Changes for page 06 Operation

Last modified by Iris on 2025/08/06 18:24

From version 48.3
edited by Leo Wei
on 2022/06/11 18:01
Change comment: There is no comment for this version
To version 43.1
edited by Joey
on 2022/06/11 15:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.admin
1 +XWiki.Joey
Content
... ... @@ -2,20 +2,20 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" %)**No.**|=**Content**
6 -|=(% colspan="2" %)Wiring
7 -|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=5|Servo drive and servo motor must be grounded reliably.
12 -|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=7|The force of all cables is within the specified range.
14 -|=8|The wiring terminals have been insulated.
15 -|=(% colspan="2" %)Environment and Machinery
16 -|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 -|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
5 +|**No.**|**Content**
6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|5|Servo drive and servo motor must be grounded reliably.
12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|7|The force of all cables is within the specified range.
14 +|8|The wiring terminals have been insulated.
15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
... ... @@ -42,17 +42,17 @@
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 44  
45 -
46 -|=(% scope="row" %)**Function code**|=**Name**|=(((
45 +(% class="table-bordered" %)
46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
47 47  **Setting method**
48 -)))|=(((
48 +)))|(% style="text-align:center; vertical-align:middle" %)(((
49 49  **Effective time**
50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
51 -|=P10-01|JOG speed|(((
50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
52 52  Operation setting
53 -)))|(((
53 +)))|(% style="text-align:center; vertical-align:middle" %)(((
54 54  Effective immediately
55 -)))|100|0 to 3000|JOG speed|rpm
55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
56 56  
57 57  Table 6-2 JOG speed parameter
58 58  
... ... @@ -60,25 +60,25 @@
60 60  
61 61  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62 62  
63 -
64 -|=(% scope="row" %)**Function code**|=**Name**|=(((
63 +(% class="table-bordered" %)
64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
65 65  **Setting method**
66 -)))|=(((
66 +)))|(% style="text-align:center; vertical-align:middle" %)(((
67 67  **Effective time**
68 -)))|=(((
68 +)))|(% style="text-align:center; vertical-align:middle" %)(((
69 69  **Default value**
70 -)))|=**Range**|=**Definition**|=**Unit**
71 -|=P00-04|Rotation direction|(((
70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
72 72  Shutdown setting
73 -)))|(((
73 +)))|(% style="text-align:center; vertical-align:middle" %)(((
74 74  Effective immediately
75 -)))|0|0 to 1|(((
75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
76 76  Forward rotation: Face the motor shaft to watch
77 77  
78 78  0: standard setting (CW is forward rotation)
79 79  
80 80  1: reverse mode (CCW is forward rotation)
81 -)))|-
81 +)))|(% style="text-align:center; vertical-align:middle" %)-
82 82  
83 83  Table 6-3 Rotation direction parameters** **
84 84  
... ... @@ -91,16 +91,17 @@
91 91  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
92 92  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
93 93  
94 -|=(% scope="row" %)**Function code**|=**Name**|=(((
94 +(% class="table-bordered" %)
95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
95 95  **Setting method**
96 -)))|=(((
97 +)))|(% style="text-align:center; vertical-align:middle" %)(((
97 97  **Effective time**
98 -)))|=**Default**|=**Range**|=**Definition**|=**Unit**
99 -|=P00-09|Braking resistor setting|(((
99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
100 100  Operation setting
101 -)))|(((
102 +)))|(% style="text-align:center; vertical-align:middle" %)(((
102 102  Effective immediately
103 -)))|0|0 to 3|(((
104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
104 104  0: use built-in braking resistor
105 105  
106 106  1: use external braking resistor and natural cooling
... ... @@ -108,18 +108,18 @@
108 108  2: use external braking resistor and forced air cooling; (cannot be set)
109 109  
110 110  3: No braking resistor is used, it is all absorbed by capacitor.
111 -)))|-
112 -|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
113 -|=P00-10|External braking resistor value|(((
112 +)))|(% style="text-align:center; vertical-align:middle" %)-
113 +|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
114 114  Operation setting
115 -)))|(((
116 +)))|(% style="text-align:center; vertical-align:middle" %)(((
116 116  Effective immediately
117 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
118 -|=P00-11|External braking resistor power|(((
118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
119 119  Operation setting
120 -)))|(((
121 +)))|(% style="text-align:center; vertical-align:middle" %)(((
121 121  Effective immediately
122 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
123 123  
124 124  Table 6-4 Braking resistor parameters
125 125  
... ... @@ -137,7 +137,7 @@
137 137  
138 138  **(3) Timing diagram of power on**
139 139  
140 -
141 +(% style="text-align:center" %)
141 141  [[image:image-20220608163014-1.png]]
142 142  
143 143  Figure 6-1 Timing diagram of power on
... ... @@ -146,17 +146,17 @@
146 146  
147 147  According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
148 148  
150 +(% class="table-bordered" %)
151 +|Shutdown mode|Shutdown description|Shutdown characteristics
152 +|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
153 +|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
149 149  
150 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
151 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
152 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
153 -
154 154  Table 6-5 Comparison of two shutdown modes
155 155  
157 +(% class="table-bordered" %)
158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
156 156  
157 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
158 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
159 -
160 160  Table 6-6 Comparison of two shutdown status
161 161  
162 162  **(1) Servo enable (S-ON) OFF shutdown**
... ... @@ -163,27 +163,27 @@
163 163  
164 164  The related parameters of the servo OFF shutdown mode are shown in the table below.
165 165  
166 -
167 -|=(% scope="row" %)**Function code**|=**Name**|=(((
167 +(% class="table-bordered" %)
168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
168 168  **Setting method**
169 -)))|=(((
170 +)))|(% style="text-align:center; vertical-align:middle" %)(((
170 170  **Effective time**
171 -)))|=(((
172 +)))|(% style="text-align:center; vertical-align:middle" %)(((
172 172  **Default value**
173 -)))|=**Range**|=**Definition**|=**Unit**
174 -|=P00-05|Servo OFF shutdown|(((
174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
175 175  Shutdown
176 176  
177 177  setting
178 -)))|(((
179 +)))|(% style="text-align:center; vertical-align:middle" %)(((
179 179  Effective
180 180  
181 181  immediately
182 -)))|0|0 to 1|(((
183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
183 183  0: Free shutdown, and the motor shaft remains free status.
184 184  
185 185  1: Zero-speed shutdown, and the motor shaft remains free status.
186 -)))|-
187 +)))|(% style="text-align:center; vertical-align:middle" %)-
187 187  
188 188  Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
189 189  
... ... @@ -199,13 +199,13 @@
199 199  
200 200  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
201 201  
202 -
203 -|=(% scope="row" %)**Function code**|=**Name**|=(((
203 +(% class="table-bordered" %)
204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
204 204  **Setting method**
205 -)))|=(((
206 +)))|(% style="text-align:center; vertical-align:middle" %)(((
206 206  **Effective time**
207 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
208 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
209 209  0: OFF (not used)
210 210  
211 211  01: S-ON servo enable
... ... @@ -253,30 +253,32 @@
253 253  24: Internal multi-segment position selection 4
254 254  
255 255  Others: reserved
256 -)))|-
257 -|=P06-09|DI_3 channel logic selection|Operation setting|(((
257 +)))|(% style="text-align:center; vertical-align:middle" %)-
258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
258 258  Effective immediately
259 -)))|0|0 to 1|(((
260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
260 260  DI port input logic validity function selection.
261 261  
262 262  0: Normally open input. Active low level (switch on);
263 263  
264 264  1: Normally closed input. Active high level (switch off);
265 -)))|-
266 -|=P06-10|DI_3 input source selection|Operation setting|(((
266 +)))|(% style="text-align:center; vertical-align:middle" %)-
267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
267 267  Effective immediately
268 -)))|0|0 to 1|(((
269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
269 269  Select the DI_3 port type to enable
270 270  
271 271  0: Hardware DI_3 input terminal
272 272  
273 273  1: virtual VDI_3 input terminal
274 -)))|-
275 -|=P06-11|DI_4 channel function selection|(((
275 +)))|(% style="text-align:center; vertical-align:middle" %)-
276 +
277 +(% class="table-bordered" %)
278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
276 276  Operation setting
277 -)))|(((
280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
278 278  again Power-on
279 -)))|4|0 to 32|(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
280 280  0 off (not used)
281 281  
282 282  01: SON Servo enable
... ... @@ -324,25 +324,25 @@
324 324  24: Internal multi-segment position selection 4
325 325  
326 326  Others: reserved
327 -)))|-
328 -|=P06-12|DI_4 channel logic selection|Operation setting|(((
330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
329 329  Effective immediately
330 -)))|0|0 to 1|(((
333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
331 331  DI port input logic validity function selection.
