Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
To version 43.1
edited by Joey
on 2022/06/11 15:24
on 2022/06/11 15:24
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20220707092316-1.png
- image-20220707092322-2.png
- image-20220707092401-3.jpeg
- image-20220707092440-4.jpeg
- image-20220707092615-5.jpeg
- image-20220707094340-6.jpeg
- image-20220707094345-7.jpeg
- image-20220707094351-8.jpeg
- image-20220707094358-9.jpeg
- image-20220707094407-10.jpeg
- image-20220707094414-11.jpeg
- image-20220707094418-12.jpeg
- image-20220707094423-13.jpeg
- image-20220707094429-14.jpeg
- image-20220707094437-15.jpeg
- image-20220707094901-16.png
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1User Manual.02VD2 SA Series.WebHome1 +Servo.2\. User Manual.06 VD2 SA Series Servo Drives Manual (Full V1\.1).WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.Joey - Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -| =(% scope="row" %)**No.**|=**Content**6 -| =(% colspan="2" %)Wiring7 -| =1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -| =2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -| =3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -| =4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -| =5|Servo drive and servo motor must be grounded reliably.12 -| =6|When using an external braking resistor, the short wiring between drive C and D must be removed.13 -| =7|The force of all cables is within the specified range.14 -| =8|The wiring terminals have been insulated.15 -| =(% colspan="2" %)Environment and Machinery16 -| =1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -| =2|The servo drive and external braking resistor are not placed on combustible objects.18 -| =3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.5 +|**No.**|**Content** 6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring 7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|5|Servo drive and servo motor must be grounded reliably. 12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|7|The force of all cables is within the specified range. 14 +|8|The wiring terminals have been insulated. 15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery 16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -25,7 +25,7 @@ 25 25 26 26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal. 27 27 28 -If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault. 29 29 30 30 **(2) Set the servo drive enable (S-ON) to invalid (OFF)** 31 31 ... ... @@ -35,7 +35,7 @@ 35 35 36 36 **(1) Panel jog operation** 37 37 38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__. 39 39 40 40 **(2) Jog operation of servo debugging platform** 41 41 ... ... @@ -42,17 +42,17 @@ 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 44 45 - 46 -| =(% scope="row" %)**Function code**|=**Name**|=(((45 +(% class="table-bordered" %) 46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 47 47 **Setting method** 48 -)))|=((( 48 +)))|(% style="text-align:center; vertical-align:middle" %)((( 49 49 **Effective time** 50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 51 -|=P10-01|JOG speed|((( 50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)((( 52 52 Operation setting 53 -)))|((( 53 +)))|(% style="text-align:center; vertical-align:middle" %)((( 54 54 Effective immediately 55 -)))|100|0 to 3000|JOG speed|rpm 55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm 56 56 57 57 Table 6-2 JOG speed parameter 58 58 ... ... @@ -60,19 +60,25 @@ 60 60 61 61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 62 62 63 - 64 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 65 -|=P00-04|Rotation direction|((( 63 +(% class="table-bordered" %) 64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 65 +**Setting method** 66 +)))|(% style="text-align:center; vertical-align:middle" %)((( 67 +**Effective time** 68 +)))|(% style="text-align:center; vertical-align:middle" %)((( 69 +**Default value** 70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)((( 66 66 Shutdown setting 67 -)))|((( 73 +)))|(% style="text-align:center; vertical-align:middle" %)((( 68 68 Effective immediately 69 -)))|0|0 to 1|((( 75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 70 70 Forward rotation: Face the motor shaft to watch 71 71 72 72 0: standard setting (CW is forward rotation) 73 73 74 74 1: reverse mode (CCW is forward rotation) 75 -)))|- 81 +)))|(% style="text-align:center; vertical-align:middle" %)- 76 76 77 77 Table 6-3 Rotation direction parameters** ** 78 78 ... ... @@ -85,16 +85,17 @@ 85 85 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 86 86 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 87 87 88 -|=(% scope="row" %)**Function code**|=**Name**|=((( 94 +(% class="table-bordered" %) 95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 89 89 **Setting method** 90 -)))|=((( 97 +)))|(% style="text-align:center; vertical-align:middle" %)((( 91 91 **Effective time** 92 -)))|=**Default**|=**Range**|=**Definition**|=**Unit** 93 -|=P00-09|Braking resistor setting|((( 99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)((( 94 94 Operation setting 95 -)))|((( 102 +)))|(% style="text-align:center; vertical-align:middle" %)((( 96 96 Effective immediately 97 -)))|0|0 to 3|((( 104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|((( 98 98 0: use built-in braking resistor 99 99 100 100 1: use external braking resistor and natural cooling ... ... @@ -102,18 +102,18 @@ 102 102 2: use external braking resistor and forced air cooling; (cannot be set) 103 103 104 104 3: No braking resistor is used, it is all absorbed by capacitor. 105 -)))|- 106 -| =(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).107 -|=P00-10|External braking resistor value|((( 112 +)))|(% style="text-align:center; vertical-align:middle" %)- 113 +|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)((( 108 108 Operation setting 109 -)))|((( 116 +)))|(% style="text-align:center; vertical-align:middle" %)((( 110 110 Effective immediately 111 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 112 -|=P00-11|External braking resistor power|((( 118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω 119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)((( 113 113 Operation setting 114 -)))|((( 121 +)))|(% style="text-align:center; vertical-align:middle" %)((( 115 115 Effective immediately 116 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W 117 117 118 118 Table 6-4 Braking resistor parameters 119 119 ... ... @@ -127,11 +127,11 @@ 127 127 128 128 **(2) Input the instruction and the motor rotates** 129 129 130 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.137 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected. 131 131 132 132 **(3) Timing diagram of power on** 133 133 134 - 141 +(% style="text-align:center" %) 135 135 [[image:image-20220608163014-1.png]] 136 136 137 137 Figure 6-1 Timing diagram of power on ... ... @@ -138,19 +138,19 @@ 138 138 139 139 == **Servo shutdown** == 140 140 141 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.148 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. 142 142 150 +(% class="table-bordered" %) 151 +|Shutdown mode|Shutdown description|Shutdown characteristics 152 +|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 153 +|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 143 143 144 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 145 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 146 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 147 - 148 148 Table 6-5 Comparison of two shutdown modes 149 149 157 +(% class="table-bordered" %) 158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked** 159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 150 150 151 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 152 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 153 - 154 154 Table 6-6 Comparison of two shutdown status 155 155 156 156 **(1) Servo enable (S-ON) OFF shutdown** ... ... @@ -157,27 +157,27 @@ 157 157 158 158 The related parameters of the servo OFF shutdown mode are shown in the table below. 159 159 160 - 161 -| =(% scope="row" %)**Function code**|=**Name**|=(((167 +(% class="table-bordered" %) 168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 162 162 **Setting method** 163 -)))|=((( 170 +)))|(% style="text-align:center; vertical-align:middle" %)((( 164 164 **Effective time** 165 -)))|=((( 172 +)))|(% style="text-align:center; vertical-align:middle" %)((( 166 166 **Default value** 167 -)))|=**Range**|=**Definition**|=**Unit** 168 -|=P00-05|Servo OFF shutdown|((( 174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)((( 169 169 Shutdown 170 170 171 171 setting 172 -)))|((( 179 +)))|(% style="text-align:center; vertical-align:middle" %)((( 173 173 Effective 174 174 175 175 immediately 176 -)))|0|0 to 1|((( 183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 177 177 0: Free shutdown, and the motor shaft remains free status. 178 178 179 179 1: Zero-speed shutdown, and the motor shaft remains free status. 180 -)))|- 187 +)))|(% style="text-align:center; vertical-align:middle" %)- 181 181 182 182 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 183 183 ... ... @@ -193,13 +193,13 @@ 193 193 194 194 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 195 195 196 - 197 -| =(% scope="row" %)**Function code**|=**Name**|=(((203 +(% class="table-bordered" %) 204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 198 198 **Setting method** 199 -)))|=((( 206 +)))|(% style="text-align:center; vertical-align:middle" %)((( 200 200 **Effective time** 201 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 202 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|((( 203 203 0: OFF (not used) 204 204 205 205 01: S-ON servo enable ... ... @@ -247,30 +247,32 @@ 247 247 24: Internal multi-segment position selection 4 248 248 249 249 Others: reserved 250 -)))|- 251 -|=P06-09|DI_3 channel logic selection|Operation setting|((( 257 +)))|(% style="text-align:center; vertical-align:middle" %)- 258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)((( 252 252 Effective immediately 253 -)))|0|0 to 1|((( 260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 254 254 DI port input logic validity function selection. 255 255 256 256 0: Normally open input. Active low level (switch on); 257 257 258 258 1: Normally closed input. Active high level (switch off); 259 -)))|- 260 -|=P06-10|DI_3 input source selection|Operation setting|((( 266 +)))|(% style="text-align:center; vertical-align:middle" %)- 267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)((( 261 261 Effective immediately 262 -)))|0|0 to 1|((( 269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 263 263 Select the DI_3 port type to enable 264 264 265 265 0: Hardware DI_3 input terminal 266 266 267 267 1: virtual VDI_3 input terminal 268 -)))|- 269 -|=P06-11|DI_4 channel function selection|((( 275 +)))|(% style="text-align:center; vertical-align:middle" %)- 276 + 277 +(% class="table-bordered" %) 278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 270 270 Operation setting 271 -)))|((( 280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 272 272 again Power-on 273 -)))|4|0 to 32|((( 282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)((( 274 274 0 off (not used) 275 275 276 276 01: SON Servo enable ... ... @@ -318,25 +318,25 @@ 318 318 24: Internal multi-segment position selection 4 319 319 320 320 Others: reserved 321 -)))|- 322 -|=P06-12|DI_4 channel logic selection|Operation setting|((( 330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 323 323 Effective immediately 324 -)))|0|0 to 1|((( 333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)((( 325 325 DI port input logic validity function selection. 