Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
To version 43.1
edited by Joey
on 2022/06/11 15:24
on 2022/06/11 15:24
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -| =(% scope="row" %)**No.**|=**Content**6 -| =(% colspan="2" %)Wiring7 -| =1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -| =2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -| =3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -| =4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -| =5|Servo drive and servo motor must be grounded reliably.12 -| =6|When using an external braking resistor, the short wiring between drive C and D must be removed.13 -| =7|The force of all cables is within the specified range.14 -| =8|The wiring terminals have been insulated.15 -| =(% colspan="2" %)Environment and Machinery16 -| =1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -| =2|The servo drive and external braking resistor are not placed on combustible objects.18 -| =3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.5 +|**No.**|**Content** 6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring 7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|5|Servo drive and servo motor must be grounded reliably. 12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|7|The force of all cables is within the specified range. 14 +|8|The wiring terminals have been insulated. 15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery 16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -25,7 +25,7 @@ 25 25 26 26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal. 27 27 28 -If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault. 29 29 30 30 **(2) Set the servo drive enable (S-ON) to invalid (OFF)** 31 31 ... ... @@ -35,7 +35,7 @@ 35 35 36 36 **(1) Panel jog operation** 37 37 38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__. 39 39 40 40 **(2) Jog operation of servo debugging platform** 41 41 ... ... @@ -42,17 +42,17 @@ 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 44 45 - 46 -| =(% scope="row" %)**Function code**|=**Name**|=(((45 +(% class="table-bordered" %) 46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 47 47 **Setting method** 48 -)))|=((( 48 +)))|(% style="text-align:center; vertical-align:middle" %)((( 49 49 **Effective time** 50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 51 -|=P10-01|JOG speed|((( 50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)((( 52 52 Operation setting 53 -)))|((( 53 +)))|(% style="text-align:center; vertical-align:middle" %)((( 54 54 Effective immediately 55 -)))|100|0 to 3000|JOG speed|rpm 55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm 56 56 57 57 Table 6-2 JOG speed parameter 58 58 ... ... @@ -60,25 +60,25 @@ 60 60 61 61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 62 62 63 - 64 -| =(% scope="row" %)**Function code**|=**Name**|=(((63 +(% class="table-bordered" %) 64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 65 65 **Setting method** 66 -)))|=((( 66 +)))|(% style="text-align:center; vertical-align:middle" %)((( 67 67 **Effective time** 68 -)))|=((( 68 +)))|(% style="text-align:center; vertical-align:middle" %)((( 69 69 **Default value** 70 -)))|=**Range**|=**Definition**|=**Unit** 71 -|=P00-04|Rotation direction|((( 70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)((( 72 72 Shutdown setting 73 -)))|((( 73 +)))|(% style="text-align:center; vertical-align:middle" %)((( 74 74 Effective immediately 75 -)))|0|0 to 1|((( 75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 76 76 Forward rotation: Face the motor shaft to watch 77 77 78 78 0: standard setting (CW is forward rotation) 79 79 80 80 1: reverse mode (CCW is forward rotation) 81 -)))|- 81 +)))|(% style="text-align:center; vertical-align:middle" %)- 82 82 83 83 Table 6-3 Rotation direction parameters** ** 84 84 ... ... @@ -91,16 +91,17 @@ 91 91 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 92 92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 93 93 94 -|=(% scope="row" %)**Function code**|=**Name**|=((( 94 +(% class="table-bordered" %) 95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 95 95 **Setting method** 96 -)))|=((( 97 +)))|(% style="text-align:center; vertical-align:middle" %)((( 97 97 **Effective time** 98 -)))|=**Default**|=**Range**|=**Definition**|=**Unit** 99 -|=P00-09|Braking resistor setting|((( 99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)((( 100 100 Operation setting 101 -)))|((( 102 +)))|(% style="text-align:center; vertical-align:middle" %)((( 102 102 Effective immediately 103 -)))|0|0 to 3|((( 104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|((( 104 104 0: use built-in braking resistor 105 105 106 106 1: use external braking resistor and natural cooling ... ... @@ -108,18 +108,18 @@ 108 108 2: use external braking resistor and forced air cooling; (cannot be set) 109 109 110 110 3: No braking resistor is used, it is all absorbed by capacitor. 111 -)))|- 112 -| =(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).113 -|=P00-10|External braking resistor value|((( 112 +)))|(% style="text-align:center; vertical-align:middle" %)- 113 +|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)((( 114 114 Operation setting 115 -)))|((( 116 +)))|(% style="text-align:center; vertical-align:middle" %)((( 116 116 Effective immediately 117 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 118 -|=P00-11|External braking resistor power|((( 118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω 119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)((( 119 119 Operation setting 120 -)))|((( 121 +)))|(% style="text-align:center; vertical-align:middle" %)((( 121 121 Effective immediately 122 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W 123 123 124 124 Table 6-4 Braking resistor parameters 125 125 ... ... @@ -133,11 +133,11 @@ 133 133 134 134 **(2) Input the instruction and the motor rotates** 135 135 136 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.137 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected. 137 137 138 138 **(3) Timing diagram of power on** 139 139 140 - 141 +(% style="text-align:center" %) 141 141 [[image:image-20220608163014-1.png]] 142 142 143 143 Figure 6-1 Timing diagram of power on ... ... @@ -144,19 +144,19 @@ 144 144 145 145 == **Servo shutdown** == 146 146 147 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.148 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. 148 148 150 +(% class="table-bordered" %) 151 +|Shutdown mode|Shutdown description|Shutdown characteristics 152 +|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 153 +|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 149 149 150 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 151 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 152 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 153 - 154 154 Table 6-5 Comparison of two shutdown modes 155 155 157 +(% class="table-bordered" %) 158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked** 159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 156 156 157 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 158 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 159 - 160 160 Table 6-6 Comparison of two shutdown status 161 161 162 162 **(1) Servo enable (S-ON) OFF shutdown** ... ... @@ -163,27 +163,27 @@ 163 163 164 164 The related parameters of the servo OFF shutdown mode are shown in the table below. 165 165 166 - 167 -| =(% scope="row" %)**Function code**|=**Name**|=(((167 +(% class="table-bordered" %) 168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 168 168 **Setting method** 169 -)))|=((( 170 +)))|(% style="text-align:center; vertical-align:middle" %)((( 170 170 **Effective time** 171 -)))|=((( 172 +)))|(% style="text-align:center; vertical-align:middle" %)((( 172 172 **Default value** 173 -)))|=**Range**|=**Definition**|=**Unit** 174 -|=P00-05|Servo OFF shutdown|((( 174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)((( 175 175 Shutdown 176 176 177 177 setting 178 -)))|((( 179 +)))|(% style="text-align:center; vertical-align:middle" %)((( 179 179 Effective 180 180 181 181 immediately 182 -)))|0|0 to 1|((( 183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 183 183 0: Free shutdown, and the motor shaft remains free status. 184 184 185 185 1: Zero-speed shutdown, and the motor shaft remains free status. 186 -)))|- 187 +)))|(% style="text-align:center; vertical-align:middle" %)- 187 187 188 188 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 189 189 ... ... @@ -199,13 +199,13 @@ 199 199 200 200 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 201 201 202 - 203 -| =(% scope="row" %)**Function code**|=**Name**|=(((203 +(% class="table-bordered" %) 204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 204 204 **Setting method** 205 -)))|=((( 206 +)))|(% style="text-align:center; vertical-align:middle" %)((( 206 206 **Effective time** 207 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 208 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|((( 209 209 0: OFF (not used) 210 210 211 211 01: S-ON servo enable ... ... @@ -253,30 +253,32 @@ 253 253 24: Internal multi-segment position selection 4 254 254 255 255 Others: reserved 256 -)))|- 257 -|=P06-09|DI_3 channel logic selection|Operation setting|((( 257 +)))|(% style="text-align:center; vertical-align:middle" %)- 258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)((( 258 258 Effective immediately 259 -)))|0|0 to 1|((( 260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 260 260 DI port input logic validity function selection. 261 261 262 262 0: Normally open input. Active low level (switch on); 263 263 264 264 1: Normally closed input. Active high level (switch off); 265 -)))|- 266 -|=P06-10|DI_3 input source selection|Operation setting|((( 266 +)))|(% style="text-align:center; vertical-align:middle" %)- 267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)((( 267 267 Effective immediately 268 -)))|0|0 to 1|((( 269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 269 269 Select the DI_3 port type to enable 270 270 271 271 0: Hardware DI_3 input terminal 272 272 273 273 1: virtual VDI_3 input terminal 274 -)))|- 275 -|=P06-11|DI_4 channel function selection|((( 275 +)))|(% style="text-align:center; vertical-align:middle" %)- 276 + 277 +(% class="table-bordered" %) 278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 276 276 Operation setting 277 -)))|((( 280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 278 278 again Power-on 279 -)))|4|0 to 32|((( 282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)((( 280 280 0 off (not used) 281 281 282 282 01: SON Servo enable ... ... @@ -324,25 +324,25 @@ 324 324 24: Internal multi-segment position selection 4 325 325 326 326 Others: reserved 327 -)))|- 328 -|=P06-12|DI_4 channel logic selection|Operation setting|((( 330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 329 329 Effective immediately 330 -)))|0|0 to 1|((( 333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)((( 331 331 DI port input logic validity function selection. 