332 332  
333 333  0: Normally open input. Active low level (switch on);
334 334  
335 335  1: Normally closed input. Active high level (switch off);
336 -)))|-
337 -|=P06-13|DI_4 input source selection|Operation setting|(((
339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
338 338  Effective immediately
339 -)))|0|0 to 1|(((
342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
340 340  Select the DI_4 port type to enable
341 341  
342 342  0: Hardware DI_4 input terminal
343 343  
344 344  1: virtual VDI_4 input terminal
345 -)))|-
348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
346 346  
347 347  Table 6-8 DI3 and DI4 channel parameters
348 348  
... ... @@ -354,8 +354,9 @@
354 354  
355 355  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
356 356  
357 -
360 +(% class="table-bordered" %)
358 358  |(((
362 +(% style="text-align:center" %)
359 359  [[image:image-20220611151617-1.png]]
360 360  )))
361 361  |(((
... ... @@ -374,13 +374,14 @@
374 374  
375 375  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
376 376  
377 -
381 +(% style="text-align:center" %)
378 378  [[image:image-20220608163136-2.png]]
379 379  
380 380  Figure 6-2 VD2B servo drive brake wiring
381 381  
382 -
386 +(% class="table-bordered" %)
383 383  |(((
388 +(% style="text-align:center" %)
384 384  [[image:image-20220611151642-2.png]]
385 385  )))
386 386  |(((
... ... @@ -397,42 +397,42 @@
397 397  
398 398  Related function code is as below.
399 399  
400 -
401 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
405 +(% class="table-bordered" %)
406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
402 402  **Effective time**
403 403  )))
404 -|=144|(((
409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
405 405  BRK-OFF Brake output
406 -)))|Output the signal indicates the servo motor brake release|Power-on again
411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
407 407  
408 408  Table 6-2 Relevant function codes for brake setting
409 409  
410 -
411 -|=(% scope="row" %)**Function code**|=**Name**|=(((
415 +(% class="table-bordered" %)
416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
412 412  **Setting method**
413 -)))|=(((
418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
414 414  **Effective time**
415 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
416 -|=P1-30|Delay from brake output to instruction reception|(((
420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
417 417  Operation setting
418 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
419 -|=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
420 420  Operation setting
421 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
422 -|=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
423 423  Operation setting
424 -)))|Effective immediately|30|0 to 3000|(((
429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
425 425  When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
426 426  
427 427  When the brake output (BRK-OFF) is not allocated, this function code has no effect.
428 -)))|rpm
429 -|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm
434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
430 430  Operation setting
431 -)))|Effective immediately|500|1 to 1000|(((
436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
432 432  When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
433 433  
434 434  When brake output (BRK-OFF) is not allocated, this function code has no effect.
435 -)))|ms
440 +)))|(% style="text-align:center; vertical-align:middle" %)ms
436 436  
437 437  Table 6-9 Brake setting function codes
438 438  
... ... @@ -446,8 +446,9 @@
446 446  
447 447  When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
448 448  
449 -
454 +(% class="table-bordered" %)
450 450  |(((
456 +(% style="text-align:center" %)
451 451  [[image:image-20220611151705-3.png]]
452 452  )))
453 453  |(((
... ... @@ -456,6 +456,7 @@
456 456  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
457 457  )))
458 458  
465 +(% style="text-align:center" %)
459 459  [[image:image-20220608163304-3.png]]
460 460  
461 461  Figure 6-3 Brake Timing of when the motor is stationary
... ... @@ -466,8 +466,9 @@
466 466  
467 467  When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
468 468  
469 -
476 +(% class="table-bordered" %)
470 470  |(((
478 +(% style="text-align:center" %)
471 471  [[image:image-20220611151719-4.png]]
472 472  )))
473 473  |(((
... ... @@ -482,6 +482,7 @@
482 482  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
483 483  )))
484 484  
493 +(% style="text-align:center" %)
485 485  [[image:image-20220608163425-4.png]]
486 486  
487 487  Figure 6-4 Brake timing when the motor rotates
... ... @@ -490,7 +490,7 @@
490 490  
491 491  The brake timing (free shutdown) in the fault status is as follows.
492 492  
493 -
502 +(% style="text-align:center" %)
494 494  [[image:image-20220608163541-5.png]]
495 495  
496 496   Figure 6-5 The brake timing (free shutdown) in the fault state
... ... @@ -499,7 +499,7 @@
499 499  
500 500  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
501 501  
502 -
511 +(% style="text-align:center" %)
503 503  [[image:image-20220608163643-6.png]]
504 504  
505 505  Figure 6-6 Position control diagram
... ... @@ -506,17 +506,17 @@
506 506  
507 507  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
508 508  
509 -
510 -|=(% scope="row" %)**Function code**|=**Name**|=(((
518 +(% class="table-bordered" %)
519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
511 511  **Setting method**
512 -)))|=(((
521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
513 513  **Effective time**
514 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
515 -|=P01-01|Control mode|(((
523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
516 516  Operation setting
517 -)))|(((
526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
518 518  immediately Effective
519 -)))|0|0 to 1|(((
528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
520 520  0: position control
521 521  
522 522  2: speed control
... ... @@ -528,7 +528,7 @@
528 528  5: position/torque mix control
529 529  
530 530  6: speed /torque mix control
531 -)))|-
540 +)))|(% style="text-align:center; vertical-align:middle" %)-
532 532  
533 533  Table 6-10 Control mode parameters
534 534  
... ... @@ -536,21 +536,21 @@
536 536  
537 537  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
538 538  
539 -
540 -|=(% scope="row" %)**Function code**|=**Name**|=(((
548 +(% class="table-bordered" %)
549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
541 541  **Setting method**
542 -)))|=(((
551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
543 543  **Effective time**
544 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
545 -|=P01-06|Position instruction source|(((
553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
546 546  Operation setting
547 -)))|(((
556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
548 548  immediately Effective
549 -)))|0|0 to 1|(((
558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
550 550  0: pulse instruction
551 551  
552 552  1: internal position instruction
553 -)))|-
562 +)))|(% style="text-align:center; vertical-align:middle" %)-
554 554  
555 555  Table 6-11 Position instruction source parameter
556 556  
... ... @@ -558,20 +558,20 @@
558 558  
559 559  1) Low-speed pulse instruction input
560 560  
570 +(% class="table-bordered" %)
571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
561 561  
562 -|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
563 -|VD2A and VD2B servo drives|VD2F servo drive
564 -|(% colspan="2" %)Figure 6-7 Position instruction input setting
565 -
566 566  VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
567 567  
568 568  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
569 569  
579 +(% class="table-bordered" %)
580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
570 570  
571 -|**Pulse method**|**Maximum frequency**|**Voltage**
572 -|Open collector input|200K|24V
573 -|Differential input|500K|5V
574 -
575 575  Table 6-12 Pulse input specifications
576 576  
577 577  1.Differential input
... ... @@ -578,7 +578,7 @@
578 578  
579 579  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
580 580  
581 -
590 +(% style="text-align:center" %)
582 582  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
583 583  
584 584  Figure 6-8 Differential input connection
... ... @@ -589,7 +589,7 @@
589 589  
590 590  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
591 591  
592 -
601 +(% style="text-align:center" %)
593 593  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
594 594  
595 595  Figure 6-9 Open collector input connection
... ... @@ -600,7 +600,7 @@
600 600  
601 601  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
602 602  
603 -
612 +(% style="text-align:center" %)
604 604  [[image:image-20220608163952-8.png]]
605 605  
606 606  Figure 6-10 Example of filtered signal waveform
... ... @@ -607,22 +607,22 @@
607 607  
608 608  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
609 609  
610 -
611 -|=(% scope="row" %)**Function code**|=**Name**|=(((
619 +(% class="table-bordered" %)
620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
612 612  **Setting method**
613 -)))|=(((
622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
614 614  **Effective time**
615 -)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
616 -|=P00-13|Maximum position pulse frequency|(((
624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
617 617  Shutdown setting
618 -)))|(((
627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
619 619  Effective immediately
620 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
621 -|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
622 622  Operation setting
623 -)))|(% rowspan="3" %)(((
632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
624 624  Power-on again
625 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
626 626  Set the anti-interference level of external pulse instruction.
