Changes for page 06 Operation
Last modified by Iris on 2025/08/06 18:24
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. admin1 +XWiki.Joey - Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -| =(% scope="row" %)**No.**|=**Content**6 -| =(% colspan="2" %)Wiring7 -| =1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -| =2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -| =3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -| =4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -| =5|Servo drive and servo motor must be grounded reliably.12 -| =6|When using an external braking resistor, the short wiring between drive C and D must be removed.13 -| =7|The force of all cables is within the specified range.14 -| =8|The wiring terminals have been insulated.15 -| =(% colspan="2" %)Environment and Machinery16 -| =1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -| =2|The servo drive and external braking resistor are not placed on combustible objects.18 -| =3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.5 +|**No.**|**Content** 6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring 7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|5|Servo drive and servo motor must be grounded reliably. 12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|7|The force of all cables is within the specified range. 14 +|8|The wiring terminals have been insulated. 15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery 16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -42,17 +42,17 @@ 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 44 45 - 46 -| =(% scope="row" %)**Function code**|=**Name**|=(((45 +(% class="table-bordered" %) 46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 47 47 **Setting method** 48 -)))|=((( 48 +)))|(% style="text-align:center; vertical-align:middle" %)((( 49 49 **Effective time** 50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 51 -|=P10-01|JOG speed|((( 50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)((( 52 52 Operation setting 53 -)))|((( 53 +)))|(% style="text-align:center; vertical-align:middle" %)((( 54 54 Effective immediately 55 -)))|100|0 to 3000|JOG speed|rpm 55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm 56 56 57 57 Table 6-2 JOG speed parameter 58 58 ... ... @@ -60,25 +60,25 @@ 60 60 61 61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 62 62 63 - 64 -| =(% scope="row" %)**Function code**|=**Name**|=(((63 +(% class="table-bordered" %) 64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 65 65 **Setting method** 66 -)))|=((( 66 +)))|(% style="text-align:center; vertical-align:middle" %)((( 67 67 **Effective time** 68 -)))|=((( 68 +)))|(% style="text-align:center; vertical-align:middle" %)((( 69 69 **Default value** 70 -)))|=**Range**|=**Definition**|=**Unit** 71 -|=P00-04|Rotation direction|((( 70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)((( 72 72 Shutdown setting 73 -)))|((( 73 +)))|(% style="text-align:center; vertical-align:middle" %)((( 74 74 Effective immediately 75 -)))|0|0 to 1|((( 75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 76 76 Forward rotation: Face the motor shaft to watch 77 77 78 78 0: standard setting (CW is forward rotation) 79 79 80 80 1: reverse mode (CCW is forward rotation) 81 -)))|- 81 +)))|(% style="text-align:center; vertical-align:middle" %)- 82 82 83 83 Table 6-3 Rotation direction parameters** ** 84 84 ... ... @@ -91,16 +91,17 @@ 91 91 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 92 92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 93 93 94 -|=(% scope="row" %)**Function code**|=**Name**|=((( 94 +(% class="table-bordered" %) 95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 95 95 **Setting method** 96 -)))|=((( 97 +)))|(% style="text-align:center; vertical-align:middle" %)((( 97 97 **Effective time** 98 -)))|=**Default**|=**Range**|=**Definition**|=**Unit** 99 -|=P00-09|Braking resistor setting|((( 99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)((( 100 100 Operation setting 101 -)))|((( 102 +)))|(% style="text-align:center; vertical-align:middle" %)((( 102 102 Effective immediately 103 -)))|0|0 to 3|((( 104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|((( 104 104 0: use built-in braking resistor 105 105 106 106 1: use external braking resistor and natural cooling ... ... @@ -108,18 +108,18 @@ 108 108 2: use external braking resistor and forced air cooling; (cannot be set) 109 109 110 110 3: No braking resistor is used, it is all absorbed by capacitor. 111 -)))|- 112 -| =(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).113 -|=P00-10|External braking resistor value|((( 112 +)))|(% style="text-align:center; vertical-align:middle" %)- 113 +|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)((( 114 114 Operation setting 115 -)))|((( 116 +)))|(% style="text-align:center; vertical-align:middle" %)((( 116 116 Effective immediately 117 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 118 -|=P00-11|External braking resistor power|((( 118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω 119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)((( 119 119 Operation setting 120 -)))|((( 121 +)))|(% style="text-align:center; vertical-align:middle" %)((( 121 121 Effective immediately 122 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W 123 123 124 124 Table 6-4 Braking resistor parameters 125 125 ... ... @@ -137,7 +137,7 @@ 137 137 138 138 **(3) Timing diagram of power on** 139 139 140 - 141 +(% style="text-align:center" %) 141 141 [[image:image-20220608163014-1.png]] 142 142 143 143 Figure 6-1 Timing diagram of power on ... ... @@ -146,17 +146,17 @@ 146 146 147 147 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. 148 148 150 +(% class="table-bordered" %) 151 +|Shutdown mode|Shutdown description|Shutdown characteristics 152 +|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 153 +|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 149 149 150 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 151 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 152 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 153 - 154 154 Table 6-5 Comparison of two shutdown modes 155 155 157 +(% class="table-bordered" %) 158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked** 159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 156 156 157 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 158 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 159 - 160 160 Table 6-6 Comparison of two shutdown status 161 161 162 162 **(1) Servo enable (S-ON) OFF shutdown** ... ... @@ -163,27 +163,27 @@ 163 163 164 164 The related parameters of the servo OFF shutdown mode are shown in the table below. 165 165 166 - 167 -| =(% scope="row" %)**Function code**|=**Name**|=(((167 +(% class="table-bordered" %) 168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 168 168 **Setting method** 169 -)))|=((( 170 +)))|(% style="text-align:center; vertical-align:middle" %)((( 170 170 **Effective time** 171 -)))|=((( 172 +)))|(% style="text-align:center; vertical-align:middle" %)((( 172 172 **Default value** 173 -)))|=**Range**|=**Definition**|=**Unit** 174 -|=P00-05|Servo OFF shutdown|((( 174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)((( 175 175 Shutdown 176 176 177 177 setting 178 -)))|((( 179 +)))|(% style="text-align:center; vertical-align:middle" %)((( 179 179 Effective 180 180 181 181 immediately 182 -)))|0|0 to 1|((( 183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 183 183 0: Free shutdown, and the motor shaft remains free status. 184 184 185 185 1: Zero-speed shutdown, and the motor shaft remains free status. 186 -)))|- 187 +)))|(% style="text-align:center; vertical-align:middle" %)- 187 187 188 188 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 189 189 ... ... @@ -199,13 +199,13 @@ 199 199 200 200 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 201 201 202 - 203 -| =(% scope="row" %)**Function code**|=**Name**|=(((203 +(% class="table-bordered" %) 204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 204 204 **Setting method** 205 -)))|=((( 206 +)))|(% style="text-align:center; vertical-align:middle" %)((( 206 206 **Effective time** 207 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 208 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|((( 209 209 0: OFF (not used) 210 210 211 211 01: S-ON servo enable ... ... @@ -253,30 +253,32 @@ 253 253 24: Internal multi-segment position selection 4 254 254 255 255 Others: reserved 256 -)))|- 257 -|=P06-09|DI_3 channel logic selection|Operation setting|((( 257 +)))|(% style="text-align:center; vertical-align:middle" %)- 258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)((( 258 258 Effective immediately 259 -)))|0|0 to 1|((( 260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 260 260 DI port input logic validity function selection. 261 261 262 262 0: Normally open input. Active low level (switch on); 263 263 264 264 1: Normally closed input. Active high level (switch off); 265 -)))|- 266 -|=P06-10|DI_3 input source selection|Operation setting|((( 266 +)))|(% style="text-align:center; vertical-align:middle" %)- 267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)((( 267 267 Effective immediately 268 -)))|0|0 to 1|((( 269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 269 269 Select the DI_3 port type to enable 270 270 271 271 0: Hardware DI_3 input terminal 272 272 273 273 1: virtual VDI_3 input terminal 274 -)))|- 275 -|=P06-11|DI_4 channel function selection|((( 275 +)))|(% style="text-align:center; vertical-align:middle" %)- 276 + 277 +(% class="table-bordered" %) 278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 276 276 Operation setting 277 -)))|((( 280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 278 278 again Power-on 279 -)))|4|0 to 32|((( 282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)((( 280 280 0 off (not used) 281 281 282 282 01: SON Servo enable ... ... @@ -324,25 +324,25 @@ 324 324 24: Internal multi-segment position selection 4 325 325 326 326 Others: reserved 327 -)))|- 328 -|=P06-12|DI_4 channel logic selection|Operation setting|((( 330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 329 329 Effective immediately 330 -)))|0|0 to 1|((( 333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)((( 331 331 DI port input logic validity function selection. 332 332 333 333 0: Normally open input. Active low level (switch on); 334 334 335 335 1: Normally closed input. Active high level (switch off); 336 -)))|- 337 -|=P06-13|DI_4 input source selection|Operation setting|((( 339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 338 338 Effective immediately 339 -)))|0|0 to 1|((( 342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)((( 340 340 Select the DI_4 port type to enable 341 341 342 342 0: Hardware DI_4 input terminal 343 343 344 344 1: virtual VDI_4 input terminal 345 -)))|- 348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 346 346 347 347 Table 6-8 DI3 and DI4 channel parameters 348 348 ... ... @@ -354,8 +354,9 @@ 354 354 355 355 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 356 356 357 - 360 +(% class="table-bordered" %) 358 358 |((( 362 +(% style="text-align:center" %) 359 359 [[image:image-20220611151617-1.png]] 360 360 ))) 361 361 |((( ... ... @@ -374,13 +374,14 @@ 374 374 375 375 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 376 376 377 - 381 +(% style="text-align:center" %) 378 378 [[image:image-20220608163136-2.png]] 379 379 380 380 Figure 6-2 VD2B servo drive brake wiring 381 381 382 - 386 +(% class="table-bordered" %) 383 383 |((( 388 +(% style="text-align:center" %) 384 384 [[image:image-20220611151642-2.png]] 385 385 ))) 386 386 |((( ... ... @@ -397,42 +397,42 @@ 397 397 398 398 Related function code is as below. 