + pulse (positive logic)
668 668  
669 669  1: CW/CCW
... ... @@ -675,74 +675,74 @@
675 675  4: CW/CCW (negative logic)
676 676  
677 677  5: A, B phase quadrature pulse (4 times frequency negative logic)
678 -)))|-
686 +)))|(% style="text-align:center; vertical-align:middle" %)-
679 679  
680 680  Table 6-14 Position pulse type selection parameter
681 681  
682 -
683 -|**Pulse type selection**|**Pulse type**|**Signal**|**Schematic diagram of forward pulse**|**Schematic diagram of negative pulse**
684 -|0|(((
690 +(% class="table-bordered" %)
691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
685 685  Direction + pulse
686 686  
687 687  (Positive logic)
688 -)))|(((
696 +)))|(% style="text-align:center; vertical-align:middle" %)(((
689 689  PULSE
690 690  
691 691  SIGN
692 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
693 -|1|CW/CCW|(((
700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
694 694  PULSE (CW)
695 695  
696 696  SIGN (CCW)
697 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
698 -|2|(((
705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
699 699  AB phase orthogonal
700 700  
701 701  pulse (4 times frequency)
702 -)))|(((
710 +)))|(% style="text-align:center; vertical-align:middle" %)(((
703 703  PULSE (Phase A)
704 704  
705 705  SIGN (Phase B)
706 -)))|(((
714 +)))|(% style="text-align:center; vertical-align:middle" %)(((
707 707  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
708 708  
709 709  Phase A is 90° ahead of Phase B
710 -)))|(((
718 +)))|(% style="text-align:center; vertical-align:middle" %)(((
711 711  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
712 712  
713 713  Phase B is 90° ahead of Phase A
714 714  )))
715 -|3|(((
723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
716 716  Direction + pulse
717 717  
718 718  (Negative logic)
719 -)))|(((
727 +)))|(% style="text-align:center; vertical-align:middle" %)(((
720 720  PULSE
721 721  
722 722  SIGN
723 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
724 -|4|(((
731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
725 725  CW/CCW
726 726  
727 727  (Negative logic)
728 -)))|(((
736 +)))|(% style="text-align:center; vertical-align:middle" %)(((
729 729  PULSE (CW)
730 730  
731 731  SIGN (CCW)
732 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
733 -|5|(((
740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
734 734  AB phase orthogonal
735 735  
736 736  pulse (4 times frequency negative logic)
737 -)))|(((
745 +)))|(% style="text-align:center; vertical-align:middle" %)(((
738 738  PULSE (Phase A)
739 739  
740 740  SIGN (Phase B)
741 -)))|(((
749 +)))|(% style="text-align:center; vertical-align:middle" %)(((
742 742  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
743 743  
744 744  B phase is ahead of A phase by 90°
745 -)))|(((
753 +)))|(% style="text-align:center; vertical-align:middle" %)(((
746 746  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
747 747  
748 748  A phase is ahead of B phase by 90°
... ... @@ -756,7 +756,7 @@
756 756  
757 757  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
758 758  
759 -
767 +(% style="text-align:center" %)
760 760  [[image:image-20220608164116-9.png]]
761 761  
762 762  Figure 6-11 The setting process of multi-segment position
... ... @@ -763,51 +763,51 @@
763 763  
764 764  1) Set multi-segment position running mode
765 765  
766 -
767 -|**Function code**|**Name**|(((
774 +(% class="table-bordered" %)
775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
768 768  **Setting method**
769 -)))|(((
777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
770 770  **Effective time**
771 -)))|**Default value**|**Range**|**Definition**|**Unit**
772 -|P07-01|Multi-segment position running mode|(((
779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
773 773  Shutdown setting
774 -)))|(((
782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
775 775  Effective immediately
776 -)))|0|0 to 2|(((
784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
777 777  0: Single running
778 778  
779 779  1: Cycle running
780 780  
781 781  2: DI switching running
782 -)))|-
783 -|P07-02|Start segment number|(((
790 +)))|(% style="text-align:center; vertical-align:middle" %)-
791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
784 784  Shutdown setting
785 -)))|(((
793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
786 786  Effective immediately
787 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|-
788 -|P07-03|End segment number|(((
795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
789 789  Shutdown setting
790 -)))|(((
798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
791 791  Effective immediately
792 -)))|1|1 to 16|last segment NO. in non-DI switching mode|-
793 -|P07-04|Margin processing method|(((
800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
794 794  Shutdown setting
795 -)))|(((
803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
796 796  Effective immediately
797 -)))|0|0 to 1|(((
805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
798 798  0: Run the remaining segments
799 799  
800 800  1: Run again from the start segment
801 -)))|-
802 -|P07-05|Displacement instruction type|(((
809 +)))|(% style="text-align:center; vertical-align:middle" %)-
810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
803 803  Shutdown setting
804 -)))|(((
812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
805 805  Effective immediately
806 -)))|0|0 to 1|(((
814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
807 807  0: Relative position instruction
808 808  
809 809  1: Absolute position instruction
810 -)))|-
818 +)))|(% style="text-align:center; vertical-align:middle" %)-
811 811  
812 812  Table 6-16 multi-segment position running mode parameters
813 813  
... ... @@ -817,7 +817,7 @@
817 817  
818 818  In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
819 819  
820 -
828 +(% style="text-align:center" %)
821 821  [[image:image-20220608164226-10.png]]
822 822  
823 823  Figure 6-12 Single running curve (P07-02=1, P07-03=2)
... ... @@ -826,12 +826,12 @@
826 826  
827 827  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
828 828  
829 -
837 +(% style="text-align:center" %)
830 830  [[image:image-20220608164327-11.png]]
831 831  
832 832  Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
833 833  
834 -|[[image:image-20220611151917-5.png]]
842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
835 835  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
836 836  
837 837  3. DI switching running
... ... @@ -838,30 +838,30 @@
838 838  
839 839  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
840 840  
849 +(% class="table-bordered" %)
850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
841 841  
842 -|**DI function code**|**Function name**|**Function**
843 -|21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
844 -|22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
845 -|23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
846 -|24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
847 -
848 848  Table 6-17 DI function code
849 849  
850 850  The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
851 851  
860 +(% class="table-bordered" %)
861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
852 852  
853 -|**INPOS4**|**INPOS3**|**INPOS2**|**INPOS1**|**Running position number**
854 -|0|0|0|0|1
855 -|0|0|0|1|2
856 -|0|0|1|0|3
857 -|(% colspan="5" %)…………
858 -|1|1|1|1|16
859 -
860 860  Table 6-18 INPOS corresponds to running segment number
861 861  
862 862  The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
863 863  
864 -
872 +(% style="text-align:center" %)
865 865  [[image:image-20220608164545-12.png]]
866 866  
867 867  Figure 6-14 DI switching running curve
... ... @@ -872,12 +872,12 @@
872 872  
873 873  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
874 874  
875 -
883 +(% style="text-align:center" %)
876 876  [[image:image-20220608164847-13.png]]
877 877  
878 878  Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
879 879  
880 -
888 +(% style="text-align:center" %)
881 881  [[image:image-20220608165032-14.png]]
882 882  
883 883  Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
... ... @@ -886,12 +886,12 @@