332 332 333 333 0: Normally open input. Active low level (switch on); 334 334 335 335 1: Normally closed input. Active high level (switch off); 336 -)))|- 337 -|=P06-13|DI_4 input source selection|Operation setting|((( 339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 338 338 Effective immediately 339 -)))|0|0 to 1|((( 342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)((( 340 340 Select the DI_4 port type to enable 341 341 342 342 0: Hardware DI_4 input terminal 343 343 344 344 1: virtual VDI_4 input terminal 345 -)))|- 348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 346 346 347 347 Table 6-8 DI3 and DI4 channel parameters 348 348 ... ... @@ -354,8 +354,9 @@ 354 354 355 355 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 356 356 357 - 360 +(% class="table-bordered" %) 358 358 |((( 362 +(% style="text-align:center" %) 359 359 [[image:image-20220611151617-1.png]] 360 360 ))) 361 361 |((( ... ... @@ -374,13 +374,14 @@ 374 374 375 375 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 376 376 377 - 381 +(% style="text-align:center" %) 378 378 [[image:image-20220608163136-2.png]] 379 379 380 380 Figure 6-2 VD2B servo drive brake wiring 381 381 382 - 386 +(% class="table-bordered" %) 383 383 |((( 388 +(% style="text-align:center" %) 384 384 [[image:image-20220611151642-2.png]] 385 385 ))) 386 386 |((( ... ... @@ -397,42 +397,42 @@ 397 397 398 398 Related function code is as below. 399 399 400 - 401 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((405 +(% class="table-bordered" %) 406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)((( 402 402 **Effective time** 403 403 ))) 404 -|=144|((( 409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)((( 405 405 BRK-OFF Brake output 406 -)))|Output the signal indicates the servo motor brake release|Power-on again 411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again 407 407 408 408 Table 6-2 Relevant function codes for brake setting 409 409 410 - 411 -| =(% scope="row" %)**Function code**|=**Name**|=(((415 +(% class="table-bordered" %) 416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 412 412 **Setting method** 413 -)))|=((( 418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 414 414 **Effective time** 415 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 416 -|=P1-30|Delay from brake output to instruction reception|((( 420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 417 417 Operation setting 418 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms 419 -|=P1-31|In static state, delay from brake output OFF to the motor is power off|((( 423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms 424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 420 420 Operation setting 421 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms 422 -|=P1-32|Rotation status, when the brake output OFF, the speed threshold|((( 426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms 427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 423 423 Operation setting 424 -)))|Effective immediately|30|0 to 3000|((( 429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)((( 425 425 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. 426 426 427 427 When the brake output (BRK-OFF) is not allocated, this function code has no effect. 428 -)))|rpm 429 -|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|((( 433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm 434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 430 430 Operation setting 431 -)))|Effective immediately|500|1 to 1000|((( 436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)((( 432 432 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. 433 433 434 434 When brake output (BRK-OFF) is not allocated, this function code has no effect. 435 -)))|ms 440 +)))|(% style="text-align:center; vertical-align:middle" %)ms 436 436 437 437 Table 6-9 Brake setting function codes 438 438 ... ... @@ -444,10 +444,11 @@ 444 444 445 445 1) Brake timing when servo motor is stationary 446 446 447 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__452 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__ 448 448 449 - 454 +(% class="table-bordered" %) 450 450 |((( 456 +(% style="text-align:center" %) 451 451 [[image:image-20220611151705-3.png]] 452 452 ))) 453 453 |((( ... ... @@ -456,6 +456,7 @@ 456 456 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 457 457 ))) 458 458 465 +(% style="text-align:center" %) 459 459 [[image:image-20220608163304-3.png]] 460 460 461 461 Figure 6-3 Brake Timing of when the motor is stationary ... ... @@ -464,10 +464,11 @@ 464 464 465 465 2) The brake timing when servo motor rotates 466 466 467 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.474 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__. 468 468 469 - 476 +(% class="table-bordered" %) 470 470 |((( 478 +(% style="text-align:center" %) 471 471 [[image:image-20220611151719-4.png]] 472 472 ))) 473 473 |((( ... ... @@ -482,6 +482,7 @@ 482 482 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 483 483 ))) 484 484 493 +(% style="text-align:center" %) 485 485 [[image:image-20220608163425-4.png]] 486 486 487 487 Figure 6-4 Brake timing when the motor rotates ... ... @@ -490,7 +490,7 @@ 490 490 491 491 The brake timing (free shutdown) in the fault status is as follows. 492 492 493 - 502 +(% style="text-align:center" %) 494 494 [[image:image-20220608163541-5.png]] 495 495 496 496 Figure 6-5 The brake timing (free shutdown) in the fault state ... ... @@ -499,7 +499,7 @@ 499 499 500 500 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 501 501 502 - 511 +(% style="text-align:center" %) 503 503 [[image:image-20220608163643-6.png]] 504 504 505 505 Figure 6-6 Position control diagram ... ... @@ -506,17 +506,17 @@ 506 506 507 507 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 508 508 509 - 510 -| =(% scope="row" %)**Function code**|=**Name**|=(((518 +(% class="table-bordered" %) 519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 511 511 **Setting method** 512 -)))|=((( 521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 513 513 **Effective time** 514 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 515 -|=P01-01|Control mode|((( 523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 516 516 Operation setting 517 -)))|((( 526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 518 518 immediately Effective 519 -)))|0|0 to 1|((( 528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)((( 520 520 0: position control 521 521 522 522 2: speed control ... ... @@ -528,7 +528,7 @@ 528 528 5: position/torque mix control 529 529 530 530 6: speed /torque mix control 531 -)))|- 540 +)))|(% style="text-align:center; vertical-align:middle" %)- 532 532 533 533 Table 6-10 Control mode parameters 534 534 ... ... @@ -536,21 +536,21 @@ 536 536 537 537 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 538 538 539 - 540 -| =(% scope="row" %)**Function code**|=**Name**|=(((548 +(% class="table-bordered" %) 549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 541 541 **Setting method** 542 -)))|=((( 551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)((( 543 543 **Effective time** 544 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 545 -|=P01-06|Position instruction source|((( 553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 546 546 Operation setting 547 -)))|((( 556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)((( 548 548 immediately Effective 549 -)))|0|0 to 1|((( 558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)((( 550 550 0: pulse instruction 551 551 552 552 1: internal position instruction 553 -)))|- 562 +)))|(% style="text-align:center; vertical-align:middle" %)- 554 554 555 555 Table 6-11 Position instruction source parameter 556 556 ... ... @@ -558,20 +558,20 @@ 558 558 559 559 1) Low-speed pulse instruction input 560 560 570 +(% class="table-bordered" %) 571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive 573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting 561 561 562 -|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 563 -|VD2A and VD2B servo drives|VD2F servo drive 564 -|(% colspan="2" %)Figure 6-7 Position instruction input setting 575 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__. 565 565 566 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__. 567 - 568 568 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 569 569 579 +(% class="table-bordered" %) 580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage** 581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V 582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V 570 570 571 -|**Pulse method**|**Maximum frequency**|**Voltage** 572 -|Open collector input|200K|24V 573 -|Differential input|500K|5V 574 - 575 575 Table 6-12 Pulse input specifications 576 576 577 577 1.Differential input ... ... @@ -578,29 +578,29 @@ 578 578 579 579 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 580 580 581 - 590 +(% style="text-align:center" %) 582 582 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]] 583 583 584 584 Figure 6-8 Differential input connection 585 585 586 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”595 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 587 587 588 588 2.Open collector input 589 589 590 590 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 591 591 592 - 601 +(% style="text-align:center" %) 593 593 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]] 594 594 595 595 Figure 6-9 Open collector input connection 596 596 597 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”606 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 598 598 599 599 2) Position pulse frequency and anti-interference level 600 600 601 601 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 602 602 603 - 612 +(% style="text-align:center" %) 604 604 [[image:image-20220608163952-8.png]] 605 605 606 606 Figure 6-10 Example of filtered signal waveform ... ... @@ -607,22 +607,22 @@ 607 607 608 608 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 609 609 610 - 611 -| =(% scope="row" %)**Function code**|=**Name**|=(((619 +(% class="table-bordered" %) 620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 612 612 **Setting method** 613 -)))|=((( 622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)((( 614 614 **Effective time** 615 -)))|=**Default value**|=**Range**| =(% colspan="2" %)**Definition**|=**Unit**616 -|=P00-13|Maximum position pulse frequency|((( 624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 617 617 Shutdown setting 618 -)))|((( 627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)((( 619 619 Effective immediately 620 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 621 -| =(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz 630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)((( 622 622 Operation setting 623 -)))|(% rowspan="3" %)((( 632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)((( 624 624 Power-on again 625 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)((( 626 626 Set the anti-interference level of external pulse instruction. 