326 326 327 327 0: Normally open input. Active low level (switch on); 328 328 329 329 1: Normally closed input. Active high level (switch off); 330 -)))|- 331 -|=P06-13|DI_4 input source selection|Operation setting|((( 339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 332 332 Effective immediately 333 -)))|0|0 to 1|((( 342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)((( 334 334 Select the DI_4 port type to enable 335 335 336 336 0: Hardware DI_4 input terminal 337 337 338 338 1: virtual VDI_4 input terminal 339 -)))|- 348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 340 340 341 341 Table 6-8 DI3 and DI4 channel parameters 342 342 ... ... @@ -348,8 +348,9 @@ 348 348 349 349 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 350 350 351 - 360 +(% class="table-bordered" %) 352 352 |((( 362 +(% style="text-align:center" %) 353 353 [[image:image-20220611151617-1.png]] 354 354 ))) 355 355 |((( ... ... @@ -368,13 +368,14 @@ 368 368 369 369 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 370 370 371 - 381 +(% style="text-align:center" %) 372 372 [[image:image-20220608163136-2.png]] 373 373 374 374 Figure 6-2 VD2B servo drive brake wiring 375 375 376 - 386 +(% class="table-bordered" %) 377 377 |((( 388 +(% style="text-align:center" %) 378 378 [[image:image-20220611151642-2.png]] 379 379 ))) 380 380 |((( ... ... @@ -391,42 +391,42 @@ 391 391 392 392 Related function code is as below. 393 393 394 - 395 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((405 +(% class="table-bordered" %) 406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)((( 396 396 **Effective time** 397 397 ))) 398 -|=144|((( 409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)((( 399 399 BRK-OFF Brake output 400 -)))|Output the signal indicates the servo motor brake release|Power-on again 411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again 401 401 402 402 Table 6-2 Relevant function codes for brake setting 403 403 404 - 405 -| =(% scope="row" %)**Function code**|=**Name**|=(((415 +(% class="table-bordered" %) 416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 406 406 **Setting method** 407 -)))|=((( 418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 408 408 **Effective time** 409 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 410 -|=P1-30|Delay from brake output to instruction reception|((( 420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 411 411 Operation setting 412 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms 413 -|=P1-31|In static state, delay from brake output OFF to the motor is power off|((( 423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms 424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 414 414 Operation setting 415 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms 416 -|=P1-32|Rotation status, when the brake output OFF, the speed threshold|((( 426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms 427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 417 417 Operation setting 418 -)))|Effective immediately|30|0 to 3000|((( 429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)((( 419 419 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. 420 420 421 421 When the brake output (BRK-OFF) is not allocated, this function code has no effect. 422 -)))|rpm 423 -|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|((( 433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm 434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 424 424 Operation setting 425 -)))|Effective immediately|500|1 to 1000|((( 436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)((( 426 426 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. 427 427 428 428 When brake output (BRK-OFF) is not allocated, this function code has no effect. 429 -)))|ms 440 +)))|(% style="text-align:center; vertical-align:middle" %)ms 430 430 431 431 Table 6-9 Brake setting function codes 432 432 ... ... @@ -438,10 +438,11 @@ 438 438 439 439 1) Brake timing when servo motor is stationary 440 440 441 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__452 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__ 442 442 443 - 454 +(% class="table-bordered" %) 444 444 |((( 456 +(% style="text-align:center" %) 445 445 [[image:image-20220611151705-3.png]] 446 446 ))) 447 447 |((( ... ... @@ -450,6 +450,7 @@ 450 450 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 451 451 ))) 452 452 465 +(% style="text-align:center" %) 453 453 [[image:image-20220608163304-3.png]] 454 454 455 455 Figure 6-3 Brake Timing of when the motor is stationary ... ... @@ -458,10 +458,11 @@ 458 458 459 459 2) The brake timing when servo motor rotates 460 460 461 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.474 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__. 462 462 463 - 476 +(% class="table-bordered" %) 464 464 |((( 478 +(% style="text-align:center" %) 465 465 [[image:image-20220611151719-4.png]] 466 466 ))) 467 467 |((( ... ... @@ -476,6 +476,7 @@ 476 476 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 477 477 ))) 478 478 493 +(% style="text-align:center" %) 479 479 [[image:image-20220608163425-4.png]] 480 480 481 481 Figure 6-4 Brake timing when the motor rotates ... ... @@ -484,7 +484,7 @@ 484 484 485 485 The brake timing (free shutdown) in the fault status is as follows. 486 486 487 - 502 +(% style="text-align:center" %) 488 488 [[image:image-20220608163541-5.png]] 489 489 490 490 Figure 6-5 The brake timing (free shutdown) in the fault state ... ... @@ -493,7 +493,7 @@ 493 493 494 494 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 495 495 496 - 511 +(% style="text-align:center" %) 497 497 [[image:image-20220608163643-6.png]] 498 498 499 499 Figure 6-6 Position control diagram ... ... @@ -500,17 +500,17 @@ 500 500 501 501 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 502 502 503 - 504 -| =(% scope="row" %)**Function code**|=**Name**|=(((518 +(% class="table-bordered" %) 519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 505 505 **Setting method** 506 -)))|=((( 521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 507 507 **Effective time** 508 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 509 -|=P01-01|Control mode|((( 523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 510 510 Operation setting 511 -)))|((( 526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 512 512 immediately Effective 513 -)))|0|0 to 6|(((528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)((( 514 514 0: position control 515 515 516 516 2: speed control ... ... @@ -522,7 +522,7 @@ 522 522 5: position/torque mix control 523 523 524 524 6: speed /torque mix control 525 -)))|- 540 +)))|(% style="text-align:center; vertical-align:middle" %)- 526 526 527 527 Table 6-10 Control mode parameters 528 528 ... ... @@ -530,21 +530,21 @@ 530 530 531 531 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 532 532 533 - 534 -| =(% scope="row" %)**Function code**|=**Name**|=(((548 +(% class="table-bordered" %) 549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 535 535 **Setting method** 536 -)))|=((( 551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)((( 537 537 **Effective time** 538 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 539 -|=P01-06|Position instruction source|((( 553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 540 540 Operation setting 541 -)))|((( 556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)((( 542 542 immediately Effective 543 -)))|0|0 to 1|((( 558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)((( 544 544 0: pulse instruction 545 545 546 546 1: internal position instruction 547 -)))|- 562 +)))|(% style="text-align:center; vertical-align:middle" %)- 548 548 549 549 Table 6-11 Position instruction source parameter 550 550 ... ... @@ -552,19 +552,20 @@ 552 552 553 553 1) Low-speed pulse instruction input 554 554 555 -|[[image:image-20220707092316-1.png]]|[[image:image-20220707092322-2.png]] 556 -|VD2A and VD2B servo drives|VD2F servo drive 557 -|(% colspan="2" %)Figure 6-7 Position instruction input setting 570 +(% class="table-bordered" %) 571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive 573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting 558 558 559 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.575 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__. 560 560 561 561 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 562 562 579 +(% class="table-bordered" %) 580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage** 581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V 582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V 563 563 564 -|**Pulse method**|**Maximum frequency**|**Voltage** 565 -|Open collector input|200K|24V 566 -|Differential input|500K|5V 567 - 568 568 Table 6-12 Pulse input specifications 569 569 570 570 1.Differential input ... ... @@ -572,11 +572,11 @@ 572 572 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 573 573 574 574 (% style="text-align:center" %) 575 -[[image: image-20220707092615-5.jpeg]]591 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]] 576 576 577 577 Figure 6-8 Differential input connection 578 578 579 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”595 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 580 580 581 581 2.Open collector input 582 582 ... ... @@ -583,11 +583,11 @@ 583 583 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 584 584 585 585 (% style="text-align:center" %) 586 -[[image: image-20220707092401-3.jpeg||height="530" width="834"]]602 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]] 587 587 588 588 Figure 6-9 Open collector input connection 589 589 590 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”606 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 591 591 592 592 2) Position pulse frequency and anti-interference level 593 593 ... ... @@ -600,22 +600,22 @@ 600 600 601 601 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 602 602 603 - 604 -| =(% scope="row" %)**Function code**|=**Name**|=(((619 +(% class="table-bordered" %) 620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 605 605 **Setting method** 606 -)))|=((( 622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)((( 607 607 **Effective time** 608 -)))|=**Default value**|=**Range**| =(% colspan="2" %)**Definition**|=**Unit**609 -|=P00-13|Maximum position pulse frequency|((( 624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 610 610 Shutdown setting 611 -)))|((( 627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)((( 612 612 Effective immediately 613 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 614 -| =(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz 630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)((( 615 615 Operation setting 616 -)))|(% rowspan="3" %)((( 632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)((( 617 617 Power-on again 618 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)((( 619 619 Set the anti-interference level of external pulse instruction. 