886 886  
887 887  In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
888 888  
889 -
897 +(% style="text-align:center" %)
890 890  [[image:image-20220608165343-15.png]]
891 891  
892 892  Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
893 893  
894 -
902 +(% style="text-align:center" %)
895 895  [[image:image-20220608165558-16.png]]
896 896  
897 897  Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
... ... @@ -903,8 +903,10 @@
903 903  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
904 904  
905 905  |(((
914 +(% style="text-align:center" %)
906 906  [[image:image-20220608165710-17.png]]
907 907  )))|(((
917 +(% style="text-align:center" %)
908 908  [[image:image-20220608165749-18.png]]
909 909  )))
910 910  |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
... ... @@ -914,8 +914,10 @@
914 914  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
915 915  
916 916  |(((
927 +(% style="text-align:center" %)
917 917  [[image:image-20220608165848-19.png]]
918 918  )))|(((
930 +(% style="text-align:center" %)
919 919  [[image:image-20220608170005-20.png]]
920 920  )))
921 921  |Figure 6-21 Absolute indication|Figure 6-22 Displacement
... ... @@ -924,46 +924,46 @@
924 924  
925 925  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
926 926  
927 -
928 -|**Function code**|**Name**|(((
939 +(% class="table-bordered" %)
940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
929 929  **Setting method**
930 -)))|(((
942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
931 931  **Effective time**
932 -)))|**Default value**|**Range**|**Definition**|**Unit**
933 -|P07-09|(((
944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
934 934  1st segment
935 935  
936 936  displacement
937 -)))|(((
949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
938 938  Operation setting
939 -)))|(((
951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
940 940  Effective immediately
941 -)))|10000|(((
953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)(((
942 942  -2147483647 to
943 943  
944 944  2147483646
945 -)))|Position instruction, positive and negative values could be set|-
946 -|P07-10|Maximum speed of the 1st displacement|(((
957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
947 947  Operation setting
948 -)))|(((
960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
949 949  Effective immediately
950 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
951 -|P07-11|Acceleration and deceleration of 1st segment displacement|(((
962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
952 952  Operation setting
953 -)))|(((
965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
954 954  Effective immediately
955 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
956 -|P07-12|Waiting time after completion of the 1st segment displacement|(((
967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
957 957  Operation setting
958 -)))|(((
970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
959 959  Effective immediately
960 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
961 961  
962 962  Table 6-19 The 1st position operation curve parameters table
963 963  
964 964  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
965 965  
966 -
978 +(% style="text-align:center" %)
967 967  [[image:image-20220608170149-21.png]]
968 968  
969 969  Figure 6-23 The 1st segment running curve of motor
... ... @@ -972,14 +972,15 @@
972 972  
973 973  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
974 974  
975 -
976 -|**DI function code**|**Function name**|**Function**
977 -|20|ENINPOS: Internal multi-segment position enable signal|(((
987 +(% class="table-bordered" %)
988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
978 978  DI port logic invalid: Does not affect the current operation of the servo motor.
979 979  
980 980  DI port logic valid: Motor runs multi-segment position
981 981  )))
982 982  
995 +(% style="text-align:center" %)
983 983  [[image:image-20220611152020-6.png]]
984 984  
985 985  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
... ... @@ -994,13 +994,13 @@
994 994  
995 995  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
996 996  
997 -
1010 +(% style="text-align:center" %)
998 998  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
999 999  
1000 -
1013 +(% style="text-align:center" %)
1001 1001  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
1002 1002  
1003 -
1016 +(% style="text-align:center" %)
1004 1004  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1005 1005  
1006 1006  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
... ... @@ -1007,7 +1007,7 @@
1007 1007  
1008 1008  **(2) Setting steps of electronic gear ratio**
1009 1009  
1010 -
1023 +(% style="text-align:center" %)
1011 1011  [[image:image-20220608170320-22.png]]
1012 1012  
1013 1013  Figure 6-24 Setting steps of electronic gear ratio
... ... @@ -1022,7 +1022,7 @@
1022 1022  
1023 1023  Step5: Calculate the value of electronic gear ratio according to formula below.
1024 1024  
1025 -
1038 +(% style="text-align:center" %)
1026 1026  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1027 1027  
1028 1028  **(3) lectronic gear ratio switch setting**
... ... @@ -1030,59 +1030,59 @@
1030 1030  
1031 1031  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1032 1032  
1033 -
1034 -|**Function code**|**Name**|(((
1046 +(% class="table-bordered" %)
1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1035 1035  **Setting method**
1036 -)))|(((
1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1037 1037  **Effective time**
1038 -)))|**Default value**|**Range**|**Definition**|**Unit**
1039 -|P00-16|Number of instruction pulses when the motor rotates one circle|(((
1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1040 1040  Shutdown setting
1041 -)))|(((
1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1042 1042  Effective immediately
1043 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1044 1044  Instruction pulse
1045 1045  
1046 1046  unit
1047 1047  )))
1048 -|P00-17|(((
1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1049 1049  Electronic gear 1
1050 1050  
1051 1051  numerator
1052 -)))|Operation setting|(((
1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1053 1053  Effective immediately
1054 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1055 -|P00-18|(((
1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1056 1056  Electronic gear 1
1057 1057  
1058 1058  denominator
1059 -)))|(((
1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1060 1060  Operation setting
1061 -)))|(((
1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1062 1062  Effective immediately
1063 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1064 -|P00-19|(((
1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1065 1065  Electronic gear 2
1066 1066  
1067 1067  numerator
1068 -)))|Operation setting|(((
1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1069 1069  Effective immediately
1070 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1071 -|P00-20|(((
1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1072 1072  Electronic gear 2
1073 1073  
1074 1074  denominator
1075 -)))|Operation setting|(((
1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1076 1076  Effective immediately
1077 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1078 1078  
1079 1079  Table 6-20 Electronic gear ratio function code
1080 1080  
1081 1081  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1082 1082  
1083 -
1084 -|**DI function code**|**Function name**|**Function**
1085 -|09|GEAR-SEL electronic gear switch 1|(((
1096 +(% class="table-bordered" %)
1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1086 1086  DI port logic invalid: electronic gear ratio 1
1087 1087  
1088 1088  DI port logic valid: electronic gear ratio 2
... ... @@ -1090,10 +1090,10 @@
1090 1090  
1091 1091  Table 6-21 Switching conditions of electronic gear ratio group
1092 1092  
1093 -|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1094 -|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1095 -|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1096 -|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1097 1097  