627 627  
628 628  0: no filtering;
... ... @@ -642,9 +642,9 @@
642 642  7: Filtering time 8.192us
643 643  
644 644  8: Filtering time 16.384us
645 -)))|(% rowspan="3" %)-
646 -|=(% rowspan="2" %)9|VD2: Filtering time 25.5us
647 -|=VD2F: Filtering time 25.5us
654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
656 +|VD2F: Filtering time 25.5us
648 648  
649 649  Table 6-13 Position pulse frequency and anti-interference level parameters
650 650  
... ... @@ -652,17 +652,17 @@
652 652  
653 653  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
654 654  
655 -
656 -|=(% scope="row" %)**Function code**|=**Name**|=(((
664 +(% class="table-bordered" %)
665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
657 657  **Setting method**
658 -)))|=(((
667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
659 659  **Effective time**
660 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
661 -|=P00-12|Position pulse type selection|(((
669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
662 662  Operation setting
663 -)))|(((
672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
664 664  Power-on again
665 -)))|0|0 to 5|(((
674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
666 666  0: direction + pulse (positive logic)
667 667  
668 668  1: CW/CCW
... ... @@ -674,74 +674,74 @@
674 674  4: CW/CCW (negative logic)
675 675  
676 676  5: A, B phase quadrature pulse (4 times frequency negative logic)
677 -)))|-
686 +)))|(% style="text-align:center; vertical-align:middle" %)-
678 678  
679 679  Table 6-14 Position pulse type selection parameter
680 680  
681 -
682 -|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
683 -|=0|(((
690 +(% class="table-bordered" %)
691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
684 684  Direction + pulse
685 685  
686 686  (Positive logic)
687 -)))|(((
696 +)))|(% style="text-align:center; vertical-align:middle" %)(((
688 688  PULSE
689 689  
690 690  SIGN
691 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
692 -|=1|CW/CCW|(((
700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
693 693  PULSE (CW)
694 694  
695 695  SIGN (CCW)
696 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
697 -|=2|(((
705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
698 698  AB phase orthogonal
699 699  
700 700  pulse (4 times frequency)
701 -)))|(((
710 +)))|(% style="text-align:center; vertical-align:middle" %)(((
702 702  PULSE (Phase A)
703 703  
704 704  SIGN (Phase B)
705 -)))|(((
714 +)))|(% style="text-align:center; vertical-align:middle" %)(((
706 706  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
707 707  
708 708  Phase A is 90° ahead of Phase B
709 -)))|(((
718 +)))|(% style="text-align:center; vertical-align:middle" %)(((
710 710  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
711 711  
712 712  Phase B is 90° ahead of Phase A
713 713  )))
714 -|=3|(((
723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
715 715  Direction + pulse
716 716  
717 717  (Negative logic)
718 -)))|(((
727 +)))|(% style="text-align:center; vertical-align:middle" %)(((
719 719  PULSE
720 720  
721 721  SIGN
722 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
723 -|=4|(((
731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
724 724  CW/CCW
725 725  
726 726  (Negative logic)
727 -)))|(((
736 +)))|(% style="text-align:center; vertical-align:middle" %)(((
728 728  PULSE (CW)
729 729  
730 730  SIGN (CCW)
731 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
732 -|=5|(((
740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
733 733  AB phase orthogonal
734 734  
735 735  pulse (4 times frequency negative logic)
736 -)))|(((
745 +)))|(% style="text-align:center; vertical-align:middle" %)(((
737 737  PULSE (Phase A)
738 738  
739 739  SIGN (Phase B)
740 -)))|(((
749 +)))|(% style="text-align:center; vertical-align:middle" %)(((
741 741  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
742 742  
743 743  B phase is ahead of A phase by 90°
744 -)))|(((
753 +)))|(% style="text-align:center; vertical-align:middle" %)(((
745 745  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
746 746  
747 747  A phase is ahead of B phase by 90°
... ... @@ -755,7 +755,7 @@
755 755  
756 756  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
757 757  
758 -
767 +(% style="text-align:center" %)
759 759  [[image:image-20220608164116-9.png]]
760 760  
761 761  Figure 6-11 The setting process of multi-segment position
... ... @@ -762,51 +762,51 @@
762 762  
763 763  1) Set multi-segment position running mode
764 764  
765 -
766 -|=(% scope="row" %)**Function code**|=**Name**|=(((
774 +(% class="table-bordered" %)
775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
767 767  **Setting method**
768 -)))|=(((
777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
769 769  **Effective time**
770 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
771 -|=P07-01|Multi-segment position running mode|(((
779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
772 772  Shutdown setting
773 -)))|(((
782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
774 774  Effective immediately
775 -)))|0|0 to 2|(((
784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
776 776  0: Single running
777 777  
778 778  1: Cycle running
779 779  
780 780  2: DI switching running
781 -)))|-
782 -|=P07-02|Start segment number|(((
790 +)))|(% style="text-align:center; vertical-align:middle" %)-
791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
783 783  Shutdown setting
784 -)))|(((
793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
785 785  Effective immediately
786 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|-
787 -|=P07-03|End segment number|(((
795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
788 788  Shutdown setting
789 -)))|(((
798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
790 790  Effective immediately
791 -)))|1|1 to 16|last segment NO. in non-DI switching mode|-
792 -|=P07-04|Margin processing method|(((
800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
793 793  Shutdown setting
794 -)))|(((
803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
795 795  Effective immediately
796 -)))|0|0 to 1|(((
805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
797 797  0: Run the remaining segments
798 798  
799 799  1: Run again from the start segment
800 -)))|-
801 -|=P07-05|Displacement instruction type|(((
809 +)))|(% style="text-align:center; vertical-align:middle" %)-
810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
802 802  Shutdown setting
803 -)))|(((
812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
804 804  Effective immediately
805 -)))|0|0 to 1|(((
814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
806 806  0: Relative position instruction
807 807  
808 808  1: Absolute position instruction
809 -)))|-
818 +)))|(% style="text-align:center; vertical-align:middle" %)-
810 810  
811 811  Table 6-16 multi-segment position running mode parameters
812 812  
... ... @@ -816,7 +816,7 @@
816 816  
817 817  In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
818 818  
819 -
828 +(% style="text-align:center" %)
820 820  [[image:image-20220608164226-10.png]]
821 821  
822 822  Figure 6-12 Single running curve (P07-02=1, P07-03=2)
... ... @@ -825,12 +825,12 @@
825 825  
826 826  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
827 827  
828 -
837 +(% style="text-align:center" %)
829 829  [[image:image-20220608164327-11.png]]
830 830  
831 831  Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
832 832  
833 -|[[image:image-20220611151917-5.png]]
842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
834 834  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
835 835  
836 836  3. DI switching running
... ... @@ -837,30 +837,30 @@
837 837  
838 838  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
839 839  
849 +(% class="table-bordered" %)
850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
840 840  
841 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
842 -|=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
843 -|=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
844 -|=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
845 -|=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
846 -
847 847  Table 6-17 DI function code
848 848  
849 849  The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
850 850  
860 +(% class="table-bordered" %)
861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
851 851  
852 -|=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
853 -|=0|0|0|0|1
854 -|=0|0|0|1|2
855 -|=0|0|1|0|3
856 -|=(% colspan="5" %)…………
857 -|=1|1|1|1|16
858 -
859 859  Table 6-18 INPOS corresponds to running segment number
860 860  
861 861  The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
862 862  
863 -
872 +(% style="text-align:center" %)
864 864  [[image:image-20220608164545-12.png]]
865 865  
866 866  Figure 6-14 DI switching running curve
... ... @@ -871,12 +871,12 @@
871 871  
872 872  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
873 873  
874 -
883 +(% style="text-align:center" %)
875 875  [[image:image-20220608164847-13.png]]
876 876  
877 877  Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
878 878  
879 -
888 +(% style="text-align:center" %)
880 880  [[image:image-20220608165032-14.png]]
881 881  
882 882  Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
... ... @@ -885,12 +885,12 @@
885 885  
886 886  In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
887 887  
888 -
897 +(% style="text-align:center" %)
889 889  [[image:image-20220608165343-15.png]]
890 890  
891 891  Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
892 892  
893 -
902 +(% style="text-align:center" %)
894 894  [[image:image-20220608165558-16.png]]
895 895  
896 896  Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
... ... @@ -902,8 +902,10 @@
902 902  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
903 903  
904 904  |(((
914 +(% style="text-align:center" %)
905 905  [[image:image-20220608165710-17.png]]
906 906  )))|(((
917 +(% style="text-align:center" %)
907 907  [[image:image-20220608165749-18.png]]
908 908  )))
909 909  |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
... ... @@ -913,8 +913,10 @@
913 913  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
914 914  
915 915  |(((
927 +(% style="text-align:center" %)
916 916  [[image:image-20220608165848-19.png]]
917 917  )))|(((
930 +(% style="text-align:center" %)
918 918  [[image:image-20220608170005-20.png]]
919 919  )))
920 920  |Figure 6-21 Absolute indication|Figure 6-22 Displacement
... ... @@ -923,46 +923,46 @@
923 923  
924 924  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
925 925  
926 -
927 -|=(% scope="row" %)**Function code**|=**Name**|=(((
939 +(% class="table-bordered" %)
940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
928 928  **Setting method**
929 -)))|=(((
942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
930 930  **Effective time**
931 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
932 -|=P07-09|(((
944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
933 933  1st segment
934 934  
935 935  displacement
936 -)))|(((
949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
937 937  Operation setting
938 -)))|(((
951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
939 939  Effective immediately
940 -)))|10000|(((
953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)(((
941 941  -2147483647 to
942 942  
943 943  2147483646
944 -)))|Position instruction, positive and negative values could be set|-
945 -|=P07-10|Maximum speed of the 1st displacement|(((
957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
946 946  Operation setting
947 -)))|(((
960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
948 948  Effective immediately
949 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
950 -|=P07-11|Acceleration and deceleration of 1st segment displacement|(((
962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
951 951  Operation setting
952 -)))|(((
965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
953 953  Effective immediately
954 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
955 -|=P07-12|Waiting time after completion of the 1st segment displacement|(((
967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
956 956  Operation setting
957 -)))|(((
970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
958 958  Effective immediately
959 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
960 960  
961 961  Table 6-19 The 1st position operation curve parameters table
962 962  
963 963  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
964 964  
965 -
978 +(% style="text-align:center" %)
966 966  [[image:image-20220608170149-21.png]]
967 967  
968 968  Figure 6-23 The 1st segment running curve of motor
... ... @@ -971,14 +971,15 @@
971 971  
972 972  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
973 973  
974 -
975 -|**DI function code**|**Function name**|**Function**
976 -|20|ENINPOS: Internal multi-segment position enable signal|(((
987 +(% class="table-bordered" %)
988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
977 977  DI port logic invalid: Does not affect the current operation of the servo motor.
