Changes for page 06 Operation

Last modified by Iris on 2025/08/06 18:24

From version 48.5
edited by Leo Wei
on 2022/06/11 18:04
Change comment: There is no comment for this version
To version 43.1
edited by Joey
on 2022/06/11 15:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.admin
1 +XWiki.Joey
Content
... ... @@ -2,20 +2,20 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" %)**No.**|=**Content**
6 -|=(% colspan="2" %)Wiring
7 -|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=5|Servo drive and servo motor must be grounded reliably.
12 -|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=7|The force of all cables is within the specified range.
14 -|=8|The wiring terminals have been insulated.
15 -|=(% colspan="2" %)Environment and Machinery
16 -|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 -|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
5 +|**No.**|**Content**
6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|5|Servo drive and servo motor must be grounded reliably.
12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|7|The force of all cables is within the specified range.
14 +|8|The wiring terminals have been insulated.
15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
... ... @@ -42,17 +42,17 @@
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 44  
45 -
46 -|=(% scope="row" %)**Function code**|=**Name**|=(((
45 +(% class="table-bordered" %)
46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
47 47  **Setting method**
48 -)))|=(((
48 +)))|(% style="text-align:center; vertical-align:middle" %)(((
49 49  **Effective time**
50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
51 -|=P10-01|JOG speed|(((
50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
52 52  Operation setting
53 -)))|(((
53 +)))|(% style="text-align:center; vertical-align:middle" %)(((
54 54  Effective immediately
55 -)))|100|0 to 3000|JOG speed|rpm
55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
56 56  
57 57  Table 6-2 JOG speed parameter
58 58  
... ... @@ -60,25 +60,25 @@
60 60  
61 61  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62 62  
63 -
64 -|=(% scope="row" %)**Function code**|=**Name**|=(((
63 +(% class="table-bordered" %)
64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
65 65  **Setting method**
66 -)))|=(((
66 +)))|(% style="text-align:center; vertical-align:middle" %)(((
67 67  **Effective time**
68 -)))|=(((
68 +)))|(% style="text-align:center; vertical-align:middle" %)(((
69 69  **Default value**
70 -)))|=**Range**|=**Definition**|=**Unit**
71 -|=P00-04|Rotation direction|(((
70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
72 72  Shutdown setting
73 -)))|(((
73 +)))|(% style="text-align:center; vertical-align:middle" %)(((
74 74  Effective immediately
75 -)))|0|0 to 1|(((
75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
76 76  Forward rotation: Face the motor shaft to watch
77 77  
78 78  0: standard setting (CW is forward rotation)
79 79  
80 80  1: reverse mode (CCW is forward rotation)
81 -)))|-
81 +)))|(% style="text-align:center; vertical-align:middle" %)-
82 82  
83 83  Table 6-3 Rotation direction parameters** **
84 84  
... ... @@ -91,16 +91,17 @@
91 91  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
92 92  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
93 93  
94 -|=(% scope="row" %)**Function code**|=**Name**|=(((
94 +(% class="table-bordered" %)
95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
95 95  **Setting method**
96 -)))|=(((
97 +)))|(% style="text-align:center; vertical-align:middle" %)(((
97 97  **Effective time**
98 -)))|=**Default**|=**Range**|=**Definition**|=**Unit**
99 -|=P00-09|Braking resistor setting|(((
99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
100 100  Operation setting
101 -)))|(((
102 +)))|(% style="text-align:center; vertical-align:middle" %)(((
102 102  Effective immediately
103 -)))|0|0 to 3|(((
104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
104 104  0: use built-in braking resistor
105 105  
106 106  1: use external braking resistor and natural cooling
... ... @@ -108,18 +108,18 @@
108 108  2: use external braking resistor and forced air cooling; (cannot be set)
109 109  
110 110  3: No braking resistor is used, it is all absorbed by capacitor.
111 -)))|-
112 -|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
113 -|=P00-10|External braking resistor value|(((
112 +)))|(% style="text-align:center; vertical-align:middle" %)-
113 +|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
114 114  Operation setting
115 -)))|(((
116 +)))|(% style="text-align:center; vertical-align:middle" %)(((
116 116  Effective immediately
117 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
118 -|=P00-11|External braking resistor power|(((
118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
119 119  Operation setting
120 -)))|(((
121 +)))|(% style="text-align:center; vertical-align:middle" %)(((
121 121  Effective immediately
122 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
123 123  
124 124  Table 6-4 Braking resistor parameters
125 125  
... ... @@ -137,7 +137,7 @@
137 137  
138 138  **(3) Timing diagram of power on**
139 139  
140 -
141 +(% style="text-align:center" %)
141 141  [[image:image-20220608163014-1.png]]
142 142  
143 143  Figure 6-1 Timing diagram of power on
... ... @@ -146,17 +146,17 @@
146 146  
147 147  According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
148 148  
150 +(% class="table-bordered" %)
151 +|Shutdown mode|Shutdown description|Shutdown characteristics
152 +|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
153 +|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
149 149  
150 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
151 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
152 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
153 -
154 154  Table 6-5 Comparison of two shutdown modes
155 155  
157 +(% class="table-bordered" %)
158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
156 156  
157 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
158 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
159 -
160 160  Table 6-6 Comparison of two shutdown status
161 161  
162 162  **(1) Servo enable (S-ON) OFF shutdown**
... ... @@ -163,27 +163,27 @@
163 163  
164 164  The related parameters of the servo OFF shutdown mode are shown in the table below.
165 165  
166 -
167 -|=(% scope="row" %)**Function code**|=**Name**|=(((
167 +(% class="table-bordered" %)
168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
168 168  **Setting method**
169 -)))|=(((
170 +)))|(% style="text-align:center; vertical-align:middle" %)(((
170 170  **Effective time**
171 -)))|=(((
172 +)))|(% style="text-align:center; vertical-align:middle" %)(((
172 172  **Default value**
173 -)))|=**Range**|=**Definition**|=**Unit**
174 -|=P00-05|Servo OFF shutdown|(((
174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
175 175  Shutdown
176 176  
177 177  setting
178 -)))|(((
179 +)))|(% style="text-align:center; vertical-align:middle" %)(((
179 179  Effective
180 180  
181 181  immediately
182 -)))|0|0 to 1|(((
183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
183 183  0: Free shutdown, and the motor shaft remains free status.
184 184  
185 185  1: Zero-speed shutdown, and the motor shaft remains free status.
186 -)))|-
187 +)))|(% style="text-align:center; vertical-align:middle" %)-
187 187  
188 188  Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
189 189  
... ... @@ -199,13 +199,13 @@
199 199  
200 200  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
201 201  
202 -
203 -|=(% scope="row" %)**Function code**|=**Name**|=(((
203 +(% class="table-bordered" %)
204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
204 204  **Setting method**
205 -)))|=(((
206 +)))|(% style="text-align:center; vertical-align:middle" %)(((
206 206  **Effective time**
207 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
208 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
209 209  0: OFF (not used)
210 210  
211 211  01: S-ON servo enable
... ... @@ -253,30 +253,32 @@
253 253  24: Internal multi-segment position selection 4
254 254  
255 255  Others: reserved
256 -)))|-
257 -|=P06-09|DI_3 channel logic selection|Operation setting|(((
257 +)))|(% style="text-align:center; vertical-align:middle" %)-
258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
258 258  Effective immediately
259 -)))|0|0 to 1|(((
260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
260 260  DI port input logic validity function selection.
261 261  
262 262  0: Normally open input. Active low level (switch on);
263 263  
264 264  1: Normally closed input. Active high level (switch off);
265 -)))|-
266 -|=P06-10|DI_3 input source selection|Operation setting|(((
266 +)))|(% style="text-align:center; vertical-align:middle" %)-
267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
267 267  Effective immediately
268 -)))|0|0 to 1|(((
269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
269 269  Select the DI_3 port type to enable
270 270  
271 271  0: Hardware DI_3 input terminal
272 272  
273 273  1: virtual VDI_3 input terminal
274 -)))|-
275 -|=P06-11|DI_4 channel function selection|(((
275 +)))|(% style="text-align:center; vertical-align:middle" %)-
276 +
277 +(% class="table-bordered" %)
278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
276 276  Operation setting
277 -)))|(((
280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
278 278  again Power-on
279 -)))|4|0 to 32|(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
280 280  0 off (not used)
281 281  
282 282  01: SON Servo enable
... ... @@ -324,25 +324,25 @@
324 324  24: Internal multi-segment position selection 4
325 325  
326 326  Others: reserved
327 -)))|-
328 -|=P06-12|DI_4 channel logic selection|Operation setting|(((
330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
329 329  Effective immediately
330 -)))|0|0 to 1|(((
333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
331 331  DI port input logic validity function selection.