1098 1098  Table 6-22 Application of electronic gear ratio
1099 1099  
... ... @@ -1111,32 +1111,32 @@
1111 1111  
1112 1112  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1113 1113  
1114 -
1127 +(% style="text-align:center" %)
1115 1115  [[image:image-20220608170455-23.png]]
1116 1116  
1117 1117  Figure 6-25 Position instruction filtering diagram
1118 1118  
1119 -
1120 -|**Function code**|**Name**|(((
1132 +(% class="table-bordered" %)
1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1121 1121  **Setting method**
1122 -)))|(((
1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1123 1123  **Effective time**
1124 -)))|**Default value**|**Range**|**Definition**|**Unit**
1125 -|P04-01|Pulse instruction filtering method|(((
1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1126 1126  Shutdown setting
1127 -)))|(((
1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1128 1128  Effective immediately
1129 -)))|0|0 to 1|(((
1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)(((
1130 1130  0: 1st-order low-pass filtering
1131 1131  
1132 1132  1: average filtering
1133 -)))|-
1134 -|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1135 1135  Effective immediately
1136 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1137 -|P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1138 1138  Effective immediately
1139 -)))|0|0 to 128|Position instruction average filtering time constant|ms
1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1140 1140  
1141 1141  Table 6-23 Position instruction filter function code
1142 1142  
... ... @@ -1156,7 +1156,7 @@
1156 1156  (% class="wikigeneratedid" %)
1157 1157  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1158 1158  
1159 -
1172 +(% style="text-align:center" %)
1160 1160  [[image:image-20220608170550-24.png]]
1161 1161  
1162 1162  Figure 6-26 Positioning completion signal output diagram
... ... @@ -1165,46 +1165,46 @@
1165 1165  
1166 1166  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1167 1167  
1168 -
1181 +(% style="text-align:center" %)
1169 1169  [[image:image-20220608170650-25.png]]
1170 1170  
1171 1171  Figure 6-27 Positioning completion signal output with increased window filter time diagram
1172 1172  
1173 -
1174 -|**Function code**|**Name**|(((
1186 +(% class="table-bordered" %)
1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1175 1175  **Setting method**
1176 -)))|(((
1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1177 1177  **Effective time**
1178 -)))|**Default value**|**Range**|**Definition**|**Unit**
1179 -|P05-12|Positioning completion threshold|(((
1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit**
1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1180 1180  Operation setting
1181 -)))|(((
1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1182 1182  Effective immediately
1183 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1184 -|P05-13|Positioning approach threshold|(((
1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1185 1185  Operation setting
1186 -)))|(((
1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1187 1187  Effective immediately
1188 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1189 -|P05-14|Position detection window time|(((
1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1190 1190  Operation setting
1191 -)))|(((
1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1192 1192  Effective immediately
1193 -)))|10|0 to 20000|Set positioning completion detection window time|ms
1194 -|P05-15|Positioning signal hold time|(((
1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1195 1195  Operation setting
1196 -)))|(((
1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1197 1197  Effective immediately
1198 -)))|100|0 to 20000|Set positioning completion output hold time|ms
1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1199 1199  
1200 1200  Table 6-24 Function code parameters of positioning completion
1201 1201  
1202 -
1203 -|**DO function code**|**Function name**|**Function**
1204 -|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1205 -|135|(((
1215 +(% class="table-bordered" %)
1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1206 1206  P-NEAR positioning close
1207 -)))|(((
1220 +)))|(% style="text-align:center; vertical-align:middle" %)(((
1208 1208  Output this signal indicates that the servo drive position is close.
1209 1209  )))
1210 1210  
... ... @@ -1214,7 +1214,7 @@
1214 1214  
1215 1215  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1216 1216  
1217 -
1230 +(% style="text-align:center" %)
1218 1218  [[image:6.28.jpg||height="260" width="806"]]
1219 1219  
1220 1220  Figure 6-28 Speed control block diagram
... ... @@ -1223,21 +1223,21 @@
1223 1223  
1224 1224  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1225 1225  
1226 -
1227 -|**Function code**|**Name**|(((
1239 +(% class="table-bordered" %)
1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1228 1228  **Setting method**
1229 -)))|(((
1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1230 1230  **Effective time**
1231 -)))|**Default value**|**Range**|**Definition**|**Unit**
1232 -|P01-01|Speed instruction source|(((
1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1233 1233  Shutdown setting
1234 -)))|(((
1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1235 1235  Effective immediately
1236 -)))|1|1 to 6|(((
1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1237 1237  0: internal speed instruction
1238 1238  
1239 1239  1: AI_1 analog input (not supported by VD2F)
1240 -)))|-
1253 +)))|(% style="text-align:center; vertical-align:middle" %)-
1241 1241  
1242 1242  Table 6-26 Speed instruction source parameter
1243 1243  
... ... @@ -1245,19 +1245,19 @@
1245 1245  
1246 1246  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1247 1247  
1248 -
1249 -|**Function code**|**Name**|(((
1261 +(% class="table-bordered" %)
1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1250 1250  **Setting method**
1251 -)))|(((
1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
1252 1252  **Effective time**
1253 -)))|**Default value**|**Range**|**Definition**|**Unit**
1254 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)(((
1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit**
1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1255 1255  Internal speed Instruction 0
1256 -)))|(% rowspan="2" %)(((
1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1257 1257  Operation setting
1258 -)))|(% rowspan="2" %)(((
1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1259 1259  Effective immediately
1260 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1261 1261  Internal speed instruction 0
1262 1262  
1263 1263  When DI input port:
... ... @@ -1269,15 +1269,15 @@
1269 1269  13-INSPD1: 0,
1270 1270  
1271 1271  select this speed instruction to be effective.
1272 -)))|(% rowspan="2" %)rpm
1273 -|-5000 to 5000*
1274 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)(((
1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1275 1275  Internal speed Instruction 1
1276 -)))|(% rowspan="2" %)(((
1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1277 1277  Operation setting
1278 -)))|(% rowspan="2" %)(((
1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1279 1279  Effective immediately
1280 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1281 1281  Internal speed instruction 1
1282 1282  
1283 1283  When DI input port:
... ... @@ -1289,15 +1289,15 @@
1289 1289  13-INSPD1: 1,
1290 1290  
1291 1291  Select this speed instruction to be effective.
1292 -)))|(% rowspan="2" %)rpm
1293 -|-5000 to 5000*
1294 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)(((
1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1295 1295  Internal speed Instruction 2
1296 -)))|(% rowspan="2" %)(((
1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1297 1297  Operation setting
1298 -)))|(% rowspan="2" %)(((
1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1299 1299  Effective immediately
1300 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1301 1301  Internal speed instruction 2
1302 1302  
1303 1303  When DI input port:
... ... @@ -1309,15 +1309,15 @@
1309 1309  13-INSPD1: 0,
1310 1310  
1311 1311  Select this speed instruction to be effective.