978 978  
979 979  DI port logic valid: Motor runs multi-segment position
980 980  )))
981 981  
995 +(% style="text-align:center" %)
982 982  [[image:image-20220611152020-6.png]]
983 983  
984 984  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
... ... @@ -993,13 +993,13 @@
993 993  
994 994  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
995 995  
996 -
1010 +(% style="text-align:center" %)
997 997  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
998 998  
999 -
1013 +(% style="text-align:center" %)
1000 1000  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
1001 1001  
1002 -
1016 +(% style="text-align:center" %)
1003 1003  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1004 1004  
1005 1005  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
... ... @@ -1006,7 +1006,7 @@
1006 1006  
1007 1007  **(2) Setting steps of electronic gear ratio**
1008 1008  
1009 -
1023 +(% style="text-align:center" %)
1010 1010  [[image:image-20220608170320-22.png]]
1011 1011  
1012 1012  Figure 6-24 Setting steps of electronic gear ratio
... ... @@ -1021,7 +1021,7 @@
1021 1021  
1022 1022  Step5: Calculate the value of electronic gear ratio according to formula below.
1023 1023  
1024 -
1038 +(% style="text-align:center" %)
1025 1025  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1026 1026  
1027 1027  **(3) lectronic gear ratio switch setting**
... ... @@ -1029,59 +1029,59 @@
1029 1029  
1030 1030  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1031 1031  
1032 -
1033 -|**Function code**|**Name**|(((
1046 +(% class="table-bordered" %)
1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1034 1034  **Setting method**
1035 -)))|(((
1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1036 1036  **Effective time**
1037 -)))|**Default value**|**Range**|**Definition**|**Unit**
1038 -|P00-16|Number of instruction pulses when the motor rotates one circle|(((
1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1039 1039  Shutdown setting
1040 -)))|(((
1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1041 1041  Effective immediately
1042 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1043 1043  Instruction pulse
1044 1044  
1045 1045  unit
1046 1046  )))
1047 -|P00-17|(((
1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1048 1048  Electronic gear 1
1049 1049  
1050 1050  numerator
1051 -)))|Operation setting|(((
1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1052 1052  Effective immediately
1053 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1054 -|P00-18|(((
1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1055 1055  Electronic gear 1
1056 1056  
1057 1057  denominator
1058 -)))|(((
1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1059 1059  Operation setting
1060 -)))|(((
1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1061 1061  Effective immediately
1062 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1063 -|P00-19|(((
1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1064 1064  Electronic gear 2
1065 1065  
1066 1066  numerator
1067 -)))|Operation setting|(((
1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1068 1068  Effective immediately
1069 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1070 -|P00-20|(((
1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1071 1071  Electronic gear 2
1072 1072  
1073 1073  denominator
1074 -)))|Operation setting|(((
1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1075 1075  Effective immediately
1076 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 1077  
1078 1078  Table 6-20 Electronic gear ratio function code
1079 1079  
1080 1080  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1081 1081  
1082 -
1083 -|**DI function code**|**Function name**|**Function**
1084 -|09|GEAR-SEL electronic gear switch 1|(((
1096 +(% class="table-bordered" %)
1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1085 1085  DI port logic invalid: electronic gear ratio 1
1086 1086  
1087 1087  DI port logic valid: electronic gear ratio 2
... ... @@ -1089,10 +1089,10 @@
1089 1089  
1090 1090  Table 6-21 Switching conditions of electronic gear ratio group
1091 1091  
1092 -|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1093 -|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1094 -|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1095 -|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1096 1096  
1097 1097  Table 6-22 Application of electronic gear ratio
1098 1098  
... ... @@ -1110,32 +1110,32 @@
1110 1110  
1111 1111  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1112 1112  
1113 -
1127 +(% style="text-align:center" %)
1114 1114  [[image:image-20220608170455-23.png]]
1115 1115  
1116 1116  Figure 6-25 Position instruction filtering diagram
1117 1117  
1118 -
1119 -|**Function code**|**Name**|(((
1132 +(% class="table-bordered" %)
1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1120 1120  **Setting method**
1121 -)))|(((
1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1122 1122  **Effective time**
1123 -)))|**Default value**|**Range**|**Definition**|**Unit**
1124 -|P04-01|Pulse instruction filtering method|(((
1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1125 1125  Shutdown setting
1126 -)))|(((
1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1127 1127  Effective immediately
1128 -)))|0|0 to 1|(((
1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)(((
1129 1129  0: 1st-order low-pass filtering
1130 1130  
1131 1131  1: average filtering
1132 -)))|-
1133 -|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1134 1134  Effective immediately
1135 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1136 -|P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1137 1137  Effective immediately
1138 -)))|0|0 to 128|Position instruction average filtering time constant|ms
1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1139 1139  
1140 1140  Table 6-23 Position instruction filter function code
1141 1141  
... ... @@ -1155,7 +1155,7 @@
1155 1155  (% class="wikigeneratedid" %)
1156 1156  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1157 1157  
1158 -
1172 +(% style="text-align:center" %)
1159 1159  [[image:image-20220608170550-24.png]]
1160 1160  
1161 1161  Figure 6-26 Positioning completion signal output diagram
... ... @@ -1164,46 +1164,46 @@
1164 1164  
1165 1165  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1166 1166  
1167 -
1181 +(% style="text-align:center" %)
1168 1168  [[image:image-20220608170650-25.png]]
1169 1169  
1170 1170  Figure 6-27 Positioning completion signal output with increased window filter time diagram
1171 1171  
1172 -
1173 -|**Function code**|**Name**|(((
1186 +(% class="table-bordered" %)
1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1174 1174  **Setting method**
1175 -)))|(((
1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1176 1176  **Effective time**
1177 -)))|**Default value**|**Range**|**Definition**|**Unit**
1178 -|P05-12|Positioning completion threshold|(((
1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit**
1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1179 1179  Operation setting
1180 -)))|(((
1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1181 1181  Effective immediately
1182 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1183 -|P05-13|Positioning approach threshold|(((
1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1184 1184  Operation setting
1185 -)))|(((
1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1186 1186  Effective immediately
1187 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1188 -|P05-14|Position detection window time|(((
1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1189 1189  Operation setting
1190 -)))|(((
1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1191 1191  Effective immediately
1192 -)))|10|0 to 20000|Set positioning completion detection window time|ms
1193 -|P05-15|Positioning signal hold time|(((
1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1194 1194  Operation setting
1195 -)))|(((
1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1196 1196  Effective immediately
1197 -)))|100|0 to 20000|Set positioning completion output hold time|ms
1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1198 1198  
1199 1199  Table 6-24 Function code parameters of positioning completion
1200 1200  
1201 -
1202 -|**DO function code**|**Function name**|**Function**
1203 -|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1204 -|135|(((
1215 +(% class="table-bordered" %)
1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1205 1205  P-NEAR positioning close
1206 -)))|(((
1220 +)))|(% style="text-align:center; vertical-align:middle" %)(((
1207 1207  Output this signal indicates that the servo drive position is close.
1208 1208  )))
1209 1209  
... ... @@ -1213,7 +1213,7 @@
1213 1213  
1214 1214  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1215 1215  
1216 -
1230 +(% style="text-align:center" %)
1217 1217  [[image:6.28.jpg||height="260" width="806"]]
1218 1218  
1219 1219  Figure 6-28 Speed control block diagram
... ... @@ -1222,21 +1222,21 @@
1222 1222  
1223 1223  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1224 1224  
1225 -
1226 -|**Function code**|**Name**|(((
1239 +(% class="table-bordered" %)
1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1227 1227  **Setting method**
1228 -)))|(((
1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1229 1229  **Effective time**
1230 -)))|**Default value**|**Range**|**Definition**|**Unit**
1231 -|P01-01|Speed instruction source|(((
1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1232 1232  Shutdown setting
1233 -)))|(((
1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1234 1234  Effective immediately
1235 -)))|1|1 to 6|(((
1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1236 1236  0: internal speed instruction
1237 1237  
1238 1238  1: AI_1 analog input (not supported by VD2F)
1239 -)))|-
1253 +)))|(% style="text-align:center; vertical-align:middle" %)-
1240 1240  
1241 1241  Table 6-26 Speed instruction source parameter
1242 1242  
... ... @@ -1244,19 +1244,19 @@
1244 1244  
1245 1245  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1246 1246  
1247 -
1248 -|**Function code**|**Name**|(((
1261 +(% class="table-bordered" %)
1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1249 1249  **Setting method**
1250 -)))|(((
1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
1251 1251  **Effective time**
1252 -)))|**Default value**|**Range**|**Definition**|**Unit**
1253 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)(((
1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit**
1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1254 1254  Internal speed Instruction 0
1255 -)))|(% rowspan="2" %)(((
1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1256 1256  Operation setting
1257 -)))|(% rowspan="2" %)(((
1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1258 1258  Effective immediately
1259 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1260 1260  Internal speed instruction 0
1261 1261  
1262 1262  When DI input port:
... ... @@ -1268,15 +1268,15 @@
1268 1268  13-INSPD1: 0,
1269 1269  
1270 1270  select this speed instruction to be effective.