627 627 628 628 0: no filtering; ... ... @@ -642,9 +642,9 @@ 642 642 7: Filtering time 8.192us 643 643 644 644 8: Filtering time 16.384us 645 -)))|(% rowspan="3" %)- 646 -| =(% rowspan="2" %)9|VD2: Filtering time 25.5us647 -| =VD2F: Filtering time 25.5us654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)- 655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us 656 +|VD2F: Filtering time 25.5us 648 648 649 649 Table 6-13 Position pulse frequency and anti-interference level parameters 650 650 ... ... @@ -652,17 +652,17 @@ 652 652 653 653 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 654 654 655 - 656 -| =(% scope="row" %)**Function code**|=**Name**|=(((664 +(% class="table-bordered" %) 665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 657 657 **Setting method** 658 -)))|=((( 667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 659 659 **Effective time** 660 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 661 -|=P00-12|Position pulse type selection|((( 669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 662 662 Operation setting 663 -)))|((( 672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 664 664 Power-on again 665 -)))|0|0 to 5|((( 674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)((( 666 666 0: direction + pulse (positive logic) 667 667 668 668 1: CW/CCW ... ... @@ -674,74 +674,74 @@ 674 674 4: CW/CCW (negative logic) 675 675 676 676 5: A, B phase quadrature pulse (4 times frequency negative logic) 677 -)))|- 686 +)))|(% style="text-align:center; vertical-align:middle" %)- 678 678 679 679 Table 6-14 Position pulse type selection parameter 680 680 681 - 682 -| =(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**683 -|=0|((( 690 +(% class="table-bordered" %) 691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse** 692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 684 684 Direction + pulse 685 685 686 686 (Positive logic) 687 -)))|((( 696 +)))|(% style="text-align:center; vertical-align:middle" %)((( 688 688 PULSE 689 689 690 690 SIGN 691 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 692 -|=1|CW/CCW|((( 700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)((( 693 693 PULSE (CW) 694 694 695 695 SIGN (CCW) 696 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 697 -|=2|((( 705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 698 698 AB phase orthogonal 699 699 700 700 pulse (4 times frequency) 701 -)))|((( 710 +)))|(% style="text-align:center; vertical-align:middle" %)((( 702 702 PULSE (Phase A) 703 703 704 704 SIGN (Phase B) 705 -)))|((( 714 +)))|(% style="text-align:center; vertical-align:middle" %)((( 706 706 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]] 707 707 708 708 Phase A is 90° ahead of Phase B 709 -)))|((( 718 +)))|(% style="text-align:center; vertical-align:middle" %)((( 710 710 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]] 711 711 712 712 Phase B is 90° ahead of Phase A 713 713 ))) 714 -|=3|((( 723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 715 715 Direction + pulse 716 716 717 717 (Negative logic) 718 -)))|((( 727 +)))|(% style="text-align:center; vertical-align:middle" %)((( 719 719 PULSE 720 720 721 721 SIGN 722 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 723 -|=4|((( 731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 724 724 CW/CCW 725 725 726 726 (Negative logic) 727 -)))|((( 736 +)))|(% style="text-align:center; vertical-align:middle" %)((( 728 728 PULSE (CW) 729 729 730 730 SIGN (CCW) 731 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 732 -|=5|((( 740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 733 733 AB phase orthogonal 734 734 735 735 pulse (4 times frequency negative logic) 736 -)))|((( 745 +)))|(% style="text-align:center; vertical-align:middle" %)((( 737 737 PULSE (Phase A) 738 738 739 739 SIGN (Phase B) 740 -)))|((( 749 +)))|(% style="text-align:center; vertical-align:middle" %)((( 741 741 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]] 742 742 743 743 B phase is ahead of A phase by 90° 744 -)))|((( 753 +)))|(% style="text-align:center; vertical-align:middle" %)((( 745 745 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]] 746 746 747 747 A phase is ahead of B phase by 90° ... ... @@ -751,11 +751,11 @@ 751 751 752 752 **(2) The source of position instruction is internal position instruction (P01-06=1)** 753 753 754 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.763 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__. 755 755 756 756 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 757 757 758 - 767 +(% style="text-align:center" %) 759 759 [[image:image-20220608164116-9.png]] 760 760 761 761 Figure 6-11 The setting process of multi-segment position ... ... @@ -762,51 +762,51 @@ 762 762 763 763 1) Set multi-segment position running mode 764 764 765 - 766 -| =(% scope="row" %)**Function code**|=**Name**|=(((774 +(% class="table-bordered" %) 775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 767 767 **Setting method** 768 -)))|=((( 777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 769 769 **Effective time** 770 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 771 -|=P07-01|Multi-segment position running mode|((( 779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 772 772 Shutdown setting 773 -)))|((( 782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 774 774 Effective immediately 775 -)))|0|0 to 2|((( 784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|((( 776 776 0: Single running 777 777 778 778 1: Cycle running 779 779 780 780 2: DI switching running 781 -)))|- 782 -|=P07-02|Start segment number|((( 790 +)))|(% style="text-align:center; vertical-align:middle" %)- 791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 783 783 Shutdown setting 784 -)))|((( 793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 785 785 Effective immediately 786 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|- 787 -|=P07-03|End segment number|((( 795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)- 796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 788 788 Shutdown setting 789 -)))|((( 798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 790 790 Effective immediately 791 -)))|1|1 to 16|last segment NO. in non-DI switching mode|- 792 -|=P07-04|Margin processing method|((( 800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)- 801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 793 793 Shutdown setting 794 -)))|((( 803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 795 795 Effective immediately 796 -)))|0|0 to 1|((( 805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 797 797 0: Run the remaining segments 798 798 799 799 1: Run again from the start segment 800 -)))|- 801 -|=P07-05|Displacement instruction type|((( 809 +)))|(% style="text-align:center; vertical-align:middle" %)- 810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 802 802 Shutdown setting 803 -)))|((( 812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 804 804 Effective immediately 805 -)))|0|0 to 1|((( 814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 806 806 0: Relative position instruction 807 807 808 808 1: Absolute position instruction 809 -)))|- 818 +)))|(% style="text-align:center; vertical-align:middle" %)- 810 810 811 811 Table 6-16 multi-segment position running mode parameters 812 812 ... ... @@ -814,9 +814,9 @@ 814 814 815 815 ~1. Single running 816 816 817 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively826 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 818 818 819 - 828 +(% style="text-align:center" %) 820 820 [[image:image-20220608164226-10.png]] 821 821 822 822 Figure 6-12 Single running curve (P07-02=1, P07-03=2) ... ... @@ -823,14 +823,14 @@ 823 823 824 824 2. Cycle running 825 825 826 -In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.835 +In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 827 827 828 - 837 +(% style="text-align:center" %) 829 829 [[image:image-20220608164327-11.png]] 830 830 831 831 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 832 832 833 -|[[image:image-20220611151917-5.png]] 842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]] 834 834 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 835 835 836 836 3. DI switching running ... ... @@ -837,30 +837,30 @@ 837 837 838 838 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 839 839 849 +(% class="table-bordered" %) 850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 840 840 841 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 842 -|=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 843 -|=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 844 -|=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 845 -|=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 846 - 847 847 Table 6-17 DI function code 848 848 849 849 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number. 850 850 860 +(% class="table-bordered" %) 861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number** 862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1 863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2 864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3 865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)………… 866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16 851 851 852 -|=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number** 853 -|=0|0|0|0|1 854 -|=0|0|0|1|2 855 -|=0|0|1|0|3 856 -|=(% colspan="5" %)………… 857 -|=1|1|1|1|16 858 - 859 859 Table 6-18 INPOS corresponds to running segment number 860 860 861 -The operating curve in this running mode is shown in __[[Figure 6-14>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.870 +The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__. 862 862 863 - 872 +(% style="text-align:center" %) 864 864 [[image:image-20220608164545-12.png]] 865 865 866 866 Figure 6-14 DI switching running curve ... ... @@ -869,14 +869,14 @@ 869 869 870 870 **A. Run the remaining segments** 871 871 872 -In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.881 +In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively. 873 873 874 - 883 +(% style="text-align:center" %) 875 875 [[image:image-20220608164847-13.png]] 876 876 877 877 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 878 878 879 - 888 +(% style="text-align:center" %) 880 880 [[image:image-20220608165032-14.png]] 881 881 882 882 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) ... ... @@ -883,14 +883,14 @@ 883 883 884 884 **B. Run again from the start segment** 885 885 886 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.895 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively. 887 887 888 - 897 +(% style="text-align:center" %) 889 889 [[image:image-20220608165343-15.png]] 890 890 891 891 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 892 892 893 - 902 +(% style="text-align:center" %) 894 894 [[image:image-20220608165558-16.png]] 895 895 896 896 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) ... ... @@ -902,8 +902,10 @@ 902 902 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 903 903 904 904 |((( 914 +(% style="text-align:center" %) 905 905 [[image:image-20220608165710-17.png]] 906 906 )))|((( 917 +(% style="text-align:center" %) 907 907 [[image:image-20220608165749-18.png]] 908 908 ))) 909 909 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram ... ... @@ -913,8 +913,10 @@ 913 913 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 914 914 915 915 |((( 927 +(% style="text-align:center" %) 916 916 [[image:image-20220608165848-19.png]] 917 917 )))|((( 930 +(% style="text-align:center" %) 918 918 [[image:image-20220608170005-20.png]] 919 919 ))) 920 920 |Figure 6-21 Absolute indication|Figure 6-22 Displacement ... ... @@ -921,44 +921,48 @@ 921 921 922 922 2) Multi-segment position running curve setting 923 923 924 -The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.937 +The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 925 925 926 - 927 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 928 -|=P07-09|((( 939 +(% class="table-bordered" %) 940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 941 +**Setting method** 942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 943 +**Effective time** 944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)((( 929 929 1st segment 930 930 931 931 displacement 932 -)))|((( 949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 933 933 Operation setting 934 -)))|((( 951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 935 935 Effective immediately 936 -)))|10000|((( 