1312 -)))|(% rowspan="2" %)rpm
1313 -|-5000 to 5000*
1314 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)(((
1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1315 1315  Internal speed Instruction 3
1316 -)))|(% rowspan="2" %)(((
1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1317 1317  Operation setting
1318 -)))|(% rowspan="2" %)(((
1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1319 1319  Effective immediately
1320 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1321 1321  Internal speed instruction 3
1322 1322  
1323 1323  When DI input port:
... ... @@ -1329,16 +1329,17 @@
1329 1329  13-INSPD1: 1,
1330 1330  
1331 1331  Select this speed instruction to be effective.
1332 -)))|(% rowspan="2" %)rpm
1333 -|-5000 to 5000*
1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1334 1334  
1335 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)(((
1348 +(% class="table-bordered" %)
1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1336 1336  Internal speed Instruction 4
1337 -)))|(% rowspan="2" %)(((
1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1338 1338  Operation setting
1339 -)))|(% rowspan="2" %)(((
1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1340 1340  Effective immediately
1341 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1342 1342  Internal speed instruction 4
1343 1343  
1344 1344  When DI input port:
... ... @@ -1350,15 +1350,15 @@
1350 1350  13-INSPD1: 0,
1351 1351  
1352 1352  Select this speed instruction to be effective.
1353 -)))|(% rowspan="2" %)rpm
1354 -|-5000 to 5000*
1355 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)(((
1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1356 1356  Internal speed Instruction 5
1357 -)))|(% rowspan="2" %)(((
1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1358 1358  Operation setting
1359 -)))|(% rowspan="2" %)(((
1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1360 1360  Effective immediately
1361 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1362 1362  Internal speed instruction 5
1363 1363  
1364 1364  When DI input port:
... ... @@ -1370,15 +1370,15 @@
1370 1370  13-INSPD1: 1,
1371 1371  
1372 1372  Select this speed instruction to be effective.
1373 -)))|(% rowspan="2" %)rpm
1374 -|-5000 to 5000*
1375 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)(((
1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1376 1376  Internal speed Instruction 6
1377 -)))|(% rowspan="2" %)(((
1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1378 1378  Operation setting
1379 -)))|(% rowspan="2" %)(((
1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1380 1380  Effective immediately
1381 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1382 1382  Internal speed instruction 6
1383 1383  
1384 1384  When DI input port:
... ... @@ -1390,15 +1390,15 @@
1390 1390  13-INSPD1: 0,
1391 1391  
1392 1392  Select this speed instruction to be effective.
1393 -)))|(% rowspan="2" %)rpm
1394 -|-5000 to 5000*
1395 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)(((
1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1396 1396  Internal speed Instruction 7
1397 -)))|(% rowspan="2" %)(((
1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1398 1398  Operation setting
1399 -)))|(% rowspan="2" %)(((
1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1400 1400  Effective immediately
1401 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1402 1402  Internal speed instruction 7
1403 1403  
1404 1404  When DI input port:
... ... @@ -1410,34 +1410,34 @@
1410 1410  13-INSPD1: 1,
1411 1411  
1412 1412  Select this speed instruction to be effective.
1413 -)))|(% rowspan="2" %)rpm
1414 -|-5000 to 5000*
1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1415 1415  
1416 1416  Table 6-27 Internal speed instruction parameters
1417 1417  
1418 1418  ✎**Note: **“*” means the set range of VD2F servo drive.
1419 1419  
1434 +(% class="table-bordered" %)
1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1420 1420  
1421 -|**DI function code**|**function name**|**Function**
1422 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1423 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1424 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1425 -
1426 1426  Table 6-28 DI multi-speed function code description
1427 1427  
1428 1428  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1429 1429  
1430 -
1431 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1432 -|0|0|0|1|0
1433 -|0|0|1|2|1
1434 -|0|1|0|3|2
1444 +(% class="table-bordered" %)
1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1435 1435  |(% colspan="5" %)......
1436 -|1|1|1|8|7
1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1437 1437  
1438 1438  Table 6-29 Correspondence between INSPD bits and segment numbers
1439 1439  
1440 -
1454 +(% style="text-align:center" %)
1441 1441  [[image:image-20220608170845-26.png]]
1442 1442  
1443 1443  Figure 6-29 Multi-segment speed running curve
... ... @@ -1446,7 +1446,7 @@
1446 1446  
1447 1447  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1448 1448  
1449 -
1463 +(% style="text-align:center" %)
1450 1450  [[image:image-20220608153341-5.png]]
1451 1451  
1452 1452  Figure 6-30 Analog input circuit
... ... @@ -1453,7 +1453,7 @@
1453 1453  
1454 1454  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1455 1455  
1456 -
1470 +(% style="text-align:center" %)
1457 1457  [[image:image-20220608170955-27.png]]
1458 1458  
1459 1459  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1466,18 +1466,18 @@
1466 1466  
1467 1467  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1468 1468  
1469 -
1483 +(% style="text-align:center" %)
1470 1470  [[image:image-20220608171124-28.png]]
1471 1471  
1472 1472  Figure 6-32 AI_1 diagram before and after bias
1473 1473  
1488 +(% class="table-bordered" %)
1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1474 1474  
1475 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1476 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1477 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1478 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1479 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1480 -
1481 1481  Table 6-30 AI_1 parameters
1482 1482  
1483 1483  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1488,7 +1488,7 @@
1488 1488  
1489 1489  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1490 1490  
1491 -
1505 +(% style="text-align:center" %)
1492 1492  [[image:image-20220608171314-29.png]]
1493 1493  
1494 1494  Figure 6-33 of acceleration and deceleration time diagram
... ... @@ -1497,22 +1497,22 @@
1497 1497  
1498 1498  Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1499 1499  
1500 -
1501 -|**Function code**|**Name**|(((
1514 +(% class="table-bordered" %)
1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1502 1502  **Setting method**
1503 -)))|(((
1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1504 1504  **Effective time**
1505 -)))|**Default value**|**Range**|**Definition**|**Unit**
1506 -|P01-03|Acceleration time|(((
1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1507 1507  Operation setting
1508 -)))|(((
1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1509 1509  Effective immediately
1510 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1511 -|P01-04|Deceleration time|(((
1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1512 1512  Operation setting
1513 -)))|(((
1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1514 1514  Effective immediately
1515 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1516 1516  
1517 1517  Table 6-31 Acceleration and deceleration time parameters
1518 1518  
... ... @@ -1531,27 +1531,27 @@
1531 1531  
1532 1532  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1533 1533  
1534 -
1535 -|**Function code**|**Name**|(((
1548 +(% class="table-bordered" %)
1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1536 1536  **Setting method**
1537 -)))|(((
1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1538 1538  **Effective time**
1539 -)))|**Default value**|**Range**|**Definition**|**Unit**
1540 -|P01-10|Maximum speed threshold|(((
1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1541 1541  Operation setting
1542 -)))|(((
1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1543 1543  Effective immediately
1544 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1545 -|P01-12|Forward speed threshold|(((
1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1546 1546  Operation setting
1547 -)))|(((
1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1548 1548  Effective immediately
1549 -)))|3000|0 to 5000|Set forward speed limit value|rpm
1550 -|P01-13|Reverse speed threshold|(((
1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1551 1551  Operation setting
1552 -)))|(((
1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1553 1553  Effective immediately
1554 -)))|3000|0 to 5000|Set reverse speed limit value|rpm
1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1555 1555  
1556 1556  Table 6-32 Rotation speed related function codes
1557 1557  
... ... @@ -1561,19 +1561,19 @@
1561 1561  
1562 1562  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1563 1563  
1564 -
1565 -|**Function code**|**Name**|(((
1578 +(% class="table-bordered" %)