399 399 400 - 401 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((405 +(% class="table-bordered" %) 406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)((( 402 402 **Effective time** 403 403 ))) 404 -|=144|((( 409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)((( 405 405 BRK-OFF Brake output 406 -)))|Output the signal indicates the servo motor brake release|Power-on again 411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again 407 407 408 408 Table 6-2 Relevant function codes for brake setting 409 409 410 - 411 -| =(% scope="row" %)**Function code**|=**Name**|=(((415 +(% class="table-bordered" %) 416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 412 412 **Setting method** 413 -)))|=((( 418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 414 414 **Effective time** 415 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 416 -|=P1-30|Delay from brake output to instruction reception|((( 420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 417 417 Operation setting 418 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms 419 -|=P1-31|In static state, delay from brake output OFF to the motor is power off|((( 423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms 424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 420 420 Operation setting 421 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms 422 -|=P1-32|Rotation status, when the brake output OFF, the speed threshold|((( 426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms 427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 423 423 Operation setting 424 -)))|Effective immediately|30|0 to 3000|((( 429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)((( 425 425 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. 426 426 427 427 When the brake output (BRK-OFF) is not allocated, this function code has no effect. 428 -)))|rpm 429 -|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|((( 433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm 434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 430 430 Operation setting 431 -)))|Effective immediately|500|1 to 1000|((( 436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)((( 432 432 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. 433 433 434 434 When brake output (BRK-OFF) is not allocated, this function code has no effect. 435 -)))|ms 440 +)))|(% style="text-align:center; vertical-align:middle" %)ms 436 436 437 437 Table 6-9 Brake setting function codes 438 438 ... ... @@ -446,8 +446,9 @@ 446 446 447 447 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__ 448 448 449 - 454 +(% class="table-bordered" %) 450 450 |((( 456 +(% style="text-align:center" %) 451 451 [[image:image-20220611151705-3.png]] 452 452 ))) 453 453 |((( ... ... @@ -456,6 +456,7 @@ 456 456 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 457 457 ))) 458 458 465 +(% style="text-align:center" %) 459 459 [[image:image-20220608163304-3.png]] 460 460 461 461 Figure 6-3 Brake Timing of when the motor is stationary ... ... @@ -466,8 +466,9 @@ 466 466 467 467 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__. 468 468 469 - 476 +(% class="table-bordered" %) 470 470 |((( 478 +(% style="text-align:center" %) 471 471 [[image:image-20220611151719-4.png]] 472 472 ))) 473 473 |((( ... ... @@ -482,6 +482,7 @@ 482 482 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 483 483 ))) 484 484 493 +(% style="text-align:center" %) 485 485 [[image:image-20220608163425-4.png]] 486 486 487 487 Figure 6-4 Brake timing when the motor rotates ... ... @@ -490,7 +490,7 @@ 490 490 491 491 The brake timing (free shutdown) in the fault status is as follows. 492 492 493 - 502 +(% style="text-align:center" %) 494 494 [[image:image-20220608163541-5.png]] 495 495 496 496 Figure 6-5 The brake timing (free shutdown) in the fault state ... ... @@ -499,7 +499,7 @@ 499 499 500 500 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 501 501 502 - 511 +(% style="text-align:center" %) 503 503 [[image:image-20220608163643-6.png]] 504 504 505 505 Figure 6-6 Position control diagram ... ... @@ -506,17 +506,17 @@ 506 506 507 507 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 508 508 509 - 510 -| =(% scope="row" %)**Function code**|=**Name**|=(((518 +(% class="table-bordered" %) 519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 511 511 **Setting method** 512 -)))|=((( 521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 513 513 **Effective time** 514 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 515 -|=P01-01|Control mode|((( 523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 516 516 Operation setting 517 -)))|((( 526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 518 518 immediately Effective 519 -)))|0|0 to 1|((( 528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)((( 520 520 0: position control 521 521 522 522 2: speed control ... ... @@ -528,7 +528,7 @@ 528 528 5: position/torque mix control 529 529 530 530 6: speed /torque mix control 531 -)))|- 540 +)))|(% style="text-align:center; vertical-align:middle" %)- 532 532 533 533 Table 6-10 Control mode parameters 534 534 ... ... @@ -536,21 +536,21 @@ 536 536 537 537 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 538 538 539 - 540 -| =(% scope="row" %)**Function code**|=**Name**|=(((548 +(% class="table-bordered" %) 549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 541 541 **Setting method** 542 -)))|=((( 551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)((( 543 543 **Effective time** 544 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 545 -|=P01-06|Position instruction source|((( 553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 546 546 Operation setting 547 -)))|((( 556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)((( 548 548 immediately Effective 549 -)))|0|0 to 1|((( 558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)((( 550 550 0: pulse instruction 551 551 552 552 1: internal position instruction 553 -)))|- 562 +)))|(% style="text-align:center; vertical-align:middle" %)- 554 554 555 555 Table 6-11 Position instruction source parameter 556 556 ... ... @@ -558,20 +558,20 @@ 558 558 559 559 1) Low-speed pulse instruction input 560 560 570 +(% class="table-bordered" %) 571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive 573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting 561 561 562 -|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 563 -|VD2A and VD2B servo drives|VD2F servo drive 564 -|(% colspan="2" %)Figure 6-7 Position instruction input setting 565 - 566 566 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__. 567 567 568 568 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 569 569 579 +(% class="table-bordered" %) 580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage** 581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V 582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V 570 570 571 -|**Pulse method**|**Maximum frequency**|**Voltage** 572 -|Open collector input|200K|24V 573 -|Differential input|500K|5V 574 - 575 575 Table 6-12 Pulse input specifications 576 576 577 577 1.Differential input ... ... @@ -578,7 +578,7 @@ 578 578 579 579 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 580 580 581 - 590 +(% style="text-align:center" %) 582 582 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]] 583 583 584 584 Figure 6-8 Differential input connection ... ... @@ -589,7 +589,7 @@ 589 589 590 590 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 591 591 592 - 601 +(% style="text-align:center" %) 593 593 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]] 594 594 595 595 Figure 6-9 Open collector input connection ... ... @@ -600,7 +600,7 @@ 600 600 601 601 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 602 602 603 - 612 +(% style="text-align:center" %) 604 604 [[image:image-20220608163952-8.png]] 605 605 606 606 Figure 6-10 Example of filtered signal waveform ... ... @@ -607,22 +607,22 @@ 607 607 608 608 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 609 609 610 - 611 -| =(% scope="row" %)**Function code**|=**Name**|=(((619 +(% class="table-bordered" %) 620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 612 612 **Setting method** 613 -)))|=((( 622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)((( 614 614 **Effective time** 615 -)))|=**Default value**|=**Range**| =(% colspan="2" %)**Definition**|=**Unit**616 -|=P00-13|Maximum position pulse frequency|((( 624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 617 617 Shutdown setting 618 -)))|((( 627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)((( 619 619 Effective immediately 620 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 621 -| =(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz 630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)((( 622 622 Operation setting 623 -)))|(% rowspan="3" %)((( 632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)((( 624 624 Power-on again 625 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)((( 626 626 Set the anti-interference level of external pulse instruction. 