953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)((( 937 937 -2147483647 to 938 938 939 939 2147483646 940 -)))|Position instruction, positive and negative values could be set|- 941 -|=P07-10|Maximum speed of the 1st displacement|((( 957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)- 958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 942 942 Operation setting 943 -)))|((( 960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 944 944 Effective immediately 945 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm 946 -|=P07-11|Acceleration and deceleration of 1st segment displacement|((( 962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm 963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 947 947 Operation setting 948 -)))|((( 965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 949 949 Effective immediately 950 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms 951 -|=P07-12|Waiting time after completion of the 1st segment displacement|((( 967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms 968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 952 952 Operation setting 953 -)))|((( 970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 954 954 Effective immediately 955 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06 972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06 956 956 957 957 Table 6-19 The 1st position operation curve parameters table 958 958 959 959 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 960 960 961 - 978 +(% style="text-align:center" %) 962 962 [[image:image-20220608170149-21.png]] 963 963 964 964 Figure 6-23 The 1st segment running curve of motor ... ... @@ -967,14 +967,15 @@ 967 967 968 968 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 969 969 970 - 971 -| =(% scope="row" %)**DI function code**|=**Function name**|=**Function**972 -|=20|ENINPOS: Internal multi-segment position enable signal|((( 987 +(% class="table-bordered" %) 988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)((( 973 973 DI port logic invalid: Does not affect the current operation of the servo motor. 974 974 975 975 DI port logic valid: Motor runs multi-segment position 976 976 ))) 977 977 995 +(% style="text-align:center" %) 978 978 [[image:image-20220611152020-6.png]] 979 979 980 980 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! ... ... @@ -989,13 +989,13 @@ 989 989 990 990 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 991 991 992 - 1010 +(% style="text-align:center" %) 993 993 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]] 994 994 995 - 1013 +(% style="text-align:center" %) 996 996 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]] 997 997 998 - 1016 +(% style="text-align:center" %) 999 999 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]] 1000 1000 1001 1001 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! ... ... @@ -1002,7 +1002,7 @@ 1002 1002 1003 1003 **(2) Setting steps of electronic gear ratio** 1004 1004 1005 - 1023 +(% style="text-align:center" %) 1006 1006 [[image:image-20220608170320-22.png]] 1007 1007 1008 1008 Figure 6-24 Setting steps of electronic gear ratio ... ... @@ -1017,7 +1017,7 @@ 1017 1017 1018 1018 Step5: Calculate the value of electronic gear ratio according to formula below. 1019 1019 1020 - 1038 +(% style="text-align:center" %) 1021 1021 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]] 1022 1022 1023 1023 **(3) lectronic gear ratio switch setting** ... ... @@ -1025,59 +1025,59 @@ 1025 1025 1026 1026 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 1027 1027 1028 - 1029 -| =(% scope="row" %)**Function code**|=**Name**|=(((1046 +(% class="table-bordered" %) 1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1030 1030 **Setting method** 1031 -)))|=((( 1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1032 1032 **Effective time** 1033 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1034 -|=P00-16|Number of instruction pulses when the motor rotates one circle|((( 1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1035 1035 Shutdown setting 1036 -)))|((( 1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1037 1037 Effective immediately 1038 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|((( 1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)((( 1039 1039 Instruction pulse 1040 1040 1041 1041 unit 1042 1042 ))) 1043 -|=P00-17|((( 1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1044 1044 Electronic gear 1 1045 1045 1046 1046 numerator 1047 -)))|Operation setting|((( 1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1048 1048 Effective immediately 1049 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1050 -|=P00-18|((( 1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1051 1051 Electronic gear 1 1052 1052 1053 1053 denominator 1054 -)))|((( 1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1055 1055 Operation setting 1056 -)))|((( 1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1057 1057 Effective immediately 1058 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1059 -|=P00-19|((( 1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1060 1060 Electronic gear 2 1061 1061 1062 1062 numerator 1063 -)))|Operation setting|((( 1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1064 1064 Effective immediately 1065 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1066 -|=P00-20|((( 1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1067 1067 Electronic gear 2 1068 1068 1069 1069 denominator 1070 -)))|Operation setting|((( 1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1071 1071 Effective immediately 1072 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1073 1073 1074 1074 Table 6-20 Electronic gear ratio function code 1075 1075 1076 1076 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1077 1077 1078 - 1079 -| =(% scope="row" %)**DI function code**|=**Function name**|=**Function**1080 -|=09|GEAR-SEL electronic gear switch 1|((( 1096 +(% class="table-bordered" %) 1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)((( 1081 1081 DI port logic invalid: electronic gear ratio 1 1082 1082 1083 1083 DI port logic valid: electronic gear ratio 2 ... ... @@ -1085,10 +1085,10 @@ 1085 1085 1086 1086 Table 6-21 Switching conditions of electronic gear ratio group 1087 1087 1088 -| =(% scope="row" %)**P00-16 value**|=**DI terminal level corresponding to DI port function 9**|=**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]1089 -| =(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]1090 -|=DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1091 -|=1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] 1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]] 1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1092 1092 1093 1093 Table 6-22 Application of electronic gear ratio 1094 1094 ... ... @@ -1106,32 +1106,32 @@ 1106 1106 1107 1107 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1108 1108 1109 - 1127 +(% style="text-align:center" %) 1110 1110 [[image:image-20220608170455-23.png]] 1111 1111 1112 1112 Figure 6-25 Position instruction filtering diagram 1113 1113 1114 - 1115 -| =(% scope="row" %)**Function code**|=**Name**|=(((1132 +(% class="table-bordered" %) 1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 1116 1116 **Setting method** 1117 -)))|=((( 1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1118 1118 **Effective time** 1119 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1120 -|=P04-01|Pulse instruction filtering method|((( 1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit** 1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 1121 1121 Shutdown setting 1122 -)))|((( 1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1123 1123 Effective immediately 1124 -)))|0|0 to 1|((( 1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)((( 1125 1125 0: 1st-order low-pass filtering 1126 1126 1127 1127 1: average filtering 1128 -)))|- 1129 -|=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)- 1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1130 1130 Effective immediately 1131 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms 1132 -|=P04-03|Position instruction average filtering time constant|Shutdown setting|((( 1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms 1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1133 1133 Effective immediately 1134 -)))|0|0 to 128|Position instruction average filtering time constant|ms 1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms 1135 1135 1136 1136 Table 6-23 Position instruction filter function code 1137 1137 ... ... @@ -1151,7 +1151,7 @@ 1151 1151 (% class="wikigeneratedid" %) 1152 1152 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1153 1153 1154 - 1172 +(% style="text-align:center" %) 1155 1155 [[image:image-20220608170550-24.png]] 1156 1156 1157 1157 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1158,47 +1158,48 @@ 1158 1158 1159 1159 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27. 1160 1160 1161 -To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.1179 +To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1162 1162 1181 +(% style="text-align:center" %) 1163 1163 [[image:image-20220608170650-25.png]] 1164 1164 1165 1165 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1166 1166 1167 - 1168 -| =(% scope="row" %)**Function code**|=**Name**|=(((1186 +(% class="table-bordered" %) 1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1169 1169 **Setting method** 1170 -)))|=((( 1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1171 1171 **Effective time** 1172 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1173 -|=P05-12|Positioning completion threshold|((( 1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit** 1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1174 1174 Operation setting 1175 -)))|((( 1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1176 1176 Effective immediately 1177 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1178 -|=P05-13|Positioning approach threshold|((( 1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit 1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1179 1179 Operation setting 1180 -)))|((( 1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1181 1181 Effective immediately 1182 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1183 -|=P05-14|Position detection window time|((( 1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit 1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1184 1184 Operation setting 1185 -)))|((( 1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1186 1186 Effective immediately 1187 -)))|10|0 to 20000|Set positioning completion detection window time|ms 1188 -|=P05-15|Positioning signal hold time|((( 1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms 1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1189 1189 Operation setting 1190 -)))|((( 1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1191 1191 Effective immediately 1192 -)))|100|0 to 20000|Set positioning completion output hold time|ms 1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms 1193 1193 1194 1194 Table 6-24 Function code parameters of positioning completion 1195 1195 1196 - 1197 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1198 -|=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1199 -|=135|((( 1215 +(% class="table-bordered" %) 1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete. 1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)((( 1200 1200 P-NEAR positioning close 1201 -)))|((( 1220 +)))|(% style="text-align:center; vertical-align:middle" %)((( 1202 1202 Output this signal indicates that the servo drive position is close. 