332 332  
333 333  0: Normally open input. Active low level (switch on);
334 334  
335 335  1: Normally closed input. Active high level (switch off);
336 -)))|-
337 -|=P06-13|DI_4 input source selection|Operation setting|(((
339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
338 338  Effective immediately
339 -)))|0|0 to 1|(((
342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
340 340  Select the DI_4 port type to enable
341 341  
342 342  0: Hardware DI_4 input terminal
343 343  
344 344  1: virtual VDI_4 input terminal
345 -)))|-
348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
346 346  
347 347  Table 6-8 DI3 and DI4 channel parameters
348 348  
... ... @@ -354,8 +354,9 @@
354 354  
355 355  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
356 356  
357 -
360 +(% class="table-bordered" %)
358 358  |(((
362 +(% style="text-align:center" %)
359 359  [[image:image-20220611151617-1.png]]
360 360  )))
361 361  |(((
... ... @@ -374,13 +374,14 @@
374 374  
375 375  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
376 376  
377 -
381 +(% style="text-align:center" %)
378 378  [[image:image-20220608163136-2.png]]
379 379  
380 380  Figure 6-2 VD2B servo drive brake wiring
381 381  
382 -
386 +(% class="table-bordered" %)
383 383  |(((
388 +(% style="text-align:center" %)
384 384  [[image:image-20220611151642-2.png]]
385 385  )))
386 386  |(((
... ... @@ -397,42 +397,42 @@
397 397  
398 398  Related function code is as below.
399 399  
400 -
401 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
405 +(% class="table-bordered" %)
406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
402 402  **Effective time**
403 403  )))
404 -|=144|(((
409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
405 405  BRK-OFF Brake output
406 -)))|Output the signal indicates the servo motor brake release|Power-on again
411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
407 407  
408 408  Table 6-2 Relevant function codes for brake setting
409 409  
410 -
411 -|=(% scope="row" %)**Function code**|=**Name**|=(((
415 +(% class="table-bordered" %)
416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
412 412  **Setting method**
413 -)))|=(((
418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
414 414  **Effective time**
415 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
416 -|=P1-30|Delay from brake output to instruction reception|(((
420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
417 417  Operation setting
418 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
419 -|=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
420 420  Operation setting
421 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
422 -|=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
423 423  Operation setting
424 -)))|Effective immediately|30|0 to 3000|(((
429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
425 425  When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
426 426  
427 427  When the brake output (BRK-OFF) is not allocated, this function code has no effect.
428 -)))|rpm
429 -|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm
434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
430 430  Operation setting
431 -)))|Effective immediately|500|1 to 1000|(((
436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
432 432  When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
433 433  
434 434  When brake output (BRK-OFF) is not allocated, this function code has no effect.
435 -)))|ms
440 +)))|(% style="text-align:center; vertical-align:middle" %)ms
436 436  
437 437  Table 6-9 Brake setting function codes
438 438  
... ... @@ -446,8 +446,9 @@
446 446  
447 447  When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
448 448  
449 -
454 +(% class="table-bordered" %)
450 450  |(((
456 +(% style="text-align:center" %)
451 451  [[image:image-20220611151705-3.png]]
452 452  )))
453 453  |(((
... ... @@ -456,6 +456,7 @@
456 456  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
457 457  )))
458 458  
465 +(% style="text-align:center" %)
459 459  [[image:image-20220608163304-3.png]]
460 460  
461 461  Figure 6-3 Brake Timing of when the motor is stationary
... ... @@ -466,8 +466,9 @@
466 466  
467 467  When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
468 468  
469 -
476 +(% class="table-bordered" %)
470 470  |(((
478 +(% style="text-align:center" %)
471 471  [[image:image-20220611151719-4.png]]
472 472  )))
473 473  |(((
... ... @@ -482,6 +482,7 @@
482 482  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
483 483  )))
484 484  
493 +(% style="text-align:center" %)
485 485  [[image:image-20220608163425-4.png]]
486 486  
487 487  Figure 6-4 Brake timing when the motor rotates
... ... @@ -490,7 +490,7 @@
490 490  
491 491  The brake timing (free shutdown) in the fault status is as follows.
492 492  
493 -
502 +(% style="text-align:center" %)
494 494  [[image:image-20220608163541-5.png]]
495 495  
496 496   Figure 6-5 The brake timing (free shutdown) in the fault state
... ... @@ -499,7 +499,7 @@
499 499  
500 500  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
501 501  
502 -
511 +(% style="text-align:center" %)
503 503  [[image:image-20220608163643-6.png]]
504 504  
505 505  Figure 6-6 Position control diagram
... ... @@ -506,17 +506,17 @@
506 506  
507 507  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
508 508  
509 -
510 -|=(% scope="row" %)**Function code**|=**Name**|=(((
518 +(% class="table-bordered" %)
519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
511 511  **Setting method**
512 -)))|=(((
521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
513 513  **Effective time**
514 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
515 -|=P01-01|Control mode|(((
523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
516 516  Operation setting
517 -)))|(((
526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
518 518  immediately Effective
519 -)))|0|0 to 1|(((
528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
520 520  0: position control
521 521  
522 522  2: speed control
... ... @@ -528,7 +528,7 @@
528 528  5: position/torque mix control
529 529  
530 530  6: speed /torque mix control
531 -)))|-
540 +)))|(% style="text-align:center; vertical-align:middle" %)-
532 532  
533 533  Table 6-10 Control mode parameters
534 534  
... ... @@ -536,21 +536,21 @@
536 536  
537 537  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
538 538  
539 -
540 -|=(% scope="row" %)**Function code**|=**Name**|=(((
548 +(% class="table-bordered" %)
549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
541 541  **Setting method**
542 -)))|=(((
551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
543 543  **Effective time**
544 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
545 -|=P01-06|Position instruction source|(((
553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
546 546  Operation setting
547 -)))|(((
556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
548 548  immediately Effective
549 -)))|0|0 to 1|(((
558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
550 550  0: pulse instruction
551 551  
552 552  1: internal position instruction
553 -)))|-
562 +)))|(% style="text-align:center; vertical-align:middle" %)-
554 554  
555 555  Table 6-11 Position instruction source parameter
556 556  
... ... @@ -558,20 +558,20 @@
558 558  
559 559  1) Low-speed pulse instruction input
560 560  
570 +(% class="table-bordered" %)
571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
561 561  
562 -|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
563 -|VD2A and VD2B servo drives|VD2F servo drive
564 -|(% colspan="2" %)Figure 6-7 Position instruction input setting
565 -
566 566  VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
567 567  
568 568  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
569 569  
579 +(% class="table-bordered" %)
580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
570 570  
571 -|**Pulse method**|**Maximum frequency**|**Voltage**
572 -|Open collector input|200K|24V
573 -|Differential input|500K|5V
574 -
575 575  Table 6-12 Pulse input specifications
576 576  
577 577  1.Differential input
... ... @@ -578,7 +578,7 @@
578 578  
579 579  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
580 580  
581 -
590 +(% style="text-align:center" %)
582 582  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
583 583  
584 584  Figure 6-8 Differential input connection
... ... @@ -589,7 +589,7 @@
589 589  
590 590  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
591 591  
592 -
601 +(% style="text-align:center" %)
593 593  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
594 594  
595 595  Figure 6-9 Open collector input connection
... ... @@ -600,7 +600,7 @@
600 600  
601 601  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
602 602  
603 -
612 +(% style="text-align:center" %)
604 604  [[image:image-20220608163952-8.png]]
605 605  
606 606  Figure 6-10 Example of filtered signal waveform
... ... @@ -607,22 +607,22 @@
607 607  
608 608  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
609 609  
610 -
611 -|=(% scope="row" %)**Function code**|=**Name**|=(((
619 +(% class="table-bordered" %)
620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
612 612  **Setting method**
613 -)))|=(((
622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
614 614  **Effective time**
615 -)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
616 -|=P00-13|Maximum position pulse frequency|(((
624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
617 617  Shutdown setting
618 -)))|(((
627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
619 619  Effective immediately
620 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
621 -|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
622 622  Operation setting
623 -)))|(% rowspan="3" %)(((
632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
624 624  Power-on again
625 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
626 626  Set the anti-interference level of external pulse instruction.