627 627 628 628 0: no filtering; ... ... @@ -642,9 +642,9 @@ 642 642 7: Filtering time 8.192us 643 643 644 644 8: Filtering time 16.384us 645 -)))|(% rowspan="3" %)- 646 -| =(% rowspan="2" %)9|VD2: Filtering time 25.5us647 -| =VD2F: Filtering time 25.5us654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)- 655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us 656 +|VD2F: Filtering time 25.5us 648 648 649 649 Table 6-13 Position pulse frequency and anti-interference level parameters 650 650 ... ... @@ -652,17 +652,17 @@ 652 652 653 653 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 654 654 655 - 656 -| =(% scope="row" %)**Function code**|=**Name**|=(((664 +(% class="table-bordered" %) 665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 657 657 **Setting method** 658 -)))|=((( 667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 659 659 **Effective time** 660 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 661 -|=P00-12|Position pulse type selection|((( 669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 662 662 Operation setting 663 -)))|((( 672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 664 664 Power-on again 665 -)))|0|0 to 5|((( 674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)((( 666 666 0: direction + pulse (positive logic) 667 667 668 668 1: CW/CCW ... ... @@ -674,74 +674,74 @@ 674 674 4: CW/CCW (negative logic) 675 675 676 676 5: A, B phase quadrature pulse (4 times frequency negative logic) 677 -)))|- 686 +)))|(% style="text-align:center; vertical-align:middle" %)- 678 678 679 679 Table 6-14 Position pulse type selection parameter 680 680 681 - 682 -| =(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**683 -|=0|((( 690 +(% class="table-bordered" %) 691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse** 692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 684 684 Direction + pulse 685 685 686 686 (Positive logic) 687 -)))|((( 696 +)))|(% style="text-align:center; vertical-align:middle" %)((( 688 688 PULSE 689 689 690 690 SIGN 691 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 692 -|=1|CW/CCW|((( 700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)((( 693 693 PULSE (CW) 694 694 695 695 SIGN (CCW) 696 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 697 -|=2|((( 705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 698 698 AB phase orthogonal 699 699 700 700 pulse (4 times frequency) 701 -)))|((( 710 +)))|(% style="text-align:center; vertical-align:middle" %)((( 702 702 PULSE (Phase A) 703 703 704 704 SIGN (Phase B) 705 -)))|((( 714 +)))|(% style="text-align:center; vertical-align:middle" %)((( 706 706 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]] 707 707 708 708 Phase A is 90° ahead of Phase B 709 -)))|((( 718 +)))|(% style="text-align:center; vertical-align:middle" %)((( 710 710 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]] 711 711 712 712 Phase B is 90° ahead of Phase A 713 713 ))) 714 -|=3|((( 723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 715 715 Direction + pulse 716 716 717 717 (Negative logic) 718 -)))|((( 727 +)))|(% style="text-align:center; vertical-align:middle" %)((( 719 719 PULSE 720 720 721 721 SIGN 722 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 723 -|=4|((( 731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 724 724 CW/CCW 725 725 726 726 (Negative logic) 727 -)))|((( 736 +)))|(% style="text-align:center; vertical-align:middle" %)((( 728 728 PULSE (CW) 729 729 730 730 SIGN (CCW) 731 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 732 -|=5|((( 740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 733 733 AB phase orthogonal 734 734 735 735 pulse (4 times frequency negative logic) 736 -)))|((( 745 +)))|(% style="text-align:center; vertical-align:middle" %)((( 737 737 PULSE (Phase A) 738 738 739 739 SIGN (Phase B) 740 -)))|((( 749 +)))|(% style="text-align:center; vertical-align:middle" %)((( 741 741 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]] 742 742 743 743 B phase is ahead of A phase by 90° 744 -)))|((( 753 +)))|(% style="text-align:center; vertical-align:middle" %)((( 745 745 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]] 746 746 747 747 A phase is ahead of B phase by 90° ... ... @@ -755,7 +755,7 @@ 755 755 756 756 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 757 757 758 - 767 +(% style="text-align:center" %) 759 759 [[image:image-20220608164116-9.png]] 760 760 761 761 Figure 6-11 The setting process of multi-segment position ... ... @@ -762,51 +762,51 @@ 762 762 763 763 1) Set multi-segment position running mode 764 764 765 - 766 -| =(% scope="row" %)**Function code**|=**Name**|=(((774 +(% class="table-bordered" %) 775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 767 767 **Setting method** 768 -)))|=((( 777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 769 769 **Effective time** 770 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 771 -|=P07-01|Multi-segment position running mode|((( 779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 772 772 Shutdown setting 773 -)))|((( 782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 774 774 Effective immediately 775 -)))|0|0 to 2|((( 784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|((( 776 776 0: Single running 777 777 778 778 1: Cycle running 779 779 780 780 2: DI switching running 781 -)))|- 782 -|=P07-02|Start segment number|((( 790 +)))|(% style="text-align:center; vertical-align:middle" %)- 791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 783 783 Shutdown setting 784 -)))|((( 793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 785 785 Effective immediately 786 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|- 787 -|=P07-03|End segment number|((( 795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)- 796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 788 788 Shutdown setting 789 -)))|((( 798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 790 790 Effective immediately 791 -)))|1|1 to 16|last segment NO. in non-DI switching mode|- 792 -|=P07-04|Margin processing method|((( 800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)- 801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 793 793 Shutdown setting 794 -)))|((( 803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 795 795 Effective immediately 796 -)))|0|0 to 1|((( 805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 797 797 0: Run the remaining segments 798 798 799 799 1: Run again from the start segment 800 -)))|- 801 -|=P07-05|Displacement instruction type|((( 809 +)))|(% style="text-align:center; vertical-align:middle" %)- 810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 802 802 Shutdown setting 803 -)))|((( 812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 804 804 Effective immediately 805 -)))|0|0 to 1|((( 814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 806 806 0: Relative position instruction 807 807 808 808 1: Absolute position instruction 809 -)))|- 818 +)))|(% style="text-align:center; vertical-align:middle" %)- 810 810 811 811 Table 6-16 multi-segment position running mode parameters 812 812 ... ... @@ -816,7 +816,7 @@ 816 816 817 817 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 818 818 819 - 828 +(% style="text-align:center" %) 820 820 [[image:image-20220608164226-10.png]] 821 821 822 822 Figure 6-12 Single running curve (P07-02=1, P07-03=2) ... ... @@ -825,12 +825,12 @@ 825 825 826 826 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 827 827 828 - 837 +(% style="text-align:center" %) 829 829 [[image:image-20220608164327-11.png]] 830 830 831 831 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 832 832 833 -|[[image:image-20220611151917-5.png]] 842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]] 834 834 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 835 835 836 836 3. DI switching running ... ... @@ -837,30 +837,30 @@ 837 837 838 838 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 839 839 849 +(% class="table-bordered" %) 850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 840 840 841 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 842 -|=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 843 -|=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 844 -|=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 845 -|=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 846 - 847 847 Table 6-17 DI function code 848 848 849 849 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number. 850 850 860 +(% class="table-bordered" %) 861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number** 862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1 863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2 864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3 865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)………… 866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16 851 851 852 -|=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number** 853 -|=0|0|0|0|1 854 -|=0|0|0|1|2 855 -|=0|0|1|0|3 856 -|=(% colspan="5" %)………… 857 -|=1|1|1|1|16 858 - 859 859 Table 6-18 INPOS corresponds to running segment number 860 860 861 861 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__. 862 862 863 - 872 +(% style="text-align:center" %) 864 864 [[image:image-20220608164545-12.png]] 865 865 866 866 Figure 6-14 DI switching running curve ... ... @@ -871,12 +871,12 @@ 871 871 872 872 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively. 873 873 874 - 883 +(% style="text-align:center" %) 875 875 [[image:image-20220608164847-13.png]] 876 876 877 877 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 878 878 879 - 888 +(% style="text-align:center" %) 880 880 [[image:image-20220608165032-14.png]] 881 881 882 882 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) ... ... @@ -885,12 +885,12 @@ 885 885 886 886 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively. 887 887 888 - 897 +(% style="text-align:center" %) 889 889 [[image:image-20220608165343-15.png]] 890 890 891 891 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 892 892 893 - 902 +(% style="text-align:center" %) 894 894 [[image:image-20220608165558-16.png]] 895 895 896 896 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) ... ... @@ -902,8 +902,10 @@ 902 902 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 903 903 904 904 |((( 914 +(% style="text-align:center" %) 905 905 [[image:image-20220608165710-17.png]] 906 906 )))|((( 917 +(% style="text-align:center" %) 907 907 [[image:image-20220608165749-18.png]] 908 908 ))) 909 909 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram ... ... @@ -913,8 +913,10 @@ 913 913 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 914 914 915 915 |((( 927 +(% style="text-align:center" %) 916 916 [[image:image-20220608165848-19.png]] 917 917 )))|((( 930 +(% style="text-align:center" %) 918 918 [[image:image-20220608170005-20.png]] 919 919 ))) 920 920 |Figure 6-21 Absolute indication|Figure 6-22 Displacement ... ... @@ -923,46 +923,46 @@ 923 923 924 924 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 925 925 926 - 927 -| =(% scope="row" %)**Function code**|=**Name**|=(((939 +(% class="table-bordered" %) 940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 928 928 **Setting method** 929 -)))|=((( 942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 930 930 **Effective time** 931 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 932 -|=P07-09|((( 944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)((( 933 933 1st segment 934 934 935 935 displacement 936 -)))|((( 949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 937 937 Operation setting 938 -)))|((( 951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 939 939 Effective immediately 940 -)))|10000|((( 953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)((( 941 941 -2147483647 to 942 942 943 943 2147483646 944 -)))|Position instruction, positive and negative values could be set|- 945 -|=P07-10|Maximum speed of the 1st displacement|((( 957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)- 958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 946 946 Operation setting 947 -)))|((( 960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 948 948 Effective immediately 949 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm 950 -|=P07-11|Acceleration and deceleration of 1st segment displacement|((( 962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm 963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 951 951 Operation setting 952 -)))|((( 965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 953 953 Effective immediately 954 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms 955 -|=P07-12|Waiting time after completion of the 1st segment displacement|((( 967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms 968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 956 956 Operation setting 957 -)))|((( 970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 958 958 Effective immediately 959 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06 972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06 960 960 961 961 Table 6-19 The 1st position operation curve parameters table 962 962 963 963 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 964 964 965 - 978 +(% style="text-align:center" %) 966 966 [[image:image-20220608170149-21.png]] 967 967 968 968 Figure 6-23 The 1st segment running curve of motor ... ... @@ -971,14 +971,15 @@ 971 971 972 972 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 973 973 974 - 975 -|**DI function code**|**Function name**|**Function** 976 -|20|ENINPOS: Internal multi-segment position enable signal|((( 987 +(% class="table-bordered" %) 988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)((( 977 977 DI port logic invalid: Does not affect the current operation of the servo motor. 