Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 8 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -996,22 +996,10 @@ 996 996 997 997 **(2) Setting steps of electronic gear ratio** 998 998 999 -[[image:image-20220707100 348-17.jpeg]]999 +[[image:image-20220707100850-20.jpeg]] 1000 1000 1001 1001 Figure 6-24 Setting steps of electronic gear ratio 1002 1002 1003 -Step1: Confirm the mechanical parameters including the reduction ratio, the ball screw lead, gear diameter in the gear drive, and pulley diameter in the pulley drive. 1004 - 1005 -Step2: Confirm the resolution of servo motor encoder. 1006 - 1007 -Step3: Confirm the parameters such as mechanical specifications, positioning accuracy, etc, and determine the load displacement corresponding to one position instruction output by the host computer. 1008 - 1009 -Step4: Combine the mechanical parameters and the load displacement corresponding to one position instruction, calculate the position instruction value required for one rotation of the load shaft. 1010 - 1011 -Step5: Calculate the value of electronic gear ratio according to formula below. 1012 - 1013 -[[image:image-20220707100409-18.png]] 1014 - 1015 1015 **(3) lectronic gear ratio switch setting** 1016 1016 1017 1017 ... ... @@ -1077,14 +1077,14 @@ 1077 1077 1078 1078 Table 6-21 Switching conditions of electronic gear ratio group 1079 1079 1080 -|=(% scope="row" %)**P00-16 value**|=**DI terminal level corresponding to DI port function 9**|=**Electronic gear ratio**[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]1081 -|=(% rowspan="2" %)0|DI port logic invalid|[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]1082 -|=DI port logic valid|[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]1083 -|=1 to 131072|~-~-|[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]1068 +|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]] 1069 +|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]] 1070 +|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]] 1071 +|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]] 1084 1084 1085 1085 Table 6-22 Application of electronic gear ratio 1086 1086 1087 -When the function code P00-16 is not 0, the electronic gear ratio [[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] is invalid.1075 +When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid. 1088 1088 1089 1089 == **Position instruction filtering** == 1090 1090 ... ... @@ -1098,12 +1098,11 @@ 1098 1098 1099 1099 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1100 1100 1101 - 1089 +(% style="text-align:center" %) 1102 1102 [[image:image-20220608170455-23.png]] 1103 1103 1104 1104 Figure 6-25 Position instruction filtering diagram 1105 1105 1106 - 1107 1107 |=(% scope="row" %)**Function code**|=**Name**|=((( 1108 1108 **Setting method** 1109 1109 )))|=((( ... ... @@ -1143,7 +1143,7 @@ 1143 1143 (% class="wikigeneratedid" %) 1144 1144 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1145 1145 1146 - 1133 +(% style="text-align:center" %) 1147 1147 [[image:image-20220608170550-24.png]] 1148 1148 1149 1149 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1152,11 +1152,11 @@ 1152 1152 1153 1153 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1154 1154 1142 +(% style="text-align:center" %) 1155 1155 [[image:image-20220608170650-25.png]] 1156 1156 1157 1157 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1158 1158 1159 - 1160 1160 |=(% scope="row" %)**Function code**|=**Name**|=((( 1161 1161 **Setting method** 1162 1162 )))|=((( ... ... @@ -1185,7 +1185,6 @@ 1185 1185 1186 1186 Table 6-24 Function code parameters of positioning completion 1187 1187 1188 - 1189 1189 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 1190 1190 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1191 1191 |=135|((( ... ... @@ -1200,7 +1200,7 @@ 1200 1200 1201 1201 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1202 1202 1203 - 1189 +(% style="text-align:center" %) 1204 1204 [[image:6.28.jpg||height="260" width="806"]] 1205 1205 1206 1206 Figure 6-28 Speed control block diagram ... ... @@ -1219,7 +1219,7 @@ 1219 1219 Shutdown setting 1220 1220 )))|((( 1221 1221 Effective immediately 1222 -)))|1|1 to 6|(((1208 +)))|1|1 to 1|((( 1223 1223 0: internal speed instruction 1224 1224 1225 1225 1: AI_1 analog input (not supported by VD2F) ... ... @@ -1229,21 +1229,31 @@ 1229 1229 1230 1230 **(1) Speed instruction source is internal speed instruction (P01-01=0)** 1231 1231 1232 -Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo w.1218 +Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo 1233 1233 1220 +(% style="width:1141px" %) 1221 +|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)((( 1222 +**Setting** 1234 1234 1235 -|**Function code**|**Name**|((( 1236 -**Setting method** 1237 -)))|((( 1238 -**Effective time** 1239 -)))|**Default value**|**Range**|**Definition**|**Unit** 1240 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1241 -Internal speed Instruction 0 1242 -)))|(% rowspan="2" %)((( 1243 -Operation setting 1244 -)))|(% rowspan="2" %)((( 1245 -Effective immediately 1246 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1224 +**method** 1225 +)))|(% colspan="2" %)((( 1226 +**Effective** 1227 + 1228 +**time** 1229 +)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit** 1230 +|(% colspan="1" %)P01-02|(% colspan="2" %)((( 1231 +Internal speed 1232 + 1233 +Instruction 0 1234 +)))|(% colspan="2" %)((( 1235 +Operation 1236 + 1237 +setting 1238 +)))|(% colspan="2" %)((( 1239 +Effective 1240 + 1241 +immediately 1242 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1247 1247 Internal speed instruction 0 1248 1248 1249 1249 When DI input port: ... ... @@ -1255,15 +1255,20 @@ 1255 1255 13-INSPD1: 0, 1256 1256 1257 1257 select this speed instruction to be effective. 1258 -)))|(% rowspan="2" %)rpm 1259 -|-5000 to 5000* 1260 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1261 -Internal speed Instruction 1 1262 -)))|(% rowspan="2" %)((( 1263 -Operation setting 1264 -)))|(% rowspan="2" %)((( 1265 -Effective immediately 1266 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1254 +)))|(% colspan="2" %)rpm 1255 +|(% colspan="1" %)P01-23|(% colspan="2" %)((( 1256 +Internal speed 1257 + 1258 +Instruction 1 1259 +)))|(% colspan="2" %)((( 1260 +Operation 1261 + 1262 +setting 1263 +)))|(% colspan="2" %)((( 1264 +Effective 1265 + 1266 +immediately 1267 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1267 1267 Internal speed instruction 1 1268 1268 1269 1269 When DI input port: ... ... @@ -1275,15 +1275,20 @@ 1275 1275 13-INSPD1: 1, 1276 1276 1277 1277 Select this speed instruction to be effective. 1278 -)))|(% rowspan="2" %)rpm 1279 -|-5000 to 5000* 1280 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1281 -Internal speed Instruction 2 1282 -)))|(% rowspan="2" %)((( 1283 -Operation setting 1284 -)))|(% rowspan="2" %)((( 1285 -Effective immediately 1286 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1279 +)))|(% colspan="2" %)rpm 1280 +|(% colspan="1" %)P01-24|(% colspan="2" %)((( 1281 +Internal speed 1282 + 1283 +Instruction 2 1284 +)))|(% colspan="2" %)((( 1285 +Operation 1286 + 1287 +setting 1288 +)))|(% colspan="2" %)((( 1289 +Effective 1290 + 1291 +immediately 1292 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1287 1287 Internal speed instruction 2 1288 1288 1289 1289 When DI input port: ... ... @@ -1295,15 +1295,20 @@ 1295 1295 13-INSPD1: 0, 1296 1296 1297 1297 Select this speed instruction to be effective. 1298 -)))|(% rowspan="2" %)rpm 1299 -|-5000 to 5000* 1300 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1301 -Internal speed Instruction 3 1302 -)))|(% rowspan="2" %)((( 1303 -Operation setting 1304 -)))|(% rowspan="2" %)((( 1305 -Effective immediately 1306 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1304 +)))|(% colspan="2" %)rpm 1305 +|(% colspan="1" %)P01-25|(% colspan="2" %)((( 1306 +Internal speed 1307 + 1308 +Instruction 3 1309 +)))|(% colspan="2" %)((( 1310 +Operation 1311 + 1312 +setting 1313 +)))|(% colspan="2" %)((( 1314 +Effective 1315 + 1316 +immediately 1317 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1307 1307 Internal speed instruction 3 1308 1308 1309 1309 When DI input port: ... ... @@ -1315,16 +1315,20 @@ 1315 1315 13-INSPD1: 1, 1316 1316 1317 1317 Select this speed instruction to be effective. 1318 -)))|(% rowspan="2" %)rpm 1319 -|-5000 to 5000* 1329 +)))|(% colspan="2" %)rpm 1330 +|P01-26|(% colspan="2" %)((( 1331 +Internal speed 1320 1320 1321 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1322 -Internal speed Instruction 4 1323 -)))|(% rowspan="2" %)((( 1324 -Operation setting 1325 -)))|(% rowspan="2" %)((( 1326 -Effective immediately 1327 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1333 +Instruction 4 1334 +)))|(% colspan="2" %)((( 1335 +Operation 1336 + 1337 +setting 1338 +)))|(% colspan="2" %)((( 1339 +Effective 1340 + 1341 +immediately 1342 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1328 1328 Internal speed instruction 4 1329 1329 1330 1330 When DI input port: ... ... @@ -1336,15 +1336,20 @@ 1336 1336 13-INSPD1: 0, 1337 1337 1338 1338 Select this speed instruction to be effective. 