627 627  
628 628  0: no filtering;
... ... @@ -642,9 +642,9 @@
642 642  7: Filtering time 8.192us
643 643  
644 644  8: Filtering time 16.384us
645 -)))|(% rowspan="3" %)-
646 -|=(% rowspan="2" %)9|VD2: Filtering time 25.5us
647 -|=VD2F: Filtering time 25.5us
654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
656 +|VD2F: Filtering time 25.5us
648 648  
649 649  Table 6-13 Position pulse frequency and anti-interference level parameters
650 650  
... ... @@ -652,17 +652,17 @@
652 652  
653 653  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
654 654  
655 -
656 -|=(% scope="row" %)**Function code**|=**Name**|=(((
664 +(% class="table-bordered" %)
665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
657 657  **Setting method**
658 -)))|=(((
667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
659 659  **Effective time**
660 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
661 -|=P00-12|Position pulse type selection|(((
669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
662 662  Operation setting
663 -)))|(((
672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
664 664  Power-on again
665 -)))|0|0 to 5|(((
674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
666 666  0: direction + pulse (positive logic)
667 667  
668 668  1: CW/CCW
... ... @@ -674,74 +674,74 @@
674 674  4: CW/CCW (negative logic)
675 675  
676 676  5: A, B phase quadrature pulse (4 times frequency negative logic)
677 -)))|-
686 +)))|(% style="text-align:center; vertical-align:middle" %)-
678 678  
679 679  Table 6-14 Position pulse type selection parameter
680 680  
681 -
682 -|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
683 -|=0|(((
690 +(% class="table-bordered" %)
691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
684 684  Direction + pulse
685 685  
686 686  (Positive logic)
687 -)))|(((
696 +)))|(% style="text-align:center; vertical-align:middle" %)(((
688 688  PULSE
689 689  
690 690  SIGN
691 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
692 -|=1|CW/CCW|(((
700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
693 693  PULSE (CW)
694 694  
695 695  SIGN (CCW)
696 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
697 -|=2|(((
705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
698 698  AB phase orthogonal
699 699  
700 700  pulse (4 times frequency)
701 -)))|(((
710 +)))|(% style="text-align:center; vertical-align:middle" %)(((
702 702  PULSE (Phase A)
703 703  
704 704  SIGN (Phase B)
705 -)))|(((
714 +)))|(% style="text-align:center; vertical-align:middle" %)(((
706 706  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
707 707  
708 708  Phase A is 90° ahead of Phase B
709 -)))|(((
718 +)))|(% style="text-align:center; vertical-align:middle" %)(((
710 710  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
711 711  
712 712  Phase B is 90° ahead of Phase A
713 713  )))
714 -|=3|(((
723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
715 715  Direction + pulse
716 716  
717 717  (Negative logic)
718 -)))|(((
727 +)))|(% style="text-align:center; vertical-align:middle" %)(((
719 719  PULSE
720 720  
721 721  SIGN
722 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
723 -|=4|(((
731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
724 724  CW/CCW
725 725  
726 726  (Negative logic)
727 -)))|(((
736 +)))|(% style="text-align:center; vertical-align:middle" %)(((
728 728  PULSE (CW)
729 729  
730 730  SIGN (CCW)
731 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
732 -|=5|(((
740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
733 733  AB phase orthogonal
734 734  
735 735  pulse (4 times frequency negative logic)
736 -)))|(((
745 +)))|(% style="text-align:center; vertical-align:middle" %)(((
737 737  PULSE (Phase A)
738 738  
739 739  SIGN (Phase B)
740 -)))|(((
749 +)))|(% style="text-align:center; vertical-align:middle" %)(((
741 741  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
742 742  
743 743  B phase is ahead of A phase by 90°
744 -)))|(((
753 +)))|(% style="text-align:center; vertical-align:middle" %)(((
745 745  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
746 746  
747 747  A phase is ahead of B phase by 90°
... ... @@ -755,7 +755,7 @@
755 755  
756 756  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
757 757  
758 -
767 +(% style="text-align:center" %)
759 759  [[image:image-20220608164116-9.png]]
760 760  
761 761  Figure 6-11 The setting process of multi-segment position
... ... @@ -762,51 +762,51 @@
762 762  
763 763  1) Set multi-segment position running mode
764 764  
765 -
766 -|=(% scope="row" %)**Function code**|=**Name**|=(((
774 +(% class="table-bordered" %)
775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
767 767  **Setting method**
768 -)))|=(((
777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
769 769  **Effective time**
770 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
771 -|=P07-01|Multi-segment position running mode|(((
779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
772 772  Shutdown setting
773 -)))|(((
782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
774 774  Effective immediately
775 -)))|0|0 to 2|(((
784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
776 776  0: Single running
777 777  
778 778  1: Cycle running
779 779  
780 780  2: DI switching running
781 -)))|-
782 -|=P07-02|Start segment number|(((
790 +)))|(% style="text-align:center; vertical-align:middle" %)-
791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
783 783  Shutdown setting
784 -)))|(((
793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
785 785  Effective immediately
786 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|-
787 -|=P07-03|End segment number|(((
795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
788 788  Shutdown setting
789 -)))|(((
798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
790 790  Effective immediately
791 -)))|1|1 to 16|last segment NO. in non-DI switching mode|-
792 -|=P07-04|Margin processing method|(((
800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
793 793  Shutdown setting
794 -)))|(((
803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
795 795  Effective immediately
796 -)))|0|0 to 1|(((
805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
797 797  0: Run the remaining segments
798 798  
799 799  1: Run again from the start segment
800 -)))|-
801 -|=P07-05|Displacement instruction type|(((
809 +)))|(% style="text-align:center; vertical-align:middle" %)-
810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
802 802  Shutdown setting
803 -)))|(((
812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
804 804  Effective immediately
805 -)))|0|0 to 1|(((
814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
806 806  0: Relative position instruction
807 807  
808 808  1: Absolute position instruction
809 -)))|-
818 +)))|(% style="text-align:center; vertical-align:middle" %)-
810 810  
811 811  Table 6-16 multi-segment position running mode parameters
812 812  
... ... @@ -816,7 +816,7 @@
816 816  
817 817  In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
818 818  
819 -
828 +(% style="text-align:center" %)
820 820  [[image:image-20220608164226-10.png]]
821 821  
822 822  Figure 6-12 Single running curve (P07-02=1, P07-03=2)
... ... @@ -825,12 +825,12 @@
825 825  
826 826  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
827 827  
828 -
837 +(% style="text-align:center" %)
829 829  [[image:image-20220608164327-11.png]]
830 830  
831 831  Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
832 832  
833 -|[[image:image-20220611151917-5.png]]
842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
834 834  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
835 835  
836 836  3. DI switching running
... ... @@ -837,30 +837,30 @@
837 837  
838 838  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
839 839  
849 +(% class="table-bordered" %)
850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
840 840  
841 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
842 -|=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
843 -|=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
844 -|=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
845 -|=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
846 -
847 847  Table 6-17 DI function code
848 848  
849 849  The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
850 850  
860 +(% class="table-bordered" %)
861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
851 851  
852 -|=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
853 -|=0|0|0|0|1
854 -|=0|0|0|1|2
855 -|=0|0|1|0|3
856 -|=(% colspan="5" %)…………
857 -|=1|1|1|1|16
858 -
859 859  Table 6-18 INPOS corresponds to running segment number
860 860  
861 861  The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
862 862  
863 -
872 +(% style="text-align:center" %)
864 864  [[image:image-20220608164545-12.png]]
865 865  
866 866  Figure 6-14 DI switching running curve
... ... @@ -871,12 +871,12 @@
871 871  
872 872  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
873 873  
874 -
883 +(% style="text-align:center" %)
875 875  [[image:image-20220608164847-13.png]]
876 876  
877 877  Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
878 878  
879 -
888 +(% style="text-align:center" %)
880 880  [[image:image-20220608165032-14.png]]
881 881  
882 882  Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
... ... @@ -885,12 +885,12 @@
885 885  
886 886  In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
887 887  
888 -
897 +(% style="text-align:center" %)
889 889  [[image:image-20220608165343-15.png]]
890 890  
891 891  Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
892 892  
893 -
902 +(% style="text-align:center" %)
894 894  [[image:image-20220608165558-16.png]]
895 895  
896 896  Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
... ... @@ -902,8 +902,10 @@
902 902  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
903 903  
904 904  |(((
914 +(% style="text-align:center" %)
905 905  [[image:image-20220608165710-17.png]]
906 906  )))|(((
917 +(% style="text-align:center" %)
907 907  [[image:image-20220608165749-18.png]]
908 908  )))
909 909  |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
... ... @@ -913,8 +913,10 @@
913 913  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
914 914  
915 915  |(((
927 +(% style="text-align:center" %)
916 916  [[image:image-20220608165848-19.png]]
917 917  )))|(((
930 +(% style="text-align:center" %)
918 918  [[image:image-20220608170005-20.png]]
919 919  )))
920 920  |Figure 6-21 Absolute indication|Figure 6-22 Displacement
... ... @@ -923,42 +923,46 @@
923 923  
924 924  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
925 925  
926 -
927 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
928 -|=P07-09|(((
939 +(% class="table-bordered" %)
940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
941 +**Setting method**
942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
943 +**Effective time**
944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
929 929  1st segment
930 930  
931 931  displacement
932 -)))|(((
949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
933 933  Operation setting
934 -)))|(((
951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
935 935  Effective immediately
936 -)))|10000|(((
953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)(((
937 937  -2147483647 to
938 938  
939 939  2147483646
940 -)))|Position instruction, positive and negative values could be set|-
941 -|=P07-10|Maximum speed of the 1st displacement|(((
957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
942 942  Operation setting
943 -)))|(((
960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
944 944  Effective immediately
945 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
946 -|=P07-11|Acceleration and deceleration of 1st segment displacement|(((
962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
947 947  Operation setting
948 -)))|(((
965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
949 949  Effective immediately
950 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
951 -|=P07-12|Waiting time after completion of the 1st segment displacement|(((
967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
952 952  Operation setting
953 -)))|(((
970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
954 954  Effective immediately
955 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
956 956  
957 957  Table 6-19 The 1st position operation curve parameters table
958 958  
959 959  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
960 960  
961 -
978 +(% style="text-align:center" %)
962 962  [[image:image-20220608170149-21.png]]
963 963  
964 964  Figure 6-23 The 1st segment running curve of motor
... ... @@ -967,14 +967,15 @@
967 967  
968 968  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
969 969  
970 -
971 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
972 -|=20|ENINPOS: Internal multi-segment position enable signal|(((
987 +(% class="table-bordered" %)
988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
973 973  DI port logic invalid: Does not affect the current operation of the servo motor.