978 978 979 979 DI port logic valid: Motor runs multi-segment position 980 980 ))) 981 981 995 +(% style="text-align:center" %) 982 982 [[image:image-20220611152020-6.png]] 983 983 984 984 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! ... ... @@ -993,13 +993,13 @@ 993 993 994 994 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 995 995 996 - 1010 +(% style="text-align:center" %) 997 997 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]] 998 998 999 - 1013 +(% style="text-align:center" %) 1000 1000 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]] 1001 1001 1002 - 1016 +(% style="text-align:center" %) 1003 1003 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]] 1004 1004 1005 1005 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! ... ... @@ -1006,7 +1006,7 @@ 1006 1006 1007 1007 **(2) Setting steps of electronic gear ratio** 1008 1008 1009 - 1023 +(% style="text-align:center" %) 1010 1010 [[image:image-20220608170320-22.png]] 1011 1011 1012 1012 Figure 6-24 Setting steps of electronic gear ratio ... ... @@ -1021,7 +1021,7 @@ 1021 1021 1022 1022 Step5: Calculate the value of electronic gear ratio according to formula below. 1023 1023 1024 - 1038 +(% style="text-align:center" %) 1025 1025 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]] 1026 1026 1027 1027 **(3) lectronic gear ratio switch setting** ... ... @@ -1029,59 +1029,59 @@ 1029 1029 1030 1030 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 1031 1031 1032 - 1033 -|**Function code**|**Name**|((( 1046 +(% class="table-bordered" %) 1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1034 1034 **Setting method** 1035 -)))|((( 1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1036 1036 **Effective time** 1037 -)))|**Default value**|**Range**|**Definition**|**Unit** 1038 -|P00-16|Number of instruction pulses when the motor rotates one circle|((( 1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1039 1039 Shutdown setting 1040 -)))|((( 1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1041 1041 Effective immediately 1042 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|((( 1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)((( 1043 1043 Instruction pulse 1044 1044 1045 1045 unit 1046 1046 ))) 1047 -|P00-17|((( 1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1048 1048 Electronic gear 1 1049 1049 1050 1050 numerator 1051 -)))|Operation setting|((( 1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1052 1052 Effective immediately 1053 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1054 -|P00-18|((( 1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1055 1055 Electronic gear 1 1056 1056 1057 1057 denominator 1058 -)))|((( 1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1059 1059 Operation setting 1060 -)))|((( 1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1061 1061 Effective immediately 1062 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1063 -|P00-19|((( 1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1064 1064 Electronic gear 2 1065 1065 1066 1066 numerator 1067 -)))|Operation setting|((( 1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1068 1068 Effective immediately 1069 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1070 -|P00-20|((( 1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1071 1071 Electronic gear 2 1072 1072 1073 1073 denominator 1074 -)))|Operation setting|((( 1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1075 1075 Effective immediately 1076 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1077 1077 1078 1078 Table 6-20 Electronic gear ratio function code 1079 1079 1080 1080 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1081 1081 1082 - 1083 -|**DI function code**|**Function name**|**Function** 1084 -|09|GEAR-SEL electronic gear switch 1|((( 1096 +(% class="table-bordered" %) 1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)((( 1085 1085 DI port logic invalid: electronic gear ratio 1 1086 1086 1087 1087 DI port logic valid: electronic gear ratio 2 ... ... @@ -1089,10 +1089,10 @@ 1089 1089 1090 1090 Table 6-21 Switching conditions of electronic gear ratio group 1091 1091 1092 -|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] 1093 -|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]] 1094 -|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1095 -|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] 1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]] 1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1096 1096 1097 1097 Table 6-22 Application of electronic gear ratio 1098 1098 ... ... @@ -1110,32 +1110,32 @@ 1110 1110 1111 1111 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1112 1112 1113 - 1127 +(% style="text-align:center" %) 1114 1114 [[image:image-20220608170455-23.png]] 1115 1115 1116 1116 Figure 6-25 Position instruction filtering diagram 1117 1117 1118 - 1119 -|**Function code**|**Name**|((( 1132 +(% class="table-bordered" %) 1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 1120 1120 **Setting method** 1121 -)))|((( 1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1122 1122 **Effective time** 1123 -)))|**Default value**|**Range**|**Definition**|**Unit** 1124 -|P04-01|Pulse instruction filtering method|((( 1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit** 1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 1125 1125 Shutdown setting 1126 -)))|((( 1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1127 1127 Effective immediately 1128 -)))|0|0 to 1|((( 1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)((( 1129 1129 0: 1st-order low-pass filtering 1130 1130 1131 1131 1: average filtering 1132 -)))|- 1133 -|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)- 1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1134 1134 Effective immediately 1135 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms 1136 -|P04-03|Position instruction average filtering time constant|Shutdown setting|((( 1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms 1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1137 1137 Effective immediately 1138 -)))|0|0 to 128|Position instruction average filtering time constant|ms 1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms 1139 1139 1140 1140 Table 6-23 Position instruction filter function code 1141 1141 ... ... @@ -1155,7 +1155,7 @@ 1155 1155 (% class="wikigeneratedid" %) 1156 1156 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1157 1157 1158 - 1172 +(% style="text-align:center" %) 1159 1159 [[image:image-20220608170550-24.png]] 1160 1160 1161 1161 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1164,46 +1164,46 @@ 1164 1164 1165 1165 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1166 1166 1167 - 1181 +(% style="text-align:center" %) 1168 1168 [[image:image-20220608170650-25.png]] 1169 1169 1170 1170 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1171 1171 1172 - 1173 -|**Function code**|**Name**|((( 1186 +(% class="table-bordered" %) 1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1174 1174 **Setting method** 1175 -)))|((( 1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1176 1176 **Effective time** 1177 -)))|**Default value**|**Range**|**Definition**|**Unit** 1178 -|P05-12|Positioning completion threshold|((( 1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit** 1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1179 1179 Operation setting 1180 -)))|((( 1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1181 1181 Effective immediately 1182 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1183 -|P05-13|Positioning approach threshold|((( 1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit 1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1184 1184 Operation setting 1185 -)))|((( 1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1186 1186 Effective immediately 1187 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1188 -|P05-14|Position detection window time|((( 1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit 1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1189 1189 Operation setting 1190 -)))|((( 1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1191 1191 Effective immediately 1192 -)))|10|0 to 20000|Set positioning completion detection window time|ms 1193 -|P05-15|Positioning signal hold time|((( 1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms 1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1194 1194 Operation setting 1195 -)))|((( 1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1196 1196 Effective immediately 1197 -)))|100|0 to 20000|Set positioning completion output hold time|ms 1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms 1198 1198 1199 1199 Table 6-24 Function code parameters of positioning completion 1200 1200 1201 - 1202 -|**DO function code**|**Function name**|**Function** 1203 -|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1204 -|135|((( 1215 +(% class="table-bordered" %) 1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete. 1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)((( 1205 1205 P-NEAR positioning close 1206 -)))|((( 1220 +)))|(% style="text-align:center; vertical-align:middle" %)((( 1207 1207 Output this signal indicates that the servo drive position is close. 1208 1208 ))) 1209 1209 ... ... @@ -1213,7 +1213,7 @@ 1213 1213 1214 1214 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1215 1215 1216 - 1230 +(% style="text-align:center" %) 1217 1217 [[image:6.28.jpg||height="260" width="806"]] 1218 1218 1219 1219 Figure 6-28 Speed control block diagram ... ... @@ -1222,21 +1222,21 @@ 1222 1222 1223 1223 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1224 1224 1225 - 1226 -|**Function code**|**Name**|((( 1239 +(% class="table-bordered" %) 1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1227 1227 **Setting method** 1228 -)))|((( 1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1229 1229 **Effective time** 1230 -)))|**Default value**|**Range**|**Definition**|**Unit** 1231 -|P01-01|Speed instruction source|((( 1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1232 1232 Shutdown setting 1233 -)))|((( 1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1234 1234 Effective immediately 1235 -)))|1|1 to 6|((( 1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)((( 1236 1236 0: internal speed instruction 1237 1237 1238 1238 1: AI_1 analog input (not supported by VD2F) 1239 -)))|- 1253 +)))|(% style="text-align:center; vertical-align:middle" %)- 1240 1240 1241 1241 Table 6-26 Speed instruction source parameter 1242 1242 ... ... @@ -1244,19 +1244,19 @@ 1244 1244 1245 1245 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below. 