Changes for page 06 Operation

Last modified by Iris on 2025/08/08 14:40

From version 48.9
edited by Joey
on 2022/06/15 14:46
Change comment: (Autosaved)
To version 43.1
edited by Joey
on 2022/06/11 15:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -2,20 +2,20 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" %)**No.**|=**Content**
6 -|=(% colspan="2" %)Wiring
7 -|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=5|Servo drive and servo motor must be grounded reliably.
12 -|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=7|The force of all cables is within the specified range.
14 -|=8|The wiring terminals have been insulated.
15 -|=(% colspan="2" %)Environment and Machinery
16 -|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 -|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
5 +|**No.**|**Content**
6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|5|Servo drive and servo motor must be grounded reliably.
12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|7|The force of all cables is within the specified range.
14 +|8|The wiring terminals have been insulated.
15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
... ... @@ -25,7 +25,7 @@
25 25  
26 26  After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27 27  
28 -If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.
28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
29 29  
30 30  **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
31 31  
... ... @@ -35,7 +35,7 @@
35 35  
36 36  **(1) Panel jog operation**
37 37  
38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
39 39  
40 40  **(2) Jog operation of servo debugging platform**
41 41  
... ... @@ -42,17 +42,17 @@
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 44  
45 -
46 -|=(% scope="row" %)**Function code**|=**Name**|=(((
45 +(% class="table-bordered" %)
46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
47 47  **Setting method**
48 -)))|=(((
48 +)))|(% style="text-align:center; vertical-align:middle" %)(((
49 49  **Effective time**
50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
51 -|=P10-01|JOG speed|(((
50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
52 52  Operation setting
53 -)))|(((
53 +)))|(% style="text-align:center; vertical-align:middle" %)(((
54 54  Effective immediately
55 -)))|100|0 to 3000|JOG speed|rpm
55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
56 56  
57 57  Table 6-2 JOG speed parameter
58 58  
... ... @@ -60,25 +60,25 @@
60 60  
61 61  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62 62  
63 -
64 -|=(% scope="row" %)**Function code**|=**Name**|=(((
63 +(% class="table-bordered" %)
64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
65 65  **Setting method**
66 -)))|=(((
66 +)))|(% style="text-align:center; vertical-align:middle" %)(((
67 67  **Effective time**
68 -)))|=(((
68 +)))|(% style="text-align:center; vertical-align:middle" %)(((
69 69  **Default value**
70 -)))|=**Range**|=**Definition**|=**Unit**
71 -|=P00-04|Rotation direction|(((
70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
72 72  Shutdown setting
73 -)))|(((
73 +)))|(% style="text-align:center; vertical-align:middle" %)(((
74 74  Effective immediately
75 -)))|0|0 to 1|(((
75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
76 76  Forward rotation: Face the motor shaft to watch
77 77  
78 78  0: standard setting (CW is forward rotation)
79 79  
80 80  1: reverse mode (CCW is forward rotation)
81 -)))|-
81 +)))|(% style="text-align:center; vertical-align:middle" %)-
82 82  
83 83  Table 6-3 Rotation direction parameters** **
84 84  
... ... @@ -91,16 +91,17 @@
91 91  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
92 92  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
93 93  
94 -|=(% scope="row" %)**Function code**|=**Name**|=(((
94 +(% class="table-bordered" %)
95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
95 95  **Setting method**
96 -)))|=(((
97 +)))|(% style="text-align:center; vertical-align:middle" %)(((
97 97  **Effective time**
98 -)))|=**Default**|=**Range**|=**Definition**|=**Unit**
99 -|=P00-09|Braking resistor setting|(((
99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
100 100  Operation setting
101 -)))|(((
102 +)))|(% style="text-align:center; vertical-align:middle" %)(((
102 102  Effective immediately
103 -)))|0|0 to 3|(((
104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
104 104  0: use built-in braking resistor
105 105  
106 106  1: use external braking resistor and natural cooling
... ... @@ -108,18 +108,18 @@
108 108  2: use external braking resistor and forced air cooling; (cannot be set)
109 109  
110 110  3: No braking resistor is used, it is all absorbed by capacitor.
111 -)))|-
112 -|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
113 -|=P00-10|External braking resistor value|(((
112 +)))|(% style="text-align:center; vertical-align:middle" %)-
113 +|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
114 114  Operation setting
115 -)))|(((
116 +)))|(% style="text-align:center; vertical-align:middle" %)(((
116 116  Effective immediately
117 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
118 -|=P00-11|External braking resistor power|(((
118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
119 119  Operation setting
120 -)))|(((
121 +)))|(% style="text-align:center; vertical-align:middle" %)(((
121 121  Effective immediately
122 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
123 123  
124 124  Table 6-4 Braking resistor parameters
125 125  
... ... @@ -133,11 +133,11 @@
133 133  
134 134  **(2) Input the instruction and the motor rotates**
135 135  
136 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
137 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
137 137  
138 138  **(3) Timing diagram of power on**
139 139  
140 -
141 +(% style="text-align:center" %)
141 141  [[image:image-20220608163014-1.png]]
142 142  
143 143  Figure 6-1 Timing diagram of power on
... ... @@ -144,19 +144,19 @@
144 144  
145 145  == **Servo shutdown** ==
146 146  
147 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.
148 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
148 148  
150 +(% class="table-bordered" %)
151 +|Shutdown mode|Shutdown description|Shutdown characteristics
152 +|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
153 +|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
149 149  
150 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
151 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
152 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
153 -
154 154  Table 6-5 Comparison of two shutdown modes
155 155  
157 +(% class="table-bordered" %)
158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
156 156  
157 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
158 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
159 -
160 160  Table 6-6 Comparison of two shutdown status
161 161  
162 162  **(1) Servo enable (S-ON) OFF shutdown**
... ... @@ -163,27 +163,27 @@
163 163  
164 164  The related parameters of the servo OFF shutdown mode are shown in the table below.
165 165  
166 -
167 -|=(% scope="row" %)**Function code**|=**Name**|=(((
167 +(% class="table-bordered" %)
168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
168 168  **Setting method**
169 -)))|=(((
170 +)))|(% style="text-align:center; vertical-align:middle" %)(((
170 170  **Effective time**
171 -)))|=(((
172 +)))|(% style="text-align:center; vertical-align:middle" %)(((
172 172  **Default value**
173 -)))|=**Range**|=**Definition**|=**Unit**
174 -|=P00-05|Servo OFF shutdown|(((
174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
175 175  Shutdown
176 176  
177 177  setting
178 -)))|(((
179 +)))|(% style="text-align:center; vertical-align:middle" %)(((
179 179  Effective
180 180  
181 181  immediately
182 -)))|0|0 to 1|(((
183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
183 183  0: Free shutdown, and the motor shaft remains free status.
184 184  
185 185  1: Zero-speed shutdown, and the motor shaft remains free status.
186 -)))|-
187 +)))|(% style="text-align:center; vertical-align:middle" %)-
187 187  
188 188  Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
189 189  
... ... @@ -199,13 +199,13 @@
199 199  
200 200  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
201 201  
202 -
203 -|=(% scope="row" %)**Function code**|=**Name**|=(((
203 +(% class="table-bordered" %)
204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
204 204  **Setting method**
205 -)))|=(((
206 +)))|(% style="text-align:center; vertical-align:middle" %)(((
206 206  **Effective time**
207 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
208 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
209 209  0: OFF (not used)
210 210  
211 211  01: S-ON servo enable
... ... @@ -253,30 +253,32 @@
253 253  24: Internal multi-segment position selection 4
254 254  
255 255  Others: reserved
256 -)))|-
257 -|=P06-09|DI_3 channel logic selection|Operation setting|(((
257 +)))|(% style="text-align:center; vertical-align:middle" %)-
258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
258 258  Effective immediately
259 -)))|0|0 to 1|(((
260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
260 260  DI port input logic validity function selection.
261 261  
262 262  0: Normally open input. Active low level (switch on);
263 263  
264 264  1: Normally closed input. Active high level (switch off);
265 -)))|-
266 -|=P06-10|DI_3 input source selection|Operation setting|(((
266 +)))|(% style="text-align:center; vertical-align:middle" %)-
267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
267 267  Effective immediately
268 -)))|0|0 to 1|(((
269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
269 269  Select the DI_3 port type to enable
270 270  
271 271  0: Hardware DI_3 input terminal
272 272  
273 273  1: virtual VDI_3 input terminal
274 -)))|-
275 -|=P06-11|DI_4 channel function selection|(((
275 +)))|(% style="text-align:center; vertical-align:middle" %)-
276 +
277 +(% class="table-bordered" %)
278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
276 276  Operation setting
277 -)))|(((
280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
278 278  again Power-on
279 -)))|4|0 to 32|(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
280 280  0 off (not used)
281 281  
282 282  01: SON Servo enable
... ... @@ -324,25 +324,25 @@
324 324  24: Internal multi-segment position selection 4
325 325  
326 326  Others: reserved
327 -)))|-
328 -|=P06-12|DI_4 channel logic selection|Operation setting|(((
330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
329 329  Effective immediately
330 -)))|0|0 to 1|(((
333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
331 331  DI port input logic validity function selection.