974 974  
975 975  DI port logic valid: Motor runs multi-segment position
976 976  )))
977 977  
995 +(% style="text-align:center" %)
978 978  [[image:image-20220611152020-6.png]]
979 979  
980 980  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
... ... @@ -989,13 +989,13 @@
989 989  
990 990  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
991 991  
992 -
1010 +(% style="text-align:center" %)
993 993  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
994 994  
995 -
1013 +(% style="text-align:center" %)
996 996  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
997 997  
998 -
1016 +(% style="text-align:center" %)
999 999  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1000 1000  
1001 1001  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
... ... @@ -1002,7 +1002,7 @@
1002 1002  
1003 1003  **(2) Setting steps of electronic gear ratio**
1004 1004  
1005 -
1023 +(% style="text-align:center" %)
1006 1006  [[image:image-20220608170320-22.png]]
1007 1007  
1008 1008  Figure 6-24 Setting steps of electronic gear ratio
... ... @@ -1017,7 +1017,7 @@
1017 1017  
1018 1018  Step5: Calculate the value of electronic gear ratio according to formula below.
1019 1019  
1020 -
1038 +(% style="text-align:center" %)
1021 1021  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1022 1022  
1023 1023  **(3) lectronic gear ratio switch setting**
... ... @@ -1025,59 +1025,59 @@
1025 1025  
1026 1026  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1027 1027  
1028 -
1029 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1046 +(% class="table-bordered" %)
1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1030 1030  **Setting method**
1031 -)))|=(((
1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1032 1032  **Effective time**
1033 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1034 -|=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1035 1035  Shutdown setting
1036 -)))|(((
1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1037 1037  Effective immediately
1038 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1039 1039  Instruction pulse
1040 1040  
1041 1041  unit
1042 1042  )))
1043 -|=P00-17|(((
1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1044 1044  Electronic gear 1
1045 1045  
1046 1046  numerator
1047 -)))|Operation setting|(((
1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1048 1048  Effective immediately
1049 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1050 -|=P00-18|(((
1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1051 1051  Electronic gear 1
1052 1052  
1053 1053  denominator
1054 -)))|(((
1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1055 1055  Operation setting
1056 -)))|(((
1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1057 1057  Effective immediately
1058 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1059 -|=P00-19|(((
1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1060 1060  Electronic gear 2
1061 1061  
1062 1062  numerator
1063 -)))|Operation setting|(((
1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1064 1064  Effective immediately
1065 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1066 -|=P00-20|(((
1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1067 1067  Electronic gear 2
1068 1068  
1069 1069  denominator
1070 -)))|Operation setting|(((
1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1071 1071  Effective immediately
1072 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1073 1073  
1074 1074  Table 6-20 Electronic gear ratio function code
1075 1075  
1076 1076  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1077 1077  
1078 -
1079 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1080 -|=09|GEAR-SEL electronic gear switch 1|(((
1096 +(% class="table-bordered" %)
1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1081 1081  DI port logic invalid: electronic gear ratio 1
1082 1082  
1083 1083  DI port logic valid: electronic gear ratio 2
... ... @@ -1085,10 +1085,10 @@
1085 1085  
1086 1086  Table 6-21 Switching conditions of electronic gear ratio group
1087 1087  
1088 -|=(% scope="row" %)**P00-16 value**|=**DI terminal level corresponding to DI port function 9**|=**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1089 -|=(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1090 -|=DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1091 -|=1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1092 1092  
1093 1093  Table 6-22 Application of electronic gear ratio
1094 1094  
... ... @@ -1106,32 +1106,32 @@
1106 1106  
1107 1107  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1108 1108  
1109 -
1127 +(% style="text-align:center" %)
1110 1110  [[image:image-20220608170455-23.png]]
1111 1111  
1112 1112  Figure 6-25 Position instruction filtering diagram
1113 1113  
1114 -
1115 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1132 +(% class="table-bordered" %)
1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1116 1116  **Setting method**
1117 -)))|=(((
1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1118 1118  **Effective time**
1119 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1120 -|=P04-01|Pulse instruction filtering method|(((
1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1121 1121  Shutdown setting
1122 -)))|(((
1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1123 1123  Effective immediately
1124 -)))|0|0 to 1|(((
1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)(((
1125 1125  0: 1st-order low-pass filtering
1126 1126  
1127 1127  1: average filtering
1128 -)))|-
1129 -|=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1130 1130  Effective immediately
1131 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1132 -|=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1133 1133  Effective immediately
1134 -)))|0|0 to 128|Position instruction average filtering time constant|ms
1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1135 1135  
1136 1136  Table 6-23 Position instruction filter function code
1137 1137  
... ... @@ -1151,7 +1151,7 @@
1151 1151  (% class="wikigeneratedid" %)
1152 1152  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1153 1153  
1154 -
1172 +(% style="text-align:center" %)
1155 1155  [[image:image-20220608170550-24.png]]
1156 1156  
1157 1157  Figure 6-26 Positioning completion signal output diagram
... ... @@ -1160,46 +1160,46 @@
1160 1160  
1161 1161  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1162 1162  
1163 -
1181 +(% style="text-align:center" %)
1164 1164  [[image:image-20220608170650-25.png]]
1165 1165  
1166 1166  Figure 6-27 Positioning completion signal output with increased window filter time diagram
1167 1167  
1168 -
1169 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1186 +(% class="table-bordered" %)
1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1170 1170  **Setting method**
1171 -)))|=(((
1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1172 1172  **Effective time**
1173 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1174 -|=P05-12|Positioning completion threshold|(((
1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit**
1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1175 1175  Operation setting
1176 -)))|(((
1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1177 1177  Effective immediately
1178 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1179 -|=P05-13|Positioning approach threshold|(((
1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1180 1180  Operation setting
1181 -)))|(((
1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1182 1182  Effective immediately
1183 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1184 -|=P05-14|Position detection window time|(((
1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1185 1185  Operation setting
1186 -)))|(((
1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1187 1187  Effective immediately
1188 -)))|10|0 to 20000|Set positioning completion detection window time|ms
1189 -|=P05-15|Positioning signal hold time|(((
1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1190 1190  Operation setting
1191 -)))|(((
1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1192 1192  Effective immediately
1193 -)))|100|0 to 20000|Set positioning completion output hold time|ms
1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1194 1194  
1195 1195  Table 6-24 Function code parameters of positioning completion
1196 1196  
1197 -
1198 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1199 -|=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1200 -|=135|(((
1215 +(% class="table-bordered" %)
1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1201 1201  P-NEAR positioning close
1202 -)))|(((
1220 +)))|(% style="text-align:center; vertical-align:middle" %)(((
1203 1203  Output this signal indicates that the servo drive position is close.
1204 1204  )))
1205 1205  
... ... @@ -1209,7 +1209,7 @@
1209 1209  
1210 1210  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1211 1211  
1212 -
1230 +(% style="text-align:center" %)
1213 1213  [[image:6.28.jpg||height="260" width="806"]]
1214 1214  
1215 1215  Figure 6-28 Speed control block diagram
... ... @@ -1218,21 +1218,21 @@
1218 1218  
1219 1219  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1220 1220  
1221 -
1222 -|**Function code**|**Name**|(((
1239 +(% class="table-bordered" %)
1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1223 1223  **Setting method**
1224 -)))|(((
1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1225 1225  **Effective time**
1226 -)))|**Default value**|**Range**|**Definition**|**Unit**
1227 -|P01-01|Speed instruction source|(((
1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1228 1228  Shutdown setting
1229 -)))|(((
1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1230 1230  Effective immediately
1231 -)))|1|1 to 6|(((
1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1232 1232  0: internal speed instruction
1233 1233  
1234 1234  1: AI_1 analog input (not supported by VD2F)
1235 -)))|-
1253 +)))|(% style="text-align:center; vertical-align:middle" %)-
1236 1236  
1237 1237  Table 6-26 Speed instruction source parameter
1238 1238  
... ... @@ -1240,19 +1240,19 @@
1240 1240  
1241 1241  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1242 1242  
1243 -
1244 -|**Function code**|**Name**|(((
1261 +(% class="table-bordered" %)
1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1245 1245  **Setting method**
1246 -)))|(((
1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
1247 1247  **Effective time**
1248 -)))|**Default value**|**Range**|**Definition**|**Unit**
1249 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)(((
1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit**
1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1250 1250  Internal speed Instruction 0
1251 -)))|(% rowspan="2" %)(((
1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1252 1252  Operation setting
1253 -)))|(% rowspan="2" %)(((
1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1254 1254  Effective immediately
1255 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1256 1256  Internal speed instruction 0
1257 1257  
1258 1258  When DI input port:
... ... @@ -1264,15 +1264,15 @@
1264 1264  13-INSPD1: 0,
1265 1265  
1266 1266  select this speed instruction to be effective.