1246 1246 1247 - 1248 -|**Function code**|**Name**|((( 1261 +(% class="table-bordered" %) 1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)((( 1249 1249 **Setting method** 1250 -)))|((( 1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 1251 1251 **Effective time** 1252 -)))|**Default value**|**Range**|**Definition**|**Unit** 1253 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit** 1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1254 1254 Internal speed Instruction 0 1255 -)))|(% rowspan="2" %)((( 1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1256 1256 Operation setting 1257 -)))|(% rowspan="2" %)((( 1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1258 1258 Effective immediately 1259 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1260 1260 Internal speed instruction 0 1261 1261 1262 1262 When DI input port: ... ... @@ -1268,15 +1268,15 @@ 1268 1268 13-INSPD1: 0, 1269 1269 1270 1270 select this speed instruction to be effective. 1271 -)))|(% rowspan="2" %)rpm 1272 -|-5000 to 5000* 1273 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1274 1274 Internal speed Instruction 1 1275 -)))|(% rowspan="2" %)((( 1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1276 1276 Operation setting 1277 -)))|(% rowspan="2" %)((( 1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1278 1278 Effective immediately 1279 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1280 1280 Internal speed instruction 1 1281 1281 1282 1282 When DI input port: ... ... @@ -1288,15 +1288,15 @@ 1288 1288 13-INSPD1: 1, 1289 1289 1290 1290 Select this speed instruction to be effective. 1291 -)))|(% rowspan="2" %)rpm 1292 -|-5000 to 5000* 1293 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1294 1294 Internal speed Instruction 2 1295 -)))|(% rowspan="2" %)((( 1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1296 1296 Operation setting 1297 -)))|(% rowspan="2" %)((( 1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1298 1298 Effective immediately 1299 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1300 1300 Internal speed instruction 2 1301 1301 1302 1302 When DI input port: ... ... @@ -1308,15 +1308,15 @@ 1308 1308 13-INSPD1: 0, 1309 1309 1310 1310 Select this speed instruction to be effective. 1311 -)))|(% rowspan="2" %)rpm 1312 -|-5000 to 5000* 1313 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1314 1314 Internal speed Instruction 3 1315 -)))|(% rowspan="2" %)((( 1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1316 1316 Operation setting 1317 -)))|(% rowspan="2" %)((( 1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1318 1318 Effective immediately 1319 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1320 1320 Internal speed instruction 3 1321 1321 1322 1322 When DI input port: ... ... @@ -1328,16 +1328,17 @@ 1328 1328 13-INSPD1: 1, 1329 1329 1330 1330 Select this speed instruction to be effective. 1331 -)))|(% rowspan="2" %)rpm 1332 -|-5000 to 5000* 1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1333 1333 1334 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1348 +(% class="table-bordered" %) 1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1335 1335 Internal speed Instruction 4 1336 -)))|(% rowspan="2" %)((( 1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1337 1337 Operation setting 1338 -)))|(% rowspan="2" %)((( 1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1339 1339 Effective immediately 1340 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1341 1341 Internal speed instruction 4 1342 1342 1343 1343 When DI input port: ... ... @@ -1349,15 +1349,15 @@ 1349 1349 13-INSPD1: 0, 1350 1350 1351 1351 Select this speed instruction to be effective. 1352 -)))|(% rowspan="2" %)rpm 1353 -|-5000 to 5000* 1354 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1355 1355 Internal speed Instruction 5 1356 -)))|(% rowspan="2" %)((( 1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1357 1357 Operation setting 1358 -)))|(% rowspan="2" %)((( 1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1359 1359 Effective immediately 1360 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1361 1361 Internal speed instruction 5 1362 1362 1363 1363 When DI input port: ... ... @@ -1369,15 +1369,15 @@ 1369 1369 13-INSPD1: 1, 1370 1370 1371 1371 Select this speed instruction to be effective. 1372 -)))|(% rowspan="2" %)rpm 1373 -|-5000 to 5000* 1374 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1375 1375 Internal speed Instruction 6 1376 -)))|(% rowspan="2" %)((( 1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1377 1377 Operation setting 1378 -)))|(% rowspan="2" %)((( 1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1379 1379 Effective immediately 1380 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1381 1381 Internal speed instruction 6 1382 1382 1383 1383 When DI input port: ... ... @@ -1389,15 +1389,15 @@ 1389 1389 13-INSPD1: 0, 1390 1390 1391 1391 Select this speed instruction to be effective. 1392 -)))|(% rowspan="2" %)rpm 1393 -|-5000 to 5000* 1394 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1395 1395 Internal speed Instruction 7 1396 -)))|(% rowspan="2" %)((( 1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1397 1397 Operation setting 1398 -)))|(% rowspan="2" %)((( 1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1399 1399 Effective immediately 1400 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1401 1401 Internal speed instruction 7 1402 1402 1403 1403 When DI input port: ... ... @@ -1409,34 +1409,34 @@ 1409 1409 13-INSPD1: 1, 1410 1410 1411 1411 Select this speed instruction to be effective. 1412 -)))|(% rowspan="2" %)rpm 1413 -|-5000 to 5000* 1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1414 1414 1415 1415 Table 6-27 Internal speed instruction parameters 1416 1416 1417 1417 ✎**Note: **“*” means the set range of VD2F servo drive. 1418 1418 1434 +(% class="table-bordered" %) 1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1419 1419 1420 -|**DI function code**|**function name**|**Function** 1421 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1422 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1423 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1424 - 1425 1425 Table 6-28 DI multi-speed function code description 1426 1426 1427 1427 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1428 1428 1429 - 1430 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1431 -|0|0|0|1|0 1432 -|0|0|1|2|1 1433 -|0|1|0|3|2 1444 +(% class="table-bordered" %) 1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number** 1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0 1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1 1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2 1434 1434 |(% colspan="5" %)...... 1435 -|1|1|1|8|7 1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7 1436 1436 1437 1437 Table 6-29 Correspondence between INSPD bits and segment numbers 1438 1438 1439 - 1454 +(% style="text-align:center" %) 1440 1440 [[image:image-20220608170845-26.png]] 1441 1441 1442 1442 Figure 6-29 Multi-segment speed running curve ... ... @@ -1445,7 +1445,7 @@ 1445 1445 1446 1446 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1447 1447 1448 - 1463 +(% style="text-align:center" %) 1449 1449 [[image:image-20220608153341-5.png]] 1450 1450 1451 1451 Figure 6-30 Analog input circuit ... ... @@ -1452,7 +1452,7 @@ 1452 1452 1453 1453 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1454 1454 1455 - 1470 +(% style="text-align:center" %) 1456 1456 [[image:image-20220608170955-27.png]] 1457 1457 1458 1458 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1465,18 +1465,18 @@ 1465 1465 1466 1466 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1467 1467 1468 - 1483 +(% style="text-align:center" %) 1469 1469 [[image:image-20220608171124-28.png]] 1470 1470 1471 1471 Figure 6-32 AI_1 diagram before and after bias 1472 1472 1488 +(% class="table-bordered" %) 1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit** 1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms 1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1473 1473 1474 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1475 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1476 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1477 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1478 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1479 - 1480 1480 Table 6-30 AI_1 parameters 1481 1481 1482 1482 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1487,7 +1487,7 @@ 1487 1487 1488 1488 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1489 1489 1490 - 1505 +(% style="text-align:center" %) 1491 1491 [[image:image-20220608171314-29.png]] 1492 1492 1493 1493 Figure 6-33 of acceleration and deceleration time diagram ... ... @@ -1496,22 +1496,22 @@ 1496 1496 1497 1497 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1498 1498 1499 - 1500 -|**Function code**|**Name**|((( 1514 +(% class="table-bordered" %) 1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1501 1501 **Setting method** 1502 -)))|((( 1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1503 1503 **Effective time** 1504 -)))|**Default value**|**Range**|**Definition**|**Unit** 1505 -|P01-03|Acceleration time|((( 1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit** 1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1506 1506 Operation setting 1507 -)))|((( 1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1508 1508 Effective immediately 1509 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1510 -|P01-04|Deceleration time|((( 1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms 1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1511 1511 Operation setting 1512 -)))|((( 1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1513 1513 Effective immediately 1514 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms 1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms 1515 1515 1516 1516 Table 6-31 Acceleration and deceleration time parameters 1517 1517 ... ... @@ -1530,27 +1530,27 @@ 1530 1530 1531 1531 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1532 1532 1533 - 1534 -|**Function code**|**Name**|((( 1548 +(% class="table-bordered" %) 1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1535 1535 **Setting method** 1536 -)))|((( 1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1537 1537 **Effective time** 1538 -)))|**Default value**|**Range**|**Definition**|**Unit** 1539 -|P01-10|Maximum speed threshold|((( 1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit** 1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1540 1540 Operation setting 1541 -)))|((( 1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1542 1542 Effective immediately 1543 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1544 -|P01-12|Forward speed threshold|((( 1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1545 1545 Operation setting 1546 -)))|((( 1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1547 