1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1566 1566  **Setting method**
1567 -)))|(((
1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1568 1568  **Effective time**
1569 -)))|**Default value**|**Range**|**Definition**|**Unit**
1570 -|P01-21|(((
1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1571 1571  Zero-speed clamp function selection
1572 -)))|(((
1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1573 1573  Operation setting
1574 -)))|(((
1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1575 1575  Effective immediately
1576 -)))|0|0 to 3|(((
1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1577 1577  Set the zero-speed clamp function. In speed mode:
1578 1578  
1579 1579  0: Force the speed to 0;
... ... @@ -1583,18 +1583,18 @@
1583 1583  2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1584 1584  
1585 1585  3: Invalid, ignore zero-speed clamp input
1586 -)))|-
1587 -|P01-22|(((
1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1588 1588  Zero-speed clamp speed threshold
1589 -)))|(((
1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1590 1590  Operation setting
1591 -)))|(((
1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1592 1592  Effective immediately
1593 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1594 1594  
1595 1595  Table 6-33 Zero-speed clamp related parameters
1596 1596  
1597 -
1611 +(% style="text-align:center" %)
1598 1598  [[image:image-20220608171549-30.png]]
1599 1599  
1600 1600  Figure 6-34 Zero-speed clamp diagram
... ... @@ -1607,7 +1607,7 @@
1607 1607  
1608 1608  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1609 1609  
1610 -
1624 +(% style="text-align:center" %)
1611 1611  [[image:image-20220608171625-31.png]]
1612 1612  
1613 1613  Figure 6-35 Rotation detection signal diagram
... ... @@ -1614,29 +1614,29 @@
1614 1614  
1615 1615  To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1616 1616  
1617 -
1618 -|**Function code**|**Name**|(((
1631 +(% class="table-bordered" %)
1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1619 1619  **Setting method**
1620 -)))|(((
1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1621 1621  **Effective time**
1622 -)))|**Default value**|**Range**|**Definition**|**Unit**
1623 -|P05-16|(((
1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit**
1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1624 1624  Rotation detection
1625 1625  
1626 1626  speed threshold
1627 -)))|(((
1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1628 1628  Operation setting
1629 -)))|(((
1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1630 1630  Effective immediately
1631 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm
1632 1632  
1633 1633  Table 6-34 Rotation detection speed threshold parameters
1634 1634  
1635 -
1636 -|**DO function code**|**Function name**|**Function**
1637 -|132|(((
1649 +(% class="table-bordered" %)
1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function**
1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)(((
1638 1638  T-COIN rotation detection
1639 -)))|(((
1653 +)))|(% style="width:879px" %)(((
1640 1640  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1641 1641  
1642 1642  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1648,7 +1648,7 @@
1648 1648  
1649 1649  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1650 1650  
1651 -
1665 +(% style="text-align:center" %)
1652 1652  [[image:image-20220608171904-32.png]]
1653 1653  
1654 1654  Figure 6-36 Zero-speed signal diagram
... ... @@ -1655,25 +1655,25 @@
1655 1655  
1656 1656  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1657 1657  
1658 -
1659 -|**Function code**|**Name**|(((
1672 +(% class="table-bordered" %)
1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1660 1660  **Setting method**
1661 -)))|(((
1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1662 1662  **Effective time**
1663 -)))|**Default value**|**Range**|**Definition**|**Unit**
1664 -|P05-19|Zero speed output signal threshold|(((
1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit**
1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1665 1665  Operation setting
1666 -)))|(((
1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1667 1667  Effective immediately
1668 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm
1669 1669  
1670 1670  Table 6-36 Zero-speed output signal threshold parameter
1671 1671  
1672 -
1673 -|**DO function code**|**Function name**|**Function**
1674 -|133|(((
1686 +(% class="table-bordered" %)
1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1675 1675  ZSP zero speed signal
1676 -)))|Output this signal indicates that the servo motor is stopping rotation
1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1677 1677  
1678 1678  Table 6-37 DO zero-speed signal function code
1679 1679  
... ... @@ -1681,7 +1681,7 @@
1681 1681  
1682 1682  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1683 1683  
1684 -
1698 +(% style="text-align:center" %)
1685 1685  [[image:image-20220608172053-33.png]]
1686 1686  
1687 1687  Figure 6-37 Speed consistent signal diagram
... ... @@ -1688,25 +1688,25 @@
1688 1688  
1689 1689  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1690 1690  
1691 -
1692 -|**Function code**|**Name**|(((
1705 +(% class="table-bordered" %)
1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1693 1693  **Setting method**
1694 -)))|(((
1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1695 1695  **Effective time**
1696 -)))|**Default value**|**Range**|**Definition**|**Unit**
1697 -|P05-17|Speed consistent signal threshold|(((
1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit**
1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1698 1698  Operationsetting
1699 -)))|(((
1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1700 1700  Effective immediately
1701 -)))|10|0 to 100|Set speed consistent signal threshold|rpm
1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm
1702 1702  
1703 1703  Table 6-38 Speed consistent signal threshold parameters
1704 1704  
1705 -
1706 -|**DO Function code**|**Function name**|**Function**
1707 -|136|(((
1719 +(% class="table-bordered" %)
1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1708 1708  U-COIN consistent speed
1709 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1710 1710  
1711 1711  Table 6-39 DO speed consistent function code
1712 1712  
... ... @@ -1714,7 +1714,7 @@
1714 1714  
1715 1715  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1716 1716  
1717 -
1731 +(% style="text-align:center" %)
1718 1718  [[image:image-20220608172207-34.png]]
1719 1719  
1720 1720  Figure 6-38 Speed approaching signal diagram
... ... @@ -1721,25 +1721,25 @@
1721 1721  
1722 1722  To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1723 1723  
1724 -
1725 -|**Function code**|**Name**|(((
1738 +(% class="table-bordered" %)
1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1726 1726  **Setting method**
1727 -)))|(((
1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1728 1728  **Effective time**
1729 -)))|**Default value**|**Range**|**Definition**|**Unit**
1730 -|P05-18|Speed approach signal threshold|(((
1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1731 1731  Operation setting
1732 -)))|(((
1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1733 1733  Effective immediately
1734 -)))|100|10 to 6000|Set speed approach signal threshold|rpm
1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1735 1735  
1736 1736  Table 6-40 Speed approaching signal threshold parameters
1737 1737  
1738 -
1739 -|**DO function code**|**Function name**|**Function**
1740 -|137|(((
1752 +(% class="table-bordered" %)
1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1741 1741  V-NEAR speed approach
1742 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1743 1743  
1744 1744  Table 6-41 DO speed approach function code
1745 1745  
... ... @@ -1747,7 +1747,7 @@
1747 1747  
1748 1748  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1749 1749  
1750 -
1764 +(% style="text-align:center" %)
1751 1751  [[image:image-20220608172405-35.png]]
1752 1752  
1753 1753  Figure 6-39 Torque mode diagram
... ... @@ -1756,21 +1756,21 @@
1756 1756  
1757 1757  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1758 1758  
1759 -
1760 -|**Function code**|**Name**|(((
1773 +(% class="table-bordered" %)
1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1761 1761  **Setting method**
1762 -)))|(((
1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1763 1763  **Effective time**
1764 -)))|**Default value**|**Range**|**Definition**|**Unit**
1765 -|P01-08|Torque instruction source|(((
1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1766 1766  Shutdown setting
1767 -)))|(((
1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1768 1768  Effective immediately
1769 -)))|0|0 to 1|(((
1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1770 1770  0: internal torque instruction
1771 1771  
1772 1772  1: AI_1 analog input(not supported by VD2F)
1773 -)))|-
1787 +)))|(% style="text-align:center; vertical-align:middle" %)-
1774 1774  
1775 1775  Table 6-42 Torque instruction source parameter
1776 1776  
... ... @@ -1778,17 +1778,17 @@
1778 1778  
1779 1779  Torque instruction source is from inside, the value is set by function code P01-08.