1271 -)))|(% rowspan="2" %)rpm
1272 -|-5000 to 5000*
1273 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)(((
1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1274 1274  Internal speed Instruction 1
1275 -)))|(% rowspan="2" %)(((
1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1276 1276  Operation setting
1277 -)))|(% rowspan="2" %)(((
1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1278 1278  Effective immediately
1279 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1280 1280  Internal speed instruction 1
1281 1281  
1282 1282  When DI input port:
... ... @@ -1288,15 +1288,15 @@
1288 1288  13-INSPD1: 1,
1289 1289  
1290 1290  Select this speed instruction to be effective.
1291 -)))|(% rowspan="2" %)rpm
1292 -|-5000 to 5000*
1293 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)(((
1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1294 1294  Internal speed Instruction 2
1295 -)))|(% rowspan="2" %)(((
1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1296 1296  Operation setting
1297 -)))|(% rowspan="2" %)(((
1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1298 1298  Effective immediately
1299 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1300 1300  Internal speed instruction 2
1301 1301  
1302 1302  When DI input port:
... ... @@ -1308,15 +1308,15 @@
1308 1308  13-INSPD1: 0,
1309 1309  
1310 1310  Select this speed instruction to be effective.
1311 -)))|(% rowspan="2" %)rpm
1312 -|-5000 to 5000*
1313 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)(((
1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1314 1314  Internal speed Instruction 3
1315 -)))|(% rowspan="2" %)(((
1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1316 1316  Operation setting
1317 -)))|(% rowspan="2" %)(((
1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1318 1318  Effective immediately
1319 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1320 1320  Internal speed instruction 3
1321 1321  
1322 1322  When DI input port:
... ... @@ -1328,16 +1328,17 @@
1328 1328  13-INSPD1: 1,
1329 1329  
1330 1330  Select this speed instruction to be effective.
1331 -)))|(% rowspan="2" %)rpm
1332 -|-5000 to 5000*
1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1333 1333  
1334 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)(((
1348 +(% class="table-bordered" %)
1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1335 1335  Internal speed Instruction 4
1336 -)))|(% rowspan="2" %)(((
1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1337 1337  Operation setting
1338 -)))|(% rowspan="2" %)(((
1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1339 1339  Effective immediately
1340 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1341 1341  Internal speed instruction 4
1342 1342  
1343 1343  When DI input port:
... ... @@ -1349,15 +1349,15 @@
1349 1349  13-INSPD1: 0,
1350 1350  
1351 1351  Select this speed instruction to be effective.
1352 -)))|(% rowspan="2" %)rpm
1353 -|-5000 to 5000*
1354 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)(((
1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1355 1355  Internal speed Instruction 5
1356 -)))|(% rowspan="2" %)(((
1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1357 1357  Operation setting
1358 -)))|(% rowspan="2" %)(((
1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1359 1359  Effective immediately
1360 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1361 1361  Internal speed instruction 5
1362 1362  
1363 1363  When DI input port:
... ... @@ -1369,15 +1369,15 @@
1369 1369  13-INSPD1: 1,
1370 1370  
1371 1371  Select this speed instruction to be effective.
1372 -)))|(% rowspan="2" %)rpm
1373 -|-5000 to 5000*
1374 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)(((
1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1375 1375  Internal speed Instruction 6
1376 -)))|(% rowspan="2" %)(((
1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1377 1377  Operation setting
1378 -)))|(% rowspan="2" %)(((
1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1379 1379  Effective immediately
1380 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1381 1381  Internal speed instruction 6
1382 1382  
1383 1383  When DI input port:
... ... @@ -1389,15 +1389,15 @@
1389 1389  13-INSPD1: 0,
1390 1390  
1391 1391  Select this speed instruction to be effective.
1392 -)))|(% rowspan="2" %)rpm
1393 -|-5000 to 5000*
1394 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)(((
1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1395 1395  Internal speed Instruction 7
1396 -)))|(% rowspan="2" %)(((
1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1397 1397  Operation setting
1398 -)))|(% rowspan="2" %)(((
1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1399 1399  Effective immediately
1400 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1401 1401  Internal speed instruction 7
1402 1402  
1403 1403  When DI input port:
... ... @@ -1409,34 +1409,34 @@
1409 1409  13-INSPD1: 1,
1410 1410  
1411 1411  Select this speed instruction to be effective.
1412 -)))|(% rowspan="2" %)rpm
1413 -|-5000 to 5000*
1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1414 1414  
1415 1415  Table 6-27 Internal speed instruction parameters
1416 1416  
1417 1417  ✎**Note: **“*” means the set range of VD2F servo drive.
1418 1418  
1434 +(% class="table-bordered" %)
1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1419 1419  
1420 -|**DI function code**|**function name**|**Function**
1421 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1422 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1423 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1424 -
1425 1425  Table 6-28 DI multi-speed function code description
1426 1426  
1427 1427  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1428 1428  
1429 -
1430 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1431 -|0|0|0|1|0
1432 -|0|0|1|2|1
1433 -|0|1|0|3|2
1444 +(% class="table-bordered" %)
1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1434 1434  |(% colspan="5" %)......
1435 -|1|1|1|8|7
1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1436 1436  
1437 1437  Table 6-29 Correspondence between INSPD bits and segment numbers
1438 1438  
1439 -
1454 +(% style="text-align:center" %)
1440 1440  [[image:image-20220608170845-26.png]]
1441 1441  
1442 1442  Figure 6-29 Multi-segment speed running curve
... ... @@ -1445,7 +1445,7 @@
1445 1445  
1446 1446  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1447 1447  
1448 -
1463 +(% style="text-align:center" %)
1449 1449  [[image:image-20220608153341-5.png]]
1450 1450  
1451 1451  Figure 6-30 Analog input circuit
... ... @@ -1452,7 +1452,7 @@
1452 1452  
1453 1453  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1454 1454  
1455 -
1470 +(% style="text-align:center" %)
1456 1456  [[image:image-20220608170955-27.png]]
1457 1457  
1458 1458  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1465,18 +1465,18 @@
1465 1465  
1466 1466  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1467 1467  
1468 -
1483 +(% style="text-align:center" %)
1469 1469  [[image:image-20220608171124-28.png]]
1470 1470  
1471 1471  Figure 6-32 AI_1 diagram before and after bias
1472 1472  
1488 +(% class="table-bordered" %)
1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1473 1473  
1474 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1475 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1476 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1477 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1478 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1479 -
1480 1480  Table 6-30 AI_1 parameters
1481 1481  
1482 1482  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1487,7 +1487,7 @@
1487 1487  
1488 1488  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1489 1489  
1490 -
1505 +(% style="text-align:center" %)
1491 1491  [[image:image-20220608171314-29.png]]
1492 1492  
1493 1493  Figure 6-33 of acceleration and deceleration time diagram
... ... @@ -1496,22 +1496,22 @@
1496 1496  
1497 1497  Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1498 1498  
1499 -
1500 -|**Function code**|**Name**|(((
1514 +(% class="table-bordered" %)
1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1501 1501  **Setting method**
1502 -)))|(((
1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1503 1503  **Effective time**
1504 -)))|**Default value**|**Range**|**Definition**|**Unit**
1505 -|P01-03|Acceleration time|(((
1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1506 1506  Operation setting
1507 -)))|(((
1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1508 1508  Effective immediately
1509 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1510 -|P01-04|Deceleration time|(((
1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1511 1511  Operation setting
1512 -)))|(((
1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1513 1513  Effective immediately
1514 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1515 1515  
1516 1516  Table 6-31 Acceleration and deceleration time parameters
1517 1517  
... ... @@ -1530,27 +1530,27 @@
1530 1530  
1531 1531  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1532 1532  
1533 -
1534 -|**Function code**|**Name**|(((
1548 +(% class="table-bordered" %)
1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1535 1535  **Setting method**
1536 -)))|(((
1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1537 1537  **Effective time**
1538 -)))|**Default value**|**Range**|**Definition**|**Unit**
1539 -|P01-10|Maximum speed threshold|(((
1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1540 1540  Operation setting
1541 -)))|(((
1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1542 1542  Effective immediately
1543 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1544 -|P01-12|Forward speed threshold|(((
1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1545 1545  Operation setting
1546 -)))|(((
1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1547 1547  Effective immediately