620 620 621 621 0: no filtering; ... ... @@ -635,9 +635,9 @@ 635 635 7: Filtering time 8.192us 636 636 637 637 8: Filtering time 16.384us 638 -)))|(% rowspan="3" %)- 639 -| =(% rowspan="2" %)9|VD2: Filtering time 25.5us640 -| =VD2F: Filtering time 25.5us654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)- 655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us 656 +|VD2F: Filtering time 25.5us 641 641 642 642 Table 6-13 Position pulse frequency and anti-interference level parameters 643 643 ... ... @@ -645,17 +645,17 @@ 645 645 646 646 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 647 647 648 - 649 -| =(% scope="row" %)**Function code**|=**Name**|=(((664 +(% class="table-bordered" %) 665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 650 650 **Setting method** 651 -)))|=((( 667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 652 652 **Effective time** 653 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 654 -|=P00-12|Position pulse type selection|((( 669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 655 655 Operation setting 656 -)))|((( 672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 657 657 Power-on again 658 -)))|0|0 to 5|((( 674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)((( 659 659 0: direction + pulse (positive logic) 660 660 661 661 1: CW/CCW ... ... @@ -667,84 +667,77 @@ 667 667 4: CW/CCW (negative logic) 668 668 669 669 5: A, B phase quadrature pulse (4 times frequency negative logic) 670 -)))|- 686 +)))|(% style="text-align:center; vertical-align:middle" %)- 671 671 672 672 Table 6-14 Position pulse type selection parameter 673 673 674 -|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse** 675 -|=0|((( 690 +(% class="table-bordered" %) 691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse** 692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 676 676 Direction + pulse 677 677 678 678 (Positive logic) 679 -)))|((( 696 +)))|(% style="text-align:center; vertical-align:middle" %)((( 680 680 PULSE 681 681 682 682 SIGN 683 -)))|[[image: image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]684 -|=1|CW/CCW|((( 700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)((( 685 685 PULSE (CW) 686 686 687 687 SIGN (CCW) 688 -)))|(% colspan="2" %)[[image: image-20220707094351-8.jpeg]]689 -|=2|((( 705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 690 690 AB phase orthogonal 691 691 692 692 pulse (4 times frequency) 693 -)))|((( 710 +)))|(% style="text-align:center; vertical-align:middle" %)((( 694 694 PULSE (Phase A) 695 695 696 696 SIGN (Phase B) 697 -)))|((( 698 - 714 +)))|(% style="text-align:center; vertical-align:middle" %)((( 715 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]] 699 699 700 -[[image:image-20220707094358-9.jpeg]] 701 - 702 702 Phase A is 90° ahead of Phase B 703 -)))|((( 704 - 718 +)))|(% style="text-align:center; vertical-align:middle" %)((( 719 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]] 705 705 706 -[[image:image-20220707094407-10.jpeg]] 707 - 708 708 Phase B is 90° ahead of Phase A 709 709 ))) 710 -|=3|((( 723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 711 711 Direction + pulse 712 712 713 713 (Negative logic) 714 -)))|((( 727 +)))|(% style="text-align:center; vertical-align:middle" %)((( 715 715 PULSE 716 716 717 717 SIGN 718 -)))|[[image: image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]719 -|=4|((( 731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 720 720 CW/CCW 721 721 722 722 (Negative logic) 723 -)))|((( 736 +)))|(% style="text-align:center; vertical-align:middle" %)((( 724 724 PULSE (CW) 725 725 726 726 SIGN (CCW) 727 -)))|(% colspan="2" %)[[image: image-20220707094423-13.jpeg]]728 -|=5|((( 740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 729 729 AB phase orthogonal 730 730 731 731 pulse (4 times frequency negative logic) 732 -)))|((( 745 +)))|(% style="text-align:center; vertical-align:middle" %)((( 733 733 PULSE (Phase A) 734 734 735 735 SIGN (Phase B) 736 -)))|((( 737 - 749 +)))|(% style="text-align:center; vertical-align:middle" %)((( 750 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]] 738 738 739 -[[image:image-20220707094429-14.jpeg]] 752 +B phase is ahead of A phase by 90° 753 +)))|(% style="text-align:center; vertical-align:middle" %)((( 754 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]] 740 740 741 -Phase B is ahead of A phase by 90° 742 -)))|((( 743 - 744 - 745 -[[image:image-20220707094437-15.jpeg]] 746 - 747 -Phase A is ahead of B phase by 90° 756 +A phase is ahead of B phase by 90° 748 748 ))) 749 749 750 750 Table 6-15 Pulse description ... ... @@ -751,7 +751,7 @@ 751 751 752 752 **(2) The source of position instruction is internal position instruction (P01-06=1)** 753 753 754 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.763 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__. 755 755 756 756 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 757 757 ... ... @@ -762,50 +762,51 @@ 762 762 763 763 1) Set multi-segment position running mode 764 764 765 -|=(% scope="row" %)**Function code**|=**Name**|=((( 774 +(% class="table-bordered" %) 775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 766 766 **Setting method** 767 -)))|=((( 777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 768 768 **Effective time** 769 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 770 -|=P07-01|Multi-segment position running mode|((( 779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 771 771 Shutdown setting 772 -)))|((( 782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 773 773 Effective immediately 774 -)))|0|0 to 2|((( 784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|((( 775 775 0: Single running 776 776 777 777 1: Cycle running 778 778 779 779 2: DI switching running 780 -)))|- 781 -|=P07-02|Start segment number|((( 790 +)))|(% style="text-align:center; vertical-align:middle" %)- 791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 782 782 Shutdown setting 783 -)))|((( 793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 784 784 Effective immediately 785 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|- 786 -|=P07-03|End segment number|((( 795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)- 796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 787 787 Shutdown setting 788 -)))|((( 798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 789 789 Effective immediately 790 -)))|1|1 to 16|last segment NO. in non-DI switching mode|- 791 -|=P07-04|Margin processing method|((( 800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)- 801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 792 792 Shutdown setting 793 -)))|((( 803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 794 794 Effective immediately 795 -)))|0|0 to 1|((( 805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 796 796 0: Run the remaining segments 797 797 798 798 1: Run again from the start segment 799 -)))|- 800 -|=P07-05|Displacement instruction type|((( 809 +)))|(% style="text-align:center; vertical-align:middle" %)- 810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 801 801 Shutdown setting 802 -)))|((( 812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 803 803 Effective immediately 804 -)))|0|0 to 1|((( 814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 805 805 0: Relative position instruction 806 806 807 807 1: Absolute position instruction 808 -)))|- 818 +)))|(% style="text-align:center; vertical-align:middle" %)- 809 809 810 810 Table 6-16 multi-segment position running mode parameters 811 811 ... ... @@ -813,9 +813,8 @@ 813 813 814 814 ~1. Single running 815 815 816 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively826 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 817 817 818 - 819 819 (% style="text-align:center" %) 820 820 [[image:image-20220608164226-10.png]] 821 821 ... ... @@ -823,15 +823,14 @@ 823 823 824 824 2. Cycle running 825 825 826 -In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.835 +In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 827 827 828 - 829 829 (% style="text-align:center" %) 830 830 [[image:image-20220608164327-11.png]] 831 831 832 832 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 833 833 834 -|[[image:image-20220611151917-5.png]] 842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]] 835 835 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 836 836 837 837 3. DI switching running ... ... @@ -838,26 +838,28 @@ 838 838 839 839 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 840 840 841 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 842 -|=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 843 -|=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 844 -|=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 845 -|=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 849 +(% class="table-bordered" %) 850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 846 846 847 847 Table 6-17 DI function code 848 848 849 849 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number. 850 850 851 -|=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number** 852 -|=0|0|0|0|1 853 -|=0|0|0|1|2 854 -|=0|0|1|0|3 855 -|=(% colspan="5" %)………… 856 -|=1|1|1|1|16 860 +(% class="table-bordered" %) 861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number** 862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1 863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2 864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3 865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)………… 866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16 857 857 858 858 Table 6-18 INPOS corresponds to running segment number 859 859 860 -The operating curve in this running mode is shown in __[[Figure 6-14>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.870 +The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__. 861 861 862 862 (% style="text-align:center" %) 863 863 [[image:image-20220608164545-12.png]] ... ... @@ -868,7 +868,7 @@ 868 868 869 869 **A. Run the remaining segments** 870 870 871 -In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.881 +In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively. 872 872 873 873 (% style="text-align:center" %) 874 874 [[image:image-20220608164847-13.png]] ... ... @@ -882,7 +882,7 @@ 882 882 883 883 **B. Run again from the start segment** 884 884 885 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.895 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively. 886 886 887 887 (% style="text-align:center" %) 888 888 [[image:image-20220608165343-15.png]] ... ... @@ -901,8 +901,10 @@ 901 901 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 902 902 903 903 |((( 914 +(% style="text-align:center" %) 904 904 [[image:image-20220608165710-17.png]] 905 905 )))|((( 917 +(% style="text-align:center" %) 906 906 [[image:image-20220608165749-18.png]] 907 907 ))) 908 908 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram ... ... @@ -912,8 +912,10 @@ 912 912 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 913 913 914 914 |((( 927 +(% style="text-align:center" %) 915 915 [[image:image-20220608165848-19.png]] 916 916 )))|((( 930 +(% style="text-align:center" %) 917 917 [[image:image-20220608170005-20.png]] 918 918 ))) 919 919 |Figure 6-21 Absolute indication|Figure 6-22 Displacement ... ... @@ -920,37 +920,42 @@ 920 920 921 921 2) Multi-segment position running curve setting 922 922 923 -The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.937 +The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 924 924 925 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 926 -|=P07-09|((( 939 +(% class="table-bordered" %) 940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 941 +**Setting method** 942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 943 +**Effective time** 944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)((( 927 927 1st segment 928 928 929 929 displacement 930 -)))|((( 949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 931 931 Operation setting 932 -)))|((( 951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 933 933 Effective immediately 934 -)))|10000|((( 953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)((( 935 935 -2147483647 to 936 936 937 937 2147483646 938 -)))|Position instruction, positive and negative values could be set|- 939 -|=P07-10|Maximum speed of the 1st displacement|((( 957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)- 958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 940 940 Operation setting 941 -)))|((( 960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 942 942 Effective immediately 943 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm 944 -|=P07-11|Acceleration and deceleration of 1st segment displacement|((( 962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm 963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 945 945 Operation setting 946 -)))|((( 965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 947 947 Effective immediately 948 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms 949 -|=P07-12|Waiting time after completion of the 1st segment displacement|((( 967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms 968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 950 950 Operation setting 951 -)))|((( 970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 952 952 Effective immediately 953 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06 972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06 954 954 955 955 Table 6-19 The 1st position operation curve parameters table 956 956 ... ... @@ -965,13 +965,15 @@ 965 965 966 966 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 967 967 968 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 969 -|=20|ENINPOS: Internal multi-segment position enable signal|((( 987 +(% class="table-bordered" %) 988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)((( 970 970 DI port logic invalid: Does not affect the current operation of the servo motor. 