1203 1203 ))) 1204 1204 ... ... @@ -1208,7 +1208,7 @@ 1208 1208 1209 1209 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1210 1210 1211 - 1230 +(% style="text-align:center" %) 1212 1212 [[image:6.28.jpg||height="260" width="806"]] 1213 1213 1214 1214 Figure 6-28 Speed control block diagram ... ... @@ -1217,21 +1217,21 @@ 1217 1217 1218 1218 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1219 1219 1220 - 1221 -|**Function code**|**Name**|((( 1239 +(% class="table-bordered" %) 1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1222 1222 **Setting method** 1223 -)))|((( 1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1224 1224 **Effective time** 1225 -)))|**Default value**|**Range**|**Definition**|**Unit** 1226 -|P01-01|Speed instruction source|((( 1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1227 1227 Shutdown setting 1228 -)))|((( 1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1229 1229 Effective immediately 1230 -)))|1|1 to 6|((( 1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)((( 1231 1231 0: internal speed instruction 1232 1232 1233 1233 1: AI_1 analog input (not supported by VD2F) 1234 -)))|- 1253 +)))|(% style="text-align:center; vertical-align:middle" %)- 1235 1235 1236 1236 Table 6-26 Speed instruction source parameter 1237 1237 ... ... @@ -1239,19 +1239,19 @@ 1239 1239 1240 1240 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below. 1241 1241 1242 - 1243 -|**Function code**|**Name**|((( 1261 +(% class="table-bordered" %) 1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)((( 1244 1244 **Setting method** 1245 -)))|((( 1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 1246 1246 **Effective time** 1247 -)))|**Default value**|**Range**|**Definition**|**Unit** 1248 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit** 1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1249 1249 Internal speed Instruction 0 1250 -)))|(% rowspan="2" %)((( 1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1251 1251 Operation setting 1252 -)))|(% rowspan="2" %)((( 1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1253 1253 Effective immediately 1254 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1255 1255 Internal speed instruction 0 1256 1256 1257 1257 When DI input port: ... ... @@ -1263,15 +1263,15 @@ 1263 1263 13-INSPD1: 0, 1264 1264 1265 1265 select this speed instruction to be effective. 1266 -)))|(% rowspan="2" %)rpm 1267 -|-5000 to 5000* 1268 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1269 1269 Internal speed Instruction 1 1270 -)))|(% rowspan="2" %)((( 1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1271 1271 Operation setting 1272 -)))|(% rowspan="2" %)((( 1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1273 1273 Effective immediately 1274 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1275 1275 Internal speed instruction 1 1276 1276 1277 1277 When DI input port: ... ... @@ -1283,15 +1283,15 @@ 1283 1283 13-INSPD1: 1, 1284 1284 1285 1285 Select this speed instruction to be effective. 1286 -)))|(% rowspan="2" %)rpm 1287 -|-5000 to 5000* 1288 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1289 1289 Internal speed Instruction 2 1290 -)))|(% rowspan="2" %)((( 1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1291 1291 Operation setting 1292 -)))|(% rowspan="2" %)((( 1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1293 1293 Effective immediately 1294 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1295 1295 Internal speed instruction 2 1296 1296 1297 1297 When DI input port: ... ... @@ -1303,15 +1303,15 @@ 1303 1303 13-INSPD1: 0, 1304 1304 1305 1305 Select this speed instruction to be effective. 1306 -)))|(% rowspan="2" %)rpm 1307 -|-5000 to 5000* 1308 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1309 1309 Internal speed Instruction 3 1310 -)))|(% rowspan="2" %)((( 1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1311 1311 Operation setting 1312 -)))|(% rowspan="2" %)((( 1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1313 1313 Effective immediately 1314 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1315 1315 Internal speed instruction 3 1316 1316 1317 1317 When DI input port: ... ... @@ -1323,16 +1323,17 @@ 1323 1323 13-INSPD1: 1, 1324 1324 1325 1325 Select this speed instruction to be effective. 1326 -)))|(% rowspan="2" %)rpm 1327 -|-5000 to 5000* 1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1328 1328 1329 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1348 +(% class="table-bordered" %) 1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1330 1330 Internal speed Instruction 4 1331 -)))|(% rowspan="2" %)((( 1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1332 1332 Operation setting 1333 -)))|(% rowspan="2" %)((( 1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1334 1334 Effective immediately 1335 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1336 1336 Internal speed instruction 4 1337 1337 1338 1338 When DI input port: ... ... @@ -1344,15 +1344,15 @@ 1344 1344 13-INSPD1: 0, 1345 1345 1346 1346 Select this speed instruction to be effective. 1347 -)))|(% rowspan="2" %)rpm 1348 -|-5000 to 5000* 1349 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1350 1350 Internal speed Instruction 5 1351 -)))|(% rowspan="2" %)((( 1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1352 1352 Operation setting 1353 -)))|(% rowspan="2" %)((( 1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1354 1354 Effective immediately 1355 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1356 1356 Internal speed instruction 5 1357 1357 1358 1358 When DI input port: ... ... @@ -1364,15 +1364,15 @@ 1364 1364 13-INSPD1: 1, 1365 1365 1366 1366 Select this speed instruction to be effective. 1367 -)))|(% rowspan="2" %)rpm 1368 -|-5000 to 5000* 1369 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1370 1370 Internal speed Instruction 6 1371 -)))|(% rowspan="2" %)((( 1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1372 1372 Operation setting 1373 -)))|(% rowspan="2" %)((( 1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1374 1374 Effective immediately 1375 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1376 1376 Internal speed instruction 6 1377 1377 1378 1378 When DI input port: ... ... @@ -1384,15 +1384,15 @@ 1384 1384 13-INSPD1: 0, 1385 1385 1386 1386 Select this speed instruction to be effective. 1387 -)))|(% rowspan="2" %)rpm 1388 -|-5000 to 5000* 1389 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1390 1390 Internal speed Instruction 7 1391 -)))|(% rowspan="2" %)((( 1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1392 1392 Operation setting 1393 -)))|(% rowspan="2" %)((( 1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1394 1394 Effective immediately 1395 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1396 1396 Internal speed instruction 7 1397 1397 1398 1398 When DI input port: ... ... @@ -1404,34 +1404,34 @@ 1404 1404 13-INSPD1: 1, 1405 1405 1406 1406 Select this speed instruction to be effective. 1407 -)))|(% rowspan="2" %)rpm 1408 -|-5000 to 5000* 1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1409 1409 1410 1410 Table 6-27 Internal speed instruction parameters 1411 1411 1412 1412 ✎**Note: **“*” means the set range of VD2F servo drive. 1413 1413 1434 +(% class="table-bordered" %) 1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1414 1414 1415 -|**DI function code**|**function name**|**Function** 1416 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1417 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1418 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1419 - 1420 1420 Table 6-28 DI multi-speed function code description 1421 1421 1422 1422 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1423 1423 1424 - 1425 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1426 -|0|0|0|1|0 1427 -|0|0|1|2|1 1428 -|0|1|0|3|2 1444 +(% class="table-bordered" %) 1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number** 1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0 1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1 1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2 1429 1429 |(% colspan="5" %)...... 1430 -|1|1|1|8|7 1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7 1431 1431 1432 1432 Table 6-29 Correspondence between INSPD bits and segment numbers 1433 1433 1434 - 1454 +(% style="text-align:center" %) 1435 1435 [[image:image-20220608170845-26.png]] 1436 1436 1437 1437 Figure 6-29 Multi-segment speed running curve ... ... @@ -1440,7 +1440,7 @@ 1440 1440 1441 1441 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1442 1442 1443 - 1463 +(% style="text-align:center" %) 1444 1444 [[image:image-20220608153341-5.png]] 1445 1445 1446 1446 Figure 6-30 Analog input circuit ... ... @@ -1447,7 +1447,7 @@ 1447 1447 1448 1448 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1449 1449 1450 - 1470 +(% style="text-align:center" %) 1451 1451 [[image:image-20220608170955-27.png]] 1452 1452 1453 1453 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1460,18 +1460,18 @@ 1460 1460 1461 1461 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1462 1462 1463 - 1483 +(% style="text-align:center" %) 1464 1464 [[image:image-20220608171124-28.png]] 1465 1465 1466 1466 Figure 6-32 AI_1 diagram before and after bias 1467 1467 1488 +(% class="table-bordered" %) 1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit** 1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms 1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1468 1468 1469 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1470 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1471 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1472 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1473 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1474 - 1475 1475 Table 6-30 AI_1 parameters 1476 1476 1477 1477 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1482,7 +1482,7 @@ 1482 1482 1483 1483 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1484 1484 1485 - 1505 +(% style="text-align:center" %) 1486 1486 [[image:image-20220608171314-29.png]] 1487 1487 1488 1488 Figure 6-33 of acceleration and deceleration time diagram ... ... @@ -1491,22 +1491,22 @@ 1491 1491 1492 1492 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1493 1493 1494 - 1495 -|**Function code**|**Name**|((( 1514 +(% class="table-bordered" %) 1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1496 1496 **Setting method** 1497 -)))|((( 1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1498 1498 **Effective time** 1499 -)))|**Default value**|**Range**|**Definition**|**Unit** 1500 -|P01-03|Acceleration time|((( 1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit** 1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1501 1501 Operation setting 1502 -)))|((( 1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1503 1503 Effective immediately 1504 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1505 -|P01-04|Deceleration time|((( 1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms 1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1506 1506 Operation setting 1507 -)))|((( 1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1508 1508 Effective immediately 1509 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms 1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms 1510 1510 1511 1511 Table 6-31 Acceleration and deceleration time parameters 1512 1512 ... ... @@ -1525,27 +1525,27 @@ 1525 