1547 Effective immediately 1548 -)))|3000|0 to 5000|Set forward speed limit value|rpm 1549 -|P01-13|Reverse speed threshold|((( 1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1550 1550 Operation setting 1551 -)))|((( 1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1552 1552 Effective immediately 1553 -)))|3000|0 to 5000|Set reverse speed limit value|rpm 1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1554 1554 1555 1555 Table 6-32 Rotation speed related function codes 1556 1556 ... ... @@ -1560,19 +1560,19 @@ 1560 1560 1561 1561 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1562 1562 1563 - 1564 -|**Function code**|**Name**|((( 1578 +(% class="table-bordered" %) 1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1565 1565 **Setting method** 1566 -)))|((( 1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1567 1567 **Effective time** 1568 -)))|**Default value**|**Range**|**Definition**|**Unit** 1569 -|P01-21|((( 1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit** 1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1570 1570 Zero-speed clamp function selection 1571 -)))|((( 1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1572 1572 Operation setting 1573 -)))|((( 1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1574 1574 Effective immediately 1575 -)))|0|0 to 3|((( 1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)((( 1576 1576 Set the zero-speed clamp function. In speed mode: 1577 1577 1578 1578 0: Force the speed to 0; ... ... @@ -1582,18 +1582,18 @@ 1582 1582 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1583 1583 1584 1584 3: Invalid, ignore zero-speed clamp input 1585 -)))|- 1586 -|P01-22|((( 1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)- 1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1587 1587 Zero-speed clamp speed threshold 1588 -)))|((( 1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1589 1589 Operation setting 1590 -)))|((( 1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1591 1591 Effective immediately 1592 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm 1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm 1593 1593 1594 1594 Table 6-33 Zero-speed clamp related parameters 1595 1595 1596 - 1611 +(% style="text-align:center" %) 1597 1597 [[image:image-20220608171549-30.png]] 1598 1598 1599 1599 Figure 6-34 Zero-speed clamp diagram ... ... @@ -1606,7 +1606,7 @@ 1606 1606 1607 1607 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1608 1608 1609 - 1624 +(% style="text-align:center" %) 1610 1610 [[image:image-20220608171625-31.png]] 1611 1611 1612 1612 Figure 6-35 Rotation detection signal diagram ... ... @@ -1613,29 +1613,29 @@ 1613 1613 1614 1614 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1615 1615 1616 - 1617 -|**Function code**|**Name**|((( 1631 +(% class="table-bordered" %) 1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)((( 1618 1618 **Setting method** 1619 -)))|((( 1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 1620 1620 **Effective time** 1621 -)))|**Default value**|**Range**|**Definition**|**Unit** 1622 -|P05-16|((( 1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit** 1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1623 1623 Rotation detection 1624 1624 1625 1625 speed threshold 1626 -)))|((( 1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)((( 1627 1627 Operation setting 1628 -)))|((( 1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 1629 1629 Effective immediately 1630 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm 1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm 1631 1631 1632 1632 Table 6-34 Rotation detection speed threshold parameters 1633 1633 1634 - 1635 -|**DO function code**|**Function name**|**Function** 1636 -|132|((( 1649 +(% class="table-bordered" %) 1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function** 1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)((( 1637 1637 T-COIN rotation detection 1638 -)))|((( 1653 +)))|(% style="width:879px" %)((( 1639 1639 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1640 1640 1641 1641 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1647,7 +1647,7 @@ 1647 1647 1648 1648 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1649 1649 1650 - 1665 +(% style="text-align:center" %) 1651 1651 [[image:image-20220608171904-32.png]] 1652 1652 1653 1653 Figure 6-36 Zero-speed signal diagram ... ... @@ -1654,25 +1654,25 @@ 1654 1654 1655 1655 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1656 1656 1657 - 1658 -|**Function code**|**Name**|((( 1672 +(% class="table-bordered" %) 1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1659 1659 **Setting method** 1660 -)))|((( 1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 1661 1661 **Effective time** 1662 -)))|**Default value**|**Range**|**Definition**|**Unit** 1663 -|P05-19|Zero speed output signal threshold|((( 1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit** 1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1664 1664 Operation setting 1665 -)))|((( 1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 1666 1666 Effective immediately 1667 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm 1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm 1668 1668 1669 1669 Table 6-36 Zero-speed output signal threshold parameter 1670 1670 1671 - 1672 -|**DO function code**|**Function name**|**Function** 1673 -|133|((( 1686 +(% class="table-bordered" %) 1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)((( 1674 1674 ZSP zero speed signal 1675 -)))|Output this signal indicates that the servo motor is stopping rotation 1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation 1676 1676 1677 1677 Table 6-37 DO zero-speed signal function code 1678 1678 ... ... @@ -1680,7 +1680,7 @@ 1680 1680 1681 1681 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1682 1682 1683 - 1698 +(% style="text-align:center" %) 1684 1684 [[image:image-20220608172053-33.png]] 1685 1685 1686 1686 Figure 6-37 Speed consistent signal diagram ... ... @@ -1687,25 +1687,25 @@ 1687 1687 1688 1688 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1689 1689 1690 - 1691 -|**Function code**|**Name**|((( 1705 +(% class="table-bordered" %) 1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1692 1692 **Setting method** 1693 -)))|((( 1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1694 1694 **Effective time** 1695 -)))|**Default value**|**Range**|**Definition**|**Unit** 1696 -|P05-17|Speed consistent signal threshold|((( 1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit** 1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1697 1697 Operationsetting 1698 -)))|((( 1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1699 1699 Effective immediately 1700 -)))|10|0 to 100|Set speed consistent signal threshold|rpm 1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm 1701 1701 1702 1702 Table 6-38 Speed consistent signal threshold parameters 1703 1703 1704 - 1705 -|**DO Function code**|**Function name**|**Function** 1706 -|136|((( 1719 +(% class="table-bordered" %) 1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function** 1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)((( 1707 1707 U-COIN consistent speed 1708 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1709 1709 1710 1710 Table 6-39 DO speed consistent function code 1711 1711 ... ... @@ -1713,7 +1713,7 @@ 1713 1713 1714 1714 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1715 1715 1716 - 1731 +(% style="text-align:center" %) 1717 1717 [[image:image-20220608172207-34.png]] 1718 1718 1719 1719 Figure 6-38 Speed approaching signal diagram ... ... @@ -1720,25 +1720,25 @@ 1720 1720 1721 1721 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1722 1722 1723 - 1724 -|**Function code**|**Name**|((( 1738 +(% class="table-bordered" %) 1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)((( 1725 1725 **Setting method** 1726 -)))|((( 1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 1727 1727 **Effective time** 1728 -)))|**Default value**|**Range**|**Definition**|**Unit** 1729 -|P05-18|Speed approach signal threshold|((( 1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)((( 1730 1730 Operation setting 1731 -)))|((( 1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 1732 1732 Effective immediately 1733 -)))|100|10 to 6000|Set speed approach signal threshold|rpm 1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm 1734 1734 1735 1735 Table 6-40 Speed approaching signal threshold parameters 1736 1736 1737 - 1738 -|**DO function code**|**Function name**|**Function** 1739 -|137|((( 1752 +(% class="table-bordered" %) 1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function** 1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)((( 1740 1740 V-NEAR speed approach 1741 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value 1742 1742 1743 1743 Table 6-41 DO speed approach function code 1744 1744 ... ... @@ -1746,7 +1746,7 @@ 1746 1746 1747 1747 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1748 1748 1749 - 1764 +(% style="text-align:center" %) 1750 1750 [[image:image-20220608172405-35.png]] 1751 1751 1752 1752 Figure 6-39 Torque mode diagram ... ... @@ -1755,21 +1755,21 @@ 1755 1755 1756 1756 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1757 1757 1758 - 1759 -|**Function code**|**Name**|((( 1773 +(% class="table-bordered" %) 1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1760 1760 **Setting method** 1761 -)))|((( 1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1762 1762 **Effective time** 1763 -)))|**Default value**|**Range**|**Definition**|**Unit** 1764 -|P01-08|Torque instruction source|((( 1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1765 1765 Shutdown setting 1766 -)))|((( 1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1767 1767 Effective immediately 1768 -)))|0|0 to 1|((( 1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)((( 1769 1769 0: internal torque instruction 1770 1770 1771 1771 1: AI_1 analog input(not supported by VD2F) 1772 -)))|- 1787 +)))|(% style="text-align:center; vertical-align:middle" %)- 1773 1773 1774 1774 Table 6-42 Torque instruction source parameter 1775 1775 ... ... @@ -1777,17 +1777,17 @@ 1777 1777 1778 1778 Torque instruction source is from inside, the value is set by function code P01-08. 