1780 1780  
1781 -
1782 -|**Function code**|**Name**|(((
1795 +(% class="table-bordered" %)
1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1783 1783  **Setting method**
1784 -)))|(((
1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1785 1785  **Effective time**
1786 -)))|**Default value**|**Range**|**Definition**|**Unit**
1787 -|P01-08|Torque instruction keyboard set value|(((
1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1788 1788  Operation setting
1789 -)))|(((
1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1790 1790  Effective immediately
1791 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1792 1792  
1793 1793  Table 6-43 Torque instruction keyboard set value
1794 1794  
... ... @@ -1796,7 +1796,7 @@
1796 1796  
1797 1797  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1798 1798  
1799 -
1813 +(% style="text-align:center" %)
1800 1800  [[image:image-20220608153646-7.png||height="213" width="408"]]
1801 1801  
1802 1802  Figure 6-40 Analog input circuit
... ... @@ -1803,7 +1803,7 @@
1803 1803  
1804 1804  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1805 1805  
1806 -
1820 +(% style="text-align:center" %)
1807 1807  [[image:image-20220608172502-36.png]]
1808 1808  
1809 1809  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1816,18 +1816,18 @@
1816 1816  
1817 1817  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1818 1818  
1819 -
1833 +(% style="text-align:center" %)
1820 1820  [[image:image-20220608172611-37.png]]
1821 1821  
1822 1822  Figure 6-42 AI_1 diagram before and after bias
1823 1823  
1838 +(% class="table-bordered" %)
1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1824 1824  
1825 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1826 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1827 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1828 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1829 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1830 -
1831 1831  Table 6-44 AI_1 parameters
1832 1832  
1833 1833  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1836,23 +1836,23 @@
1836 1836  
1837 1837  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1838 1838  
1839 -
1840 -|**Function code**|**Name**|(((
1853 +(% class="table-bordered" %)
1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1841 1841  **Setting method**
1842 -)))|(((
1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1843 1843  **Effective time**
1844 -)))|**Default value**|**Range**|**Definition**|**Unit**
1845 -|P04-04|Torque filtering time constant|(((
1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1846 1846  Operation setting
1847 -)))|(((
1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1848 1848  Effective immediately
1849 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1850 1850  
1851 1851  Table 6-45 Torque filtering time constant parameter details
1852 1852  
1853 1853  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1854 1854  
1855 -
1869 +(% style="text-align:center" %)
1856 1856  [[image:image-20220608172646-38.png]]
1857 1857  
1858 1858  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1863,7 +1863,7 @@
1863 1863  
1864 1864  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1865 1865  
1866 -
1880 +(% style="text-align:center" %)
1867 1867  [[image:image-20220608172806-39.png]]
1868 1868  
1869 1869  Figure 6-44 Torque instruction limit diagram
... ... @@ -1872,50 +1872,50 @@
1872 1872  
1873 1873  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1874 1874  
1875 -
1876 -|**Function code**|**Name**|(((
1889 +(% class="table-bordered" %)
1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1877 1877  **Setting method**
1878 -)))|(((
1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1879 1879  **Effective time**
1880 -)))|**Default value**|**Range**|**Definition**|**Unit**
1881 -|P01-14|(((
1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1882 1882  Torque limit source
1883 -)))|(((
1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1884 1884  Shutdown setting
1885 -)))|(((
1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1886 1886  Effective immediately
1887 -)))|0|0 to 1|(((
1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1888 1888  0: internal value
1889 1889  
1890 1890  1: AI_1 analog input
1891 1891  
1892 1892  (not supported by VD2F)
1893 -)))|-
1907 +)))|(% style="text-align:center; vertical-align:middle" %)-
1894 1894  
1895 1895  1) Torque limit source is internal torque instruction (P01-14=0)
1896 1896  
1897 1897  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1898 1898  
1899 -
1900 -|**Function code**|**Name**|(((
1913 +(% class="table-bordered" %)
1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1901 1901  **Setting method**
1902 -)))|(((
1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1903 1903  **Effective time**
1904 -)))|**Default value**|**Range**|**Definition**|**Unit**
1905 -|P01-15|(((
1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1906 1906  Forward torque limit
1907 -)))|(((
1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1908 1908  Operation setting
1909 -)))|(((
1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1910 1910  Effective immediately
1911 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1912 -|P01-16|(((
1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1913 1913  Reverse torque limit
1914 -)))|(((
1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1915 1915  Operation setting
1916 -)))|(((
1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1917 1917  Effective immediately
1918 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1919 1919  
1920 1920  Table 6-46 Torque limit parameter details
1921 1921  
... ... @@ -1927,11 +1927,11 @@
1927 1927  
1928 1928  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1929 1929  
1930 -
1931 -|**DO function code**|**Function name**|**Function**
1932 -|139|(((
1944 +(% class="table-bordered" %)
1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1933 1933  T-LIMIT in torque limit
1934 -)))|Output of this signal indicates that the servo motor torque is limited
1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1935 1935  
1936 1936  Table 6-47 DO torque limit function codes
1937 1937  
... ... @@ -1942,43 +1942,46 @@
1942 1942  In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1943 1943  
1944 1944  |(((
1959 +(% style="text-align:center" %)
1945 1945  [[image:image-20220608172910-40.png]]
1946 1946  )))|(((
1962 +(% style="text-align:center" %)
1947 1947  [[image:image-20220608173155-41.png]]
1948 1948  )))
1949 1949  |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1950 1950  
1951 -|**Function code**|**Name**|(((
1967 +(% class="table-bordered" %)
1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1952 1952  **Setting method**
1953 -)))|(((
1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1954 1954  **Effective time**
1955 -)))|**Default value**|**Range**|**Definition**|**Unit**
1956 -|P01-17|(((
1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1957 1957  Forward torque
1958 1958  
1959 1959  limit in torque mode
1960 -)))|(((
1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1961 1961  Operation setting
1962 -)))|(((
1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1963 1963  Effective immediately
1964 -)))|3000|0 to 5000|(((
1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1965 1965  Forward torque
1966 1966  
1967 1967  limit in torque mode
1968 -)))|0.1%
1969 -|P01-18|(((
1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1970 1970  Reverse torque
1971 1971  
1972 1972  limit in torque mode
1973 -)))|(((