1525 1526 1526 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1527 1527 1528 - 1529 -|**Function code**|**Name**|((( 1548 +(% class="table-bordered" %) 1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1530 1530 **Setting method** 1531 -)))|((( 1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1532 1532 **Effective time** 1533 -)))|**Default value**|**Range**|**Definition**|**Unit** 1534 -|P01-10|Maximum speed threshold|((( 1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit** 1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1535 1535 Operation setting 1536 -)))|((( 1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1537 1537 Effective immediately 1538 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1539 -|P01-12|Forward speed threshold|((( 1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1540 1540 Operation setting 1541 -)))|((( 1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1542 1542 Effective immediately 1543 -)))|3000|0 to 5000|Set forward speed limit value|rpm 1544 -|P01-13|Reverse speed threshold|((( 1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1545 1545 Operation setting 1546 -)))|((( 1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1547 1547 Effective immediately 1548 -)))|3000|0 to 5000|Set reverse speed limit value|rpm 1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1549 1549 1550 1550 Table 6-32 Rotation speed related function codes 1551 1551 ... ... @@ -1555,19 +1555,19 @@ 1555 1555 1556 1556 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1557 1557 1558 - 1559 -|**Function code**|**Name**|((( 1578 +(% class="table-bordered" %) 1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1560 1560 **Setting method** 1561 -)))|((( 1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1562 1562 **Effective time** 1563 -)))|**Default value**|**Range**|**Definition**|**Unit** 1564 -|P01-21|((( 1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit** 1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1565 1565 Zero-speed clamp function selection 1566 -)))|((( 1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1567 1567 Operation setting 1568 -)))|((( 1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1569 1569 Effective immediately 1570 -)))|0|0 to 3|((( 1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)((( 1571 1571 Set the zero-speed clamp function. In speed mode: 1572 1572 1573 1573 0: Force the speed to 0; ... ... @@ -1577,18 +1577,18 @@ 1577 1577 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1578 1578 1579 1579 3: Invalid, ignore zero-speed clamp input 1580 -)))|- 1581 -|P01-22|((( 1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)- 1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1582 1582 Zero-speed clamp speed threshold 1583 -)))|((( 1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1584 1584 Operation setting 1585 -)))|((( 1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1586 1586 Effective immediately 1587 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm 1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm 1588 1588 1589 1589 Table 6-33 Zero-speed clamp related parameters 1590 1590 1591 - 1611 +(% style="text-align:center" %) 1592 1592 [[image:image-20220608171549-30.png]] 1593 1593 1594 1594 Figure 6-34 Zero-speed clamp diagram ... ... @@ -1601,7 +1601,7 @@ 1601 1601 1602 1602 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1603 1603 1604 - 1624 +(% style="text-align:center" %) 1605 1605 [[image:image-20220608171625-31.png]] 1606 1606 1607 1607 Figure 6-35 Rotation detection signal diagram ... ... @@ -1608,29 +1608,29 @@ 1608 1608 1609 1609 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1610 1610 1611 - 1612 -|**Function code**|**Name**|((( 1631 +(% class="table-bordered" %) 1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)((( 1613 1613 **Setting method** 1614 -)))|((( 1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 1615 1615 **Effective time** 1616 -)))|**Default value**|**Range**|**Definition**|**Unit** 1617 -|P05-16|((( 1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit** 1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1618 1618 Rotation detection 1619 1619 1620 1620 speed threshold 1621 -)))|((( 1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)((( 1622 1622 Operation setting 1623 -)))|((( 1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 1624 1624 Effective immediately 1625 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm 1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm 1626 1626 1627 1627 Table 6-34 Rotation detection speed threshold parameters 1628 1628 1629 - 1630 -|**DO function code**|**Function name**|**Function** 1631 -|132|((( 1649 +(% class="table-bordered" %) 1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function** 1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)((( 1632 1632 T-COIN rotation detection 1633 -)))|((( 1653 +)))|(% style="width:879px" %)((( 1634 1634 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1635 1635 1636 1636 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1642,7 +1642,7 @@ 1642 1642 1643 1643 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1644 1644 1645 - 1665 +(% style="text-align:center" %) 1646 1646 [[image:image-20220608171904-32.png]] 1647 1647 1648 1648 Figure 6-36 Zero-speed signal diagram ... ... @@ -1649,25 +1649,25 @@ 1649 1649 1650 1650 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1651 1651 1652 - 1653 -|**Function code**|**Name**|((( 1672 +(% class="table-bordered" %) 1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1654 1654 **Setting method** 1655 -)))|((( 1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 1656 1656 **Effective time** 1657 -)))|**Default value**|**Range**|**Definition**|**Unit** 1658 -|P05-19|Zero speed output signal threshold|((( 1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit** 1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1659 1659 Operation setting 1660 -)))|((( 1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 1661 1661 Effective immediately 1662 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm 1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm 1663 1663 1664 1664 Table 6-36 Zero-speed output signal threshold parameter 1665 1665 1666 - 1667 -|**DO function code**|**Function name**|**Function** 1668 -|133|((( 1686 +(% class="table-bordered" %) 1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)((( 1669 1669 ZSP zero speed signal 1670 -)))|Output this signal indicates that the servo motor is stopping rotation 1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation 1671 1671 1672 1672 Table 6-37 DO zero-speed signal function code 1673 1673 ... ... @@ -1675,7 +1675,7 @@ 1675 1675 1676 1676 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1677 1677 1678 - 1698 +(% style="text-align:center" %) 1679 1679 [[image:image-20220608172053-33.png]] 1680 1680 1681 1681 Figure 6-37 Speed consistent signal diagram ... ... @@ -1682,25 +1682,25 @@ 1682 1682 1683 1683 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1684 1684 1685 - 1686 -|**Function code**|**Name**|((( 1705 +(% class="table-bordered" %) 1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1687 1687 **Setting method** 1688 -)))|((( 1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1689 1689 **Effective time** 1690 -)))|**Default value**|**Range**|**Definition**|**Unit** 1691 -|P05-17|Speed consistent signal threshold|((( 1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit** 1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1692 1692 Operationsetting 1693 -)))|((( 1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1694 1694 Effective immediately 1695 -)))|10|0 to 100|Set speed consistent signal threshold|rpm 1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm 1696 1696 1697 1697 Table 6-38 Speed consistent signal threshold parameters 1698 1698 1699 - 1700 -|**DO Function code**|**Function name**|**Function** 1701 -|136|((( 1719 +(% class="table-bordered" %) 1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function** 1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)((( 1702 1702 U-COIN consistent speed 1703 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1704 1704 1705 1705 Table 6-39 DO speed consistent function code 1706 1706 ... ... @@ -1708,7 +1708,7 @@ 1708 1708 1709 1709 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1710 1710 1711 - 1731 +(% style="text-align:center" %) 1712 1712 [[image:image-20220608172207-34.png]] 1713 1713 1714 1714 Figure 6-38 Speed approaching signal diagram ... ... @@ -1715,25 +1715,25 @@ 1715 1715 1716 1716 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1717 1717 1718 - 1719 -|**Function code**|**Name**|((( 1738 +(% class="table-bordered" %) 1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)((( 1720 1720 **Setting method** 1721 -)))|((( 1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 1722 1722 **Effective time** 1723 -)))|**Default value**|**Range**|**Definition**|**Unit** 1724 -|P05-18|Speed approach signal threshold|((( 1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)((( 1725 1725 Operation setting 1726 -)))|((( 1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 1727 1727 Effective immediately 1728 -)))|100|10 to 6000|Set speed approach signal threshold|rpm 1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm 1729 1729 1730 1730 Table 6-40 Speed approaching signal threshold parameters 1731 1731 1732 - 1733 -|**DO function code**|**Function name**|**Function** 1734 -|137|((( 1752 +(% class="table-bordered" %) 1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function** 1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)((( 1735 1735 V-NEAR speed approach 1736 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value 1737 1737 1738 1738 Table 6-41 DO speed approach function code 1739 1739 ... ... @@ -1741,7 +1741,7 @@ 1741 1741 1742 1742 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1743 1743 1744 - 1764 +(% style="text-align:center" %) 1745 1745 [[image:image-20220608172405-35.png]] 1746 1746 1747 1747 Figure 6-39 Torque mode diagram ... ... @@ -1750,21 +1750,21 @@ 1750 1750 1751 1751 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1752 1752 1753 - 1754 -|**Function code**|**Name**|((( 1773 +(% class="table-bordered" %) 1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1755 1755 **Setting method** 1756 -)))|((( 1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1757 1757 **Effective time** 1758 -)))|**Default value**|**Range**|**Definition**|**Unit** 1759 -|P01-08|Torque instruction source|((( 1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1760 1760 Shutdown setting 1761 -)))|((( 1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1762 1762 Effective immediately 1763 -)))|0|0 to 1|((( 1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)((( 1764 1764 0: internal torque instruction 1765 1765 1766 1766 1: AI_1 analog input(not supported by VD2F) 1767 -)))|- 1787 +)))|(% style="text-align:center; vertical-align:middle" %)- 1768 1768 1769 1769 Table 6-42 Torque instruction source parameter 1770 1770 ... ... @@ -1772,17 +1772,17 @@ 1772 1772 1773 1773 Torque instruction source is from inside, the value is set by function code P01-08. 