1548 -)))|3000|0 to 5000|Set forward speed limit value|rpm
1549 -|P01-13|Reverse speed threshold|(((
1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1550 1550  Operation setting
1551 -)))|(((
1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1552 1552  Effective immediately
1553 -)))|3000|0 to 5000|Set reverse speed limit value|rpm
1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1554 1554  
1555 1555  Table 6-32 Rotation speed related function codes
1556 1556  
... ... @@ -1560,19 +1560,19 @@
1560 1560  
1561 1561  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1562 1562  
1563 -
1564 -|**Function code**|**Name**|(((
1578 +(% class="table-bordered" %)
1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1565 1565  **Setting method**
1566 -)))|(((
1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1567 1567  **Effective time**
1568 -)))|**Default value**|**Range**|**Definition**|**Unit**
1569 -|P01-21|(((
1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1570 1570  Zero-speed clamp function selection
1571 -)))|(((
1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1572 1572  Operation setting
1573 -)))|(((
1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1574 1574  Effective immediately
1575 -)))|0|0 to 3|(((
1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1576 1576  Set the zero-speed clamp function. In speed mode:
1577 1577  
1578 1578  0: Force the speed to 0;
... ... @@ -1582,18 +1582,18 @@
1582 1582  2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1583 1583  
1584 1584  3: Invalid, ignore zero-speed clamp input
1585 -)))|-
1586 -|P01-22|(((
1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1587 1587  Zero-speed clamp speed threshold
1588 -)))|(((
1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1589 1589  Operation setting
1590 -)))|(((
1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1591 1591  Effective immediately
1592 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1593 1593  
1594 1594  Table 6-33 Zero-speed clamp related parameters
1595 1595  
1596 -
1611 +(% style="text-align:center" %)
1597 1597  [[image:image-20220608171549-30.png]]
1598 1598  
1599 1599  Figure 6-34 Zero-speed clamp diagram
... ... @@ -1606,7 +1606,7 @@
1606 1606  
1607 1607  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1608 1608  
1609 -
1624 +(% style="text-align:center" %)
1610 1610  [[image:image-20220608171625-31.png]]
1611 1611  
1612 1612  Figure 6-35 Rotation detection signal diagram
... ... @@ -1613,29 +1613,29 @@
1613 1613  
1614 1614  To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1615 1615  
1616 -
1617 -|**Function code**|**Name**|(((
1631 +(% class="table-bordered" %)
1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1618 1618  **Setting method**
1619 -)))|(((
1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1620 1620  **Effective time**
1621 -)))|**Default value**|**Range**|**Definition**|**Unit**
1622 -|P05-16|(((
1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit**
1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1623 1623  Rotation detection
1624 1624  
1625 1625  speed threshold
1626 -)))|(((
1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1627 1627  Operation setting
1628 -)))|(((
1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1629 1629  Effective immediately
1630 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm
1631 1631  
1632 1632  Table 6-34 Rotation detection speed threshold parameters
1633 1633  
1634 -
1635 -|**DO function code**|**Function name**|**Function**
1636 -|132|(((
1649 +(% class="table-bordered" %)
1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function**
1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)(((
1637 1637  T-COIN rotation detection
1638 -)))|(((
1653 +)))|(% style="width:879px" %)(((
1639 1639  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1640 1640  
1641 1641  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1647,7 +1647,7 @@
1647 1647  
1648 1648  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1649 1649  
1650 -
1665 +(% style="text-align:center" %)
1651 1651  [[image:image-20220608171904-32.png]]
1652 1652  
1653 1653  Figure 6-36 Zero-speed signal diagram
... ... @@ -1654,25 +1654,25 @@
1654 1654  
1655 1655  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1656 1656  
1657 -
1658 -|**Function code**|**Name**|(((
1672 +(% class="table-bordered" %)
1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1659 1659  **Setting method**
1660 -)))|(((
1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1661 1661  **Effective time**
1662 -)))|**Default value**|**Range**|**Definition**|**Unit**
1663 -|P05-19|Zero speed output signal threshold|(((
1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit**
1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1664 1664  Operation setting
1665 -)))|(((
1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1666 1666  Effective immediately
1667 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm
1668 1668  
1669 1669  Table 6-36 Zero-speed output signal threshold parameter
1670 1670  
1671 -
1672 -|**DO function code**|**Function name**|**Function**
1673 -|133|(((
1686 +(% class="table-bordered" %)
1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1674 1674  ZSP zero speed signal
1675 -)))|Output this signal indicates that the servo motor is stopping rotation
1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1676 1676  
1677 1677  Table 6-37 DO zero-speed signal function code
1678 1678  
... ... @@ -1680,7 +1680,7 @@
1680 1680  
1681 1681  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1682 1682  
1683 -
1698 +(% style="text-align:center" %)
1684 1684  [[image:image-20220608172053-33.png]]
1685 1685  
1686 1686  Figure 6-37 Speed consistent signal diagram
... ... @@ -1687,25 +1687,25 @@
1687 1687  
1688 1688  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1689 1689  
1690 -
1691 -|**Function code**|**Name**|(((
1705 +(% class="table-bordered" %)
1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1692 1692  **Setting method**
1693 -)))|(((
1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1694 1694  **Effective time**
1695 -)))|**Default value**|**Range**|**Definition**|**Unit**
1696 -|P05-17|Speed consistent signal threshold|(((
1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit**
1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1697 1697  Operationsetting
1698 -)))|(((
1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1699 1699  Effective immediately
1700 -)))|10|0 to 100|Set speed consistent signal threshold|rpm
1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm
1701 1701  
1702 1702  Table 6-38 Speed consistent signal threshold parameters
1703 1703  
1704 -
1705 -|**DO Function code**|**Function name**|**Function**
1706 -|136|(((
1719 +(% class="table-bordered" %)
1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1707 1707  U-COIN consistent speed
1708 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1709 1709  
1710 1710  Table 6-39 DO speed consistent function code
1711 1711  
... ... @@ -1713,7 +1713,7 @@
1713 1713  
1714 1714  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1715 1715  
1716 -
1731 +(% style="text-align:center" %)
1717 1717  [[image:image-20220608172207-34.png]]
1718 1718  
1719 1719  Figure 6-38 Speed approaching signal diagram
... ... @@ -1720,25 +1720,25 @@
1720 1720  
1721 1721  To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1722 1722  
1723 -
1724 -|**Function code**|**Name**|(((
1738 +(% class="table-bordered" %)
1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1725 1725  **Setting method**
1726 -)))|(((
1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1727 1727  **Effective time**
1728 -)))|**Default value**|**Range**|**Definition**|**Unit**
1729 -|P05-18|Speed approach signal threshold|(((
1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1730 1730  Operation setting
1731 -)))|(((
1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1732 1732  Effective immediately
1733 -)))|100|10 to 6000|Set speed approach signal threshold|rpm
1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1734 1734  
1735 1735  Table 6-40 Speed approaching signal threshold parameters
1736 1736  
1737 -
1738 -|**DO function code**|**Function name**|**Function**
1739 -|137|(((
1752 +(% class="table-bordered" %)
1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1740 1740  V-NEAR speed approach
1741 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1742 1742  
1743 1743  Table 6-41 DO speed approach function code
1744 1744  
... ... @@ -1746,7 +1746,7 @@
1746 1746  
1747 1747  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1748 1748  
1749 -
1764 +(% style="text-align:center" %)
1750 1750  [[image:image-20220608172405-35.png]]
1751 1751  
1752 1752  Figure 6-39 Torque mode diagram
... ... @@ -1755,21 +1755,21 @@
1755 1755  
1756 1756  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1757 1757  
1758 -
1759 -|**Function code**|**Name**|(((
1773 +(% class="table-bordered" %)
1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1760 1760  **Setting method**
1761 -)))|(((
1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1762 1762  **Effective time**
1763 -)))|**Default value**|**Range**|**Definition**|**Unit**
1764 -|P01-08|Torque instruction source|(((
1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1765 1765  Shutdown setting
1766 -)))|(((
1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1767 1767  Effective immediately
1768 -)))|0|0 to 1|(((
1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1769 1769  0: internal torque instruction
1770 1770  
1771 1771  1: AI_1 analog input(not supported by VD2F)
1772 -)))|-
1787 +)))|(% style="text-align:center; vertical-align:middle" %)-
1773 1773  
1774 1774  Table 6-42 Torque instruction source parameter
1775 1775  
... ... @@ -1777,17 +1777,17 @@
1777 1777  
1778 1778  Torque instruction source is from inside, the value is set by function code P01-08.