1267 -)))|(% rowspan="2" %)rpm
1268 -|-5000 to 5000*
1269 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)(((
1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1270 1270  Internal speed Instruction 1
1271 -)))|(% rowspan="2" %)(((
1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1272 1272  Operation setting
1273 -)))|(% rowspan="2" %)(((
1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1274 1274  Effective immediately
1275 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1276 1276  Internal speed instruction 1
1277 1277  
1278 1278  When DI input port:
... ... @@ -1284,15 +1284,15 @@
1284 1284  13-INSPD1: 1,
1285 1285  
1286 1286  Select this speed instruction to be effective.
1287 -)))|(% rowspan="2" %)rpm
1288 -|-5000 to 5000*
1289 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)(((
1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1290 1290  Internal speed Instruction 2
1291 -)))|(% rowspan="2" %)(((
1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1292 1292  Operation setting
1293 -)))|(% rowspan="2" %)(((
1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1294 1294  Effective immediately
1295 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1296 1296  Internal speed instruction 2
1297 1297  
1298 1298  When DI input port:
... ... @@ -1304,15 +1304,15 @@
1304 1304  13-INSPD1: 0,
1305 1305  
1306 1306  Select this speed instruction to be effective.
1307 -)))|(% rowspan="2" %)rpm
1308 -|-5000 to 5000*
1309 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)(((
1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1310 1310  Internal speed Instruction 3
1311 -)))|(% rowspan="2" %)(((
1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1312 1312  Operation setting
1313 -)))|(% rowspan="2" %)(((
1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1314 1314  Effective immediately
1315 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1316 1316  Internal speed instruction 3
1317 1317  
1318 1318  When DI input port:
... ... @@ -1324,16 +1324,17 @@
1324 1324  13-INSPD1: 1,
1325 1325  
1326 1326  Select this speed instruction to be effective.
1327 -)))|(% rowspan="2" %)rpm
1328 -|-5000 to 5000*
1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1329 1329  
1330 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)(((
1348 +(% class="table-bordered" %)
1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1331 1331  Internal speed Instruction 4
1332 -)))|(% rowspan="2" %)(((
1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1333 1333  Operation setting
1334 -)))|(% rowspan="2" %)(((
1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1335 1335  Effective immediately
1336 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1337 1337  Internal speed instruction 4
1338 1338  
1339 1339  When DI input port:
... ... @@ -1345,15 +1345,15 @@
1345 1345  13-INSPD1: 0,
1346 1346  
1347 1347  Select this speed instruction to be effective.
1348 -)))|(% rowspan="2" %)rpm
1349 -|-5000 to 5000*
1350 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)(((
1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1351 1351  Internal speed Instruction 5
1352 -)))|(% rowspan="2" %)(((
1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1353 1353  Operation setting
1354 -)))|(% rowspan="2" %)(((
1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1355 1355  Effective immediately
1356 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1357 1357  Internal speed instruction 5
1358 1358  
1359 1359  When DI input port:
... ... @@ -1365,15 +1365,15 @@
1365 1365  13-INSPD1: 1,
1366 1366  
1367 1367  Select this speed instruction to be effective.
1368 -)))|(% rowspan="2" %)rpm
1369 -|-5000 to 5000*
1370 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)(((
1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1371 1371  Internal speed Instruction 6
1372 -)))|(% rowspan="2" %)(((
1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1373 1373  Operation setting
1374 -)))|(% rowspan="2" %)(((
1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1375 1375  Effective immediately
1376 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1377 1377  Internal speed instruction 6
1378 1378  
1379 1379  When DI input port:
... ... @@ -1385,15 +1385,15 @@
1385 1385  13-INSPD1: 0,
1386 1386  
1387 1387  Select this speed instruction to be effective.
1388 -)))|(% rowspan="2" %)rpm
1389 -|-5000 to 5000*
1390 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)(((
1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1391 1391  Internal speed Instruction 7
1392 -)))|(% rowspan="2" %)(((
1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1393 1393  Operation setting
1394 -)))|(% rowspan="2" %)(((
1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1395 1395  Effective immediately
1396 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1397 1397  Internal speed instruction 7
1398 1398  
1399 1399  When DI input port:
... ... @@ -1405,34 +1405,34 @@
1405 1405  13-INSPD1: 1,
1406 1406  
1407 1407  Select this speed instruction to be effective.
1408 -)))|(% rowspan="2" %)rpm
1409 -|-5000 to 5000*
1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1410 1410  
1411 1411  Table 6-27 Internal speed instruction parameters
1412 1412  
1413 1413  ✎**Note: **“*” means the set range of VD2F servo drive.
1414 1414  
1434 +(% class="table-bordered" %)
1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1415 1415  
1416 -|**DI function code**|**function name**|**Function**
1417 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1418 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1419 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1420 -
1421 1421  Table 6-28 DI multi-speed function code description
1422 1422  
1423 1423  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1424 1424  
1425 -
1426 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1427 -|0|0|0|1|0
1428 -|0|0|1|2|1
1429 -|0|1|0|3|2
1444 +(% class="table-bordered" %)
1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1430 1430  |(% colspan="5" %)......
1431 -|1|1|1|8|7
1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1432 1432  
1433 1433  Table 6-29 Correspondence between INSPD bits and segment numbers
1434 1434  
1435 -
1454 +(% style="text-align:center" %)
1436 1436  [[image:image-20220608170845-26.png]]
1437 1437  
1438 1438  Figure 6-29 Multi-segment speed running curve
... ... @@ -1441,7 +1441,7 @@
1441 1441  
1442 1442  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1443 1443  
1444 -
1463 +(% style="text-align:center" %)
1445 1445  [[image:image-20220608153341-5.png]]
1446 1446  
1447 1447  Figure 6-30 Analog input circuit
... ... @@ -1448,7 +1448,7 @@
1448 1448  
1449 1449  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1450 1450  
1451 -
1470 +(% style="text-align:center" %)
1452 1452  [[image:image-20220608170955-27.png]]
1453 1453  
1454 1454  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1461,18 +1461,18 @@
1461 1461  
1462 1462  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1463 1463  
1464 -
1483 +(% style="text-align:center" %)
1465 1465  [[image:image-20220608171124-28.png]]
1466 1466  
1467 1467  Figure 6-32 AI_1 diagram before and after bias
1468 1468  
1488 +(% class="table-bordered" %)
1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1469 1469  
1470 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1471 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1472 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1473 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1474 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1475 -
1476 1476  Table 6-30 AI_1 parameters
1477 1477  
1478 1478  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1483,7 +1483,7 @@
1483 1483  
1484 1484  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1485 1485  
1486 -
1505 +(% style="text-align:center" %)
1487 1487  [[image:image-20220608171314-29.png]]
1488 1488  
1489 1489  Figure 6-33 of acceleration and deceleration time diagram
... ... @@ -1492,22 +1492,22 @@
1492 1492  
1493 1493  Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1494 1494  
1495 -
1496 -|**Function code**|**Name**|(((
1514 +(% class="table-bordered" %)
1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1497 1497  **Setting method**
1498 -)))|(((
1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1499 1499  **Effective time**
1500 -)))|**Default value**|**Range**|**Definition**|**Unit**
1501 -|P01-03|Acceleration time|(((
1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1502 1502  Operation setting
1503 -)))|(((
1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1504 1504  Effective immediately
1505 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1506 -|P01-04|Deceleration time|(((
1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1507 1507  Operation setting
1508 -)))|(((
1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1509 1509  Effective immediately
1510 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1511 1511  
1512 1512  Table 6-31 Acceleration and deceleration time parameters
1513 1513  
... ... @@ -1526,27 +1526,27 @@
1526 1526  
1527 1527  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1528 1528  
1529 -
1530 -|**Function code**|**Name**|(((
1548 +(% class="table-bordered" %)
1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1531 1531  **Setting method**
1532 -)))|(((
1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1533 1533  **Effective time**
1534 -)))|**Default value**|**Range**|**Definition**|**Unit**
1535 -|P01-10|Maximum speed threshold|(((
1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1536 1536  Operation setting
1537 -)))|(((
1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1538 1538  Effective immediately
1539 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1540 -|P01-12|Forward speed threshold|(((
1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1541 1541  Operation setting
1542 -)))|(((
1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1543 1543  Effective immediately