332 332  
333 333  0: Normally open input. Active low level (switch on);
334 334  
335 335  1: Normally closed input. Active high level (switch off);
336 -)))|-
337 -|=P06-13|DI_4 input source selection|Operation setting|(((
339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
338 338  Effective immediately
339 -)))|0|0 to 1|(((
342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
340 340  Select the DI_4 port type to enable
341 341  
342 342  0: Hardware DI_4 input terminal
343 343  
344 344  1: virtual VDI_4 input terminal
345 -)))|-
348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
346 346  
347 347  Table 6-8 DI3 and DI4 channel parameters
348 348  
... ... @@ -354,8 +354,9 @@
354 354  
355 355  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
356 356  
357 -
360 +(% class="table-bordered" %)
358 358  |(((
362 +(% style="text-align:center" %)
359 359  [[image:image-20220611151617-1.png]]
360 360  )))
361 361  |(((
... ... @@ -374,13 +374,14 @@
374 374  
375 375  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
376 376  
377 -
381 +(% style="text-align:center" %)
378 378  [[image:image-20220608163136-2.png]]
379 379  
380 380  Figure 6-2 VD2B servo drive brake wiring
381 381  
382 -
386 +(% class="table-bordered" %)
383 383  |(((
388 +(% style="text-align:center" %)
384 384  [[image:image-20220611151642-2.png]]
385 385  )))
386 386  |(((
... ... @@ -397,42 +397,42 @@
397 397  
398 398  Related function code is as below.
399 399  
400 -
401 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
405 +(% class="table-bordered" %)
406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
402 402  **Effective time**
403 403  )))
404 -|=144|(((
409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
405 405  BRK-OFF Brake output
406 -)))|Output the signal indicates the servo motor brake release|Power-on again
411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
407 407  
408 408  Table 6-2 Relevant function codes for brake setting
409 409  
410 -
411 -|=(% scope="row" %)**Function code**|=**Name**|=(((
415 +(% class="table-bordered" %)
416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
412 412  **Setting method**
413 -)))|=(((
418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
414 414  **Effective time**
415 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
416 -|=P1-30|Delay from brake output to instruction reception|(((
420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
417 417  Operation setting
418 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
419 -|=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
420 420  Operation setting
421 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
422 -|=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
423 423  Operation setting
424 -)))|Effective immediately|30|0 to 3000|(((
429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
425 425  When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
426 426  
427 427  When the brake output (BRK-OFF) is not allocated, this function code has no effect.
428 -)))|rpm
429 -|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm
434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
430 430  Operation setting
431 -)))|Effective immediately|500|1 to 1000|(((
436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
432 432  When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
433 433  
434 434  When brake output (BRK-OFF) is not allocated, this function code has no effect.
435 -)))|ms
440 +)))|(% style="text-align:center; vertical-align:middle" %)ms
436 436  
437 437  Table 6-9 Brake setting function codes
438 438  
... ... @@ -444,10 +444,11 @@
444 444  
445 445  1) Brake timing when servo motor is stationary
446 446  
447 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__
452 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
448 448  
449 -
454 +(% class="table-bordered" %)
450 450  |(((
456 +(% style="text-align:center" %)
451 451  [[image:image-20220611151705-3.png]]
452 452  )))
453 453  |(((
... ... @@ -456,6 +456,7 @@
456 456  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
457 457  )))
458 458  
465 +(% style="text-align:center" %)
459 459  [[image:image-20220608163304-3.png]]
460 460  
461 461  Figure 6-3 Brake Timing of when the motor is stationary
... ... @@ -464,10 +464,11 @@
464 464  
465 465  2) The brake timing when servo motor rotates
466 466  
467 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.
474 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
468 468  
469 -
476 +(% class="table-bordered" %)
470 470  |(((
478 +(% style="text-align:center" %)
471 471  [[image:image-20220611151719-4.png]]
472 472  )))
473 473  |(((
... ... @@ -482,6 +482,7 @@
482 482  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
483 483  )))
484 484  
493 +(% style="text-align:center" %)
485 485  [[image:image-20220608163425-4.png]]
486 486  
487 487  Figure 6-4 Brake timing when the motor rotates
... ... @@ -490,7 +490,7 @@
490 490  
491 491  The brake timing (free shutdown) in the fault status is as follows.
492 492  
493 -
502 +(% style="text-align:center" %)
494 494  [[image:image-20220608163541-5.png]]
495 495  
496 496   Figure 6-5 The brake timing (free shutdown) in the fault state
... ... @@ -499,7 +499,7 @@
499 499  
500 500  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
501 501  
502 -
511 +(% style="text-align:center" %)
503 503  [[image:image-20220608163643-6.png]]
504 504  
505 505  Figure 6-6 Position control diagram
... ... @@ -506,17 +506,17 @@
506 506  
507 507  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
508 508  
509 -
510 -|=(% scope="row" %)**Function code**|=**Name**|=(((
518 +(% class="table-bordered" %)
519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
511 511  **Setting method**
512 -)))|=(((
521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
513 513  **Effective time**
514 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
515 -|=P01-01|Control mode|(((
523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
516 516  Operation setting
517 -)))|(((
526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
518 518  immediately Effective
519 -)))|0|0 to 1|(((
528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
520 520  0: position control
521 521  
522 522  2: speed control
... ... @@ -528,7 +528,7 @@
528 528  5: position/torque mix control
529 529  
530 530  6: speed /torque mix control
531 -)))|-
540 +)))|(% style="text-align:center; vertical-align:middle" %)-
532 532  
533 533  Table 6-10 Control mode parameters
534 534  
... ... @@ -536,21 +536,21 @@
536 536  
537 537  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
538 538  
539 -
540 -|=(% scope="row" %)**Function code**|=**Name**|=(((
548 +(% class="table-bordered" %)
549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
541 541  **Setting method**
542 -)))|=(((
551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
543 543  **Effective time**
544 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
545 -|=P01-06|Position instruction source|(((
553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
546 546  Operation setting
547 -)))|(((
556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
548 548  immediately Effective
549 -)))|0|0 to 1|(((
558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
550 550  0: pulse instruction
551 551  
552 552  1: internal position instruction
553 -)))|-
562 +)))|(% style="text-align:center; vertical-align:middle" %)-
554 554  
555 555  Table 6-11 Position instruction source parameter
556 556  
... ... @@ -558,20 +558,20 @@
558 558  
559 559  1) Low-speed pulse instruction input
560 560  
570 +(% class="table-bordered" %)
571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
561 561  
562 -|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
563 -|VD2A and VD2B servo drives|VD2F servo drive
564 -|(% colspan="2" %)Figure 6-7 Position instruction input setting
575 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
565 565  
566 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.
567 -
568 568  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
569 569  
579 +(% class="table-bordered" %)
580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
570 570  
571 -|**Pulse method**|**Maximum frequency**|**Voltage**
572 -|Open collector input|200K|24V
573 -|Differential input|500K|5V
574 -
575 575  Table 6-12 Pulse input specifications
576 576  
577 577  1.Differential input
... ... @@ -578,29 +578,29 @@
578 578  
579 579  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
580 580  
581 -
590 +(% style="text-align:center" %)
582 582  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
583 583  
584 584  Figure 6-8 Differential input connection
585 585  
586 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
595 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
587 587  
588 588  2.Open collector input
589 589  
590 590  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
591 591  
592 -
601 +(% style="text-align:center" %)
593 593  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
594 594  
595 595  Figure 6-9 Open collector input connection
596 596  
597 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
606 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
598 598  
599 599  2) Position pulse frequency and anti-interference level
600 600  
601 601  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
602 602  
603 -
612 +(% style="text-align:center" %)
604 604  [[image:image-20220608163952-8.png]]
605 605  
606 606  Figure 6-10 Example of filtered signal waveform
... ... @@ -607,22 +607,22 @@
607 607  
608 608  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
609 609  
610 -
611 -|=(% scope="row" %)**Function code**|=**Name**|=(((
619 +(% class="table-bordered" %)
620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
612 612  **Setting method**
613 -)))|=(((
622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
614 614  **Effective time**
615 -)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
616 -|=P00-13|Maximum position pulse frequency|(((
624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
617 617  Shutdown setting
618 -)))|(((
627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
619 619  Effective immediately
620 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
621 -|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
622 622  Operation setting
623 -)))|(% rowspan="3" %)(((
632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
624 624  Power-on again
625 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
626 626  Set the anti-interference level of external pulse instruction.