1779 1779  
1780 -
1781 -|**Function code**|**Name**|(((
1795 +(% class="table-bordered" %)
1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1782 1782  **Setting method**
1783 -)))|(((
1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1784 1784  **Effective time**
1785 -)))|**Default value**|**Range**|**Definition**|**Unit**
1786 -|P01-08|Torque instruction keyboard set value|(((
1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1787 1787  Operation setting
1788 -)))|(((
1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1789 1789  Effective immediately
1790 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1791 1791  
1792 1792  Table 6-43 Torque instruction keyboard set value
1793 1793  
... ... @@ -1795,7 +1795,7 @@
1795 1795  
1796 1796  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1797 1797  
1798 -
1813 +(% style="text-align:center" %)
1799 1799  [[image:image-20220608153646-7.png||height="213" width="408"]]
1800 1800  
1801 1801  Figure 6-40 Analog input circuit
... ... @@ -1802,7 +1802,7 @@
1802 1802  
1803 1803  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1804 1804  
1805 -
1820 +(% style="text-align:center" %)
1806 1806  [[image:image-20220608172502-36.png]]
1807 1807  
1808 1808  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1815,18 +1815,18 @@
1815 1815  
1816 1816  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1817 1817  
1818 -
1833 +(% style="text-align:center" %)
1819 1819  [[image:image-20220608172611-37.png]]
1820 1820  
1821 1821  Figure 6-42 AI_1 diagram before and after bias
1822 1822  
1838 +(% class="table-bordered" %)
1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1823 1823  
1824 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1825 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1826 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1827 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1828 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1829 -
1830 1830  Table 6-44 AI_1 parameters
1831 1831  
1832 1832  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1835,23 +1835,23 @@
1835 1835  
1836 1836  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1837 1837  
1838 -
1839 -|**Function code**|**Name**|(((
1853 +(% class="table-bordered" %)
1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1840 1840  **Setting method**
1841 -)))|(((
1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1842 1842  **Effective time**
1843 -)))|**Default value**|**Range**|**Definition**|**Unit**
1844 -|P04-04|Torque filtering time constant|(((
1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1845 1845  Operation setting
1846 -)))|(((
1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1847 1847  Effective immediately
1848 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1849 1849  
1850 1850  Table 6-45 Torque filtering time constant parameter details
1851 1851  
1852 1852  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1853 1853  
1854 -
1869 +(% style="text-align:center" %)
1855 1855  [[image:image-20220608172646-38.png]]
1856 1856  
1857 1857  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1862,7 +1862,7 @@
1862 1862  
1863 1863  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1864 1864  
1865 -
1880 +(% style="text-align:center" %)
1866 1866  [[image:image-20220608172806-39.png]]
1867 1867  
1868 1868  Figure 6-44 Torque instruction limit diagram
... ... @@ -1871,50 +1871,50 @@
1871 1871  
1872 1872  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1873 1873  
1874 -
1875 -|**Function code**|**Name**|(((
1889 +(% class="table-bordered" %)
1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1876 1876  **Setting method**
1877 -)))|(((
1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1878 1878  **Effective time**
1879 -)))|**Default value**|**Range**|**Definition**|**Unit**
1880 -|P01-14|(((
1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1881 1881  Torque limit source
1882 -)))|(((
1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1883 1883  Shutdown setting
1884 -)))|(((
1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1885 1885  Effective immediately
1886 -)))|0|0 to 1|(((
1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1887 1887  0: internal value
1888 1888  
1889 1889  1: AI_1 analog input
1890 1890  
1891 1891  (not supported by VD2F)
1892 -)))|-
1907 +)))|(% style="text-align:center; vertical-align:middle" %)-
1893 1893  
1894 1894  1) Torque limit source is internal torque instruction (P01-14=0)
1895 1895  
1896 1896  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1897 1897  
1898 -
1899 -|**Function code**|**Name**|(((
1913 +(% class="table-bordered" %)
1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1900 1900  **Setting method**
1901 -)))|(((
1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1902 1902  **Effective time**
1903 -)))|**Default value**|**Range**|**Definition**|**Unit**
1904 -|P01-15|(((
1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1905 1905  Forward torque limit
1906 -)))|(((
1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1907 1907  Operation setting
1908 -)))|(((
1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1909 1909  Effective immediately
1910 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1911 -|P01-16|(((
1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1912 1912  Reverse torque limit
1913 -)))|(((
1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1914 1914  Operation setting
1915 -)))|(((
1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1916 1916  Effective immediately
1917 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1918 1918  
1919 1919  Table 6-46 Torque limit parameter details
1920 1920  
... ... @@ -1926,11 +1926,11 @@
1926 1926  
1927 1927  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1928 1928  
1929 -
1930 -|**DO function code**|**Function name**|**Function**
1931 -|139|(((
1944 +(% class="table-bordered" %)
1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1932 1932  T-LIMIT in torque limit
1933 -)))|Output of this signal indicates that the servo motor torque is limited
1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1934 1934  
1935 1935  Table 6-47 DO torque limit function codes
1936 1936  
... ... @@ -1941,43 +1941,46 @@
1941 1941  In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1942 1942  
1943 1943  |(((
1959 +(% style="text-align:center" %)
1944 1944  [[image:image-20220608172910-40.png]]
1945 1945  )))|(((
1962 +(% style="text-align:center" %)
1946 1946  [[image:image-20220608173155-41.png]]
1947 1947  )))
1948 1948  |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1949 1949  
1950 -|**Function code**|**Name**|(((
1967 +(% class="table-bordered" %)
1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1951 1951  **Setting method**
1952 -)))|(((
1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1953 1953  **Effective time**
1954 -)))|**Default value**|**Range**|**Definition**|**Unit**
1955 -|P01-17|(((
1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1956 1956  Forward torque
1957 1957  
1958 1958  limit in torque mode
1959 -)))|(((
1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1960 1960  Operation setting
1961 -)))|(((
1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1962 1962  Effective immediately
1963 -)))|3000|0 to 5000|(((
1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1964 1964  Forward torque
1965 1965  
1966 1966  limit in torque mode
1967 -)))|0.1%
1968 -|P01-18|(((
1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1969 1969  Reverse torque
1970 1970  
1971 1971  limit in torque mode
1972 -)))|(((
1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1973 1973  Operation setting
1974 -)))|(((
1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1975 1975  Effective immediately
1976 -)))|3000|0 to 5000|(((
1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1977 1977  Reverse torque
1978 1978  
1979 1979  limit in torque mode
1980 -)))|0.1%
1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1981 1981  
1982 1982  Table 6-48 Speed limit parameters in torque mode
1983 1983  
... ... @@ -1991,7 +1991,7 @@
1991 1991  
1992 1992  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1993 1993  
1994 -
2012 +(% style="text-align:center" %)
1995 1995  [[image:image-20220608173541-42.png]]
1996 1996  
1997 1997  Figure 6-47 Torque arrival output diagram
... ... @@ -1998,44 +1998,44 @@
1998 1998  
1999 1999  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2000 2000  
2001 -
2002 -|**Function code**|**Name**|(((
2019 +(% class="table-bordered" %)
2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2003 2003  **Setting method**
2004 -)))|(((
2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2005 2005  **Effective time**
2006 -)))|**Default value**|**Range**|**Definition**|**Unit**
2007 -|P05-20|(((
2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2008 2008  Torque arrival
2009 2009  
2010 2010  threshold
2011 -)))|(((
2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2012 2012  Operation setting
2013 -)))|(((
2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2014 2014  Effective immediately
2015 -)))|100|0 to 300|(((
2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2016 2016  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2017 2017  
2018 2018  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2019 2019  
2020 2020  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2021 -)))|%
2022 -|P05-21|(((
2039 +)))|(% style="text-align:center; vertical-align:middle" %)%
2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2023 2023  Torque arrival
2024 2024  
2025 2025  hysteresis
2026 -)))|(((
2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2027 2027  Operation setting
2028 -)))|(((
2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2029 2029  Effective immediately
2030 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2031 2031  
2032 2032  Table 6-49 Torque arrival parameters
2033 2033  
2034 -
2035 -|**DO function code**|**Function name**|**Function**
2036 -|138|(((
2052 +(% class="table-bordered" %)
2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2037 2037  T-COIN torque arrival
2038 -)))|Used to determine whether the actual torque instruction has reached the set range
2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2039 2039  
2040 2040  Table 6-50 DO Torque Arrival Function Code
2041 2041  
... ... @@ -2051,17 +2051,17 @@
2051 2051  
2052 2052  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2053 2053  
2054 -
2055 -|**Function code**|**Name**|(((
2072 +(% class="table-bordered" %)
2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2056 2056  **Setting method**
2057 -)))|(((
2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2058 2058  **Effective time**
2059 -)))|**Default value**|**Range**|**Definition**|**Unit**
2060 -|P00-01|Control mode|(((
2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2061 2061  Shutdown setting
2062 -)))|(((
2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2063 2063  Shutdown setting
2064 -)))|1|1 to 6|(((
2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)(((
2065 2065  1: Position control
2066 2066  
2067 2067  2: Speed control
... ... @@ -2073,22 +2073,23 @@
2073 2073  5: Position/torque mixed control
2074 2074  
2075 2075  6: Speed/torque mixed control
2076 -)))|-
2094 +)))|(% style="text-align:center; vertical-align:middle" %)-
2077 2077  
2078 2078  Table 6-51 Mixed control mode parameters
2079 2079  