1544 -)))|3000|0 to 5000|Set forward speed limit value|rpm
1545 -|P01-13|Reverse speed threshold|(((
1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1546 1546  Operation setting
1547 -)))|(((
1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1548 1548  Effective immediately
1549 -)))|3000|0 to 5000|Set reverse speed limit value|rpm
1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1550 1550  
1551 1551  Table 6-32 Rotation speed related function codes
1552 1552  
... ... @@ -1556,19 +1556,19 @@
1556 1556  
1557 1557  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1558 1558  
1559 -
1560 -|**Function code**|**Name**|(((
1578 +(% class="table-bordered" %)
1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1561 1561  **Setting method**
1562 -)))|(((
1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1563 1563  **Effective time**
1564 -)))|**Default value**|**Range**|**Definition**|**Unit**
1565 -|P01-21|(((
1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1566 1566  Zero-speed clamp function selection
1567 -)))|(((
1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1568 1568  Operation setting
1569 -)))|(((
1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1570 1570  Effective immediately
1571 -)))|0|0 to 3|(((
1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1572 1572  Set the zero-speed clamp function. In speed mode:
1573 1573  
1574 1574  0: Force the speed to 0;
... ... @@ -1578,18 +1578,18 @@
1578 1578  2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1579 1579  
1580 1580  3: Invalid, ignore zero-speed clamp input
1581 -)))|-
1582 -|P01-22|(((
1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1583 1583  Zero-speed clamp speed threshold
1584 -)))|(((
1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1585 1585  Operation setting
1586 -)))|(((
1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1587 1587  Effective immediately
1588 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1589 1589  
1590 1590  Table 6-33 Zero-speed clamp related parameters
1591 1591  
1592 -
1611 +(% style="text-align:center" %)
1593 1593  [[image:image-20220608171549-30.png]]
1594 1594  
1595 1595  Figure 6-34 Zero-speed clamp diagram
... ... @@ -1602,7 +1602,7 @@
1602 1602  
1603 1603  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1604 1604  
1605 -
1624 +(% style="text-align:center" %)
1606 1606  [[image:image-20220608171625-31.png]]
1607 1607  
1608 1608  Figure 6-35 Rotation detection signal diagram
... ... @@ -1609,29 +1609,29 @@
1609 1609  
1610 1610  To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1611 1611  
1612 -
1613 -|**Function code**|**Name**|(((
1631 +(% class="table-bordered" %)
1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1614 1614  **Setting method**
1615 -)))|(((
1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1616 1616  **Effective time**
1617 -)))|**Default value**|**Range**|**Definition**|**Unit**
1618 -|P05-16|(((
1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit**
1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1619 1619  Rotation detection
1620 1620  
1621 1621  speed threshold
1622 -)))|(((
1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1623 1623  Operation setting
1624 -)))|(((
1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1625 1625  Effective immediately
1626 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm
1627 1627  
1628 1628  Table 6-34 Rotation detection speed threshold parameters
1629 1629  
1630 -
1631 -|**DO function code**|**Function name**|**Function**
1632 -|132|(((
1649 +(% class="table-bordered" %)
1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function**
1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)(((
1633 1633  T-COIN rotation detection
1634 -)))|(((
1653 +)))|(% style="width:879px" %)(((
1635 1635  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1636 1636  
1637 1637  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1643,7 +1643,7 @@
1643 1643  
1644 1644  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1645 1645  
1646 -
1665 +(% style="text-align:center" %)
1647 1647  [[image:image-20220608171904-32.png]]
1648 1648  
1649 1649  Figure 6-36 Zero-speed signal diagram
... ... @@ -1650,25 +1650,25 @@
1650 1650  
1651 1651  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1652 1652  
1653 -
1654 -|**Function code**|**Name**|(((
1672 +(% class="table-bordered" %)
1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1655 1655  **Setting method**
1656 -)))|(((
1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1657 1657  **Effective time**
1658 -)))|**Default value**|**Range**|**Definition**|**Unit**
1659 -|P05-19|Zero speed output signal threshold|(((
1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit**
1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1660 1660  Operation setting
1661 -)))|(((
1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1662 1662  Effective immediately
1663 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm
1664 1664  
1665 1665  Table 6-36 Zero-speed output signal threshold parameter
1666 1666  
1667 -
1668 -|**DO function code**|**Function name**|**Function**
1669 -|133|(((
1686 +(% class="table-bordered" %)
1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1670 1670  ZSP zero speed signal
1671 -)))|Output this signal indicates that the servo motor is stopping rotation
1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1672 1672  
1673 1673  Table 6-37 DO zero-speed signal function code
1674 1674  
... ... @@ -1676,7 +1676,7 @@
1676 1676  
1677 1677  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1678 1678  
1679 -
1698 +(% style="text-align:center" %)
1680 1680  [[image:image-20220608172053-33.png]]
1681 1681  
1682 1682  Figure 6-37 Speed consistent signal diagram
... ... @@ -1683,25 +1683,25 @@
1683 1683  
1684 1684  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1685 1685  
1686 -
1687 -|**Function code**|**Name**|(((
1705 +(% class="table-bordered" %)
1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1688 1688  **Setting method**
1689 -)))|(((
1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1690 1690  **Effective time**
1691 -)))|**Default value**|**Range**|**Definition**|**Unit**
1692 -|P05-17|Speed consistent signal threshold|(((
1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit**
1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1693 1693  Operationsetting
1694 -)))|(((
1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1695 1695  Effective immediately
1696 -)))|10|0 to 100|Set speed consistent signal threshold|rpm
1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm
1697 1697  
1698 1698  Table 6-38 Speed consistent signal threshold parameters
1699 1699  
1700 -
1701 -|**DO Function code**|**Function name**|**Function**
1702 -|136|(((
1719 +(% class="table-bordered" %)
1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1703 1703  U-COIN consistent speed
1704 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1705 1705  
1706 1706  Table 6-39 DO speed consistent function code
1707 1707  
... ... @@ -1709,7 +1709,7 @@
1709 1709  
1710 1710  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1711 1711  
1712 -
1731 +(% style="text-align:center" %)
1713 1713  [[image:image-20220608172207-34.png]]
1714 1714  
1715 1715  Figure 6-38 Speed approaching signal diagram
... ... @@ -1716,25 +1716,25 @@
1716 1716  
1717 1717  To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1718 1718  
1719 -
1720 -|**Function code**|**Name**|(((
1738 +(% class="table-bordered" %)
1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1721 1721  **Setting method**
1722 -)))|(((
1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1723 1723  **Effective time**
1724 -)))|**Default value**|**Range**|**Definition**|**Unit**
1725 -|P05-18|Speed approach signal threshold|(((
1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1726 1726  Operation setting
1727 -)))|(((
1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1728 1728  Effective immediately
1729 -)))|100|10 to 6000|Set speed approach signal threshold|rpm
1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1730 1730  
1731 1731  Table 6-40 Speed approaching signal threshold parameters
1732 1732  
1733 -
1734 -|**DO function code**|**Function name**|**Function**
1735 -|137|(((
1752 +(% class="table-bordered" %)
1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1736 1736  V-NEAR speed approach
1737 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1738 1738  
1739 1739  Table 6-41 DO speed approach function code
1740 1740  
... ... @@ -1742,7 +1742,7 @@
1742 1742  
1743 1743  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1744 1744  
1745 -
1764 +(% style="text-align:center" %)
1746 1746  [[image:image-20220608172405-35.png]]
1747 1747  
1748 1748  Figure 6-39 Torque mode diagram
... ... @@ -1751,21 +1751,21 @@
1751 1751  
1752 1752  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1753 1753  
1754 -
1755 -|**Function code**|**Name**|(((
1773 +(% class="table-bordered" %)
1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1756 1756  **Setting method**
1757 -)))|(((
1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1758 1758  **Effective time**
1759 -)))|**Default value**|**Range**|**Definition**|**Unit**
1760 -|P01-08|Torque instruction source|(((
1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1761 1761  Shutdown setting
1762 -)))|(((
1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1763 1763  Effective immediately
1764 -)))|0|0 to 1|(((
1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1765 1765  0: internal torque instruction
1766 1766  
1767 1767  1: AI_1 analog input(not supported by VD2F)
1768 -)))|-
1787 +)))|(% style="text-align:center; vertical-align:middle" %)-
1769 1769  
1770 1770  Table 6-42 Torque instruction source parameter
1771 1771  
... ... @@ -1773,17 +1773,17 @@
1773 1773  
1774 1774  Torque instruction source is from inside, the value is set by function code P01-08.