1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1974 1974  Operation setting
1975 -)))|(((
1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1976 1976  Effective immediately
1977 -)))|3000|0 to 5000|(((
1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1978 1978  Reverse torque
1979 1979  
1980 1980  limit in torque mode
1981 -)))|0.1%
1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1982 1982  
1983 1983  Table 6-48 Speed limit parameters in torque mode
1984 1984  
... ... @@ -1992,7 +1992,7 @@
1992 1992  
1993 1993  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1994 1994  
1995 -
2012 +(% style="text-align:center" %)
1996 1996  [[image:image-20220608173541-42.png]]
1997 1997  
1998 1998  Figure 6-47 Torque arrival output diagram
... ... @@ -1999,44 +1999,44 @@
1999 1999  
2000 2000  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2001 2001  
2002 -
2003 -|**Function code**|**Name**|(((
2019 +(% class="table-bordered" %)
2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2004 2004  **Setting method**
2005 -)))|(((
2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2006 2006  **Effective time**
2007 -)))|**Default value**|**Range**|**Definition**|**Unit**
2008 -|P05-20|(((
2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2009 2009  Torque arrival
2010 2010  
2011 2011  threshold
2012 -)))|(((
2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2013 2013  Operation setting
2014 -)))|(((
2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2015 2015  Effective immediately
2016 -)))|100|0 to 300|(((
2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2017 2017  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2018 2018  
2019 2019  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2020 2020  
2021 2021  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2022 -)))|%
2023 -|P05-21|(((
2039 +)))|(% style="text-align:center; vertical-align:middle" %)%
2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2024 2024  Torque arrival
2025 2025  
2026 2026  hysteresis
2027 -)))|(((
2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2028 2028  Operation setting
2029 -)))|(((
2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2030 2030  Effective immediately
2031 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2032 2032  
2033 2033  Table 6-49 Torque arrival parameters
2034 2034  
2035 -
2036 -|**DO function code**|**Function name**|**Function**
2037 -|138|(((
2052 +(% class="table-bordered" %)
2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2038 2038  T-COIN torque arrival
2039 -)))|Used to determine whether the actual torque instruction has reached the set range
2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2040 2040  
2041 2041  Table 6-50 DO Torque Arrival Function Code
2042 2042  
... ... @@ -2052,17 +2052,17 @@
2052 2052  
2053 2053  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2054 2054  
2055 -
2056 -|**Function code**|**Name**|(((
2072 +(% class="table-bordered" %)
2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2057 2057  **Setting method**
2058 -)))|(((
2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2059 2059  **Effective time**
2060 -)))|**Default value**|**Range**|**Definition**|**Unit**
2061 -|P00-01|Control mode|(((
2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2062 2062  Shutdown setting
2063 -)))|(((
2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2064 2064  Shutdown setting
2065 -)))|1|1 to 6|(((
2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)(((
2066 2066  1: Position control
2067 2067  
2068 2068  2: Speed control
... ... @@ -2074,22 +2074,23 @@
2074 2074  5: Position/torque mixed control
2075 2075  
2076 2076  6: Speed/torque mixed control
2077 -)))|-
2094 +)))|(% style="text-align:center; vertical-align:middle" %)-
2078 2078  
2079 2079  Table 6-51 Mixed control mode parameters
2080 2080  
2081 2081  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2082 2082  
2083 -
2084 -|**DI function code**|**Name**|**Function name**|**Function**
2085 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2086 -|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2087 -|(% rowspan="2" %)4|Valid|Speed mode
2088 -|invalid|Position mode
2089 -|(% rowspan="2" %)5|Valid|Torque mode
2090 -|invalid|Position mode
2091 -|(% rowspan="2" %)6|Valid|Torque mode
2092 -|invalid|Speed mode
2100 +(% class="table-bordered" %)
2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2103 +(% class="table-bordered" %)
2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2093 2093  )))
2094 2094  
2095 2095  Table 6-52 Description of DI function codes in control mode
... ... @@ -2108,15 +2108,15 @@
2108 2108  
2109 2109  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2110 2110  
2129 +(% class="table-bordered" %)
2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2111 2111  
2112 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2113 -|A1 (single-turn magnetic encoder)|17|0 to 131071
2114 -
2115 2115  Table 6-53 Single-turn absolute encoder information
2116 2116  
2117 2117  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2118 2118  
2119 -
2137 +(% style="text-align:center" %)
2120 2120  [[image:image-20220608173618-43.png]]
2121 2121  
2122 2122  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2125,16 +2125,16 @@
2125 2125  
2126 2126  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2127 2127  
2146 +(% class="table-bordered" %)
2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2128 2128  
2129 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2130 -|C1 (multi-turn magnetic encoder)|17|0 to 131071
2131 -|D2 (multi-turn Optical encoder)|23|0 to 8388607
2132 -
2133 2133  Table 6-54 Multi-turn absolute encoder information
2134 2134  
2135 2135  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2136 2136  
2137 -
2155 +(% style="text-align:center" %)
2138 2138  [[image:image-20220608173701-44.png]]
2139 2139  
2140 2140  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2143,12 +2143,12 @@
2143 2143  
2144 2144  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2145 2145  
2164 +(% class="table-bordered" %)
2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2146 2146  
2147 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2148 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2149 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2150 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2151 -
2152 2152  Table 6-55 Encoder feedback data
2153 2153  
2154 2154  == **Absolute value system encoder battery box use precautions** ==
... ... @@ -2155,7 +2155,7 @@
2155 2155  
2156 2156  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2157 2157  
2158 -
2176 +(% style="text-align:center" %)
2159 2159  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2160 2160  
2161 2161  Figure 6-50 the encoder battery box
... ... @@ -2168,23 +2168,23 @@
2168 2168  
2169 2169  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2170 2170  
2171 -
2172 -|**Function code**|**Name**|(((
2189 +(% class="table-bordered" %)
2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2173 2173  **Setting method**
2174 -)))|(((
2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2175 2175  **Effective time**
2176 -)))|**Default value**|**Range**|**Definition**|**Unit**
2177 -|P10-06|Multi-turn absolute encoder reset|(((
2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2178 2178  Shutdown setting
2179 -)))|(((
2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2180 2180  Effective immediately
2181 -)))|0|0 to 1|(((
2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2182 2182  0: No operation
2183 2183  
2184 2184  1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2185 2185  