1779 1779 1780 - 1781 -|**Function code**|**Name**|((( 1795 +(% class="table-bordered" %) 1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 1782 1782 **Setting method** 1783 -)))|((( 1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 1784 1784 **Effective time** 1785 -)))|**Default value**|**Range**|**Definition**|**Unit** 1786 -|P01-08|Torque instruction keyboard set value|((( 1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 1787 1787 Operation setting 1788 -)))|((( 1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 1789 1789 Effective immediately 1790 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1% 1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1% 1791 1791 1792 1792 Table 6-43 Torque instruction keyboard set value 1793 1793 ... ... @@ -1795,7 +1795,7 @@ 1795 1795 1796 1796 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1797 1797 1798 - 1813 +(% style="text-align:center" %) 1799 1799 [[image:image-20220608153646-7.png||height="213" width="408"]] 1800 1800 1801 1801 Figure 6-40 Analog input circuit ... ... @@ -1802,7 +1802,7 @@ 1802 1802 1803 1803 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1804 1804 1805 - 1820 +(% style="text-align:center" %) 1806 1806 [[image:image-20220608172502-36.png]] 1807 1807 1808 1808 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1815,18 +1815,18 @@ 1815 1815 1816 1816 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1817 1817 1818 - 1833 +(% style="text-align:center" %) 1819 1819 [[image:image-20220608172611-37.png]] 1820 1820 1821 1821 Figure 6-42 AI_1 diagram before and after bias 1822 1822 1838 +(% class="table-bordered" %) 1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV 1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms 1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV 1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV 1823 1823 1824 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1825 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1826 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1827 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1828 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1829 - 1830 1830 Table 6-44 AI_1 parameters 1831 1831 1832 1832 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1835,23 +1835,23 @@ 1835 1835 1836 1836 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1837 1837 1838 - 1839 -|**Function code**|**Name**|((( 1853 +(% class="table-bordered" %) 1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)((( 1840 1840 **Setting method** 1841 -)))|((( 1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1842 1842 **Effective time** 1843 -)))|**Default value**|**Range**|**Definition**|**Unit** 1844 -|P04-04|Torque filtering time constant|((( 1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)((( 1845 1845 Operation setting 1846 -)))|((( 1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1847 1847 Effective immediately 1848 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms 1849 1849 1850 1850 Table 6-45 Torque filtering time constant parameter details 1851 1851 1852 1852 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1853 1853 1854 - 1869 +(% style="text-align:center" %) 1855 1855 [[image:image-20220608172646-38.png]] 1856 1856 1857 1857 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1862,7 +1862,7 @@ 1862 1862 1863 1863 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1864 1864 1865 - 1880 +(% style="text-align:center" %) 1866 1866 [[image:image-20220608172806-39.png]] 1867 1867 1868 1868 Figure 6-44 Torque instruction limit diagram ... ... @@ -1871,50 +1871,50 @@ 1871 1871 1872 1872 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1873 1873 1874 - 1875 -|**Function code**|**Name**|((( 1889 +(% class="table-bordered" %) 1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 1876 1876 **Setting method** 1877 -)))|((( 1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 1878 1878 **Effective time** 1879 -)))|**Default value**|**Range**|**Definition**|**Unit** 1880 -|P01-14|((( 1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1881 1881 Torque limit source 1882 -)))|((( 1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 1883 1883 Shutdown setting 1884 -)))|((( 1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 1885 1885 Effective immediately 1886 -)))|0|0 to 1|((( 1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)((( 1887 1887 0: internal value 1888 1888 1889 1889 1: AI_1 analog input 1890 1890 1891 1891 (not supported by VD2F) 1892 -)))|- 1907 +)))|(% style="text-align:center; vertical-align:middle" %)- 1893 1893 1894 1894 1) Torque limit source is internal torque instruction (P01-14=0) 1895 1895 1896 1896 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1897 1897 1898 - 1899 -|**Function code**|**Name**|((( 1913 +(% class="table-bordered" %) 1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1900 1900 **Setting method** 1901 -)))|((( 1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1902 1902 **Effective time** 1903 -)))|**Default value**|**Range**|**Definition**|**Unit** 1904 -|P01-15|((( 1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit** 1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)((( 1905 1905 Forward torque limit 1906 -)))|((( 1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1907 1907 Operation setting 1908 -)))|((( 1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1909 1909 Effective immediately 1910 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1911 -|P01-16|((( 1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1% 1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)((( 1912 1912 Reverse torque limit 1913 -)))|((( 1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1914 1914 Operation setting 1915 -)))|((( 1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1916 1916 Effective immediately 1917 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1% 1918 1918 1919 1919 Table 6-46 Torque limit parameter details 1920 1920 ... ... @@ -1926,11 +1926,11 @@ 1926 1926 1927 1927 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1928 1928 1929 - 1930 -|**DO function code**|**Function name**|**Function** 1931 -|139|((( 1944 +(% class="table-bordered" %) 1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function** 1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)((( 1932 1932 T-LIMIT in torque limit 1933 -)))|Output of this signal indicates that the servo motor torque is limited 1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited 1934 1934 1935 1935 Table 6-47 DO torque limit function codes 1936 1936 ... ... @@ -1941,43 +1941,46 @@ 1941 1941 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__. 1942 1942 1943 1943 |((( 1959 +(% style="text-align:center" %) 1944 1944 [[image:image-20220608172910-40.png]] 1945 1945 )))|((( 1962 +(% style="text-align:center" %) 1946 1946 [[image:image-20220608173155-41.png]] 1947 1947 ))) 1948 1948 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1949 1949 1950 -|**Function code**|**Name**|((( 1967 +(% class="table-bordered" %) 1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1951 1951 **Setting method** 1952 -)))|((( 1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1953 1953 **Effective time** 1954 -)))|**Default value**|**Range**|**Definition**|**Unit** 1955 -|P01-17|((( 1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1956 1956 Forward torque 1957 1957 1958 1958 limit in torque mode 1959 -)))|((( 1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1960 1960 Operation setting 1961 -)))|((( 1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1962 1962 Effective immediately 1963 -)))|3000|0 to 5000|((( 1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)((( 1964 1964 Forward torque 1965 1965 1966 1966 limit in torque mode 1967 -)))|0.1% 1968 -|P01-18|((( 1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1% 1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1969 1969 Reverse torque 1970 1970 1971 1971 limit in torque mode 1972 -)))|((( 1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1973 1973 Operation setting 1974 -)))|((( 1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1975 1975 Effective immediately 1976 -)))|3000|0 to 5000|((( 1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)((( 1977 1977 Reverse torque 1978 1978 1979 1979 limit in torque mode 1980 -)))|0.1% 1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1% 1981 1981 1982 1982 Table 6-48 Speed limit parameters in torque mode 1983 1983 ... ... @@ -1991,7 +1991,7 @@ 1991 1991 1992 1992 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1993 1993 1994 - 2012 +(% style="text-align:center" %) 1995 1995 [[image:image-20220608173541-42.png]] 1996 1996 1997 1997 Figure 6-47 Torque arrival output diagram ... ... @@ -1998,44 +1998,44 @@ 1998 1998 1999 1999 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 2000 2000 2001 - 2002 -|**Function code**|**Name**|((( 2019 +(% class="table-bordered" %) 2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2003 2003 **Setting method** 2004 -)))|((( 2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2005 2005 **Effective time** 2006 -)))|**Default value**|**Range**|**Definition**|**Unit** 2007 -|P05-20|((( 2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 2008 2008 Torque arrival 2009 2009 2010 2010 threshold 2011 -)))|((( 2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2012 2012 Operation setting 2013 -)))|((( 2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2014 2014 Effective immediately 2015 -)))|100|0 to 300|((( 2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)((( 2016 2016 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2017 2017 2018 2018 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; 2019 2019 2020 2020 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2021 -)))|% 2022 -|P05-21|((( 2039 +)))|(% style="text-align:center; vertical-align:middle" %)% 2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 2023 2023 Torque arrival 2024 2024 2025 2025 hysteresis 2026 -)))|((( 2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2027 2027 Operation setting 2028 -)))|((( 2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2029 2029 Effective immediately 2030 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)% 2031 2031 2032 2032 Table 6-49 Torque arrival parameters 2033 2033 2034 - 2035 -|**DO function code**|**Function name**|**Function** 2036 -|138|((( 2052 +(% class="table-bordered" %) 2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function** 2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)((( 2037 2037 T-COIN torque arrival 2038 -)))|Used to determine whether the actual torque instruction has reached the set range 2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range 2039 2039 2040 2040 Table 6-50 DO Torque Arrival Function Code 2041 2041 ... ... @@ -2051,17 +2051,17 @@ 2051 2051 2052 2052 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2053 2053 2054 - 2055 -|**Function code**|**Name**|((( 2072 +(% class="table-bordered" %) 2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 2056 2056 **Setting method** 2057 -)))|((( 2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)((( 2058 2058 **Effective time** 2059 -)))|**Default value**|**Range**|**Definition**|**Unit** 2060 -|P00-01|Control mode|((( 2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 2061 2061 Shutdown setting 2062 -)))|((( 2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)((( 2063 2063 Shutdown setting 2064 -)))|1|1 to 6|((( 2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)((( 2065 2065 1: Position control 2066 2066 2067 2067 2: Speed control ... ... @@ -2073,22 +2073,23 @@ 2073 2073 5: Position/torque mixed control 2074 2074 2075 2075 6: Speed/torque mixed control 2076 -)))|- 2094 +)))|(% style="text-align:center; vertical-align:middle" %)- 2077 2077 2078 2078 Table 6-51 Mixed control mode parameters 2079 2079 2080 2080 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2081 2081 2082 - 2083 -|**DI function code**|**Name**|**Function name**|**Function** 2084 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2085 -|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2086 -|(% rowspan="2" %)4|Valid|Speed