627 627  
628 628  0: no filtering;
... ... @@ -642,9 +642,9 @@
642 642  7: Filtering time 8.192us
643 643  
644 644  8: Filtering time 16.384us
645 -)))|(% rowspan="3" %)-
646 -|=(% rowspan="2" %)9|VD2: Filtering time 25.5us
647 -|=VD2F: Filtering time 25.5us
654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
656 +|VD2F: Filtering time 25.5us
648 648  
649 649  Table 6-13 Position pulse frequency and anti-interference level parameters
650 650  
... ... @@ -652,17 +652,17 @@
652 652  
653 653  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
654 654  
655 -
656 -|=(% scope="row" %)**Function code**|=**Name**|=(((
664 +(% class="table-bordered" %)
665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
657 657  **Setting method**
658 -)))|=(((
667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
659 659  **Effective time**
660 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
661 -|=P00-12|Position pulse type selection|(((
669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
662 662  Operation setting
663 -)))|(((
672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
664 664  Power-on again
665 -)))|0|0 to 5|(((
674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
666 666  0: direction + pulse (positive logic)
667 667  
668 668  1: CW/CCW
... ... @@ -674,74 +674,74 @@
674 674  4: CW/CCW (negative logic)
675 675  
676 676  5: A, B phase quadrature pulse (4 times frequency negative logic)
677 -)))|-
686 +)))|(% style="text-align:center; vertical-align:middle" %)-
678 678  
679 679  Table 6-14 Position pulse type selection parameter
680 680  
681 -
682 -|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
683 -|=0|(((
690 +(% class="table-bordered" %)
691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
684 684  Direction + pulse
685 685  
686 686  (Positive logic)
687 -)))|(((
696 +)))|(% style="text-align:center; vertical-align:middle" %)(((
688 688  PULSE
689 689  
690 690  SIGN
691 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
692 -|=1|CW/CCW|(((
700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
693 693  PULSE (CW)
694 694  
695 695  SIGN (CCW)
696 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
697 -|=2|(((
705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
698 698  AB phase orthogonal
699 699  
700 700  pulse (4 times frequency)
701 -)))|(((
710 +)))|(% style="text-align:center; vertical-align:middle" %)(((
702 702  PULSE (Phase A)
703 703  
704 704  SIGN (Phase B)
705 -)))|(((
714 +)))|(% style="text-align:center; vertical-align:middle" %)(((
706 706  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
707 707  
708 708  Phase A is 90° ahead of Phase B
709 -)))|(((
718 +)))|(% style="text-align:center; vertical-align:middle" %)(((
710 710  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
711 711  
712 712  Phase B is 90° ahead of Phase A
713 713  )))
714 -|=3|(((
723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
715 715  Direction + pulse
716 716  
717 717  (Negative logic)
718 -)))|(((
727 +)))|(% style="text-align:center; vertical-align:middle" %)(((
719 719  PULSE
720 720  
721 721  SIGN
722 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
723 -|=4|(((
731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
724 724  CW/CCW
725 725  
726 726  (Negative logic)
727 -)))|(((
736 +)))|(% style="text-align:center; vertical-align:middle" %)(((
728 728  PULSE (CW)
729 729  
730 730  SIGN (CCW)
731 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
732 -|=5|(((
740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
733 733  AB phase orthogonal
734 734  
735 735  pulse (4 times frequency negative logic)
736 -)))|(((
745 +)))|(% style="text-align:center; vertical-align:middle" %)(((
737 737  PULSE (Phase A)
738 738  
739 739  SIGN (Phase B)
740 -)))|(((
749 +)))|(% style="text-align:center; vertical-align:middle" %)(((
741 741  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
742 742  
743 743  B phase is ahead of A phase by 90°
744 -)))|(((
753 +)))|(% style="text-align:center; vertical-align:middle" %)(((
745 745  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
746 746  
747 747  A phase is ahead of B phase by 90°
... ... @@ -751,11 +751,11 @@
751 751  
752 752  **(2) The source of position instruction is internal position instruction (P01-06=1)**
753 753  
754 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.
763 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
755 755  
756 756  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
757 757  
758 -
767 +(% style="text-align:center" %)
759 759  [[image:image-20220608164116-9.png]]
760 760  
761 761  Figure 6-11 The setting process of multi-segment position
... ... @@ -762,51 +762,51 @@
762 762  
763 763  1) Set multi-segment position running mode
764 764  
765 -
766 -|=(% scope="row" %)**Function code**|=**Name**|=(((
774 +(% class="table-bordered" %)
775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
767 767  **Setting method**
768 -)))|=(((
777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
769 769  **Effective time**
770 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
771 -|=P07-01|Multi-segment position running mode|(((
779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
772 772  Shutdown setting
773 -)))|(((
782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
774 774  Effective immediately
775 -)))|0|0 to 2|(((
784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
776 776  0: Single running
777 777  
778 778  1: Cycle running
779 779  
780 780  2: DI switching running
781 -)))|-
782 -|=P07-02|Start segment number|(((
790 +)))|(% style="text-align:center; vertical-align:middle" %)-
791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
783 783  Shutdown setting
784 -)))|(((
793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
785 785  Effective immediately
786 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|-
787 -|=P07-03|End segment number|(((
795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
788 788  Shutdown setting
789 -)))|(((
798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
790 790  Effective immediately
791 -)))|1|1 to 16|last segment NO. in non-DI switching mode|-
792 -|=P07-04|Margin processing method|(((
800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
793 793  Shutdown setting
794 -)))|(((
803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
795 795  Effective immediately
796 -)))|0|0 to 1|(((
805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
797 797  0: Run the remaining segments
798 798  
799 799  1: Run again from the start segment
800 -)))|-
801 -|=P07-05|Displacement instruction type|(((
809 +)))|(% style="text-align:center; vertical-align:middle" %)-
810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
802 802  Shutdown setting
803 -)))|(((
812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
804 804  Effective immediately
805 -)))|0|0 to 1|(((
814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
806 806  0: Relative position instruction
807 807  
808 808  1: Absolute position instruction
809 -)))|-
818 +)))|(% style="text-align:center; vertical-align:middle" %)-
810 810  
811 811  Table 6-16 multi-segment position running mode parameters
812 812  
... ... @@ -814,9 +814,9 @@
814 814  
815 815  ~1. Single running
816 816  
817 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
826 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
818 818  
819 -
828 +(% style="text-align:center" %)
820 820  [[image:image-20220608164226-10.png]]
821 821  
822 822  Figure 6-12 Single running curve (P07-02=1, P07-03=2)
... ... @@ -823,14 +823,14 @@
823 823  
824 824  2. Cycle running
825 825  
826 -In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
835 +In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
827 827  
828 -
837 +(% style="text-align:center" %)
829 829  [[image:image-20220608164327-11.png]]
830 830  
831 831  Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
832 832  
833 -|[[image:image-20220611151917-5.png]]
842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
834 834  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
835 835  
836 836  3. DI switching running
... ... @@ -837,30 +837,30 @@
837 837  
838 838  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
839 839  
849 +(% class="table-bordered" %)
850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
840 840  
841 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
842 -|=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
843 -|=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
844 -|=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
845 -|=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
846 -
847 847  Table 6-17 DI function code
848 848  
849 849  The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
850 850  
860 +(% class="table-bordered" %)
861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
851 851  
852 -|=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
853 -|=0|0|0|0|1
854 -|=0|0|0|1|2
855 -|=0|0|1|0|3
856 -|=(% colspan="5" %)…………
857 -|=1|1|1|1|16
858 -
859 859  Table 6-18 INPOS corresponds to running segment number
860 860  
861 -The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.
870 +The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
862 862  
863 -
872 +(% style="text-align:center" %)
864 864  [[image:image-20220608164545-12.png]]
865 865  
866 866  Figure 6-14 DI switching running curve
... ... @@ -869,14 +869,14 @@
869 869  
870 870  **A. Run the remaining segments**
871 871  
872 -In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
881 +In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
873 873  
874 -
883 +(% style="text-align:center" %)
875 875  [[image:image-20220608164847-13.png]]
876 876  
877 877  Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
878 878  
879 -
888 +(% style="text-align:center" %)
880 880  [[image:image-20220608165032-14.png]]
881 881  
882 882  Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
... ... @@ -883,14 +883,14 @@
883 883  
884 884  **B. Run again from the start segment**
885 885  
886 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.
895 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
887 887  
888 -
897 +(% style="text-align:center" %)
889 889  [[image:image-20220608165343-15.png]]
890 890  
891 891  Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
892 892  
893 -
902 +(% style="text-align:center" %)
894 894  [[image:image-20220608165558-16.png]]
895 895  
896 896  Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
... ... @@ -902,8 +902,10 @@
902 902  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
903 903  
904 904  |(((
914 +(% style="text-align:center" %)
905 905  [[image:image-20220608165710-17.png]]
906 906  )))|(((
917 +(% style="text-align:center" %)
907 907  [[image:image-20220608165749-18.png]]
908 908  )))
909 909  |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
... ... @@ -913,8 +913,10 @@
913 913  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
914 914  
915 915  |(((
927 +(% style="text-align:center" %)
916 916  [[image:image-20220608165848-19.png]]
917 917  )))|(((
930 +(% style="text-align:center" %)
918 918  [[image:image-20220608170005-20.png]]
919 919  )))
920 920  |Figure 6-21 Absolute indication|Figure 6-22 Displacement
... ... @@ -921,44 +921,48 @@
921 921  
922 922  2) Multi-segment position running curve setting
923 923  
924 -The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
937 +The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
925 925  
926 -
927 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
928 -|=P07-09|(((
939 +(% class="table-bordered" %)
940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
941 +**Setting method**
942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
943 +**Effective time**
944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
929 929  1st segment
930 930  
931 931  displacement
932 -)))|(((
949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
933 933  Operation setting
934 -)))|(((
951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
935 935  Effective immediately
936 -)))|10000|(((
953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)(((
937 937  -2147483647 to
938 938  
939 939  2147483646
940 -)))|Position instruction, positive and negative values could be set|-
941 -|=P07-10|Maximum speed of the 1st displacement|(((
957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
942 942  Operation setting
943 -)))|(((
960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
944 944  Effective immediately
945 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
946 -|=P07-11|Acceleration and deceleration of 1st segment displacement|(((
962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
947 947  Operation setting
948 -)))|(((
965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
949 949  Effective immediately
950 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
951 -|=P07-12|Waiting time after completion of the 1st segment displacement|(((
967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
952 952  Operation setting
953 -)))|(((
970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
954 954  Effective immediately
955 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
956 956  
957 957  Table 6-19 The 1st position operation curve parameters table
958 958  
959 959  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
960 960  
961 -
978 +(% style="text-align:center" %)
962 962  [[image:image-20220608170149-21.png]]
963 963  
964 964  Figure 6-23 The 1st segment running curve of motor
... ... @@ -967,14 +967,15 @@
967 967  
968 968  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
969 969  
970 -
971 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
972 -|=20|ENINPOS: Internal multi-segment position enable signal|(((
987 +(% class="table-bordered" %)
988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
973 973  DI port logic invalid: Does not affect the current operation of the servo motor.