2080 2080  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2081 2081  
2082 -
2083 -|**DI function code**|**Name**|**Function name**|**Function**
2084 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2085 -|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2086 -|(% rowspan="2" %)4|Valid|Speed mode
2087 -|invalid|Position mode
2088 -|(% rowspan="2" %)5|Valid|Torque mode
2089 -|invalid|Position mode
2090 -|(% rowspan="2" %)6|Valid|Torque mode
2091 -|invalid|Speed mode
2100 +(% class="table-bordered" %)
2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2103 +(% class="table-bordered" %)
2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2092 2092  )))
2093 2093  
2094 2094  Table 6-52 Description of DI function codes in control mode
... ... @@ -2107,15 +2107,15 @@
2107 2107  
2108 2108  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2109 2109  
2129 +(% class="table-bordered" %)
2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2110 2110  
2111 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2112 -|A1 (single-turn magnetic encoder)|17|0 to 131071
2113 -
2114 2114  Table 6-53 Single-turn absolute encoder information
2115 2115  
2116 2116  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2117 2117  
2118 -
2137 +(% style="text-align:center" %)
2119 2119  [[image:image-20220608173618-43.png]]
2120 2120  
2121 2121  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2124,16 +2124,16 @@
2124 2124  
2125 2125  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2126 2126  
2146 +(% class="table-bordered" %)
2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2127 2127  
2128 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2129 -|C1 (multi-turn magnetic encoder)|17|0 to 131071
2130 -|D2 (multi-turn Optical encoder)|23|0 to 8388607
2131 -
2132 2132  Table 6-54 Multi-turn absolute encoder information
2133 2133  
2134 2134  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2135 2135  
2136 -
2155 +(% style="text-align:center" %)
2137 2137  [[image:image-20220608173701-44.png]]
2138 2138  
2139 2139  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2142,12 +2142,12 @@
2142 2142  
2143 2143  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2144 2144  
2164 +(% class="table-bordered" %)
2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2145 2145  
2146 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2147 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2148 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2149 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2150 -
2151 2151  Table 6-55 Encoder feedback data
2152 2152  
2153 2153  == **Absolute value system encoder battery box use precautions** ==
... ... @@ -2154,7 +2154,7 @@
2154 2154  
2155 2155  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2156 2156  
2157 -
2176 +(% style="text-align:center" %)
2158 2158  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2159 2159  
2160 2160  Figure 6-50 the encoder battery box
... ... @@ -2167,23 +2167,23 @@
2167 2167  
2168 2168  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2169 2169  
2170 -
2171 -|**Function code**|**Name**|(((
2189 +(% class="table-bordered" %)
2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2172 2172  **Setting method**
2173 -)))|(((
2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2174 2174  **Effective time**
2175 -)))|**Default value**|**Range**|**Definition**|**Unit**
2176 -|P10-06|Multi-turn absolute encoder reset|(((
2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2177 2177  Shutdown setting
2178 -)))|(((
2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2179 2179  Effective immediately
2180 -)))|0|0 to 1|(((
2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2181 2181  0: No operation
2182 2182  
2183 2183  1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2184 2184  
2185 2185  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2186 -)))|-
2205 +)))|(% style="text-align:center; vertical-align:middle" %)-
2187 2187  
2188 2188  Table 6-56 Absolute encoder reset enable parameter
2189 2189  
... ... @@ -2201,18 +2201,18 @@
2201 2201  
2202 2202  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2203 2203  
2204 -
2223 +(% style="text-align:center" %)
2205 2205  [[image:image-20220608173804-46.png]]
2206 2206  
2207 2207  Figure 6-51 VDI_1 setting steps
2208 2208  
2209 -
2210 -|**Function code**|**Name**|(((
2228 +(% class="table-bordered" %)
2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2211 2211  **Setting method**
2212 -)))|(((
2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2213 2213  **Effective time**
2214 -)))|**Default value**|**Range**|**Definition**|**Unit**
2215 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2216 2216  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2217 2217  
2218 2218  VDI_1 input level:
... ... @@ -2220,8 +2220,8 @@
2220 2220  0: low level
2221 2221  
2222 2222  1: high level
2223 -)))|-
2224 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2242 +)))|(% style="text-align:center; vertical-align:middle" %)-
2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2225 2225  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2226 2226  
2227 2227  VDI_2 input level:
... ... @@ -2229,8 +2229,8 @@
2229 2229  0: low level
2230 2230  
2231 2231  1: high level
2232 -)))|-
2233 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2251 +)))|(% style="text-align:center; vertical-align:middle" %)-
2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2234 2234  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2235 2235  
2236 2236  VDI_3 input level:
... ... @@ -2238,8 +2238,8 @@
2238 2238  0: low level
2239 2239  
2240 2240  1: high level
2241 -)))|-
2242 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2260 +)))|(% style="text-align:center; vertical-align:middle" %)-
2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2243 2243  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2244 2244  
2245 2245  VDI_4 input level:
... ... @@ -2247,8 +2247,8 @@
2247 2247  0: low level
2248 2248  
2249 2249  1: high level
2250 -)))|-
2251 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2269 +)))|(% style="text-align:center; vertical-align:middle" %)-
2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2252 2252  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2253 2253  
2254 2254  VDI_5 input level:
... ... @@ -2256,8 +2256,8 @@
2256 2256  0: low level
2257 2257  
2258 2258  1: high level
2259 -)))|-
2260 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2278 +)))|(% style="text-align:center; vertical-align:middle" %)-
2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2261 2261  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2262 2262  
2263 2263  VDI_6 input level:
... ... @@ -2265,8 +2265,8 @@
2265 2265  0: low level
2266 2266  
2267 2267  1: high level
2268 -)))|-
2269 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2287 +)))|(% style="text-align:center; vertical-align:middle" %)-
2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2270 2270  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2271 2271  
2272 2272  VDI_7 input level:
... ... @@ -2274,8 +2274,8 @@
2274 2274  0: low level
2275 2275  
2276 2276  1: high level
2277 -)))|-
2278 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2296 +)))|(% style="text-align:center; vertical-align:middle" %)-
2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2279 2279  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2280 2280  
2281 2281  VDI_8 input level:
... ... @@ -2283,7 +2283,7 @@
2283 2283  0: low level
2284 2284  
2285 2285  1: high level
2286 -)))|-
2305 +)))|(% style="text-align:center; vertical-align:middle" %)-
2287 2287  
2288 2288  Table 6-57 Virtual VDI parameters
2289 2289  
... ... @@ -2293,11 +2293,11 @@
2293 2293  
2294 2294  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2295 2295  
2315 +(% class="table-bordered" %)
2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2296 2296  
2297 -|**Setting value**|**DI channel logic selection**|**Illustration**
2298 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2299 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2300 -
2301 2301  Table 6-58 DI terminal channel logic selection
2302 2302  
2303 2303  == **VDO** ==
... ... @@ -2306,55 +2306,55 @@
2306 2306  
2307 2307  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2308 2308  
2309 -
2328 +(% style="text-align:center" %)
2310 2310  [[image:image-20220608173957-48.png]]
2311 2311  
2312 2312  Figure 6-52 VDO_2 setting steps
2313 2313  
2314 -
2315 -|**Function code**|**Name**|(((
2333 +(% class="table-bordered" %)
2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2316 2316  **Setting method**
2317 -)))|(((
2336 +)))|(% style="text-align:center; vertical-align:middle" %)(((
2318 2318  **Effective time**
2319 -)))|**Default value**|**Range**|**Definition**|**Unit**
2320 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2321 2321  VDO_1 output level:
2322 2322  
2323 2323  0: low level
2324 2324  
2325 2325  1: high level
2326 -)))|-
2327 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2345 +)))|(% style="text-align:center; vertical-align:middle" %)-
2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2328 2328  VDO_2 output level:
2329 2329  
2330 2330  0: low level
2331 2331  
2332 2332  1: high level
2333 -)))|-
2334 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2352 +)))|(% style="text-align:center; vertical-align:middle" %)-
2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2335 2335  VDO_3 output level:
2336 2336  
2337 2337  0: low level
2338 2338  
2339 2339  1: high level
2340 -)))|-
2341 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2359 +)))|(% style="text-align:center; vertical-align:middle" %)-
2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2342 2342  VDO_4 output level:
2343 2343  
2344 2344  0: low level
2345 2345  
2346 2346  1: high level
2347 -)))|-
2366 +)))|(% style="text-align:center; vertical-align:middle" %)-
2348 2348  
2349 2349  Table 6-59 Communication control DO function parameters
2350 2350  
2370 +(% class="table-bordered" %)
2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2351 2351  
2352 -|**DO function number**|**Function name**|**Function**
2353 -|145|COM_VDO1 communication VDO1 output|Use communication VDO
2354 -|146|COM_VDO1 communication VDO2 output|Use communication VDO
2355 -|147|COM_VDO1 communication VDO3 output|Use communication VDO
2356 -|148|COM_VDO1 communication VDO4output|Use communication VDO
2357 -
2358 2358  Table 6-60 VDO function number
2359 2359  
2360 2360  ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
... ... @@ -2365,17 +2365,17 @@
2365 2365  
2366 2366  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2367 2367  
2368 -
2369 -|**Function code**|**Name**|(((
2387 +(% class="table-bordered" %)
2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2370 2370  **Setting method**
2371 -)))|(((
2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2372 2372  **Effective time**
2373 -)))|**Default value**|**Range**|**Definition**|**Unit**
2374 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2375 2375  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2376 2376  
2377 2377  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2378 -)))|%
2397 +)))|(% style="text-align:center; vertical-align:middle" %)%
2379 2379  
2380 2380  In the following cases, it could be modified according to the actual heat generation of the motor
2381 2381