1775 1775  
1776 -
1777 -|**Function code**|**Name**|(((
1795 +(% class="table-bordered" %)
1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1778 1778  **Setting method**
1779 -)))|(((
1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1780 1780  **Effective time**
1781 -)))|**Default value**|**Range**|**Definition**|**Unit**
1782 -|P01-08|Torque instruction keyboard set value|(((
1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1783 1783  Operation setting
1784 -)))|(((
1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1785 1785  Effective immediately
1786 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1787 1787  
1788 1788  Table 6-43 Torque instruction keyboard set value
1789 1789  
... ... @@ -1791,7 +1791,7 @@
1791 1791  
1792 1792  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1793 1793  
1794 -
1813 +(% style="text-align:center" %)
1795 1795  [[image:image-20220608153646-7.png||height="213" width="408"]]
1796 1796  
1797 1797  Figure 6-40 Analog input circuit
... ... @@ -1798,7 +1798,7 @@
1798 1798  
1799 1799  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1800 1800  
1801 -
1820 +(% style="text-align:center" %)
1802 1802  [[image:image-20220608172502-36.png]]
1803 1803  
1804 1804  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1811,18 +1811,18 @@
1811 1811  
1812 1812  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1813 1813  
1814 -
1833 +(% style="text-align:center" %)
1815 1815  [[image:image-20220608172611-37.png]]
1816 1816  
1817 1817  Figure 6-42 AI_1 diagram before and after bias
1818 1818  
1838 +(% class="table-bordered" %)
1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1819 1819  
1820 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1821 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1822 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1823 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1824 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1825 -
1826 1826  Table 6-44 AI_1 parameters
1827 1827  
1828 1828  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1831,23 +1831,23 @@
1831 1831  
1832 1832  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1833 1833  
1834 -
1835 -|**Function code**|**Name**|(((
1853 +(% class="table-bordered" %)
1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1836 1836  **Setting method**
1837 -)))|(((
1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1838 1838  **Effective time**
1839 -)))|**Default value**|**Range**|**Definition**|**Unit**
1840 -|P04-04|Torque filtering time constant|(((
1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1841 1841  Operation setting
1842 -)))|(((
1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1843 1843  Effective immediately
1844 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1845 1845  
1846 1846  Table 6-45 Torque filtering time constant parameter details
1847 1847  
1848 1848  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1849 1849  
1850 -
1869 +(% style="text-align:center" %)
1851 1851  [[image:image-20220608172646-38.png]]
1852 1852  
1853 1853  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1858,7 +1858,7 @@
1858 1858  
1859 1859  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1860 1860  
1861 -
1880 +(% style="text-align:center" %)
1862 1862  [[image:image-20220608172806-39.png]]
1863 1863  
1864 1864  Figure 6-44 Torque instruction limit diagram
... ... @@ -1867,50 +1867,50 @@
1867 1867  
1868 1868  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1869 1869  
1870 -
1871 -|**Function code**|**Name**|(((
1889 +(% class="table-bordered" %)
1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1872 1872  **Setting method**
1873 -)))|(((
1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1874 1874  **Effective time**
1875 -)))|**Default value**|**Range**|**Definition**|**Unit**
1876 -|P01-14|(((
1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1877 1877  Torque limit source
1878 -)))|(((
1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1879 1879  Shutdown setting
1880 -)))|(((
1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1881 1881  Effective immediately
1882 -)))|0|0 to 1|(((
1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1883 1883  0: internal value
1884 1884  
1885 1885  1: AI_1 analog input
1886 1886  
1887 1887  (not supported by VD2F)
1888 -)))|-
1907 +)))|(% style="text-align:center; vertical-align:middle" %)-
1889 1889  
1890 1890  1) Torque limit source is internal torque instruction (P01-14=0)
1891 1891  
1892 1892  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1893 1893  
1894 -
1895 -|**Function code**|**Name**|(((
1913 +(% class="table-bordered" %)
1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1896 1896  **Setting method**
1897 -)))|(((
1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1898 1898  **Effective time**
1899 -)))|**Default value**|**Range**|**Definition**|**Unit**
1900 -|P01-15|(((
1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1901 1901  Forward torque limit
1902 -)))|(((
1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1903 1903  Operation setting
1904 -)))|(((
1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1905 1905  Effective immediately
1906 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1907 -|P01-16|(((
1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1908 1908  Reverse torque limit
1909 -)))|(((
1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1910 1910  Operation setting
1911 -)))|(((
1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1912 1912  Effective immediately
1913 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1914 1914  
1915 1915  Table 6-46 Torque limit parameter details
1916 1916  
... ... @@ -1922,11 +1922,11 @@
1922 1922  
1923 1923  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1924 1924  
1925 -
1926 -|**DO function code**|**Function name**|**Function**
1927 -|139|(((
1944 +(% class="table-bordered" %)
1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1928 1928  T-LIMIT in torque limit
1929 -)))|Output of this signal indicates that the servo motor torque is limited
1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1930 1930  
1931 1931  Table 6-47 DO torque limit function codes
1932 1932  
... ... @@ -1937,43 +1937,46 @@
1937 1937  In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1938 1938  
1939 1939  |(((
1959 +(% style="text-align:center" %)
1940 1940  [[image:image-20220608172910-40.png]]
1941 1941  )))|(((
1962 +(% style="text-align:center" %)
1942 1942  [[image:image-20220608173155-41.png]]
1943 1943  )))
1944 1944  |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1945 1945  
1946 -|**Function code**|**Name**|(((
1967 +(% class="table-bordered" %)
1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1947 1947  **Setting method**
1948 -)))|(((
1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1949 1949  **Effective time**
1950 -)))|**Default value**|**Range**|**Definition**|**Unit**
1951 -|P01-17|(((
1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1952 1952  Forward torque
1953 1953  
1954 1954  limit in torque mode
1955 -)))|(((
1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1956 1956  Operation setting
1957 -)))|(((
1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1958 1958  Effective immediately
1959 -)))|3000|0 to 5000|(((
1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1960 1960  Forward torque
1961 1961  
1962 1962  limit in torque mode
1963 -)))|0.1%
1964 -|P01-18|(((
1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1965 1965  Reverse torque
1966 1966  
1967 1967  limit in torque mode
1968 -)))|(((
1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1969 1969  Operation setting
1970 -)))|(((
1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1971 1971  Effective immediately
1972 -)))|3000|0 to 5000|(((
1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1973 1973  Reverse torque
1974 1974  
1975 1975  limit in torque mode
1976 -)))|0.1%
1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1977 1977  
1978 1978  Table 6-48 Speed limit parameters in torque mode
1979 1979  
... ... @@ -1987,7 +1987,7 @@
1987 1987  
1988 1988  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1989 1989  
1990 -
2012 +(% style="text-align:center" %)
1991 1991  [[image:image-20220608173541-42.png]]
1992 1992  
1993 1993  Figure 6-47 Torque arrival output diagram
... ... @@ -1994,44 +1994,44 @@
1994 1994  
1995 1995  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1996 1996  
1997 -
1998 -|**Function code**|**Name**|(((
2019 +(% class="table-bordered" %)
2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
1999 1999  **Setting method**
2000 -)))|(((
2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2001 2001  **Effective time**
2002 -)))|**Default value**|**Range**|**Definition**|**Unit**
2003 -|P05-20|(((
2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2004 2004  Torque arrival
2005 2005  
2006 2006  threshold
2007 -)))|(((
2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2008 2008  Operation setting
2009 -)))|(((
2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2010 2010  Effective immediately
2011 -)))|100|0 to 300|(((
2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2012 2012  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2013 2013  
2014 2014  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2015 2015  
2016 2016  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2017 -)))|%
2018 -|P05-21|(((
2039 +)))|(% style="text-align:center; vertical-align:middle" %)%
2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2019 2019  Torque arrival
2020 2020  
2021 2021  hysteresis
2022 -)))|(((
2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2023 2023  Operation setting
2024 -)))|(((
2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2025 2025  Effective immediately
2026 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2027 2027  
2028 2028  Table 6-49 Torque arrival parameters
2029 2029  
2030 -
2031 -|**DO function code**|**Function name**|**Function**
2032 -|138|(((
2052 +(% class="table-bordered" %)
2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2033 2033  T-COIN torque arrival
2034 -)))|Used to determine whether the actual torque instruction has reached the set range
2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2035 2035  
2036 2036  Table 6-50 DO Torque Arrival Function Code
2037 2037  
... ... @@ -2047,17 +2047,17 @@
2047 2047  
2048 2048  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2049 2049  
2050 -
2051 -|**Function code**|**Name**|(((
2072 +(% class="table-bordered" %)
2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2052 2052  **Setting method**
2053 -)))|(((
2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2054 2054  **Effective time**
2055 -)))|**Default value**|**Range**|**Definition**|**Unit**
2056 -|P00-01|Control mode|(((
2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2057 2057  Shutdown setting
2058 -)))|(((
2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2059 2059  Shutdown setting
2060 -)))|1|1 to 6|(((
2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)(((
2061 2061  1: Position control
2062 2062  
2063 2063  2: Speed control
... ... @@ -2069,22 +2069,23 @@
2069 2069  5: Position/torque mixed control
2070 2070  
2071 2071  6: Speed/torque mixed control
2072 -)))|-
2094 +)))|(% style="text-align:center; vertical-align:middle" %)-
2073 2073  
2074 2074  Table 6-51 Mixed control mode parameters
2075 2075  