974 974  
975 975  DI port logic valid: Motor runs multi-segment position
976 976  )))
977 977  
995 +(% style="text-align:center" %)
978 978  [[image:image-20220611152020-6.png]]
979 979  
980 980  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
... ... @@ -989,13 +989,13 @@
989 989  
990 990  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
991 991  
992 -
1010 +(% style="text-align:center" %)
993 993  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
994 994  
995 -
1013 +(% style="text-align:center" %)
996 996  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
997 997  
998 -
1016 +(% style="text-align:center" %)
999 999  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1000 1000  
1001 1001  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
... ... @@ -1002,7 +1002,7 @@
1002 1002  
1003 1003  **(2) Setting steps of electronic gear ratio**
1004 1004  
1005 -
1023 +(% style="text-align:center" %)
1006 1006  [[image:image-20220608170320-22.png]]
1007 1007  
1008 1008  Figure 6-24 Setting steps of electronic gear ratio
... ... @@ -1017,7 +1017,7 @@
1017 1017  
1018 1018  Step5: Calculate the value of electronic gear ratio according to formula below.
1019 1019  
1020 -
1038 +(% style="text-align:center" %)
1021 1021  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1022 1022  
1023 1023  **(3) lectronic gear ratio switch setting**
... ... @@ -1025,59 +1025,59 @@
1025 1025  
1026 1026  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1027 1027  
1028 -
1029 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1046 +(% class="table-bordered" %)
1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1030 1030  **Setting method**
1031 -)))|=(((
1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1032 1032  **Effective time**
1033 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1034 -|=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1035 1035  Shutdown setting
1036 -)))|(((
1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1037 1037  Effective immediately
1038 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1039 1039  Instruction pulse
1040 1040  
1041 1041  unit
1042 1042  )))
1043 -|=P00-17|(((
1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1044 1044  Electronic gear 1
1045 1045  
1046 1046  numerator
1047 -)))|Operation setting|(((
1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1048 1048  Effective immediately
1049 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1050 -|=P00-18|(((
1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1051 1051  Electronic gear 1
1052 1052  
1053 1053  denominator
1054 -)))|(((
1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1055 1055  Operation setting
1056 -)))|(((
1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1057 1057  Effective immediately
1058 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1059 -|=P00-19|(((
1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1060 1060  Electronic gear 2
1061 1061  
1062 1062  numerator
1063 -)))|Operation setting|(((
1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1064 1064  Effective immediately
1065 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1066 -|=P00-20|(((
1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1067 1067  Electronic gear 2
1068 1068  
1069 1069  denominator
1070 -)))|Operation setting|(((
1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1071 1071  Effective immediately
1072 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1073 1073  
1074 1074  Table 6-20 Electronic gear ratio function code
1075 1075  
1076 1076  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1077 1077  
1078 -
1079 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1080 -|=09|GEAR-SEL electronic gear switch 1|(((
1096 +(% class="table-bordered" %)
1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1081 1081  DI port logic invalid: electronic gear ratio 1
1082 1082  
1083 1083  DI port logic valid: electronic gear ratio 2
... ... @@ -1085,10 +1085,10 @@
1085 1085  
1086 1086  Table 6-21 Switching conditions of electronic gear ratio group
1087 1087  
1088 -|=(% scope="row" %)**P00-16 value**|=**DI terminal level corresponding to DI port function 9**|=**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1089 -|=(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1090 -|=DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1091 -|=1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1092 1092  
1093 1093  Table 6-22 Application of electronic gear ratio
1094 1094  
... ... @@ -1106,32 +1106,32 @@
1106 1106  
1107 1107  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1108 1108  
1109 -
1127 +(% style="text-align:center" %)
1110 1110  [[image:image-20220608170455-23.png]]
1111 1111  
1112 1112  Figure 6-25 Position instruction filtering diagram
1113 1113  
1114 -
1115 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1132 +(% class="table-bordered" %)
1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1116 1116  **Setting method**
1117 -)))|=(((
1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1118 1118  **Effective time**
1119 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1120 -|=P04-01|Pulse instruction filtering method|(((
1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1121 1121  Shutdown setting
1122 -)))|(((
1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1123 1123  Effective immediately
1124 -)))|0|0 to 1|(((
1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)(((
1125 1125  0: 1st-order low-pass filtering
1126 1126  
1127 1127  1: average filtering
1128 -)))|-
1129 -|=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1130 1130  Effective immediately
1131 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1132 -|=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1133 1133  Effective immediately
1134 -)))|0|0 to 128|Position instruction average filtering time constant|ms
1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1135 1135  
1136 1136  Table 6-23 Position instruction filter function code
1137 1137  
... ... @@ -1151,7 +1151,7 @@
1151 1151  (% class="wikigeneratedid" %)
1152 1152  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1153 1153  
1154 -
1172 +(% style="text-align:center" %)
1155 1155  [[image:image-20220608170550-24.png]]
1156 1156  
1157 1157  Figure 6-26 Positioning completion signal output diagram
... ... @@ -1158,47 +1158,48 @@
1158 1158  
1159 1159  When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1160 1160  
1161 -To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1179 +To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1162 1162  
1181 +(% style="text-align:center" %)
1163 1163  [[image:image-20220608170650-25.png]]
1164 1164  
1165 1165  Figure 6-27 Positioning completion signal output with increased window filter time diagram
1166 1166  
1167 -
1168 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1186 +(% class="table-bordered" %)
1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1169 1169  **Setting method**
1170 -)))|=(((
1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1171 1171  **Effective time**
1172 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1173 -|=P05-12|Positioning completion threshold|(((
1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit**
1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1174 1174  Operation setting
1175 -)))|(((
1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1176 1176  Effective immediately
1177 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1178 -|=P05-13|Positioning approach threshold|(((
1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1179 1179  Operation setting
1180 -)))|(((
1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1181 1181  Effective immediately
1182 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1183 -|=P05-14|Position detection window time|(((
1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1184 1184  Operation setting
1185 -)))|(((
1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1186 1186  Effective immediately
1187 -)))|10|0 to 20000|Set positioning completion detection window time|ms
1188 -|=P05-15|Positioning signal hold time|(((
1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1189 1189  Operation setting
1190 -)))|(((
1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1191 1191  Effective immediately
1192 -)))|100|0 to 20000|Set positioning completion output hold time|ms
1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1193 1193  
1194 1194  Table 6-24 Function code parameters of positioning completion
1195 1195  
1196 -
1197 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1198 -|=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1199 -|=135|(((
1215 +(% class="table-bordered" %)
1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1200 1200  P-NEAR positioning close
1201 -)))|(((
1220 +)))|(% style="text-align:center; vertical-align:middle" %)(((
1202 1202  Output this signal indicates that the servo drive position is close.
1203 1203  )))
1204 1204  
... ... @@ -1206,9 +1206,9 @@
1206 1206  
1207 1207  = **Speed control mode** =
1208 1208  
1209 -Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1228 +Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1210 1210  
1211 -
1230 +(% style="text-align:center" %)
1212 1212  [[image:6.28.jpg||height="260" width="806"]]
1213 1213  
1214 1214  Figure 6-28 Speed control block diagram
... ... @@ -1217,21 +1217,21 @@
1217 1217  
1218 1218  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1219 1219  
1220 -
1221 -|**Function code**|**Name**|(((
1239 +(% class="table-bordered" %)
1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1222 1222  **Setting method**
1223 -)))|(((
1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1224 1224  **Effective time**
1225 -)))|**Default value**|**Range**|**Definition**|**Unit**
1226 -|P01-01|Speed instruction source|(((
1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1227 1227  Shutdown setting
1228 -)))|(((
1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1229 1229  Effective immediately
1230 -)))|1|1 to 6|(((
1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1231 1231  0: internal speed instruction
1232 1232  
1233 1233  1: AI_1 analog input (not supported by VD2F)
1234 -)))|-
1253 +)))|(% style="text-align:center; vertical-align:middle" %)-
1235 1235  
1236 1236  Table 6-26 Speed instruction source parameter
1237 1237  
... ... @@ -1239,19 +1239,19 @@
1239 1239  
1240 1240  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1241 1241  
1242 -
1243 -|**Function code**|**Name**|(((
1261 +(% class="table-bordered" %)
1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1244 1244  **Setting method**
1245 -)))|(((
1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
1246 1246  **Effective time**
1247 -)))|**Default value**|**Range**|**Definition**|**Unit**
1248 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)(((
1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit**
1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1249 1249  Internal speed Instruction 0
1250 -)))|(% rowspan="2" %)(((
1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1251 1251  Operation setting
1252 -)))|(% rowspan="2" %)(((
1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1253 1253  Effective immediately
1254 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1255 1255  Internal speed instruction 0
1256 1256  
1257 1257  When DI input port:
... ... @@ -1263,15 +1263,15 @@
1263 1263  13-INSPD1: 0,
1264 1264  
1265 1265  select this speed instruction to be effective.