1774 1774 1775 - 1776 -|**Function code**|**Name**|((( 1795 +(% class="table-bordered" %) 1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 1777 1777 **Setting method** 1778 -)))|((( 1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 1779 1779 **Effective time** 1780 -)))|**Default value**|**Range**|**Definition**|**Unit** 1781 -|P01-08|Torque instruction keyboard set value|((( 1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 1782 1782 Operation setting 1783 -)))|((( 1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 1784 1784 Effective immediately 1785 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1% 1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1% 1786 1786 1787 1787 Table 6-43 Torque instruction keyboard set value 1788 1788 ... ... @@ -1790,7 +1790,7 @@ 1790 1790 1791 1791 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1792 1792 1793 - 1813 +(% style="text-align:center" %) 1794 1794 [[image:image-20220608153646-7.png||height="213" width="408"]] 1795 1795 1796 1796 Figure 6-40 Analog input circuit ... ... @@ -1797,7 +1797,7 @@ 1797 1797 1798 1798 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1799 1799 1800 - 1820 +(% style="text-align:center" %) 1801 1801 [[image:image-20220608172502-36.png]] 1802 1802 1803 1803 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1810,18 +1810,18 @@ 1810 1810 1811 1811 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1812 1812 1813 - 1833 +(% style="text-align:center" %) 1814 1814 [[image:image-20220608172611-37.png]] 1815 1815 1816 1816 Figure 6-42 AI_1 diagram before and after bias 1817 1817 1838 +(% class="table-bordered" %) 1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV 1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms 1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV 1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV 1818 1818 1819 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1820 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1821 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1822 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1823 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1824 - 1825 1825 Table 6-44 AI_1 parameters 1826 1826 1827 1827 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1830,23 +1830,23 @@ 1830 1830 1831 1831 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1832 1832 1833 - 1834 -|**Function code**|**Name**|((( 1853 +(% class="table-bordered" %) 1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)((( 1835 1835 **Setting method** 1836 -)))|((( 1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1837 1837 **Effective time** 1838 -)))|**Default value**|**Range**|**Definition**|**Unit** 1839 -|P04-04|Torque filtering time constant|((( 1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)((( 1840 1840 Operation setting 1841 -)))|((( 1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1842 1842 Effective immediately 1843 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms 1844 1844 1845 1845 Table 6-45 Torque filtering time constant parameter details 1846 1846 1847 1847 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1848 1848 1849 - 1869 +(% style="text-align:center" %) 1850 1850 [[image:image-20220608172646-38.png]] 1851 1851 1852 1852 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1857,7 +1857,7 @@ 1857 1857 1858 1858 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1859 1859 1860 - 1880 +(% style="text-align:center" %) 1861 1861 [[image:image-20220608172806-39.png]] 1862 1862 1863 1863 Figure 6-44 Torque instruction limit diagram ... ... @@ -1866,50 +1866,50 @@ 1866 1866 1867 1867 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1868 1868 1869 - 1870 -|**Function code**|**Name**|((( 1889 +(% class="table-bordered" %) 1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 1871 1871 **Setting method** 1872 -)))|((( 1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 1873 1873 **Effective time** 1874 -)))|**Default value**|**Range**|**Definition**|**Unit** 1875 -|P01-14|((( 1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1876 1876 Torque limit source 1877 -)))|((( 1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 1878 1878 Shutdown setting 1879 -)))|((( 1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 1880 1880 Effective immediately 1881 -)))|0|0 to 1|((( 1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)((( 1882 1882 0: internal value 1883 1883 1884 1884 1: AI_1 analog input 1885 1885 1886 1886 (not supported by VD2F) 1887 -)))|- 1907 +)))|(% style="text-align:center; vertical-align:middle" %)- 1888 1888 1889 1889 1) Torque limit source is internal torque instruction (P01-14=0) 1890 1890 1891 1891 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1892 1892 1893 - 1894 -|**Function code**|**Name**|((( 1913 +(% class="table-bordered" %) 1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1895 1895 **Setting method** 1896 -)))|((( 1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1897 1897 **Effective time** 1898 -)))|**Default value**|**Range**|**Definition**|**Unit** 1899 -|P01-15|((( 1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit** 1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)((( 1900 1900 Forward torque limit 1901 -)))|((( 1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1902 1902 Operation setting 1903 -)))|((( 1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1904 1904 Effective immediately 1905 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1906 -|P01-16|((( 1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1% 1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)((( 1907 1907 Reverse torque limit 1908 -)))|((( 1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1909 1909 Operation setting 1910 -)))|((( 1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1911 1911 Effective immediately 1912 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1% 1913 1913 1914 1914 Table 6-46 Torque limit parameter details 1915 1915 ... ... @@ -1921,11 +1921,11 @@ 1921 1921 1922 1922 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1923 1923 1924 - 1925 -|**DO function code**|**Function name**|**Function** 1926 -|139|((( 1944 +(% class="table-bordered" %) 1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function** 1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)((( 1927 1927 T-LIMIT in torque limit 1928 -)))|Output of this signal indicates that the servo motor torque is limited 1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited 1929 1929 1930 1930 Table 6-47 DO torque limit function codes 1931 1931 ... ... @@ -1936,43 +1936,46 @@ 1936 1936 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__. 1937 1937 1938 1938 |((( 1959 +(% style="text-align:center" %) 1939 1939 [[image:image-20220608172910-40.png]] 1940 1940 )))|((( 1962 +(% style="text-align:center" %) 1941 1941 [[image:image-20220608173155-41.png]] 1942 1942 ))) 1943 1943 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1944 1944 1945 -|**Function code**|**Name**|((( 1967 +(% class="table-bordered" %) 1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1946 1946 **Setting method** 1947 -)))|((( 1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1948 1948 **Effective time** 1949 -)))|**Default value**|**Range**|**Definition**|**Unit** 1950 -|P01-17|((( 1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1951 1951 Forward torque 1952 1952 1953 1953 limit in torque mode 1954 -)))|((( 1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1955 1955 Operation setting 1956 -)))|((( 1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1957 1957 Effective immediately 1958 -)))|3000|0 to 5000|((( 1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)((( 1959 1959 Forward torque 1960 1960 1961 1961 limit in torque mode 1962 -)))|0.1% 1963 -|P01-18|((( 1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1% 1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1964 1964 Reverse torque 1965 1965 1966 1966 limit in torque mode 1967 -)))|((( 1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1968 1968 Operation setting 1969 -)))|((( 1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1970 1970 Effective immediately 1971 -)))|3000|0 to 5000|((( 1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)((( 1972 1972 Reverse torque 1973 1973 1974 1974 limit in torque mode 1975 -)))|0.1% 1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1% 1976 1976 1977 1977 Table 6-48 Speed limit parameters in torque mode 1978 1978 ... ... @@ -1986,7 +1986,7 @@ 1986 1986 1987 1987 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1988 1988 1989 - 2012 +(% style="text-align:center" %) 1990 1990 [[image:image-20220608173541-42.png]] 1991 1991 1992 1992 Figure 6-47 Torque arrival output diagram ... ... @@ -1993,44 +1993,44 @@ 1993 1993 1994 1994 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1995 1995 1996 - 1997 -|**Function code**|**Name**|((( 2019 +(% class="table-bordered" %) 2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 1998 1998 **Setting method** 1999 -)))|((( 2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2000 2000 **Effective time** 2001 -)))|**Default value**|**Range**|**Definition**|**Unit** 2002 -|P05-20|((( 2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 2003 2003 Torque arrival 2004 2004 2005 2005 threshold 2006 -)))|((( 2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2007 2007 Operation setting 2008 -)))|((( 2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2009 2009 Effective immediately 2010 -)))|100|0 to 300|((( 2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)((( 2011 2011 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2012 2012 2013 2013 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; 2014 2014 2015 2015 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2016 -)))|% 2017 -|P05-21|((( 2039 +)))|(% style="text-align:center; vertical-align:middle" %)% 2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 2018 2018 Torque arrival 2019 2019 2020 2020 hysteresis 2021 -)))|((( 2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2022 2022 Operation setting 2023 -)))|((( 2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2024 2024 Effective immediately 2025 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)% 2026 2026 2027 2027 Table 6-49 Torque arrival parameters 2028 2028 2029 - 2030 -|**DO function code**|**Function name**|**Function** 2031 -|138|((( 2052 +(% class="table-bordered" %) 2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function** 2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)((( 2032 2032 T-COIN torque arrival 2033 -)))|Used to determine whether the actual torque instruction has reached the set range 2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range 2034 2034 2035 2035 Table 6-50 DO Torque Arrival Function Code 2036 2036 ... ... @@ -2046,17 +2046,17 @@ 2046 2046 2047 2047 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2048 2048 2049 - 2050 -|**Function code**|**Name**|((( 2072 +(% class="table-bordered" %) 2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 2051 2051 **Setting method** 2052 -)))|((( 2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)((( 2053 2053 **Effective time** 2054 -)))|**Default value**|**Range**|**Definition**|**Unit** 2055 -|P00-01|Control mode|((( 2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 2056 2056 Shutdown setting 2057 -)))|((( 2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)((( 2058 2058 Shutdown setting 2059 -)))|1|1 to 6|((( 2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)((( 2060 2060 1: Position control 2061 2061 2062 2062 2: Speed control ... ... @@ -2068,22 +2068,23 @@ 2068 2068 5: Position/torque mixed control 2069 2069 2070 2070 6: Speed/torque mixed control 2071 -)))|- 2094 +)))|(% style="text-align:center; vertical-align:middle" %)- 2072 2072 2073 2073 Table 6-51 Mixed control mode