1339 -)))|(% rowspan="2" %)rpm 1340 -|-5000 to 5000* 1341 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1342 -Internal speed Instruction 5 1343 -)))|(% rowspan="2" %)((( 1344 -Operation setting 1345 -)))|(% rowspan="2" %)((( 1346 -Effective immediately 1347 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1354 +)))|(% colspan="1" %)rpm 1355 +|P01-27|(% colspan="2" %)((( 1356 +Internal speed 1357 + 1358 +Instruction 5 1359 +)))|(% colspan="2" %)((( 1360 +Operation 1361 + 1362 +setting 1363 +)))|(% colspan="2" %)((( 1364 +Effective 1365 + 1366 +immediately 1367 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1348 1348 Internal speed instruction 5 1349 1349 1350 1350 When DI input port: ... ... @@ -1356,15 +1356,20 @@ 1356 1356 13-INSPD1: 1, 1357 1357 1358 1358 Select this speed instruction to be effective. 1359 -)))|(% rowspan="2" %)rpm 1360 -|-5000 to 5000* 1361 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1362 -Internal speed Instruction 6 1363 -)))|(% rowspan="2" %)((( 1364 -Operation setting 1365 -)))|(% rowspan="2" %)((( 1366 -Effective immediately 1367 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1379 +)))|(% colspan="1" %)rpm 1380 +|P01-28|(% colspan="2" %)((( 1381 +Internal speed 1382 + 1383 +Instruction 6 1384 +)))|(% colspan="2" %)((( 1385 +Operation 1386 + 1387 +setting 1388 +)))|(% colspan="2" %)((( 1389 +Effective 1390 + 1391 +immediately 1392 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1368 1368 Internal speed instruction 6 1369 1369 1370 1370 When DI input port: ... ... @@ -1376,15 +1376,20 @@ 1376 1376 13-INSPD1: 0, 1377 1377 1378 1378 Select this speed instruction to be effective. 1379 -)))|(% rowspan="2" %)rpm 1380 -|-5000 to 5000* 1381 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1382 -Internal speed Instruction 7 1383 -)))|(% rowspan="2" %)((( 1384 -Operation setting 1385 -)))|(% rowspan="2" %)((( 1386 -Effective immediately 1387 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1404 +)))|(% colspan="1" %)rpm 1405 +|P01-29|(% colspan="2" %)((( 1406 +Internal speed 1407 + 1408 +Instruction 7 1409 +)))|(% colspan="2" %)((( 1410 +Operation 1411 + 1412 +setting 1413 +)))|(% colspan="2" %)((( 1414 +Effective 1415 + 1416 +immediately 1417 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1388 1388 Internal speed instruction 7 1389 1389 1390 1390 When DI input port: ... ... @@ -1396,14 +1396,10 @@ 1396 1396 13-INSPD1: 1, 1397 1397 1398 1398 Select this speed instruction to be effective. 1399 -)))|(% rowspan="2" %)rpm 1400 -|-5000 to 5000* 1429 +)))|(% colspan="1" %)rpm 1401 1401 1402 1402 Table 6-27 Internal speed instruction parameters 1403 1403 1404 -✎**Note: **“*” means the set range of VD2F servo drive. 1405 - 1406 - 1407 1407 |**DI function code**|**function name**|**Function** 1408 1408 |13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1409 1409 |14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number ... ... @@ -1423,16 +1423,15 @@ 1423 1423 1424 1424 Table 6-29 Correspondence between INSPD bits and segment numbers 1425 1425 1426 - 1427 1427 [[image:image-20220608170845-26.png]] 1428 1428 1429 1429 Figure 6-29 Multi-segment speed running curve 1430 1430 1431 -**(2) Speed instruction source is internal speed instruction (P01-01= 0)**1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)** 1432 1432 1433 1433 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1434 1434 1435 - 1460 +(% style="text-align:center" %) 1436 1436 [[image:image-20220608153341-5.png]] 1437 1437 1438 1438 Figure 6-30 Analog input circuit ... ... @@ -1439,7 +1439,7 @@ 1439 1439 1440 1440 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1441 1441 1442 - 1467 +(% style="text-align:center" %) 1443 1443 [[image:image-20220608170955-27.png]] 1444 1444 1445 1445 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1446,18 +1446,15 @@ 1446 1446 1447 1447 Explanation of related terms: 1448 1448 1449 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1474 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1475 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1476 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1450 1450 