1266 -)))|(% rowspan="2" %)rpm
1267 -|-5000 to 5000*
1268 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)(((
1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1269 1269  Internal speed Instruction 1
1270 -)))|(% rowspan="2" %)(((
1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1271 1271  Operation setting
1272 -)))|(% rowspan="2" %)(((
1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1273 1273  Effective immediately
1274 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1275 1275  Internal speed instruction 1
1276 1276  
1277 1277  When DI input port:
... ... @@ -1283,15 +1283,15 @@
1283 1283  13-INSPD1: 1,
1284 1284  
1285 1285  Select this speed instruction to be effective.
1286 -)))|(% rowspan="2" %)rpm
1287 -|-5000 to 5000*
1288 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)(((
1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1289 1289  Internal speed Instruction 2
1290 -)))|(% rowspan="2" %)(((
1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1291 1291  Operation setting
1292 -)))|(% rowspan="2" %)(((
1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1293 1293  Effective immediately
1294 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1295 1295  Internal speed instruction 2
1296 1296  
1297 1297  When DI input port:
... ... @@ -1303,15 +1303,15 @@
1303 1303  13-INSPD1: 0,
1304 1304  
1305 1305  Select this speed instruction to be effective.
1306 -)))|(% rowspan="2" %)rpm
1307 -|-5000 to 5000*
1308 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)(((
1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1309 1309  Internal speed Instruction 3
1310 -)))|(% rowspan="2" %)(((
1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1311 1311  Operation setting
1312 -)))|(% rowspan="2" %)(((
1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1313 1313  Effective immediately
1314 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1315 1315  Internal speed instruction 3
1316 1316  
1317 1317  When DI input port:
... ... @@ -1323,16 +1323,17 @@
1323 1323  13-INSPD1: 1,
1324 1324  
1325 1325  Select this speed instruction to be effective.
1326 -)))|(% rowspan="2" %)rpm
1327 -|-5000 to 5000*
1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1328 1328  
1329 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)(((
1348 +(% class="table-bordered" %)
1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1330 1330  Internal speed Instruction 4
1331 -)))|(% rowspan="2" %)(((
1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1332 1332  Operation setting
1333 -)))|(% rowspan="2" %)(((
1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1334 1334  Effective immediately
1335 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1336 1336  Internal speed instruction 4
1337 1337  
1338 1338  When DI input port:
... ... @@ -1344,15 +1344,15 @@
1344 1344  13-INSPD1: 0,
1345 1345  
1346 1346  Select this speed instruction to be effective.
1347 -)))|(% rowspan="2" %)rpm
1348 -|-5000 to 5000*
1349 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)(((
1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1350 1350  Internal speed Instruction 5
1351 -)))|(% rowspan="2" %)(((
1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1352 1352  Operation setting
1353 -)))|(% rowspan="2" %)(((
1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1354 1354  Effective immediately
1355 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1356 1356  Internal speed instruction 5
1357 1357  
1358 1358  When DI input port:
... ... @@ -1364,15 +1364,15 @@
1364 1364  13-INSPD1: 1,
1365 1365  
1366 1366  Select this speed instruction to be effective.
1367 -)))|(% rowspan="2" %)rpm
1368 -|-5000 to 5000*
1369 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)(((
1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1370 1370  Internal speed Instruction 6
1371 -)))|(% rowspan="2" %)(((
1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1372 1372  Operation setting
1373 -)))|(% rowspan="2" %)(((
1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1374 1374  Effective immediately
1375 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1376 1376  Internal speed instruction 6
1377 1377  
1378 1378  When DI input port:
... ... @@ -1384,15 +1384,15 @@
1384 1384  13-INSPD1: 0,
1385 1385  
1386 1386  Select this speed instruction to be effective.
1387 -)))|(% rowspan="2" %)rpm
1388 -|-5000 to 5000*
1389 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)(((
1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1390 1390  Internal speed Instruction 7
1391 -)))|(% rowspan="2" %)(((
1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1392 1392  Operation setting
1393 -)))|(% rowspan="2" %)(((
1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1394 1394  Effective immediately
1395 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1396 1396  Internal speed instruction 7
1397 1397  
1398 1398  When DI input port:
... ... @@ -1404,34 +1404,34 @@
1404 1404  13-INSPD1: 1,
1405 1405  
1406 1406  Select this speed instruction to be effective.
1407 -)))|(% rowspan="2" %)rpm
1408 -|-5000 to 5000*
1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 1409  
1410 1410  Table 6-27 Internal speed instruction parameters
1411 1411  
1412 1412  ✎**Note: **“*” means the set range of VD2F servo drive.
1413 1413  
1434 +(% class="table-bordered" %)
1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1414 1414  
1415 -|**DI function code**|**function name**|**Function**
1416 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1417 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1418 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1419 -
1420 1420  Table 6-28 DI multi-speed function code description
1421 1421  
1422 1422  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1423 1423  
1424 -
1425 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1426 -|0|0|0|1|0
1427 -|0|0|1|2|1
1428 -|0|1|0|3|2
1444 +(% class="table-bordered" %)
1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1429 1429  |(% colspan="5" %)......
1430 -|1|1|1|8|7
1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1431 1431  
1432 1432  Table 6-29 Correspondence between INSPD bits and segment numbers
1433 1433  
1434 -
1454 +(% style="text-align:center" %)
1435 1435  [[image:image-20220608170845-26.png]]
1436 1436  
1437 1437  Figure 6-29 Multi-segment speed running curve
... ... @@ -1440,7 +1440,7 @@
1440 1440  
1441 1441  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1442 1442  
1443 -
1463 +(% style="text-align:center" %)
1444 1444  [[image:image-20220608153341-5.png]]
1445 1445  
1446 1446  Figure 6-30 Analog input circuit
... ... @@ -1447,7 +1447,7 @@
1447 1447  
1448 1448  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1449 1449  
1450 -
1470 +(% style="text-align:center" %)
1451 1451  [[image:image-20220608170955-27.png]]
1452 1452  
1453 1453  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1460,18 +1460,18 @@
1460 1460  
1461 1461  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1462 1462  
1463 -
1483 +(% style="text-align:center" %)
1464 1464  [[image:image-20220608171124-28.png]]
1465 1465  
1466 1466  Figure 6-32 AI_1 diagram before and after bias
1467 1467  
1488 +(% class="table-bordered" %)
1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1468 1468  
1469 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1470 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1471 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1472 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1473 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1474 -
1475 1475  Table 6-30 AI_1 parameters
1476 1476  
1477 1477  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1482,7 +1482,7 @@
1482 1482  
1483 1483  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1484 1484  
1485 -
1505 +(% style="text-align:center" %)
1486 1486  [[image:image-20220608171314-29.png]]
1487 1487  
1488 1488  Figure 6-33 of acceleration and deceleration time diagram
... ... @@ -1491,22 +1491,22 @@
1491 1491  
1492 1492  Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1493 1493  
1494 -
1495 -|**Function code**|**Name**|(((
1514 +(% class="table-bordered" %)
1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1496 1496  **Setting method**
1497 -)))|(((
1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1498 1498  **Effective time**
1499 -)))|**Default value**|**Range**|**Definition**|**Unit**
1500 -|P01-03|Acceleration time|(((
1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1501 1501  Operation setting
1502 -)))|(((
1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1503 1503  Effective immediately
1504 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1505 -|P01-04|Deceleration time|(((
1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1506 1506  Operation setting
1507 -)))|(((
1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1508 1508  Effective immediately
1509 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1510 1510  
1511 1511  Table 6-31 Acceleration and deceleration time parameters
1512 1512  
... ... @@ -1525,27 +1525,27 @@
1525 1525  
1526 1526  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1527 1527  
1528 -
1529 -|**Function code**|**Name**|(((
1548 +(% class="table-bordered" %)
1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1530 1530  **Setting method**
1531 -)))|(((
1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1532 1532  **Effective time**
1533 -)))|**Default value**|**Range**|**Definition**|**Unit**
1534 -|P01-10|Maximum speed threshold|(((
1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1535 1535  Operation setting
1536 -)))|(((
1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1537 1537  Effective immediately
1538 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1539 -|P01-12|Forward speed threshold|(((
1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1540 1540  Operation setting
1541 -)))|(((
1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1542 1542  Effective immediately