parameters 2074 2074 2075 2075 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2076 2076 2077 - 2078 -|**DI function code**|**Name**|**Function name**|**Function** 2079 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2080 -|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2081 -|(% rowspan="2" %)4|Valid|Speed mode 2082 -|invalid|Position mode 2083 -|(% rowspan="2" %)5|Valid|Torque mode 2084 -|invalid|Position mode 2085 -|(% rowspan="2" %)6|Valid|Torque mode 2086 -|invalid|Speed mode 2100 +(% class="table-bordered" %) 2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2103 +(% class="table-bordered" %) 2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode** 2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2087 2087 ))) 2088 2088 2089 2089 Table 6-52 Description of DI function codes in control mode ... ... @@ -2102,15 +2102,15 @@ 2102 2102 2103 2103 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2104 2104 2129 +(% class="table-bordered" %) 2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2105 2105 2106 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2107 -|A1 (single-turn magnetic encoder)|17|0 to 131071 2108 - 2109 2109 Table 6-53 Single-turn absolute encoder information 2110 2110 2111 2111 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2112 2112 2113 - 2137 +(% style="text-align:center" %) 2114 2114 [[image:image-20220608173618-43.png]] 2115 2115 2116 2116 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2119,16 +2119,16 @@ 2119 2119 2120 2120 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2121 2121 2146 +(% class="table-bordered" %) 2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607 2122 2122 2123 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2124 -|C1 (multi-turn magnetic encoder)|17|0 to 131071 2125 -|D2 (multi-turn Optical encoder)|23|0 to 8388607 2126 - 2127 2127 Table 6-54 Multi-turn absolute encoder information 2128 2128 2129 2129 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2130 2130 2131 - 2155 +(% style="text-align:center" %) 2132 2132 [[image:image-20220608173701-44.png]] 2133 2133 2134 2134 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2137,12 +2137,12 @@ 2137 2137 2138 2138 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2139 2139 2164 +(% class="table-bordered" %) 2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type** 2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit 2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2140 2140 2141 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2142 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2143 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2144 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2145 - 2146 2146 Table 6-55 Encoder feedback data 2147 2147 2148 2148 == **Absolute value system encoder battery box use precautions** == ... ... @@ -2149,7 +2149,7 @@ 2149 2149 2150 2150 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2151 2151 2152 - 2176 +(% style="text-align:center" %) 2153 2153 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]] 2154 2154 2155 2155 Figure 6-50 the encoder battery box ... ... @@ -2162,23 +2162,23 @@ 2162 2162 2163 2163 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2164 2164 2165 - 2166 -|**Function code**|**Name**|((( 2189 +(% class="table-bordered" %) 2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 2167 2167 **Setting method** 2168 -)))|((( 2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 2169 2169 **Effective time** 2170 -)))|**Default value**|**Range**|**Definition**|**Unit** 2171 -|P10-06|Multi-turn absolute encoder reset|((( 2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 2172 2172 Shutdown setting 2173 -)))|((( 2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 2174 2174 Effective immediately 2175 -)))|0|0 to 1|((( 2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)((( 2176 2176 0: No operation 2177 2177 2178 2178 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2179 2179 2180 2180 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2181 -)))|- 2205 +)))|(% style="text-align:center; vertical-align:middle" %)- 2182 2182 2183 2183 Table 6-56 Absolute encoder reset enable parameter 2184 2184 ... ... @@ -2196,18 +2196,18 @@ 2196 2196 2197 2197 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2198 2198 2199 - 2223 +(% style="text-align:center" %) 2200 2200 [[image:image-20220608173804-46.png]] 2201 2201 2202 2202 Figure 6-51 VDI_1 setting steps 2203 2203 2204 - 2205 -|**Function code**|**Name**|((( 2228 +(% class="table-bordered" %) 2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 2206 2206 **Setting method** 2207 -)))|((( 2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 2208 2208 **Effective time** 2209 -)))|**Default value**|**Range**|**Definition**|**Unit** 2210 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2211 2211 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2212 2212 2213 2213 VDI_1 input level: ... ... @@ -2215,8 +2215,8 @@ 2215 2215 0: low level 2216 2216 2217 2217 1: high level 2218 -)))|- 2219 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2242 +)))|(% style="text-align:center; vertical-align:middle" %)- 2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2220 2220 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2221 2221 2222 2222 VDI_2 input level: ... ... @@ -2224,8 +2224,8 @@ 2224 2224 0: low level 2225 2225 2226 2226 1: high level 2227 -)))|- 2228 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2251 +)))|(% style="text-align:center; vertical-align:middle" %)- 2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2229 2229 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2230 2230 2231 2231 VDI_3 input level: ... ... @@ -2233,8 +2233,8 @@ 2233 2233 0: low level 2234 2234 2235 2235 1: high level 2236 -)))|- 2237 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2260 +)))|(% style="text-align:center; vertical-align:middle" %)- 2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2238 2238 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2239 2239 2240 2240 VDI_4 input level: ... ... @@ -2242,8 +2242,8 @@ 2242 2242 0: low level 2243 2243 2244 2244 1: high level 2245 -)))|- 2246 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2269 +)))|(% style="text-align:center; vertical-align:middle" %)- 2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2247 2247 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2248 2248 2249 2249 VDI_5 input level: ... ... @@ -2251,8 +2251,8 @@ 2251 2251 0: low level 2252 2252 2253 2253 1: high level 2254 -)))|- 2255 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2278 +)))|(% style="text-align:center; vertical-align:middle" %)- 2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2256 2256 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2257 2257 2258 2258 VDI_6 input level: ... ... @@ -2260,8 +2260,8 @@ 2260 2260 0: low level 2261 2261 2262 2262 1: high level 2263 -)))|- 2264 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2287 +)))|(% style="text-align:center; vertical-align:middle" %)- 2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2265 2265 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2266 2266 2267 2267 VDI_7 input level: ... ... @@ -2269,8 +2269,8 @@ 2269 2269 0: low level 2270 2270 2271 2271 1: high level 2272 -)))|- 2273 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2296 +)))|(% style="text-align:center; vertical-align:middle" %)- 2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2274 2274 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2275 2275 2276 2276 VDI_8 input level: ... ... @@ -2278,7 +2278,7 @@ 2278 2278 0: low level 2279 2279 2280 2280 1: high level 2281 -)))|- 2305 +)))|(% style="text-align:center; vertical-align:middle" %)- 2282 2282 2283 2283 Table 6-57 Virtual VDI parameters 2284 2284 ... ... @@ -2288,11 +2288,11 @@ 2288 2288 2289 2289 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2290 2290 2315 +(% class="table-bordered" %) 2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration** 2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2291 2291 2292 -|**Setting value**|**DI channel logic selection**|**Illustration** 2293 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2294 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2295 - 2296 2296 Table 6-58 DI terminal channel logic selection 2297 2297 2298 2298 == **VDO** == ... ... @@ -2301,55 +2301,55 @@ 2301 2301 2302 2302 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2303 2303 2304 - 2328 +(% style="text-align:center" %) 2305 2305 [[image:image-20220608173957-48.png]] 2306 2306 2307 2307 Figure 6-52 VDO_2 setting steps 2308 2308 2309 - 2310 -|**Function code**|**Name**|((( 2333 +(% class="table-bordered" %) 2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 2311 2311 **Setting method** 2312 -)))|((( 2336 +)))|(% style="text-align:center; vertical-align:middle" %)((( 2313 2313 **Effective time** 2314 -)))|**Default value**|**Range**|**Definition**|**Unit** 2315 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2316 2316 VDO_1 output level: 2317 2317 2318 2318 0: low level 2319 2319 2320 2320 1: high level 2321 -)))|- 2322 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2345 +)))|(% style="text-align:center; vertical-align:middle" %)- 2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2323 2323 VDO_2 output level: 2324 2324 2325 2325 0: low level 2326 2326 2327 2327 1: high level 2328 -)))|- 2329 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2352 +)))|(% style="text-align:center; vertical-align:middle" %)- 2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2330 2330 VDO_3 output level: 2331 2331 2332 2332 0: low level 2333 2333 2334 2334 1: high level 2335 -)))|- 2336 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2359 +)))|(% style="text-align:center; vertical-align:middle" %)- 2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2337 2337 VDO_4 output level: 2338 2338 2339 2339 0: low level 2340 2340 2341 2341 1: high level 2342 -)))|- 2366 +)))|(% style="text-align:center; vertical-align:middle" %)- 2343 2343 2344 2344 Table 6-59 Communication control DO function parameters 2345 2345 2370 +(% class="table-bordered" %) 2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2346 2346 2347 -|**DO function number**|**Function name**|**Function** 2348 -|145|COM_VDO1 communication VDO1 output|Use communication VDO 2349 -|146|COM_VDO1 communication VDO2 output|Use communication VDO 2350 -|147|COM_VDO1 communication VDO3 output|Use communication VDO 2351 -|148|COM_VDO1 communication VDO4output|Use communication VDO 2352 - 2353 2353 Table 6-60 VDO function number 2354 2354 2355 2355 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation ... ... @@ -2360,17 +2360,17 @@ 2360 2360 2361 2361 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2362 2362 2363 - 2364 -|**Function code**|**Name**|((( 2387 +(% class="table-bordered" %) 2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 2365 2365 **Setting method** 2366 -)))|((( 2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 2367 2367 **Effective time** 2368 -)))|**Default value**|**Range**|**Definition**|**Unit** 2369 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)((( 2370 2370 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2371 2371 2372 2372 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled 2373 -)))|% 2397 +)))|(% style="text-align:center; vertical-align:middle" %)% 2374 2374 2375 2375 In the following cases, it could be modified according to the actual heat generation of the motor 2376 2376