1451 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1452 - 1453 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1454 - 1455 - 1478 +(% style="text-align:center" %) 1456 1456 [[image:image-20220608171124-28.png]] 1457 1457 1458 1458 Figure 6-32 AI_1 diagram before and after bias 1459 1459 1460 - 1461 1461 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1462 1462 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1463 1463 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1474,16 +1474,14 @@ 1474 1474 1475 1475 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1476 1476 1477 - 1499 +(% style="text-align:center" %) 1478 1478 [[image:image-20220608171314-29.png]] 1479 1479 1480 1480 Figure 6-33 of acceleration and deceleration time diagram 1481 1481 1482 -Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]] 1504 +(% style="text-align:center" %) 1505 +[[image:image-20220707103616-27.png]] 1483 1483 1484 -Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1485 - 1486 - 1487 1487 |**Function code**|**Name**|((( 1488 1488 **Setting method** 1489 1489 )))|((( ... ... @@ -1618,7 +1618,6 @@ 1618 1618 1619 1619 Table 6-34 Rotation detection speed threshold parameters 1620 1620 1621 - 1622 1622 |**DO function code**|**Function name**|**Function** 1623 1623 |132|((( 1624 1624 T-COIN rotation detection ... ... @@ -1634,7 +1634,6 @@ 1634 1634 1635 1635 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1636 1636 1637 - 1638 1638 [[image:image-20220608171904-32.png]] 1639 1639 1640 1640 Figure 6-36 Zero-speed signal diagram ... ... @@ -1641,7 +1641,6 @@ 1641 1641 1642 1642 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1643 1643 1644 - 1645 1645 |**Function code**|**Name**|((( 1646 1646 **Setting method** 1647 1647 )))|((( ... ... @@ -1667,7 +1667,6 @@ 1667 1667 1668 1668 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1669 1669 1670 - 1671 1671 [[image:image-20220608172053-33.png]] 1672 1672 1673 1673 Figure 6-37 Speed consistent signal diagram ... ... @@ -1674,7 +1674,6 @@ 1674 1674 1675 1675 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1676 1676 1677 - 1678 1678 |**Function code**|**Name**|((( 1679 1679 **Setting method** 1680 1680 )))|((( ... ... @@ -1700,14 +1700,12 @@ 1700 1700 1701 1701 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1702 1702 1703 - 1704 1704 [[image:image-20220608172207-34.png]] 1705 1705 1706 1706 Figure 6-38 Speed approaching signal diagram 1707 1707 1708 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-4 0>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1709 1709 1710 - 1711 1711 |**Function code**|**Name**|((( 1712 1712 **Setting method** 1713 1713 )))|((( ... ... @@ -1721,7 +1721,6 @@ 1721 1721 1722 1722 Table 6-40 Speed approaching signal threshold parameters 1723 1723 1724 - 1725 1725 |**DO function code**|**Function name**|**Function** 1726 1726 |137|((( 1727 1727 V-NEAR speed approach ... ... @@ -1782,7 +1782,7 @@ 1782 1782 1783 1783 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1784 1784 1785 - 1797 +(% style="text-align:center" %) 1786 1786 [[image:image-20220608153646-7.png||height="213" width="408"]] 1787 1787 1788 1788 Figure 6-40 Analog input circuit ... ... @@ -1789,7 +1789,7 @@ 1789 1789 1790 1790 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1791 1791 1792 - 1804 +(% style="text-align:center" %) 1793 1793 [[image:image-20220608172502-36.png]] 1794 1794 1795 1795 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1796,18 +1796,15 @@ 1796 1796 1797 1797 Explanation of related terms: 1798 1798 1799 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1811 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1812 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1813 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1800 1800 1801 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1802 - 1803 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1804 - 1805 - 1815 +(% style="text-align:center" %) 1806 1806 [[image:image-20220608172611-37.png]] 1807 1807 1808 1808 Figure 6-42 AI_1 diagram before and after bias 1809 1809 1810 - 1811 1811 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1812 1812 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1813 1813 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1822,7 +1822,6 @@ 1822 1822 1823 1823 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1824 1824 1825 - 1826 1826 |**Function code**|**Name**|((( 1827 1827 **Setting method** 1828 1828 )))|((( ... ... @@ -1838,7 +1838,7 @@ 1838 1838 1839 1839 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1840 1840 1841 - 1849 +(% style="text-align:center" %) 1842 1842 [[image:image-20220608172646-38.png]] 1843 1843 1844 1844 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1849,7 +1849,7 @@ 1849 1849 1850 1850 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1851 1851 1852 - 1860 +(% style="text-align:center" %) 1853 1853 [[image:image-20220608172806-39.png]] 1854 1854 1855 1855 Figure 6-44 Torque instruction limit diagram ... ... @@ -1858,7 +1858,6 @@ 1858 1858 1859 1859 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1860 1860 1861 - 1862 1862 |**Function code**|**Name**|((( 1863 1863 **Setting method** 1864 1864 )))|((( ... ... @@ -1882,7 +1882,6 @@ 1882 1882 1883 1883 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1884 1884 1885 - 1886 1886 |**Function code**|**Name**|((( 1887 1887 **Setting method** 1888 1888 )))|((( ... ... @@ -1913,7 +1913,6 @@ 1913 1913 1914 1914 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1915 1915 1916 - 1917 1917 |**DO function code**|**Function name**|**Function** 1918 1918 |139|((( 1919 1919 T-LIMIT in torque limit ... ... @@ -1978,7 +1978,7 @@ 1978 1978 1979 1979 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1980 1980 1981 - 1986 +(% style="text-align:center" %) 1982 1982 [[image:image-20220608173541-42.png]] 1983 1983 1984 1984 Figure 6-47 Torque arrival output diagram ... ... @@ -1985,7 +1985,6 @@ 1985 1985 1986 1986 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1987 1987 1988 - 1989 1989 |**Function code**|**Name**|((( 1990 1990 **Setting method** 1991 1991 )))|((( ... ... @@ -2030,15 +2030,14 @@ 2030 2030 2031 2031 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2032 2032 2033 -Position mode Speed mode2037 +Position mode⇔ Speed mode 2034 2034 2035 -Position mode Torque mode2039 +Position mode ⇔Torque mode 2036 2036 2037 -Speed mode Torque mode2041 +Speed mode ⇔Torque mode 2038 2038 2039 2039 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2040 2040 2041 - 2042 2042 |**Function code**|**Name**|((( 2043 2043 **Setting method** 2044 2044 )))|((( ... ... @@ -2066,7 +2066,6 @@ 2066 2066 2067 2067 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2068 2068 2069 - 2070 2070 |**DI function code**|**Name**|**Function name**|**Function** 2071 2071 |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2072 2072 |**P00-01**|**MixModeSel terminal logic**|**Control mode** ... ... @@ -2102,7 +2102,7 @@ 2102 2102 2103 2103 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2104 2104 2105 - 2107 +(% style="text-align:center" %) 2106 2106 [[image:image-20220608173618-43.png]] 2107 2107 2108 2108 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2111,7 +2111,6 @@ 2111 2111 2112 2112 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2113 2113 2114 - 2115 2115 |**Encoder type**|**Encoder resolution (bits)**|**Data range** 2116 2116 |C1 (multi-turn magnetic encoder)|17|0 to 131071 2117 2117 |D2 (multi-turn Optical encoder)|23|0 to 8388607 ... ... @@ -2120,7 +2120,7 @@ 2120 2120 2121 2121 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2122 2122 2123 - 2124 +(% style="text-align:center" %) 2124 2124 [[image:image-20220608173701-44.png]] 2125 2125 2126 2126 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2129,7 +2129,6 @@ 2129 2129 2130 2130 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2131 2131 2132 - 2133 2133 |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2134 2134 |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2135 2135 |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
- image-20220707100813-19.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +343.4 KB - Content
- image-20220707100850-20.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +338.3 KB - Content
- image-20220707101328-21.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.0 KB - Content
- image-20220707101336-22.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 KB - Content
- image-20220707101341-23.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.8 KB - Content
- image-20220707101509-25.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +513 bytes - Content
- image-20220707103506-26.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.4 KB - Content
- image-20220707103616-27.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.3 KB - Content