971 971 972 972 DI port logic valid: Motor runs multi-segment position 973 973 ))) 974 974 995 +(% style="text-align:center" %) 975 975 [[image:image-20220611152020-6.png]] 976 976 977 977 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! ... ... @@ -987,16 +987,19 @@ 987 987 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 988 988 989 989 (% style="text-align:center" %) 990 -[[image: image-20220707094901-16.png]]1011 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]] 991 991 1013 +(% style="text-align:center" %) 1014 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]] 992 992 1016 +(% style="text-align:center" %) 1017 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]] 993 993 994 - 995 995 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! 996 996 997 997 **(2) Setting steps of electronic gear ratio** 998 998 999 - 1023 +(% style="text-align:center" %) 1000 1000 [[image:image-20220608170320-22.png]] 1001 1001 1002 1002 Figure 6-24 Setting steps of electronic gear ratio ... ... @@ -1011,7 +1011,7 @@ 1011 1011 1012 1012 Step5: Calculate the value of electronic gear ratio according to formula below. 1013 1013 1014 - 1038 +(% style="text-align:center" %) 1015 1015 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]] 1016 1016 1017 1017 **(3) lectronic gear ratio switch setting** ... ... @@ -1019,59 +1019,59 @@ 1019 1019 1020 1020 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 1021 1021 1022 - 1023 -| =(% scope="row" %)**Function code**|=**Name**|=(((1046 +(% class="table-bordered" %) 1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1024 1024 **Setting method** 1025 -)))|=((( 1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1026 1026 **Effective time** 1027 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1028 -|=P00-16|Number of instruction pulses when the motor rotates one circle|((( 1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1029 1029 Shutdown setting 1030 -)))|((( 1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1031 1031 Effective immediately 1032 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|((( 1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)((( 1033 1033 Instruction pulse 1034 1034 1035 1035 unit 1036 1036 ))) 1037 -|=P00-17|((( 1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1038 1038 Electronic gear 1 1039 1039 1040 1040 numerator 1041 -)))|Operation setting|((( 1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1042 1042 Effective immediately 1043 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1044 -|=P00-18|((( 1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1045 1045 Electronic gear 1 1046 1046 1047 1047 denominator 1048 -)))|((( 1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1049 1049 Operation setting 1050 -)))|((( 1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1051 1051 Effective immediately 1052 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1053 -|=P00-19|((( 1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1054 1054 Electronic gear 2 1055 1055 1056 1056 numerator 1057 -)))|Operation setting|((( 1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1058 1058 Effective immediately 1059 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1060 -|=P00-20|((( 1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1061 1061 Electronic gear 2 1062 1062 1063 1063 denominator 1064 -)))|Operation setting|((( 1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1065 1065 Effective immediately 1066 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1067 1067 1068 1068 Table 6-20 Electronic gear ratio function code 1069 1069 1070 1070 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1071 1071 1072 - 1073 -| =(% scope="row" %)**DI function code**|=**Function name**|=**Function**1074 -|=09|GEAR-SEL electronic gear switch 1|((( 1096 +(% class="table-bordered" %) 1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)((( 1075 1075 DI port logic invalid: electronic gear ratio 1 1076 1076 1077 1077 DI port logic valid: electronic gear ratio 2 ... ... @@ -1079,10 +1079,10 @@ 1079 1079 1080 1080 Table 6-21 Switching conditions of electronic gear ratio group 1081 1081 1082 -| =(% scope="row" %)**P00-16 value**|=**DI terminal level corresponding to DI port function 9**|=**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]1083 -| =(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]1084 -|=DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1085 -|=1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] 1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]] 1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1086 1086 1087 1087 Table 6-22 Application of electronic gear ratio 1088 1088 ... ... @@ -1100,32 +1100,32 @@ 1100 1100 1101 1101 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1102 1102 1103 - 1127 +(% style="text-align:center" %) 1104 1104 [[image:image-20220608170455-23.png]] 1105 1105 1106 1106 Figure 6-25 Position instruction filtering diagram 1107 1107 1108 - 1109 -| =(% scope="row" %)**Function code**|=**Name**|=(((1132 +(% class="table-bordered" %) 1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 1110 1110 **Setting method** 1111 -)))|=((( 1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1112 1112 **Effective time** 1113 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1114 -|=P04-01|Pulse instruction filtering method|((( 1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit** 1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 1115 1115 Shutdown setting 1116 -)))|((( 1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1117 1117 Effective immediately 1118 -)))|0|0 to 1|((( 1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)((( 1119 1119 0: 1st-order low-pass filtering 1120 1120 1121 1121 1: average filtering 1122 -)))|- 1123 -|=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)- 1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1124 1124 Effective immediately 1125 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms 1126 -|=P04-03|Position instruction average filtering time constant|Shutdown setting|((( 1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms 1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1127 1127 Effective immediately 1128 -)))|0|0 to 128|Position instruction average filtering time constant|ms 1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms 1129 1129 1130 1130 Table 6-23 Position instruction filter function code 1131 1131 ... ... @@ -1145,7 +1145,7 @@ 1145 1145 (% class="wikigeneratedid" %) 1146 1146 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1147 1147 1148 - 1172 +(% style="text-align:center" %) 1149 1149 [[image:image-20220608170550-24.png]] 1150 1150 1151 1151 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1152,47 +1152,48 @@ 1152 1152 1153 1153 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27. 1154 1154 1155 -To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.1179 +To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1156 1156 1181 +(% style="text-align:center" %) 1157 1157 [[image:image-20220608170650-25.png]] 1158 1158 1159 1159 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1160 1160 1161 - 1162 -| =(% scope="row" %)**Function code**|=**Name**|=(((1186 +(% class="table-bordered" %) 1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1163 1163 **Setting method** 1164 -)))|=((( 1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1165 1165 **Effective time** 1166 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1167 -|=P05-12|Positioning completion threshold|((( 1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit** 1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1168 1168 Operation setting 1169 -)))|((( 1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1170 1170 Effective immediately 1171 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1172 -|=P05-13|Positioning approach threshold|((( 1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit 1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1173 1173 Operation setting 1174 -)))|((( 1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1175 1175 Effective immediately 1176 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1177 -|=P05-14|Position detection window time|((( 1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit 1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1178 1178 Operation setting 1179 -)))|((( 1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1180 1180 Effective immediately 1181 -)))|10|0 to 20000|Set positioning completion detection window time|ms 1182 -|=P05-15|Positioning signal hold time|((( 1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms 1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1183 1183 Operation setting 1184 -)))|((( 1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1185 1185 Effective immediately 1186 -)))|100|0 to 20000|Set positioning completion output hold time|ms 1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms 1187 1187 1188 1188 Table 6-24 Function code parameters of positioning completion 1189 1189 1190 - 1191 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1192 -|=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1193 -|=135|((( 1215 +(% class="table-bordered" %) 1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete. 1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)((( 1194 1194 P-NEAR positioning close 1195 -)))|((( 1220 +)))|(% style="text-align:center; vertical-align:middle" %)((( 1196 1196 Output this signal indicates that the servo drive position is close. 1197 1197 ))) 1198 1198 ... ... @@ -1200,9 +1200,9 @@ 1200 1200 1201 1201 = **Speed control mode** = 1202 1202 1203 -Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.1228 +Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1204 1204 1205 - 1230 +(% style="text-align:center" %) 1206 1206 [[image:6.28.jpg||height="260" width="806"]] 1207 1207 1208 1208 Figure 6-28 Speed control block diagram ... ... @@ -1211,21 +1211,21 @@ 1211 1211 1212 1212 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1213 1213 1214 - 1215 -|**Function code**|**Name**|((( 1239 +(% class="table-bordered" %) 1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1216 1216 **Setting method** 1217 -)))|((( 1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1218 1218 **Effective time** 1219 -)))|**Default value**|**Range**|**Definition**|**Unit** 1220 -|P01-01|Speed instruction source|((( 1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1221 1221 Shutdown setting 1222 -)))|((( 1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1223 1223 Effective immediately 1224 -)))|1|1 to 6|((( 1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)((( 1225 1225 0: internal speed instruction 1226 1226 1227 1227 1: AI_1 analog input (not supported by VD2F) 1228 -)))|- 1253 +)))|(% style="text-align:center; vertical-align:middle" %)- 1229 1229 1230 1230 Table 6-26 Speed instruction source parameter 1231 1231 ... ... @@ -1233,19 +1233,19 @@ 1233 1233 1234 1234 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below. 