2076 2076  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2077 2077  
2078 -
2079 -|**DI function code**|**Name**|**Function name**|**Function**
2080 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2081 -|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2082 -|(% rowspan="2" %)4|Valid|Speed mode
2083 -|invalid|Position mode
2084 -|(% rowspan="2" %)5|Valid|Torque mode
2085 -|invalid|Position mode
2086 -|(% rowspan="2" %)6|Valid|Torque mode
2087 -|invalid|Speed mode
2100 +(% class="table-bordered" %)
2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2103 +(% class="table-bordered" %)
2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2088 2088  )))
2089 2089  
2090 2090  Table 6-52 Description of DI function codes in control mode
... ... @@ -2103,15 +2103,15 @@
2103 2103  
2104 2104  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2105 2105  
2129 +(% class="table-bordered" %)
2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2106 2106  
2107 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2108 -|A1 (single-turn magnetic encoder)|17|0 to 131071
2109 -
2110 2110  Table 6-53 Single-turn absolute encoder information
2111 2111  
2112 2112  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2113 2113  
2114 -
2137 +(% style="text-align:center" %)
2115 2115  [[image:image-20220608173618-43.png]]
2116 2116  
2117 2117  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2120,16 +2120,16 @@
2120 2120  
2121 2121  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2122 2122  
2146 +(% class="table-bordered" %)
2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2123 2123  
2124 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2125 -|C1 (multi-turn magnetic encoder)|17|0 to 131071
2126 -|D2 (multi-turn Optical encoder)|23|0 to 8388607
2127 -
2128 2128  Table 6-54 Multi-turn absolute encoder information
2129 2129  
2130 2130  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2131 2131  
2132 -
2155 +(% style="text-align:center" %)
2133 2133  [[image:image-20220608173701-44.png]]
2134 2134  
2135 2135  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2138,12 +2138,12 @@
2138 2138  
2139 2139  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2140 2140  
2164 +(% class="table-bordered" %)
2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2141 2141  
2142 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2143 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2144 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2145 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2146 -
2147 2147  Table 6-55 Encoder feedback data
2148 2148  
2149 2149  == **Absolute value system encoder battery box use precautions** ==
... ... @@ -2150,7 +2150,7 @@
2150 2150  
2151 2151  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2152 2152  
2153 -
2176 +(% style="text-align:center" %)
2154 2154  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2155 2155  
2156 2156  Figure 6-50 the encoder battery box
... ... @@ -2163,23 +2163,23 @@
2163 2163  
2164 2164  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2165 2165  
2166 -
2167 -|**Function code**|**Name**|(((
2189 +(% class="table-bordered" %)
2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2168 2168  **Setting method**
2169 -)))|(((
2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2170 2170  **Effective time**
2171 -)))|**Default value**|**Range**|**Definition**|**Unit**
2172 -|P10-06|Multi-turn absolute encoder reset|(((
2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2173 2173  Shutdown setting
2174 -)))|(((
2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2175 2175  Effective immediately
2176 -)))|0|0 to 1|(((
2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2177 2177  0: No operation
2178 2178  
2179 2179  1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2180 2180  
2181 2181  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2182 -)))|-
2205 +)))|(% style="text-align:center; vertical-align:middle" %)-
2183 2183  
2184 2184  Table 6-56 Absolute encoder reset enable parameter
2185 2185  
... ... @@ -2197,18 +2197,18 @@
2197 2197  
2198 2198  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2199 2199  
2200 -
2223 +(% style="text-align:center" %)
2201 2201  [[image:image-20220608173804-46.png]]
2202 2202  
2203 2203  Figure 6-51 VDI_1 setting steps
2204 2204  
2205 -
2206 -|**Function code**|**Name**|(((
2228 +(% class="table-bordered" %)
2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2207 2207  **Setting method**
2208 -)))|(((
2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2209 2209  **Effective time**
2210 -)))|**Default value**|**Range**|**Definition**|**Unit**
2211 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2212 2212  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2213 2213  
2214 2214  VDI_1 input level:
... ... @@ -2216,8 +2216,8 @@
2216 2216  0: low level
2217 2217  
2218 2218  1: high level
2219 -)))|-
2220 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2242 +)))|(% style="text-align:center; vertical-align:middle" %)-
2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2221 2221  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2222 2222  
2223 2223  VDI_2 input level:
... ... @@ -2225,8 +2225,8 @@
2225 2225  0: low level
2226 2226  
2227 2227  1: high level
2228 -)))|-
2229 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2251 +)))|(% style="text-align:center; vertical-align:middle" %)-
2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2230 2230  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2231 2231  
2232 2232  VDI_3 input level:
... ... @@ -2234,8 +2234,8 @@
2234 2234  0: low level
2235 2235  
2236 2236  1: high level
2237 -)))|-
2238 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2260 +)))|(% style="text-align:center; vertical-align:middle" %)-
2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2239 2239  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2240 2240  
2241 2241  VDI_4 input level:
... ... @@ -2243,8 +2243,8 @@
2243 2243  0: low level
2244 2244  
2245 2245  1: high level
2246 -)))|-
2247 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2269 +)))|(% style="text-align:center; vertical-align:middle" %)-
2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2248 2248  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2249 2249  
2250 2250  VDI_5 input level:
... ... @@ -2252,8 +2252,8 @@
2252 2252  0: low level
2253 2253  
2254 2254  1: high level
2255 -)))|-
2256 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2278 +)))|(% style="text-align:center; vertical-align:middle" %)-
2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2257 2257  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2258 2258  
2259 2259  VDI_6 input level:
... ... @@ -2261,8 +2261,8 @@
2261 2261  0: low level
2262 2262  
2263 2263  1: high level
2264 -)))|-
2265 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2287 +)))|(% style="text-align:center; vertical-align:middle" %)-
2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2266 2266  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2267 2267  
2268 2268  VDI_7 input level:
... ... @@ -2270,8 +2270,8 @@
2270 2270  0: low level
2271 2271  
2272 2272  1: high level
2273 -)))|-
2274 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2296 +)))|(% style="text-align:center; vertical-align:middle" %)-
2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2275 2275  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2276 2276  
2277 2277  VDI_8 input level:
... ... @@ -2279,7 +2279,7 @@
2279 2279  0: low level
2280 2280  
2281 2281  1: high level
2282 -)))|-
2305 +)))|(% style="text-align:center; vertical-align:middle" %)-
2283 2283  
2284 2284  Table 6-57 Virtual VDI parameters
2285 2285  
... ... @@ -2289,11 +2289,11 @@
2289 2289  
2290 2290  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2291 2291  
2315 +(% class="table-bordered" %)
2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2292 2292  
2293 -|**Setting value**|**DI channel logic selection**|**Illustration**
2294 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2295 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2296 -
2297 2297  Table 6-58 DI terminal channel logic selection
2298 2298  
2299 2299  == **VDO** ==
... ... @@ -2302,55 +2302,55 @@
2302 2302  
2303 2303  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2304 2304  
2305 -
2328 +(% style="text-align:center" %)
2306 2306  [[image:image-20220608173957-48.png]]
2307 2307  
2308 2308  Figure 6-52 VDO_2 setting steps
2309 2309  
2310 -
2311 -|**Function code**|**Name**|(((
2333 +(% class="table-bordered" %)
2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2312 2312  **Setting method**
2313 -)))|(((
2336 +)))|(% style="text-align:center; vertical-align:middle" %)(((
2314 2314  **Effective time**
2315 -)))|**Default value**|**Range**|**Definition**|**Unit**
2316 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2317 2317  VDO_1 output level:
2318 2318  
2319 2319  0: low level
2320 2320  
2321 2321  1: high level
2322 -)))|-
2323 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2345 +)))|(% style="text-align:center; vertical-align:middle" %)-
2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2324 2324  VDO_2 output level:
2325 2325  
2326 2326  0: low level
2327 2327  
2328 2328  1: high level
2329 -)))|-
2330 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2352 +)))|(% style="text-align:center; vertical-align:middle" %)-
2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2331 2331  VDO_3 output level:
2332 2332  
2333 2333  0: low level
2334 2334  
2335 2335  1: high level
2336 -)))|-
2337 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2359 +)))|(% style="text-align:center; vertical-align:middle" %)-
2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2338 2338  VDO_4 output level:
2339 2339  
2340 2340  0: low level
2341 2341  
2342 2342  1: high level
2343 -)))|-
2366 +)))|(% style="text-align:center; vertical-align:middle" %)-
2344 2344  
2345 2345  Table 6-59 Communication control DO function parameters
2346 2346  
2370 +(% class="table-bordered" %)
2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2347 2347  
2348 -|**DO function number**|**Function name**|**Function**
2349 -|145|COM_VDO1 communication VDO1 output|Use communication VDO
2350 -|146|COM_VDO1 communication VDO2 output|Use communication VDO
2351 -|147|COM_VDO1 communication VDO3 output|Use communication VDO
2352 -|148|COM_VDO1 communication VDO4output|Use communication VDO
2353 -
2354 2354  Table 6-60 VDO function number
2355 2355  
2356 2356  ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
... ... @@ -2361,17 +2361,17 @@
2361 2361  
2362 2362  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2363 2363  
2364 -
2365 -|**Function code**|**Name**|(((
2387 +(% class="table-bordered" %)
2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2366 2366  **Setting method**
2367 -)))|(((
2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2368 2368  **Effective time**
2369 -)))|**Default value**|**Range**|**Definition**|**Unit**
2370 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2371 2371  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2372 2372  
2373 2373  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2374 -)))|%
2397 +)))|(% style="text-align:center; vertical-align:middle" %)%
2375 2375  
2376 2376  In the following cases, it could be modified according to the actual heat generation of the motor
2377 2377