2186 2186  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2187 -)))|-
2205 +)))|(% style="text-align:center; vertical-align:middle" %)-
2188 2188  
2189 2189  Table 6-56 Absolute encoder reset enable parameter
2190 2190  
... ... @@ -2202,18 +2202,18 @@
2202 2202  
2203 2203  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2204 2204  
2205 -
2223 +(% style="text-align:center" %)
2206 2206  [[image:image-20220608173804-46.png]]
2207 2207  
2208 2208  Figure 6-51 VDI_1 setting steps
2209 2209  
2210 -
2211 -|**Function code**|**Name**|(((
2228 +(% class="table-bordered" %)
2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2212 2212  **Setting method**
2213 -)))|(((
2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2214 2214  **Effective time**
2215 -)))|**Default value**|**Range**|**Definition**|**Unit**
2216 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2217 2217  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2218 2218  
2219 2219  VDI_1 input level:
... ... @@ -2221,8 +2221,8 @@
2221 2221  0: low level
2222 2222  
2223 2223  1: high level
2224 -)))|-
2225 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2242 +)))|(% style="text-align:center; vertical-align:middle" %)-
2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2226 2226  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2227 2227  
2228 2228  VDI_2 input level:
... ... @@ -2230,8 +2230,8 @@
2230 2230  0: low level
2231 2231  
2232 2232  1: high level
2233 -)))|-
2234 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2251 +)))|(% style="text-align:center; vertical-align:middle" %)-
2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2235 2235  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2236 2236  
2237 2237  VDI_3 input level:
... ... @@ -2239,8 +2239,8 @@
2239 2239  0: low level
2240 2240  
2241 2241  1: high level
2242 -)))|-
2243 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2260 +)))|(% style="text-align:center; vertical-align:middle" %)-
2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2244 2244  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2245 2245  
2246 2246  VDI_4 input level:
... ... @@ -2248,8 +2248,8 @@
2248 2248  0: low level
2249 2249  
2250 2250  1: high level
2251 -)))|-
2252 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2269 +)))|(% style="text-align:center; vertical-align:middle" %)-
2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2253 2253  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2254 2254  
2255 2255  VDI_5 input level:
... ... @@ -2257,8 +2257,8 @@
2257 2257  0: low level
2258 2258  
2259 2259  1: high level
2260 -)))|-
2261 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2278 +)))|(% style="text-align:center; vertical-align:middle" %)-
2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2262 2262  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2263 2263  
2264 2264  VDI_6 input level:
... ... @@ -2266,8 +2266,8 @@
2266 2266  0: low level
2267 2267  
2268 2268  1: high level
2269 -)))|-
2270 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2287 +)))|(% style="text-align:center; vertical-align:middle" %)-
2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2271 2271  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2272 2272  
2273 2273  VDI_7 input level:
... ... @@ -2275,8 +2275,8 @@
2275 2275  0: low level
2276 2276  
2277 2277  1: high level
2278 -)))|-
2279 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2296 +)))|(% style="text-align:center; vertical-align:middle" %)-
2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2280 2280  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2281 2281  
2282 2282  VDI_8 input level:
... ... @@ -2284,7 +2284,7 @@
2284 2284  0: low level
2285 2285  
2286 2286  1: high level
2287 -)))|-
2305 +)))|(% style="text-align:center; vertical-align:middle" %)-
2288 2288  
2289 2289  Table 6-57 Virtual VDI parameters
2290 2290  
... ... @@ -2294,11 +2294,11 @@
2294 2294  
2295 2295  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2296 2296  
2315 +(% class="table-bordered" %)
2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2297 2297  
2298 -|**Setting value**|**DI channel logic selection**|**Illustration**
2299 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2300 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2301 -
2302 2302  Table 6-58 DI terminal channel logic selection
2303 2303  
2304 2304  == **VDO** ==
... ... @@ -2307,55 +2307,55 @@
2307 2307  
2308 2308  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2309 2309  
2310 -
2328 +(% style="text-align:center" %)
2311 2311  [[image:image-20220608173957-48.png]]
2312 2312  
2313 2313  Figure 6-52 VDO_2 setting steps
2314 2314  
2315 -
2316 -|**Function code**|**Name**|(((
2333 +(% class="table-bordered" %)
2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2317 2317  **Setting method**
2318 -)))|(((
2336 +)))|(% style="text-align:center; vertical-align:middle" %)(((
2319 2319  **Effective time**
2320 -)))|**Default value**|**Range**|**Definition**|**Unit**
2321 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2322 2322  VDO_1 output level:
2323 2323  
2324 2324  0: low level
2325 2325  
2326 2326  1: high level
2327 -)))|-
2328 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2345 +)))|(% style="text-align:center; vertical-align:middle" %)-
2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2329 2329  VDO_2 output level:
2330 2330  
2331 2331  0: low level
2332 2332  
2333 2333  1: high level
2334 -)))|-
2335 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2352 +)))|(% style="text-align:center; vertical-align:middle" %)-
2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2336 2336  VDO_3 output level:
2337 2337  
2338 2338  0: low level
2339 2339  
2340 2340  1: high level
2341 -)))|-
2342 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2359 +)))|(% style="text-align:center; vertical-align:middle" %)-
2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2343 2343  VDO_4 output level:
2344 2344  
2345 2345  0: low level
2346 2346  
2347 2347  1: high level
2348 -)))|-
2366 +)))|(% style="text-align:center; vertical-align:middle" %)-
2349 2349  
2350 2350  Table 6-59 Communication control DO function parameters
2351 2351  
2370 +(% class="table-bordered" %)
2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2352 2352  
2353 -|**DO function number**|**Function name**|**Function**
2354 -|145|COM_VDO1 communication VDO1 output|Use communication VDO
2355 -|146|COM_VDO1 communication VDO2 output|Use communication VDO
2356 -|147|COM_VDO1 communication VDO3 output|Use communication VDO
2357 -|148|COM_VDO1 communication VDO4output|Use communication VDO
2358 -
2359 2359  Table 6-60 VDO function number
2360 2360  
2361 2361  ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
... ... @@ -2366,17 +2366,17 @@
2366 2366  
2367 2367  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2368 2368  
2369 -
2370 -|**Function code**|**Name**|(((
2387 +(% class="table-bordered" %)
2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2371 2371  **Setting method**
2372 -)))|(((
2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2373 2373  **Effective time**
2374 -)))|**Default value**|**Range**|**Definition**|**Unit**
2375 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2376 2376  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2377 2377  
2378 2378  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2379 -)))|%
2397 +)))|(% style="text-align:center; vertical-align:middle" %)%
2380 2380  
2381 2381  In the following cases, it could be modified according to the actual heat generation of the motor
2382 2382