1235 1235 1236 - 1237 -|**Function code**|**Name**|((( 1261 +(% class="table-bordered" %) 1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)((( 1238 1238 **Setting method** 1239 -)))|((( 1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 1240 1240 **Effective time** 1241 -)))|**Default value**|**Range**|**Definition**|**Unit** 1242 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit** 1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1243 1243 Internal speed Instruction 0 1244 -)))|(% rowspan="2" %)((( 1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1245 1245 Operation setting 1246 -)))|(% rowspan="2" %)((( 1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1247 1247 Effective immediately 1248 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1249 1249 Internal speed instruction 0 1250 1250 1251 1251 When DI input port: ... ... @@ -1257,15 +1257,15 @@ 1257 1257 13-INSPD1: 0, 1258 1258 1259 1259 select this speed instruction to be effective. 1260 -)))|(% rowspan="2" %)rpm 1261 -|-5000 to 5000* 1262 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1263 1263 Internal speed Instruction 1 1264 -)))|(% rowspan="2" %)((( 1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1265 1265 Operation setting 1266 -)))|(% rowspan="2" %)((( 1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1267 1267 Effective immediately 1268 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1269 1269 Internal speed instruction 1 1270 1270 1271 1271 When DI input port: ... ... @@ -1277,15 +1277,15 @@ 1277 1277 13-INSPD1: 1, 1278 1278 1279 1279 Select this speed instruction to be effective. 1280 -)))|(% rowspan="2" %)rpm 1281 -|-5000 to 5000* 1282 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1283 1283 Internal speed Instruction 2 1284 -)))|(% rowspan="2" %)((( 1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1285 1285 Operation setting 1286 -)))|(% rowspan="2" %)((( 1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1287 1287 Effective immediately 1288 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1289 1289 Internal speed instruction 2 1290 1290 1291 1291 When DI input port: ... ... @@ -1297,15 +1297,15 @@ 1297 1297 13-INSPD1: 0, 1298 1298 1299 1299 Select this speed instruction to be effective. 1300 -)))|(% rowspan="2" %)rpm 1301 -|-5000 to 5000* 1302 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1303 1303 Internal speed Instruction 3 1304 -)))|(% rowspan="2" %)((( 1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1305 1305 Operation setting 1306 -)))|(% rowspan="2" %)((( 1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1307 1307 Effective immediately 1308 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1309 1309 Internal speed instruction 3 1310 1310 1311 1311 When DI input port: ... ... @@ -1317,16 +1317,17 @@ 1317 1317 13-INSPD1: 1, 1318 1318 1319 1319 Select this speed instruction to be effective. 1320 -)))|(% rowspan="2" %)rpm 1321 -|-5000 to 5000* 1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1322 1322 1323 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1348 +(% class="table-bordered" %) 1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1324 1324 Internal speed Instruction 4 1325 -)))|(% rowspan="2" %)((( 1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1326 1326 Operation setting 1327 -)))|(% rowspan="2" %)((( 1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1328 1328 Effective immediately 1329 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1330 1330 Internal speed instruction 4 1331 1331 1332 1332 When DI input port: ... ... @@ -1338,15 +1338,15 @@ 1338 1338 13-INSPD1: 0, 1339 1339 1340 1340 Select this speed instruction to be effective. 1341 -)))|(% rowspan="2" %)rpm 1342 -|-5000 to 5000* 1343 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1344 1344 Internal speed Instruction 5 1345 -)))|(% rowspan="2" %)((( 1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1346 1346 Operation setting 1347 -)))|(% rowspan="2" %)((( 1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1348 1348 Effective immediately 1349 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1350 1350 Internal speed instruction 5 1351 1351 1352 1352 When DI input port: ... ... @@ -1358,15 +1358,15 @@ 1358 1358 13-INSPD1: 1, 1359 1359 1360 1360 Select this speed instruction to be effective. 1361 -)))|(% rowspan="2" %)rpm 1362 -|-5000 to 5000* 1363 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1364 1364 Internal speed Instruction 6 1365 -)))|(% rowspan="2" %)((( 1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1366 1366 Operation setting 1367 -)))|(% rowspan="2" %)((( 1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1368 1368 Effective immediately 1369 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1370 1370 Internal speed instruction 6 1371 1371 1372 1372 When DI input port: ... ... @@ -1378,15 +1378,15 @@ 1378 1378 13-INSPD1: 0, 1379 1379 1380 1380 Select this speed instruction to be effective. 1381 -)))|(% rowspan="2" %)rpm 1382 -|-5000 to 5000* 1383 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1384 1384 Internal speed Instruction 7 1385 -)))|(% rowspan="2" %)((( 1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1386 1386 Operation setting 1387 -)))|(% rowspan="2" %)((( 1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1388 1388 Effective immediately 1389 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1390 1390 Internal speed instruction 7 1391 1391 1392 1392 When DI input port: ... ... @@ -1398,34 +1398,34 @@ 1398 1398 13-INSPD1: 1, 1399 1399 1400 1400 Select this speed instruction to be effective. 1401 -)))|(% rowspan="2" %)rpm 1402 -|-5000 to 5000* 1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1403 1403 1404 1404 Table 6-27 Internal speed instruction parameters 1405 1405 1406 1406 ✎**Note: **“*” means the set range of VD2F servo drive. 1407 1407 1434 +(% class="table-bordered" %) 1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1408 1408 1409 -|**DI function code**|**function name**|**Function** 1410 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1411 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1412 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1413 - 1414 1414 Table 6-28 DI multi-speed function code description 1415 1415 1416 1416 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1417 1417 1418 - 1419 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1420 -|0|0|0|1|0 1421 -|0|0|1|2|1 1422 -|0|1|0|3|2 1444 +(% class="table-bordered" %) 1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number** 1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0 1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1 1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2 1423 1423 |(% colspan="5" %)...... 1424 -|1|1|1|8|7 1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7 1425 1425 1426 1426 Table 6-29 Correspondence between INSPD bits and segment numbers 1427 1427 1428 - 1454 +(% style="text-align:center" %) 1429 1429 [[image:image-20220608170845-26.png]] 1430 1430 1431 1431 Figure 6-29 Multi-segment speed running curve ... ... @@ -1434,7 +1434,7 @@ 1434 1434 1435 1435 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1436 1436 1437 - 1463 +(% style="text-align:center" %) 1438 1438 [[image:image-20220608153341-5.png]] 1439 1439 1440 1440 Figure 6-30 Analog input circuit ... ... @@ -1441,7 +1441,7 @@ 1441 1441 1442 1442 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1443 1443 1444 - 1470 +(% style="text-align:center" %) 1445 1445 [[image:image-20220608170955-27.png]] 1446 1446 1447 1447 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1454,18 +1454,18 @@ 1454 1454 1455 1455 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1456 1456 1457 - 1483 +(% style="text-align:center" %) 1458 1458 [[image:image-20220608171124-28.png]] 1459 1459 1460 1460 Figure 6-32 AI_1 diagram before and after bias 1461 1461 1488 +(% class="table-bordered" %) 1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit** 1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms 1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1462 1462 1463 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1464 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1465 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1466 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1467 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1468 - 1469 1469 Table 6-30 AI_1 parameters 1470 1470 1471 1471 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1476,7 +1476,7 @@ 1476 1476 1477 1477 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1478 1478 1479 - 1505 +(% style="text-align:center" %) 1480 1480 [[image:image-20220608171314-29.png]] 1481 1481 1482 1482 Figure 6-33 of acceleration and deceleration time diagram ... ... @@ -1485,22 +1485,22 @@ 1485 1485 1486 1486 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1487 1487 1488 - 1489 -|**Function code**|**Name**|((( 1514 +(% class="table-bordered" %) 1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1490 1490 **Setting method** 1491 -)))|((( 1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1492 1492 **Effective time** 1493 -)))|**Default value**|**Range**|**Definition**|**Unit** 1494 -|P01-03|Acceleration time|((( 1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit** 1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1495 1495 Operation setting 1496 -)))|((( 1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1497 1497 Effective immediately 1498 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1499 -|P01-04|Deceleration time|((( 1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms 1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1500 1500 Operation setting 1501 -)))|((( 1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1502 1502 Effective immediately 1503 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms 1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms 1504 1504 1505 1505 Table 6-31 Acceleration and deceleration time parameters 1506 1506 ... ... @@ -1519,27 +1519,27 @@ 1519 1519 1520 1520 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1521 1521 1522 - 1523 -|**Function code**|**Name**|((( 1548 +(% class="table-bordered" %) 1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1524 1524 **Setting method** 1525 -)))|((( 1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1526 1526 **Effective time** 1527 -)))|**Default value**|**Range**|**Definition**|**Unit** 1528 -|P01-10|Maximum speed threshold|((( 1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit** 1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1529 1529 Operation setting 1530 -)))|((( 1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1531 1531 Effective immediately 1532 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1533 -|P01-12|Forward speed threshold|((( 1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1534 1534 Operation setting 1535 -)))|((( 1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1536 1536 Effective immediately 1537 -)))|3000|0 to 5000|Set forward speed limit value|rpm 1538 -|P01-13|Reverse speed threshold|((( 1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1539 1539 Operation setting 1540 -)))|((( 1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1541 