1543 -)))|3000|0 to 5000|Set forward speed limit value|rpm
1544 -|P01-13|Reverse speed threshold|(((
1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1545 1545  Operation setting
1546 -)))|(((
1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1547 1547  Effective immediately
1548 -)))|3000|0 to 5000|Set reverse speed limit value|rpm
1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1549 1549  
1550 1550  Table 6-32 Rotation speed related function codes
1551 1551  
... ... @@ -1555,19 +1555,19 @@
1555 1555  
1556 1556  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1557 1557  
1558 -
1559 -|**Function code**|**Name**|(((
1578 +(% class="table-bordered" %)
1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1560 1560  **Setting method**
1561 -)))|(((
1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1562 1562  **Effective time**
1563 -)))|**Default value**|**Range**|**Definition**|**Unit**
1564 -|P01-21|(((
1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1565 1565  Zero-speed clamp function selection
1566 -)))|(((
1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1567 1567  Operation setting
1568 -)))|(((
1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1569 1569  Effective immediately
1570 -)))|0|0 to 3|(((
1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1571 1571  Set the zero-speed clamp function. In speed mode:
1572 1572  
1573 1573  0: Force the speed to 0;
... ... @@ -1577,18 +1577,18 @@
1577 1577  2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1578 1578  
1579 1579  3: Invalid, ignore zero-speed clamp input
1580 -)))|-
1581 -|P01-22|(((
1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1582 1582  Zero-speed clamp speed threshold
1583 -)))|(((
1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1584 1584  Operation setting
1585 -)))|(((
1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1586 1586  Effective immediately
1587 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1588 1588  
1589 1589  Table 6-33 Zero-speed clamp related parameters
1590 1590  
1591 -
1611 +(% style="text-align:center" %)
1592 1592  [[image:image-20220608171549-30.png]]
1593 1593  
1594 1594  Figure 6-34 Zero-speed clamp diagram
... ... @@ -1601,36 +1601,36 @@
1601 1601  
1602 1602  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1603 1603  
1604 -
1624 +(% style="text-align:center" %)
1605 1605  [[image:image-20220608171625-31.png]]
1606 1606  
1607 1607  Figure 6-35 Rotation detection signal diagram
1608 1608  
1609 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1629 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1610 1610  
1611 -
1612 -|**Function code**|**Name**|(((
1631 +(% class="table-bordered" %)
1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1613 1613  **Setting method**
1614 -)))|(((
1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1615 1615  **Effective time**
1616 -)))|**Default value**|**Range**|**Definition**|**Unit**
1617 -|P05-16|(((
1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit**
1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1618 1618  Rotation detection
1619 1619  
1620 1620  speed threshold
1621 -)))|(((
1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1622 1622  Operation setting
1623 -)))|(((
1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1624 1624  Effective immediately
1625 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm
1626 1626  
1627 1627  Table 6-34 Rotation detection speed threshold parameters
1628 1628  
1629 -
1630 -|**DO function code**|**Function name**|**Function**
1631 -|132|(((
1649 +(% class="table-bordered" %)
1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function**
1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)(((
1632 1632  T-COIN rotation detection
1633 -)))|(((
1653 +)))|(% style="width:879px" %)(((
1634 1634  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1635 1635  
1636 1636  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1642,32 +1642,32 @@
1642 1642  
1643 1643  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1644 1644  
1645 -
1665 +(% style="text-align:center" %)
1646 1646  [[image:image-20220608171904-32.png]]
1647 1647  
1648 1648  Figure 6-36 Zero-speed signal diagram
1649 1649  
1650 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1670 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1651 1651  
1652 -
1653 -|**Function code**|**Name**|(((
1672 +(% class="table-bordered" %)
1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1654 1654  **Setting method**
1655 -)))|(((
1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1656 1656  **Effective time**
1657 -)))|**Default value**|**Range**|**Definition**|**Unit**
1658 -|P05-19|Zero speed output signal threshold|(((
1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit**
1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1659 1659  Operation setting
1660 -)))|(((
1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1661 1661  Effective immediately
1662 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm
1663 1663  
1664 1664  Table 6-36 Zero-speed output signal threshold parameter
1665 1665  
1666 -
1667 -|**DO function code**|**Function name**|**Function**
1668 -|133|(((
1686 +(% class="table-bordered" %)
1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1669 1669  ZSP zero speed signal
1670 -)))|Output this signal indicates that the servo motor is stopping rotation
1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1671 1671  
1672 1672  Table 6-37 DO zero-speed signal function code
1673 1673  
... ... @@ -1675,32 +1675,32 @@
1675 1675  
1676 1676  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1677 1677  
1678 -
1698 +(% style="text-align:center" %)
1679 1679  [[image:image-20220608172053-33.png]]
1680 1680  
1681 1681  Figure 6-37 Speed consistent signal diagram
1682 1682  
1683 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1703 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1684 1684  
1685 -
1686 -|**Function code**|**Name**|(((
1705 +(% class="table-bordered" %)
1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1687 1687  **Setting method**
1688 -)))|(((
1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1689 1689  **Effective time**
1690 -)))|**Default value**|**Range**|**Definition**|**Unit**
1691 -|P05-17|Speed consistent signal threshold|(((
1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit**
1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1692 1692  Operationsetting
1693 -)))|(((
1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1694 1694  Effective immediately
1695 -)))|10|0 to 100|Set speed consistent signal threshold|rpm
1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm
1696 1696  
1697 1697  Table 6-38 Speed consistent signal threshold parameters
1698 1698  
1699 -
1700 -|**DO Function code**|**Function name**|**Function**
1701 -|136|(((
1719 +(% class="table-bordered" %)
1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1702 1702  U-COIN consistent speed
1703 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1704 1704  
1705 1705  Table 6-39 DO speed consistent function code
1706 1706  
... ... @@ -1708,32 +1708,32 @@
1708 1708  
1709 1709  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1710 1710  
1711 -
1731 +(% style="text-align:center" %)
1712 1712  [[image:image-20220608172207-34.png]]
1713 1713  
1714 1714  Figure 6-38 Speed approaching signal diagram
1715 1715  
1716 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1736 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1717 1717  
1718 -
1719 -|**Function code**|**Name**|(((
1738 +(% class="table-bordered" %)
1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1720 1720  **Setting method**
1721 -)))|(((
1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1722 1722  **Effective time**
1723 -)))|**Default value**|**Range**|**Definition**|**Unit**
1724 -|P05-18|Speed approach signal threshold|(((
1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1725 1725  Operation setting
1726 -)))|(((
1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1727 1727  Effective immediately
1728 -)))|100|10 to 6000|Set speed approach signal threshold|rpm
1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1729 1729  
1730 1730  Table 6-40 Speed approaching signal threshold parameters
1731 1731  
1732 -
1733 -|**DO function code**|**Function name**|**Function**
1734 -|137|(((
1752 +(% class="table-bordered" %)
1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1735 1735  V-NEAR speed approach
1736 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1737 1737  
1738 1738  Table 6-41 DO speed approach function code
1739 1739  
... ... @@ -1741,7 +1741,7 @@
1741 1741  
1742 1742  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1743 1743  
1744 -
1764 +(% style="text-align:center" %)
1745 1745  [[image:image-20220608172405-35.png]]
1746 1746  
1747 1747  Figure 6-39 Torque mode diagram
... ... @@ -1750,21 +1750,21 @@
1750 1750  
1751 1751  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1752 1752  
1753 -
1754 -|**Function code**|**Name**|(((
1773 +(% class="table-bordered" %)
1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1755 1755  **Setting method**
1756 -)))|(((
1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1757 1757  **Effective time**
1758 -)))|**Default value**|**Range**|**Definition**|**Unit**
1759 -|P01-08|Torque instruction source|(((
1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1760 1760  Shutdown setting
1761 -)))|(((
1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1762 1762  Effective immediately
1763 -)))|0|0 to 1|(((
1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1764 1764  0: internal torque instruction
1765 1765  
1766 1766  1: AI_1 analog input(not supported by VD2F)
1767 -)))|-
1787 +)))|(% style="text-align:center; vertical-align:middle" %)-
1768 1768  
1769 1769  Table 6-42 Torque instruction source parameter
1770 1770  
... ... @@ -1772,17 +1772,17 @@
1772 1772  
1773 1773  Torque instruction source is from inside, the value is set by function code P01-08.