mode 2087 -|invalid|Position mode 2088 -|(% rowspan="2" %)5|Valid|Torque mode 2089 -|invalid|Position mode 2090 -|(% rowspan="2" %)6|Valid|Torque mode 2091 -|invalid|Speed mode 2100 +(% class="table-bordered" %) 2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2103 +(% class="table-bordered" %) 2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode** 2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2092 2092 ))) 2093 2093 2094 2094 Table 6-52 Description of DI function codes in control mode ... ... @@ -2107,15 +2107,15 @@ 2107 2107 2108 2108 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2109 2109 2129 +(% class="table-bordered" %) 2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2110 2110 2111 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2112 -|A1 (single-turn magnetic encoder)|17|0 to 131071 2113 - 2114 2114 Table 6-53 Single-turn absolute encoder information 2115 2115 2116 2116 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2117 2117 2118 - 2137 +(% style="text-align:center" %) 2119 2119 [[image:image-20220608173618-43.png]] 2120 2120 2121 2121 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2124,16 +2124,16 @@ 2124 2124 2125 2125 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2126 2126 2146 +(% class="table-bordered" %) 2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607 2127 2127 2128 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2129 -|C1 (multi-turn magnetic encoder)|17|0 to 131071 2130 -|D2 (multi-turn Optical encoder)|23|0 to 8388607 2131 - 2132 2132 Table 6-54 Multi-turn absolute encoder information 2133 2133 2134 2134 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2135 2135 2136 - 2155 +(% style="text-align:center" %) 2137 2137 [[image:image-20220608173701-44.png]] 2138 2138 2139 2139 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2142,12 +2142,12 @@ 2142 2142 2143 2143 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2144 2144 2164 +(% class="table-bordered" %) 2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type** 2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit 2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2145 2145 2146 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2147 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2148 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2149 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2150 - 2151 2151 Table 6-55 Encoder feedback data 2152 2152 2153 2153 == **Absolute value system encoder battery box use precautions** == ... ... @@ -2154,7 +2154,7 @@ 2154 2154 2155 2155 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2156 2156 2157 - 2176 +(% style="text-align:center" %) 2158 2158 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]] 2159 2159 2160 2160 Figure 6-50 the encoder battery box ... ... @@ -2167,23 +2167,23 @@ 2167 2167 2168 2168 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2169 2169 2170 - 2171 -|**Function code**|**Name**|((( 2189 +(% class="table-bordered" %) 2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 2172 2172 **Setting method** 2173 -)))|((( 2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 2174 2174 **Effective time** 2175 -)))|**Default value**|**Range**|**Definition**|**Unit** 2176 -|P10-06|Multi-turn absolute encoder reset|((( 2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 2177 2177 Shutdown setting 2178 -)))|((( 2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 2179 2179 Effective immediately 2180 -)))|0|0 to 1|((( 2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)((( 2181 2181 0: No operation 2182 2182 2183 2183 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2184 2184 2185 2185 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2186 -)))|- 2205 +)))|(% style="text-align:center; vertical-align:middle" %)- 2187 2187 2188 2188 Table 6-56 Absolute encoder reset enable parameter 2189 2189 ... ... @@ -2201,18 +2201,18 @@ 2201 2201 2202 2202 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2203 2203 2204 - 2223 +(% style="text-align:center" %) 2205 2205 [[image:image-20220608173804-46.png]] 2206 2206 2207 2207 Figure 6-51 VDI_1 setting steps 2208 2208 2209 - 2210 -|**Function code**|**Name**|((( 2228 +(% class="table-bordered" %) 2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 2211 2211 **Setting method** 2212 -)))|((( 2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 2213 2213 **Effective time** 2214 -)))|**Default value**|**Range**|**Definition**|**Unit** 2215 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2216 2216 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2217 2217 2218 2218 VDI_1 input level: ... ... @@ -2220,8 +2220,8 @@ 2220 2220 0: low level 2221 2221 2222 2222 1: high level 2223 -)))|- 2224 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2242 +)))|(% style="text-align:center; vertical-align:middle" %)- 2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2225 2225 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2226 2226 2227 2227 VDI_2 input level: ... ... @@ -2229,8 +2229,8 @@ 2229 2229 0: low level 2230 2230 2231 2231 1: high level 2232 -)))|- 2233 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2251 +)))|(% style="text-align:center; vertical-align:middle" %)- 2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2234 2234 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2235 2235 2236 2236 VDI_3 input level: ... ... @@ -2238,8 +2238,8 @@ 2238 2238 0: low level 2239 2239 2240 2240 1: high level 2241 -)))|- 2242 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2260 +)))|(% style="text-align:center; vertical-align:middle" %)- 2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2243 2243 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2244 2244 2245 2245 VDI_4 input level: ... ... @@ -2247,8 +2247,8 @@ 2247 2247 0: low level 2248 2248 2249 2249 1: high level 2250 -)))|- 2251 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2269 +)))|(% style="text-align:center; vertical-align:middle" %)- 2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2252 2252 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2253 2253 2254 2254 VDI_5 input level: ... ... @@ -2256,8 +2256,8 @@ 2256 2256 0: low level 2257 2257 2258 2258 1: high level 2259 -)))|- 2260 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2278 +)))|(% style="text-align:center; vertical-align:middle" %)- 2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2261 2261 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2262 2262 2263 2263 VDI_6 input level: ... ... @@ -2265,8 +2265,8 @@ 2265 2265 0: low level 2266 2266 2267 2267 1: high level 2268 -)))|- 2269 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2287 +)))|(% style="text-align:center; vertical-align:middle" %)- 2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2270 2270 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2271 2271 2272 2272 VDI_7 input level: ... ... @@ -2274,8 +2274,8 @@ 2274 2274 0: low level 2275 2275 2276 2276 1: high level 2277 -)))|- 2278 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2296 +)))|(% style="text-align:center; vertical-align:middle" %)- 2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2279 2279 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2280 2280 2281 2281 VDI_8 input level: ... ... @@ -2283,7 +2283,7 @@ 2283 2283 0: low level 2284 2284 2285 2285 1: high level 2286 -)))|- 2305 +)))|(% style="text-align:center; vertical-align:middle" %)- 2287 2287 2288 2288 Table 6-57 Virtual VDI parameters 2289 2289 ... ... @@ -2293,11 +2293,11 @@ 2293 2293 2294 2294 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2295 2295 2315 +(% class="table-bordered" %) 2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration** 2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2296 2296 2297 -|**Setting value**|**DI channel logic selection**|**Illustration** 2298 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2299 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2300 - 2301 2301 Table 6-58 DI terminal channel logic selection 2302 2302 2303 2303 == **VDO** == ... ... @@ -2306,55 +2306,55 @@ 2306 2306 2307 2307 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2308 2308 2309 - 2328 +(% style="text-align:center" %) 2310 2310 [[image:image-20220608173957-48.png]] 2311 2311 2312 2312 Figure 6-52 VDO_2 setting steps 2313 2313 2314 - 2315 -|**Function code**|**Name**|((( 2333 +(% class="table-bordered" %) 2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 2316 2316 **Setting method** 2317 -)))|((( 2336 +)))|(% style="text-align:center; vertical-align:middle" %)((( 2318 2318 **Effective time** 2319 -)))|**Default value**|**Range**|**Definition**|**Unit** 2320 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2321 2321 VDO_1 output level: 2322 2322 2323 2323 0: low level 2324 2324 2325 2325 1: high level 2326 -)))|- 2327 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2345 +)))|(% style="text-align:center; vertical-align:middle" %)- 2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2328 2328 VDO_2 output level: 2329 2329 2330 2330 0: low level 2331 2331 2332 2332 1: high level 2333 -)))|- 2334 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2352 +)))|(% style="text-align:center; vertical-align:middle" %)- 2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2335 2335 VDO_3 output level: 2336 2336 2337 2337 0: low level 2338 2338 2339 2339 1: high level 2340 -)))|- 2341 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2359 +)))|(% style="text-align:center; vertical-align:middle" %)- 2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2342 2342 VDO_4 output level: 2343 2343 2344 2344 0: low level 2345 2345 2346 2346 1: high level 2347 -)))|- 2366 +)))|(% style="text-align:center; vertical-align:middle" %)- 2348 2348 2349 2349 Table 6-59 Communication control DO function parameters 2350 2350 2370 +(% class="table-bordered" %) 2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2351 2351 2352 -|**DO function number**|**Function name**|**Function** 2353 -|145|COM_VDO1 communication VDO1 output|Use communication VDO 2354 -|146|COM_VDO1 communication VDO2 output|Use communication VDO 2355 -|147|COM_VDO1 communication VDO3 output|Use communication VDO 2356 -|148|COM_VDO1 communication VDO4output|Use communication VDO 2357 - 2358 2358 Table 6-60 VDO function number 2359 2359 2360 2360 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation ... ... @@ -2365,17 +2365,17 @@ 2365 2365 2366 2366 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2367 2367 2368 - 2369 -|**Function code**|**Name**|((( 2387 +(% class="table-bordered" %) 2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 2370 2370 **Setting method** 2371 -)))|((( 2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 2372 2372 **Effective time** 2373 -)))|**Default value**|**Range**|**Definition**|**Unit** 2374 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)((( 2375 2375 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2376 2376 2377 2377 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled 2378 -)))|% 2397 +)))|(% style="text-align:center; vertical-align:middle" %)% 2379 2379 2380 2380 In the following cases, it could be modified according to the actual heat generation of the motor 2381 2381