1541 Effective immediately 1542 -)))|3000|0 to 5000|Set reverse speed limit value|rpm 1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1543 1543 1544 1544 Table 6-32 Rotation speed related function codes 1545 1545 ... ... @@ -1549,19 +1549,19 @@ 1549 1549 1550 1550 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1551 1551 1552 - 1553 -|**Function code**|**Name**|((( 1578 +(% class="table-bordered" %) 1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1554 1554 **Setting method** 1555 -)))|((( 1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1556 1556 **Effective time** 1557 -)))|**Default value**|**Range**|**Definition**|**Unit** 1558 -|P01-21|((( 1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit** 1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1559 1559 Zero-speed clamp function selection 1560 -)))|((( 1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1561 1561 Operation setting 1562 -)))|((( 1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1563 1563 Effective immediately 1564 -)))|0|0 to 3|((( 1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)((( 1565 1565 Set the zero-speed clamp function. In speed mode: 1566 1566 1567 1567 0: Force the speed to 0; ... ... @@ -1571,18 +1571,18 @@ 1571 1571 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1572 1572 1573 1573 3: Invalid, ignore zero-speed clamp input 1574 -)))|- 1575 -|P01-22|((( 1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)- 1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1576 1576 Zero-speed clamp speed threshold 1577 -)))|((( 1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1578 1578 Operation setting 1579 -)))|((( 1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1580 1580 Effective immediately 1581 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm 1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm 1582 1582 1583 1583 Table 6-33 Zero-speed clamp related parameters 1584 1584 1585 - 1611 +(% style="text-align:center" %) 1586 1586 [[image:image-20220608171549-30.png]] 1587 1587 1588 1588 Figure 6-34 Zero-speed clamp diagram ... ... @@ -1595,36 +1595,36 @@ 1595 1595 1596 1596 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1597 1597 1598 - 1624 +(% style="text-align:center" %) 1599 1599 [[image:image-20220608171625-31.png]] 1600 1600 1601 1601 Figure 6-35 Rotation detection signal diagram 1602 1602 1603 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1629 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1604 1604 1605 - 1606 -|**Function code**|**Name**|((( 1631 +(% class="table-bordered" %) 1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)((( 1607 1607 **Setting method** 1608 -)))|((( 1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 1609 1609 **Effective time** 1610 -)))|**Default value**|**Range**|**Definition**|**Unit** 1611 -|P05-16|((( 1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit** 1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1612 1612 Rotation detection 1613 1613 1614 1614 speed threshold 1615 -)))|((( 1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)((( 1616 1616 Operation setting 1617 -)))|((( 1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 1618 1618 Effective immediately 1619 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm 1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm 1620 1620 1621 1621 Table 6-34 Rotation detection speed threshold parameters 1622 1622 1623 - 1624 -|**DO function code**|**Function name**|**Function** 1625 -|132|((( 1649 +(% class="table-bordered" %) 1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function** 1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)((( 1626 1626 T-COIN rotation detection 1627 -)))|((( 1653 +)))|(% style="width:879px" %)((( 1628 1628 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1629 1629 1630 1630 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1636,32 +1636,32 @@ 1636 1636 1637 1637 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1638 1638 1639 - 1665 +(% style="text-align:center" %) 1640 1640 [[image:image-20220608171904-32.png]] 1641 1641 1642 1642 Figure 6-36 Zero-speed signal diagram 1643 1643 1644 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1670 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1645 1645 1646 - 1647 -|**Function code**|**Name**|((( 1672 +(% class="table-bordered" %) 1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1648 1648 **Setting method** 1649 -)))|((( 1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 1650 1650 **Effective time** 1651 -)))|**Default value**|**Range**|**Definition**|**Unit** 1652 -|P05-19|Zero speed output signal threshold|((( 1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit** 1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1653 1653 Operation setting 1654 -)))|((( 1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 1655 1655 Effective immediately 1656 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm 1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm 1657 1657 1658 1658 Table 6-36 Zero-speed output signal threshold parameter 1659 1659 1660 - 1661 -|**DO function code**|**Function name**|**Function** 1662 -|133|((( 1686 +(% class="table-bordered" %) 1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)((( 1663 1663 ZSP zero speed signal 1664 -)))|Output this signal indicates that the servo motor is stopping rotation 1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation 1665 1665 1666 1666 Table 6-37 DO zero-speed signal function code 1667 1667 ... ... @@ -1669,32 +1669,32 @@ 1669 1669 1670 1670 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1671 1671 1672 - 1698 +(% style="text-align:center" %) 1673 1673 [[image:image-20220608172053-33.png]] 1674 1674 1675 1675 Figure 6-37 Speed consistent signal diagram 1676 1676 1677 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1703 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1678 1678 1679 - 1680 -|**Function code**|**Name**|((( 1705 +(% class="table-bordered" %) 1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1681 1681 **Setting method** 1682 -)))|((( 1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1683 1683 **Effective time** 1684 -)))|**Default value**|**Range**|**Definition**|**Unit** 1685 -|P05-17|Speed consistent signal threshold|((( 1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit** 1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1686 1686 Operationsetting 1687 -)))|((( 1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1688 1688 Effective immediately 1689 -)))|10|0 to 100|Set speed consistent signal threshold|rpm 1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm 1690 1690 1691 1691 Table 6-38 Speed consistent signal threshold parameters 1692 1692 1693 - 1694 -|**DO Function code**|**Function name**|**Function** 1695 -|136|((( 1719 +(% class="table-bordered" %) 1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function** 1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)((( 1696 1696 U-COIN consistent speed 1697 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1698 1698 1699 1699 Table 6-39 DO speed consistent function code 1700 1700 ... ... @@ -1702,32 +1702,32 @@ 1702 1702 1703 1703 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1704 1704 1705 - 1731 +(% style="text-align:center" %) 1706 1706 [[image:image-20220608172207-34.png]] 1707 1707 1708 1708 Figure 6-38 Speed approaching signal diagram 1709 1709 1710 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1736 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1711 1711 1712 - 1713 -|**Function code**|**Name**|((( 1738 +(% class="table-bordered" %) 1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)((( 1714 1714 **Setting method** 1715 -)))|((( 1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 1716 1716 **Effective time** 1717 -)))|**Default value**|**Range**|**Definition**|**Unit** 1718 -|P05-18|Speed approach signal threshold|((( 1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)((( 1719 1719 Operation setting 1720 -)))|((( 1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 1721 1721 Effective immediately 1722 -)))|100|10 to 6000|Set speed approach signal threshold|rpm 1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm 1723 1723 1724 1724 Table 6-40 Speed approaching signal threshold parameters 1725 1725 1726 - 1727 -|**DO function code**|**Function name**|**Function** 1728 -|137|((( 1752 +(% class="table-bordered" %) 1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function** 1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)((( 1729 1729 V-NEAR speed approach 1730 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value 1731 1731 1732 1732 Table 6-41 DO speed approach function code 1733 1733 ... ... @@ -1735,7 +1735,7 @@ 1735 1735 1736 1736 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1737 1737 1738 - 1764 +(% style="text-align:center" %) 1739 1739 [[image:image-20220608172405-35.png]] 1740 1740 1741 1741 Figure 6-39 Torque mode diagram ... ... @@ -1744,21 +1744,21 @@ 1744 1744 1745 1745 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1746 1746 1747 - 1748 -|**Function code**|**Name**|((( 1773 +(% class="table-bordered" %) 1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1749 1749 **Setting method** 1750 -)))|((( 1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1751 1751 **Effective time** 1752 -)))|**Default value**|**Range**|**Definition**|**Unit** 1753 -|P01-08|Torque instruction source|((( 1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1754 1754 Shutdown setting 1755 -)))|((( 1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1756 1756 Effective immediately 1757 -)))|0|0 to 1|((( 1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)((( 1758 1758 0: internal torque instruction 1759 1759 1760 1760 1: AI_1 analog input(not supported by VD2F) 1761 -)))|- 1787 +)))|(% style="text-align:center; vertical-align:middle" %)- 1762 1762 1763 1763 Table 6-42 Torque instruction source parameter 1764 1764 ... ... @@ -1766,17 +1766,17 @@ 1766 1766 1767 1767 Torque instruction source is from inside, the value is set by function code P01-08. 