1774 1774  
1775 -
1776 -|**Function code**|**Name**|(((
1795 +(% class="table-bordered" %)
1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1777 1777  **Setting method**
1778 -)))|(((
1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1779 1779  **Effective time**
1780 -)))|**Default value**|**Range**|**Definition**|**Unit**
1781 -|P01-08|Torque instruction keyboard set value|(((
1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1782 1782  Operation setting
1783 -)))|(((
1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1784 1784  Effective immediately
1785 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1786 1786  
1787 1787  Table 6-43 Torque instruction keyboard set value
1788 1788  
... ... @@ -1790,7 +1790,7 @@
1790 1790  
1791 1791  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1792 1792  
1793 -
1813 +(% style="text-align:center" %)
1794 1794  [[image:image-20220608153646-7.png||height="213" width="408"]]
1795 1795  
1796 1796  Figure 6-40 Analog input circuit
... ... @@ -1797,7 +1797,7 @@
1797 1797  
1798 1798  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1799 1799  
1800 -
1820 +(% style="text-align:center" %)
1801 1801  [[image:image-20220608172502-36.png]]
1802 1802  
1803 1803  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1810,18 +1810,18 @@
1810 1810  
1811 1811  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1812 1812  
1813 -
1833 +(% style="text-align:center" %)
1814 1814  [[image:image-20220608172611-37.png]]
1815 1815  
1816 1816  Figure 6-42 AI_1 diagram before and after bias
1817 1817  
1838 +(% class="table-bordered" %)
1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1818 1818  
1819 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1820 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1821 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1822 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1823 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1824 -
1825 1825  Table 6-44 AI_1 parameters
1826 1826  
1827 1827  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1830,23 +1830,23 @@
1830 1830  
1831 1831  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1832 1832  
1833 -
1834 -|**Function code**|**Name**|(((
1853 +(% class="table-bordered" %)
1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1835 1835  **Setting method**
1836 -)))|(((
1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1837 1837  **Effective time**
1838 -)))|**Default value**|**Range**|**Definition**|**Unit**
1839 -|P04-04|Torque filtering time constant|(((
1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1840 1840  Operation setting
1841 -)))|(((
1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1842 1842  Effective immediately
1843 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1844 1844  
1845 1845  Table 6-45 Torque filtering time constant parameter details
1846 1846  
1847 1847  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1848 1848  
1849 -
1869 +(% style="text-align:center" %)
1850 1850  [[image:image-20220608172646-38.png]]
1851 1851  
1852 1852  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1857,7 +1857,7 @@
1857 1857  
1858 1858  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1859 1859  
1860 -
1880 +(% style="text-align:center" %)
1861 1861  [[image:image-20220608172806-39.png]]
1862 1862  
1863 1863  Figure 6-44 Torque instruction limit diagram
... ... @@ -1866,50 +1866,50 @@
1866 1866  
1867 1867  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1868 1868  
1869 -
1870 -|**Function code**|**Name**|(((
1889 +(% class="table-bordered" %)
1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1871 1871  **Setting method**
1872 -)))|(((
1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1873 1873  **Effective time**
1874 -)))|**Default value**|**Range**|**Definition**|**Unit**
1875 -|P01-14|(((
1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1876 1876  Torque limit source
1877 -)))|(((
1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1878 1878  Shutdown setting
1879 -)))|(((
1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1880 1880  Effective immediately
1881 -)))|0|0 to 1|(((
1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1882 1882  0: internal value
1883 1883  
1884 1884  1: AI_1 analog input
1885 1885  
1886 1886  (not supported by VD2F)
1887 -)))|-
1907 +)))|(% style="text-align:center; vertical-align:middle" %)-
1888 1888  
1889 1889  1) Torque limit source is internal torque instruction (P01-14=0)
1890 1890  
1891 1891  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1892 1892  
1893 -
1894 -|**Function code**|**Name**|(((
1913 +(% class="table-bordered" %)
1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1895 1895  **Setting method**
1896 -)))|(((
1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1897 1897  **Effective time**
1898 -)))|**Default value**|**Range**|**Definition**|**Unit**
1899 -|P01-15|(((
1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1900 1900  Forward torque limit
1901 -)))|(((
1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1902 1902  Operation setting
1903 -)))|(((
1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1904 1904  Effective immediately
1905 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1906 -|P01-16|(((
1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1907 1907  Reverse torque limit
1908 -)))|(((
1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1909 1909  Operation setting
1910 -)))|(((
1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1911 1911  Effective immediately
1912 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1913 1913  
1914 1914  Table 6-46 Torque limit parameter details
1915 1915  
... ... @@ -1921,11 +1921,11 @@
1921 1921  
1922 1922  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1923 1923  
1924 -
1925 -|**DO function code**|**Function name**|**Function**
1926 -|139|(((
1944 +(% class="table-bordered" %)
1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1927 1927  T-LIMIT in torque limit
1928 -)))|Output of this signal indicates that the servo motor torque is limited
1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1929 1929  
1930 1930  Table 6-47 DO torque limit function codes
1931 1931  
... ... @@ -1933,46 +1933,49 @@
1933 1933  
1934 1934  In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1935 1935  
1936 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.
1956 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1937 1937  
1938 1938  |(((
1959 +(% style="text-align:center" %)
1939 1939  [[image:image-20220608172910-40.png]]
1940 1940  )))|(((
1962 +(% style="text-align:center" %)
1941 1941  [[image:image-20220608173155-41.png]]
1942 1942  )))
1943 1943  |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1944 1944  
1945 -|**Function code**|**Name**|(((
1967 +(% class="table-bordered" %)
1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1946 1946  **Setting method**
1947 -)))|(((
1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1948 1948  **Effective time**
1949 -)))|**Default value**|**Range**|**Definition**|**Unit**
1950 -|P01-17|(((
1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1951 1951  Forward torque
1952 1952  
1953 1953  limit in torque mode
1954 -)))|(((
1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1955 1955  Operation setting
1956 -)))|(((
1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1957 1957  Effective immediately
1958 -)))|3000|0 to 5000|(((
1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1959 1959  Forward torque
1960 1960  
1961 1961  limit in torque mode
1962 -)))|0.1%
1963 -|P01-18|(((
1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1964 1964  Reverse torque
1965 1965  
1966 1966  limit in torque mode
1967 -)))|(((
1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1968 1968  Operation setting
1969 -)))|(((
1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1970 1970  Effective immediately
1971 -)))|3000|0 to 5000|(((
1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1972 1972  Reverse torque
1973 1973  
1974 1974  limit in torque mode
1975 -)))|0.1%
1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1976 1976  
1977 1977  Table 6-48 Speed limit parameters in torque mode
1978 1978  
... ... @@ -1986,7 +1986,7 @@
1986 1986  
1987 1987  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1988 1988  
1989 -
2012 +(% style="text-align:center" %)
1990 1990  [[image:image-20220608173541-42.png]]
1991 1991  
1992 1992  Figure 6-47 Torque arrival output diagram
... ... @@ -1993,44 +1993,44 @@
1993 1993  
1994 1994  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1995 1995  
1996 -
1997 -|**Function code**|**Name**|(((
2019 +(% class="table-bordered" %)
2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
1998 1998  **Setting method**
1999 -)))|(((
2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2000 2000  **Effective time**
2001 -)))|**Default value**|**Range**|**Definition**|**Unit**
2002 -|P05-20|(((
2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2003 2003  Torque arrival
2004 2004  
2005 2005  threshold
2006 -)))|(((
2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2007 2007  Operation setting
2008 -)))|(((
2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2009 2009  Effective immediately
2010 -)))|100|0 to 300|(((
2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2011 2011  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2012 2012  
2013 2013  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2014 2014  
2015 2015  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2016 -)))|%
2017 -|P05-21|(((
2039 +)))|(% style="text-align:center; vertical-align:middle" %)%
2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2018 2018  Torque arrival
2019 2019  
2020 2020  hysteresis
2021 -)))|(((
2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2022 2022  Operation setting
2023 -)))|(((
2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2024 2024  Effective immediately
2025 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2026 2026  
2027 2027  Table 6-49 Torque arrival parameters
2028 2028  
2029 -
2030 -|**DO function code**|**Function name**|**Function**
2031 -|138|(((
2052 +(% class="table-bordered" %)
2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2032 2032  T-COIN torque arrival
2033 -)))|Used to determine whether the actual torque instruction has reached the set range
2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2034 2034  
2035 2035  Table 6-50 DO Torque Arrival Function Code
2036 2036  
... ... @@ -2046,17 +2046,17 @@
2046 2046  
2047 2047  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2048 2048  
2049 -
2050 -|**Function code**|**Name**|(((
2072 +(% class="table-bordered" %)
2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2051 2051  **Setting method**
2052 -)))|(((
2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2053 2053  **Effective time**
2054 -)))|**Default value**|**Range**|**Definition**|**Unit**
2055 -|P00-01|Control mode|(((
2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2056 2056  Shutdown setting
2057 -)))|(((
2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2058 2058  Shutdown setting
2059 -)))|1|1 to 6|(((
2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)(((
2060 2060  1: Position control
2061 2061  
2062 2062  2: Speed control
... ... @@ -2068,22 +2068,23 @@
2068 2068  5: Position/torque mixed control
2069 2069  
2070 2070  6: Speed/torque mixed control
2071 -)))|-
2094 +)))|(% style="text-align:center; vertical-align:middle" %)-