1768 1768 1769 - 1770 -|**Function code**|**Name**|((( 1795 +(% class="table-bordered" %) 1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 1771 1771 **Setting method** 1772 -)))|((( 1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 1773 1773 **Effective time** 1774 -)))|**Default value**|**Range**|**Definition**|**Unit** 1775 -|P01-08|Torque instruction keyboard set value|((( 1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 1776 1776 Operation setting 1777 -)))|((( 1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 1778 1778 Effective immediately 1779 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1% 1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1% 1780 1780 1781 1781 Table 6-43 Torque instruction keyboard set value 1782 1782 ... ... @@ -1784,7 +1784,7 @@ 1784 1784 1785 1785 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1786 1786 1787 - 1813 +(% style="text-align:center" %) 1788 1788 [[image:image-20220608153646-7.png||height="213" width="408"]] 1789 1789 1790 1790 Figure 6-40 Analog input circuit ... ... @@ -1791,7 +1791,7 @@ 1791 1791 1792 1792 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1793 1793 1794 - 1820 +(% style="text-align:center" %) 1795 1795 [[image:image-20220608172502-36.png]] 1796 1796 1797 1797 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1804,18 +1804,18 @@ 1804 1804 1805 1805 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1806 1806 1807 - 1833 +(% style="text-align:center" %) 1808 1808 [[image:image-20220608172611-37.png]] 1809 1809 1810 1810 Figure 6-42 AI_1 diagram before and after bias 1811 1811 1838 +(% class="table-bordered" %) 1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV 1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms 1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV 1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV 1812 1812 1813 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1814 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1815 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1816 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1817 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1818 - 1819 1819 Table 6-44 AI_1 parameters 1820 1820 1821 1821 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1824,23 +1824,23 @@ 1824 1824 1825 1825 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1826 1826 1827 - 1828 -|**Function code**|**Name**|((( 1853 +(% class="table-bordered" %) 1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)((( 1829 1829 **Setting method** 1830 -)))|((( 1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1831 1831 **Effective time** 1832 -)))|**Default value**|**Range**|**Definition**|**Unit** 1833 -|P04-04|Torque filtering time constant|((( 1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)((( 1834 1834 Operation setting 1835 -)))|((( 1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1836 1836 Effective immediately 1837 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms 1838 1838 1839 1839 Table 6-45 Torque filtering time constant parameter details 1840 1840 1841 1841 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1842 1842 1843 - 1869 +(% style="text-align:center" %) 1844 1844 [[image:image-20220608172646-38.png]] 1845 1845 1846 1846 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1851,7 +1851,7 @@ 1851 1851 1852 1852 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1853 1853 1854 - 1880 +(% style="text-align:center" %) 1855 1855 [[image:image-20220608172806-39.png]] 1856 1856 1857 1857 Figure 6-44 Torque instruction limit diagram ... ... @@ -1860,50 +1860,50 @@ 1860 1860 1861 1861 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1862 1862 1863 - 1864 -|**Function code**|**Name**|((( 1889 +(% class="table-bordered" %) 1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 1865 1865 **Setting method** 1866 -)))|((( 1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 1867 1867 **Effective time** 1868 -)))|**Default value**|**Range**|**Definition**|**Unit** 1869 -|P01-14|((( 1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1870 1870 Torque limit source 1871 -)))|((( 1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 1872 1872 Shutdown setting 1873 -)))|((( 1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 1874 1874 Effective immediately 1875 -)))|0|0 to 1|((( 1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)((( 1876 1876 0: internal value 1877 1877 1878 1878 1: AI_1 analog input 1879 1879 1880 1880 (not supported by VD2F) 1881 -)))|- 1907 +)))|(% style="text-align:center; vertical-align:middle" %)- 1882 1882 1883 1883 1) Torque limit source is internal torque instruction (P01-14=0) 1884 1884 1885 1885 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1886 1886 1887 - 1888 -|**Function code**|**Name**|((( 1913 +(% class="table-bordered" %) 1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1889 1889 **Setting method** 1890 -)))|((( 1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1891 1891 **Effective time** 1892 -)))|**Default value**|**Range**|**Definition**|**Unit** 1893 -|P01-15|((( 1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit** 1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)((( 1894 1894 Forward torque limit 1895 -)))|((( 1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1896 1896 Operation setting 1897 -)))|((( 1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1898 1898 Effective immediately 1899 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1900 -|P01-16|((( 1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1% 1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)((( 1901 1901 Reverse torque limit 1902 -)))|((( 1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1903 1903 Operation setting 1904 -)))|((( 1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1905 1905 Effective immediately 1906 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1% 1907 1907 1908 1908 Table 6-46 Torque limit parameter details 1909 1909 ... ... @@ -1915,11 +1915,11 @@ 1915 1915 1916 1916 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1917 1917 1918 - 1919 -|**DO function code**|**Function name**|**Function** 1920 -|139|((( 1944 +(% class="table-bordered" %) 1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function** 1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)((( 1921 1921 T-LIMIT in torque limit 1922 -)))|Output of this signal indicates that the servo motor torque is limited 1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited 1923 1923 1924 1924 Table 6-47 DO torque limit function codes 1925 1925 ... ... @@ -1927,50 +1927,53 @@ 1927 1927 1928 1928 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited. 1929 1929 1930 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.1956 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__. 1931 1931 1932 1932 |((( 1959 +(% style="text-align:center" %) 1933 1933 [[image:image-20220608172910-40.png]] 1934 1934 )))|((( 1962 +(% style="text-align:center" %) 1935 1935 [[image:image-20220608173155-41.png]] 1936 1936 ))) 1937 1937 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1938 1938 1939 -|**Function code**|**Name**|((( 1967 +(% class="table-bordered" %) 1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1940 1940 **Setting method** 1941 -)))|((( 1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1942 1942 **Effective time** 1943 -)))|**Default value**|**Range**|**Definition**|**Unit** 1944 -|P01-17|((( 1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1945 1945 Forward torque 1946 1946 1947 1947 limit in torque mode 1948 -)))|((( 1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1949 1949 Operation setting 1950 -)))|((( 1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1951 1951 Effective immediately 1952 -)))|3000|0 to 5000|((( 1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)((( 1953 1953 Forward torque 1954 1954 1955 1955 limit in torque mode 1956 -)))|0.1% 1957 -|P01-18|((( 1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1% 1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1958 1958 Reverse torque 1959 1959 1960 1960 limit in torque mode 1961 -)))|((( 1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1962 1962 Operation setting 1963 -)))|((( 1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1964 1964 Effective immediately 1965 -)))|3000|0 to 5000|((( 1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)((( 1966 1966 Reverse torque 1967 1967 1968 1968 limit in torque mode 1969 -)))|0.1% 1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1% 1970 1970 1971 1971 Table 6-48 Speed limit parameters in torque mode 1972 1972 1973 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__.2002 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__. 1974 1974 1975 1975 == **Torque-related DO output functions** == 1976 1976 ... ... @@ -1980,51 +1980,51 @@ 1980 1980 1981 1981 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1982 1982 1983 - 2012 +(% style="text-align:center" %) 1984 1984 [[image:image-20220608173541-42.png]] 1985 1985 1986 1986 Figure 6-47 Torque arrival output diagram 1987 1987 1988 -To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.2017 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1989 1989 1990 - 1991 -|**Function code**|**Name**|((( 2019 +(% class="table-bordered" %) 2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 1992 1992 **Setting method** 1993 -)))|((( 2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 1994 1994 **Effective time** 1995 -)))|**Default value**|**Range**|**Definition**|**Unit** 1996 -|P05-20|((( 2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1997 1997 Torque arrival 1998 1998 1999 1999 threshold 2000 -)))|((( 2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2001 2001 Operation setting 2002 -)))|((( 2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2003 2003 Effective immediately 2004 -)))|100|0 to 300|((( 2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)((( 2005 2005 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2006 2006 2007 2007 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; 2008 2008 2009 2009 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2010 -)))|% 2011 -|P05-21|((( 2039 +)))|(% style="text-align:center; vertical-align:middle" %)% 2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 2012 2012 Torque arrival 2013 2013 2014 2014 hysteresis 2015 -)))|((( 2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2016 2016 Operation setting 2017 -)))|((( 2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2018 2018 Effective immediately 2019 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)% 2020 2020 2021 2021 Table 6-49 Torque arrival parameters 2022 2022 2023 - 2024 -|**DO function code**|**Function name**|**Function** 2025 -|138|((( 2052 +(% class="table-bordered" %) 2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function** 2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)((( 2026 2026 T-COIN torque arrival 2027 -)))|Used to determine whether the actual torque instruction has reached the set range 2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range 2028 2028 2029 2029 Table 6-50 DO Torque Arrival Function Code 2030 2030 ... ... @@ -2040,17 +2040,17 @@ 2040 2040 2041 2041 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2042 2042 2043 - 2044 -|**Function code**|**Name**|((( 2072 +(% class="table-bordered" %) 2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 2045 2045 **Setting method** 2046 -)))|((( 2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)((( 2047 2047 **Effective time** 2048 -)))|**Default value**|**Range**|**Definition**|**Unit** 2049 -|P00-01|Control mode|((( 2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 2050 2050 Shutdown setting 2051 -)))|((( 2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)((( 2052 2052 Shutdown setting 2053 -)))|1|1 to 6|((( 2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)((( 2054 2054 1: Position control 2055 2055 2056 2056 2: Speed control ... ... @@ -2062,22 +2062,23 @@ 2062 2062 5: Position/torque mixed control 2063 2063 2064 2064 6: Speed/torque mixed control 2065 -)))|- 2094 +)))|(% style="text-align:center; vertical-align:middle" %)- 2066 2066 2067 2067 Table 6-51 Mixed control mode parameters 2068 2068 2069 -Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.2098 +Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2070 2070 2071 - 2072 -|**DI function code**|**Name**|**Function name**|**Function** 2073 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2074 -|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2075 -|(% rowspan="2" %)4|Valid|Speed mode 2076 -|invalid|Position mode 2077 -|(% rowspan="2" %)5|Valid|Torque mode 2078 -|invalid|Position mode 2079 -|(% rowspan="2" %)6|Valid|Torque mode 2080 -|invalid|Speed mode 2100 +(% class="table-bordered" %) 2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2103 +(% class="table-bordered" %) 2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode** 2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2081 2081 ))) 2082 2082 2083 2083 Table 6-52 Description of DI function codes in control mode ... ... @@ -2096,15 +2096,15 @@ 2096 2096 2097 2097 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2098 2098 2129 +(% class="table-bordered" %) 2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2099 2099 2100 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2101 -|A1 (single-turn magnetic encoder)|17|0 to 131071 2102 - 2103 2103 Table 6-53 Single-turn absolute encoder information 2104 2104 2105 2105 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2106 2106 2107 - 2137 +(% style="text-align:center" %) 2108 2108 [[image:image-20220608173618-43.png]] 2109 2109 2110 2110 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2113,16 +2113,16 @@ 2113 2113 2114 2114 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2115 2115 2146 +(% class="table-bordered" %) 2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607 2116 2116 2117 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2118 -|C1 (multi-turn magnetic encoder)|17|0 to 131071 2119 -|D2 (multi-turn Optical encoder)|23|0 to 8388607 2120 - 2121 2121 Table 6-54 Multi-turn absolute encoder information 2122 2122 2123 2123 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2124 2124 2125 - 2155 +(% style="text-align:center" %) 2126 2126 [[image:image-20220608173701-44.png]] 2127 2127 2128 2128 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2131,12 +2131,12 @@ 2131 2131 2132 2132 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2133 2133 2164 +(% class="table-bordered" %) 2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type** 2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit 2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2134 2134 2135 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2136 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2137 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2138 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2139 - 2140 2140 Table 6-55 Encoder feedback data 2141 2141 2142 2142 == **Absolute value system encoder battery box use precautions** == ... ... @@ -2143,7 +2143,7 @@ 2143 2143 2144 2144 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2145 2145 2146 - 2176 +(% style="text-align:center" %) 2147 2147 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]] 2148 2148 2149 2149 Figure 6-50 the encoder battery box ... ... @@ -2156,23 +2156,23 @@ 2156 2156 2157 2157 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2158 2158 2159 - 2160 -|**Function code**|**Name**|((( 2189 +(% class="table-bordered" %) 2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 2161 2161 **Setting method** 2162 -)))|((( 2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 2163 2163 **Effective time** 2164 -)))|**Default value**|**Range**|**Definition**|**Unit** 2165 -|P10-06|Multi-turn absolute encoder reset|((( 2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 2166 2166 Shutdown setting 2167 -)))|((( 2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 2168 2168 Effective immediately 2169 -)))|0|0 to 1|((( 2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)((( 2170 2170 0: No operation 2171 2171 2172 2172 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2173 2173 2174 2174 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2175 -)))|- 2205 +)))|(% style="text-align:center; vertical-align:middle" %)- 2176 2176 2177 2177 Table 6-56 Absolute encoder reset enable parameter 2178 2178 ... ... @@ -2190,18 +2190,18 @@ 2190 2190 2191 2191 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2192 2192 2193 - 2223 +(% style="text-align:center" %) 2194 2194 [[image:image-20220608173804-46.png]] 2195 2195 2196 2196 Figure 6-51 VDI_1 setting steps 2197 2197 2198 - 2199 -|**Function code**|**Name**|((( 2228 +(% class="table-bordered" %) 2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 2200 2200 **Setting method** 2201 -)))|((( 2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 2202 2202 **Effective time** 2203 -)))|**Default value**|**Range**|**Definition**|**Unit** 2204 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2205 2205 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2206 2206 2207 2207 VDI_1 input level: ... ... @@ -2209,8 +2209,8 @@ 2209 2209 0: low level 2210 2210 2211 2211 1: high level 2212 -)))|- 2213 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2242 +)))|(% style="text-align:center; vertical-align:middle" %)- 2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2214 2214 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2215 2215 2216 2216 VDI_2 input level: ... ... @@ -2218,8 +2218,8 @@ 2218 2218 0: low level 2219 2219 2220 2220 1: high level 2221 -)))|- 2222 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2251 +)))|(% style="text-align:center; vertical-align:middle" %)- 2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2223 2223 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2224 2224 2225 2225 VDI_3 input level: ... ... @@ -2227,8 +2227,8 @@ 2227 2227 0: low level 2228 2228 2229 2229 1: high level 2230 -)))|- 2231 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2260 +)))|(% style="text-align:center; vertical-align:middle" %)- 2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2232 2232 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2233 2233 2234 2234 VDI_4 input level: ... ... @@ -2236,8 +2236,8 @@ 2236 2236 0: low level 2237 2237 2238 2238 1: high level 2239 -)))|- 2240 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2269 +)))|(% style="text-align:center; vertical-align:middle" %)- 2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2241 2241 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2242 2242 2243 2243 VDI_5 input level: ... ... @@ -2245,8 +2245,8 @@ 2245 2245 0: low level 2246 2246 2247 2247 1: high level 2248 -)))|- 2249 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2278 +)))|(% style="text-align:center; vertical-align:middle" %)- 2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2250 2250 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2251 2251 2252 2252 VDI_6 input level: ... ... @@ -2254,8 +2254,8 @@ 2254 2254 0: low level 2255 2255 2256 2256 1: high level 2257 -)))|- 2258 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2287 +)))|(% style="text-align:center; vertical-align:middle" %)- 2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2259 2259 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2260 2260 2261 2261 VDI_7 input level: ... ... @@ -2263,8 +2263,8 @@ 2263 2263 0: low level 2264 2264 2265 2265 1: high level 2266 -)))|- 2267 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2296 +)))|(% style="text-align:center; vertical-align:middle" %)- 2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2268 2268 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2269 2269 2270 2270 VDI_8 input level: ... ... @@ -2272,7 +2272,7 @@ 2272 2272 0: low level 2273 2273 2274 2274 1: high level 2275 -)))|- 2305 +)))|(% style="text-align:center; vertical-align:middle" %)- 2276 2276 2277 2277 Table 6-57 Virtual VDI parameters 2278 2278 ... ... @@ -2282,11 +2282,11 @@ 2282 2282 2283 2283 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2284 2284 2315 +(% class="table-bordered" %) 2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration** 2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2285 2285 2286 -|**Setting value**|**DI channel logic selection**|**Illustration** 2287 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2288 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2289 - 2290 2290 Table 6-58 DI terminal channel logic selection 2291 2291 2292 2292 == **VDO** == ... ... @@ -2295,55 +2295,55 @@ 2295 2295 2296 2296 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2297 2297 2298 - 2328 +(% style="text-align:center" %) 2299 2299 [[image:image-20220608173957-48.png]] 2300 2300 2301 2301 Figure 6-52 VDO_2 setting steps 2302 2302 2303 - 2304 -|**Function code**|**Name**|((( 2333 +(% class="table-bordered" %) 2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 2305 2305 **Setting method** 2306 -)))|((( 2336 +)))|(% style="text-align:center; vertical-align:middle" %)((( 2307 2307 **Effective time** 2308 -)))|**Default value**|**Range**|**Definition**|**Unit** 2309 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2310 2310 VDO_1 output level: 2311 2311 2312 2312 0: low level 2313 2313 2314 2314 1: high level 2315 -)))|- 2316 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2345 +)))|(% style="text-align:center; vertical-align:middle" %)- 2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2317 2317 VDO_2 output level: 2318 2318 2319 2319 0: low level 2320 2320 2321 2321 1: high level 2322 -)))|- 2323 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2352 +)))|(% style="text-align:center; vertical-align:middle" %)- 2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2324 2324 VDO_3 output level: 2325 2325 2326 2326 0: low level 2327 2327 2328 2328 1: high level 2329 -)))|- 2330 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2359 +)))|(% style="text-align:center; vertical-align:middle" %)- 2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2331 2331 VDO_4 output level: 2332 2332 2333 2333 0: low level 2334 2334 2335 2335 1: high level 2336 -)))|- 2366 +)))|(% style="text-align:center; vertical-align:middle" %)- 2337 2337 2338 2338 Table 6-59 Communication control DO function parameters 2339 2339 2370 +(% class="table-bordered" %) 2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2340 2340 2341 -|**DO function number**|**Function name**|**Function** 2342 -|145|COM_VDO1 communication VDO1 output|Use communication VDO 2343 -|146|COM_VDO1 communication VDO2 output|Use communication VDO 2344 -|147|COM_VDO1 communication VDO3 output|Use communication VDO 2345 -|148|COM_VDO1 communication VDO4output|Use communication VDO 2346 - 2347 2347 Table 6-60 VDO function number 2348 2348 2349 2349 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation ... ... @@ -2354,17 +2354,17 @@ 2354 2354 2355 2355 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2356 2356 2357 - 2358 -|**Function code**|**Name**|((( 2387 +(% class="table-bordered" %) 2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 2359 2359 **Setting method** 2360 -)))|((( 2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 2361 2361 **Effective time** 2362 -)))|**Default value**|**Range**|**Definition**|**Unit** 2363 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)((( 2364 2364 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2365 2365 2366 2366 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled 2367 -)))|% 2397 +)))|(% style="text-align:center; vertical-align:middle" %)% 2368 2368 2369 2369 In the following cases, it could be modified according to the actual heat generation of the motor 2370 2370
- image-20220707092316-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -277.2 KB - Content
- image-20220707092322-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -277.2 KB - Content
- image-20220707092401-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -73.4 KB - Content
- image-20220707092440-4.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -33.1 KB - Content
- image-20220707092615-5.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.4 KB - Content
- image-20220707094340-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.2 KB - Content
- image-20220707094345-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.9 KB - Content
- image-20220707094351-8.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.1 KB - Content
- image-20220707094358-9.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220707094407-10.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.0 KB - Content
- image-20220707094414-11.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.1 KB - Content
- image-20220707094418-12.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.9 KB - Content
- image-20220707094423-13.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.0 KB - Content
- image-20220707094429-14.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220707094437-15.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220707094901-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.1 KB - Content