2072 2072  
2073 2073  Table 6-51 Mixed control mode parameters
2074 2074  
2075 2075  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2076 2076  
2077 -
2078 -|**DI function code**|**Name**|**Function name**|**Function**
2079 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2080 -|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2081 -|(% rowspan="2" %)4|Valid|Speed mode
2082 -|invalid|Position mode
2083 -|(% rowspan="2" %)5|Valid|Torque mode
2084 -|invalid|Position mode
2085 -|(% rowspan="2" %)6|Valid|Torque mode
2086 -|invalid|Speed mode
2100 +(% class="table-bordered" %)
2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2103 +(% class="table-bordered" %)
2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2087 2087  )))
2088 2088  
2089 2089  Table 6-52 Description of DI function codes in control mode
... ... @@ -2102,15 +2102,15 @@
2102 2102  
2103 2103  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2104 2104  
2129 +(% class="table-bordered" %)
2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2105 2105  
2106 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2107 -|A1 (single-turn magnetic encoder)|17|0 to 131071
2108 -
2109 2109  Table 6-53 Single-turn absolute encoder information
2110 2110  
2111 2111  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2112 2112  
2113 -
2137 +(% style="text-align:center" %)
2114 2114  [[image:image-20220608173618-43.png]]
2115 2115  
2116 2116  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2119,16 +2119,16 @@
2119 2119  
2120 2120  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2121 2121  
2146 +(% class="table-bordered" %)
2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2122 2122  
2123 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2124 -|C1 (multi-turn magnetic encoder)|17|0 to 131071
2125 -|D2 (multi-turn Optical encoder)|23|0 to 8388607
2126 -
2127 2127  Table 6-54 Multi-turn absolute encoder information
2128 2128  
2129 2129  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2130 2130  
2131 -
2155 +(% style="text-align:center" %)
2132 2132  [[image:image-20220608173701-44.png]]
2133 2133  
2134 2134  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2137,12 +2137,12 @@
2137 2137  
2138 2138  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2139 2139  
2164 +(% class="table-bordered" %)
2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2140 2140  
2141 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2142 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2143 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2144 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2145 -
2146 2146  Table 6-55 Encoder feedback data
2147 2147  
2148 2148  == **Absolute value system encoder battery box use precautions** ==
... ... @@ -2149,7 +2149,7 @@
2149 2149  
2150 2150  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2151 2151  
2152 -
2176 +(% style="text-align:center" %)
2153 2153  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2154 2154  
2155 2155  Figure 6-50 the encoder battery box
... ... @@ -2162,23 +2162,23 @@
2162 2162  
2163 2163  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2164 2164  
2165 -
2166 -|**Function code**|**Name**|(((
2189 +(% class="table-bordered" %)
2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2167 2167  **Setting method**
2168 -)))|(((
2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2169 2169  **Effective time**
2170 -)))|**Default value**|**Range**|**Definition**|**Unit**
2171 -|P10-06|Multi-turn absolute encoder reset|(((
2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2172 2172  Shutdown setting
2173 -)))|(((
2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2174 2174  Effective immediately
2175 -)))|0|0 to 1|(((
2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2176 2176  0: No operation
2177 2177  
2178 2178  1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2179 2179  
2180 2180  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2181 -)))|-
2205 +)))|(% style="text-align:center; vertical-align:middle" %)-
2182 2182  
2183 2183  Table 6-56 Absolute encoder reset enable parameter
2184 2184  
... ... @@ -2196,18 +2196,18 @@
2196 2196  
2197 2197  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2198 2198  
2199 -
2223 +(% style="text-align:center" %)
2200 2200  [[image:image-20220608173804-46.png]]
2201 2201  
2202 2202  Figure 6-51 VDI_1 setting steps
2203 2203  
2204 -
2205 -|**Function code**|**Name**|(((
2228 +(% class="table-bordered" %)
2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2206 2206  **Setting method**
2207 -)))|(((
2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2208 2208  **Effective time**
2209 -)))|**Default value**|**Range**|**Definition**|**Unit**
2210 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2211 2211  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2212 2212  
2213 2213  VDI_1 input level:
... ... @@ -2215,8 +2215,8 @@
2215 2215  0: low level
2216 2216  
2217 2217  1: high level
2218 -)))|-
2219 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2242 +)))|(% style="text-align:center; vertical-align:middle" %)-
2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2220 2220  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2221 2221  
2222 2222  VDI_2 input level:
... ... @@ -2224,8 +2224,8 @@
2224 2224  0: low level
2225 2225  
2226 2226  1: high level
2227 -)))|-
2228 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2251 +)))|(% style="text-align:center; vertical-align:middle" %)-
2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2229 2229  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2230 2230  
2231 2231  VDI_3 input level:
... ... @@ -2233,8 +2233,8 @@
2233 2233  0: low level
2234 2234  
2235 2235  1: high level
2236 -)))|-
2237 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2260 +)))|(% style="text-align:center; vertical-align:middle" %)-
2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2238 2238  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2239 2239  
2240 2240  VDI_4 input level:
... ... @@ -2242,8 +2242,8 @@
2242 2242  0: low level
2243 2243  
2244 2244  1: high level
2245 -)))|-
2246 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2269 +)))|(% style="text-align:center; vertical-align:middle" %)-
2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2247 2247  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2248 2248  
2249 2249  VDI_5 input level:
... ... @@ -2251,8 +2251,8 @@
2251 2251  0: low level
2252 2252  
2253 2253  1: high level
2254 -)))|-
2255 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2278 +)))|(% style="text-align:center; vertical-align:middle" %)-
2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2256 2256  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2257 2257  
2258 2258  VDI_6 input level:
... ... @@ -2260,8 +2260,8 @@
2260 2260  0: low level
2261 2261  
2262 2262  1: high level
2263 -)))|-
2264 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2287 +)))|(% style="text-align:center; vertical-align:middle" %)-
2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2265 2265  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2266 2266  
2267 2267  VDI_7 input level:
... ... @@ -2269,8 +2269,8 @@
2269 2269  0: low level
2270 2270  
2271 2271  1: high level
2272 -)))|-
2273 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2296 +)))|(% style="text-align:center; vertical-align:middle" %)-
2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2274 2274  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2275 2275  
2276 2276  VDI_8 input level:
... ... @@ -2278,7 +2278,7 @@
2278 2278  0: low level
2279 2279  
2280 2280  1: high level
2281 -)))|-
2305 +)))|(% style="text-align:center; vertical-align:middle" %)-
2282 2282  
2283 2283  Table 6-57 Virtual VDI parameters
2284 2284  
... ... @@ -2288,11 +2288,11 @@
2288 2288  
2289 2289  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2290 2290  
2315 +(% class="table-bordered" %)
2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2291 2291  
2292 -|**Setting value**|**DI channel logic selection**|**Illustration**
2293 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2294 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2295 -
2296 2296  Table 6-58 DI terminal channel logic selection
2297 2297  
2298 2298  == **VDO** ==
... ... @@ -2301,55 +2301,55 @@
2301 2301  
2302 2302  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2303 2303  
2304 -
2328 +(% style="text-align:center" %)
2305 2305  [[image:image-20220608173957-48.png]]
2306 2306  
2307 2307  Figure 6-52 VDO_2 setting steps
2308 2308  
2309 -
2310 -|**Function code**|**Name**|(((
2333 +(% class="table-bordered" %)
2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2311 2311  **Setting method**
2312 -)))|(((
2336 +)))|(% style="text-align:center; vertical-align:middle" %)(((
2313 2313  **Effective time**
2314 -)))|**Default value**|**Range**|**Definition**|**Unit**
2315 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2316 2316  VDO_1 output level:
2317 2317  
2318 2318  0: low level
2319 2319  
2320 2320  1: high level
2321 -)))|-
2322 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2345 +)))|(% style="text-align:center; vertical-align:middle" %)-
2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2323 2323  VDO_2 output level:
2324 2324  
2325 2325  0: low level
2326 2326  
2327 2327  1: high level
2328 -)))|-
2329 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2352 +)))|(% style="text-align:center; vertical-align:middle" %)-
2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2330 2330  VDO_3 output level:
2331 2331  
2332 2332  0: low level
2333 2333  
2334 2334  1: high level
2335 -)))|-
2336 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2359 +)))|(% style="text-align:center; vertical-align:middle" %)-
2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2337 2337  VDO_4 output level:
2338 2338  
2339 2339  0: low level
2340 2340  
2341 2341  1: high level
2342 -)))|-
2366 +)))|(% style="text-align:center; vertical-align:middle" %)-
2343 2343  
2344 2344  Table 6-59 Communication control DO function parameters
2345 2345  
2370 +(% class="table-bordered" %)
2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2346 2346  
2347 -|**DO function number**|**Function name**|**Function**
2348 -|145|COM_VDO1 communication VDO1 output|Use communication VDO
2349 -|146|COM_VDO1 communication VDO2 output|Use communication VDO
2350 -|147|COM_VDO1 communication VDO3 output|Use communication VDO
2351 -|148|COM_VDO1 communication VDO4output|Use communication VDO
2352 -
2353 2353  Table 6-60 VDO function number
2354 2354  
2355 2355  ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
... ... @@ -2360,17 +2360,17 @@
2360 2360  
2361 2361  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2362 2362  
2363 -
2364 -|**Function code**|**Name**|(((
2387 +(% class="table-bordered" %)
2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2365 2365  **Setting method**
2366 -)))|(((
2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2367 2367  **Effective time**
2368 -)))|**Default value**|**Range**|**Definition**|**Unit**
2369 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2370 2370  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2371 2371  
2372 2372  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2373 -)))|%
2397 +)))|(% style="text-align:center; vertical-align:middle" %)%
2374 2374  
2375 2375  In the following cases, it could be modified according to the actual heat generation of the motor
2376 2376