Changes for page 06 Operation
Last modified by Iris on 2025/08/05 17:31
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1086,12 +1086,11 @@ 1086 1086 1087 1087 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1088 1088 1089 - 1089 +(% style="text-align:center" %) 1090 1090 [[image:image-20220608170455-23.png]] 1091 1091 1092 1092 Figure 6-25 Position instruction filtering diagram 1093 1093 1094 - 1095 1095 |=(% scope="row" %)**Function code**|=**Name**|=((( 1096 1096 **Setting method** 1097 1097 )))|=((( ... ... @@ -1131,7 +1131,7 @@ 1131 1131 (% class="wikigeneratedid" %) 1132 1132 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1133 1133 1134 - 1133 +(% style="text-align:center" %) 1135 1135 [[image:image-20220608170550-24.png]] 1136 1136 1137 1137 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1140,11 +1140,11 @@ 1140 1140 1141 1141 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1142 1142 1142 +(% style="text-align:center" %) 1143 1143 [[image:image-20220608170650-25.png]] 1144 1144 1145 1145 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1146 1146 1147 - 1148 1148 |=(% scope="row" %)**Function code**|=**Name**|=((( 1149 1149 **Setting method** 1150 1150 )))|=((( ... ... @@ -1173,7 +1173,6 @@ 1173 1173 1174 1174 Table 6-24 Function code parameters of positioning completion 1175 1175 1176 - 1177 1177 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 1178 1178 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1179 1179 |=135|((( ... ... @@ -1188,7 +1188,7 @@ 1188 1188 1189 1189 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1190 1190 1191 - 1189 +(% style="text-align:center" %) 1192 1192 [[image:6.28.jpg||height="260" width="806"]] 1193 1193 1194 1194 Figure 6-28 Speed control block diagram ... ... @@ -1207,7 +1207,7 @@ 1207 1207 Shutdown setting 1208 1208 )))|((( 1209 1209 Effective immediately 1210 -)))|1|1 to 6|(((1208 +)))|1|1 to 1|((( 1211 1211 0: internal speed instruction 1212 1212 1213 1213 1: AI_1 analog input (not supported by VD2F) ... ... @@ -1217,21 +1217,31 @@ 1217 1217 1218 1218 **(1) Speed instruction source is internal speed instruction (P01-01=0)** 1219 1219 1220 -Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo w.1218 +Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo 1221 1221 1220 +(% style="width:1141px" %) 1221 +|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)((( 1222 +**Setting** 1222 1222 1223 -|**Function code**|**Name**|((( 1224 -**Setting method** 1225 -)))|((( 1226 -**Effective time** 1227 -)))|**Default value**|**Range**|**Definition**|**Unit** 1228 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1229 -Internal speed Instruction 0 1230 -)))|(% rowspan="2" %)((( 1231 -Operation setting 1232 -)))|(% rowspan="2" %)((( 1233 -Effective immediately 1234 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1224 +**method** 1225 +)))|(% colspan="2" %)((( 1226 +**Effective** 1227 + 1228 +**time** 1229 +)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit** 1230 +|(% colspan="1" %)P01-02|(% colspan="2" %)((( 1231 +Internal speed 1232 + 1233 +Instruction 0 1234 +)))|(% colspan="2" %)((( 1235 +Operation 1236 + 1237 +setting 1238 +)))|(% colspan="2" %)((( 1239 +Effective 1240 + 1241 +immediately 1242 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1235 1235 Internal speed instruction 0 1236 1236 1237 1237 When DI input port: ... ... @@ -1243,15 +1243,20 @@ 1243 1243 13-INSPD1: 0, 1244 1244 1245 1245 select this speed instruction to be effective. 1246 -)))|(% rowspan="2" %)rpm 1247 -|-5000 to 5000* 1248 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1249 -Internal speed Instruction 1 1250 -)))|(% rowspan="2" %)((( 1251 -Operation setting 1252 -)))|(% rowspan="2" %)((( 1253 -Effective immediately 1254 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1254 +)))|(% colspan="2" %)rpm 1255 +|(% colspan="1" %)P01-23|(% colspan="2" %)((( 1256 +Internal speed 1257 + 1258 +Instruction 1 1259 +)))|(% colspan="2" %)((( 1260 +Operation 1261 + 1262 +setting 1263 +)))|(% colspan="2" %)((( 1264 +Effective 1265 + 1266 +immediately 1267 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1255 1255 Internal speed instruction 1 1256 1256 1257 1257 When DI input port: ... ... @@ -1263,15 +1263,20 @@ 1263 1263 13-INSPD1: 1, 1264 1264 1265 1265 Select this speed instruction to be effective. 1266 -)))|(% rowspan="2" %)rpm 1267 -|-5000 to 5000* 1268 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1269 -Internal speed Instruction 2 1270 -)))|(% rowspan="2" %)((( 1271 -Operation setting 1272 -)))|(% rowspan="2" %)((( 1273 -Effective immediately 1274 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1279 +)))|(% colspan="2" %)rpm 1280 +|(% colspan="1" %)P01-24|(% colspan="2" %)((( 1281 +Internal speed 1282 + 1283 +Instruction 2 1284 +)))|(% colspan="2" %)((( 1285 +Operation 1286 + 1287 +setting 1288 +)))|(% colspan="2" %)((( 1289 +Effective 1290 + 1291 +immediately 1292 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1275 1275 Internal speed instruction 2 1276 1276 1277 1277 When DI input port: ... ... @@ -1283,15 +1283,20 @@ 1283 1283 13-INSPD1: 0, 1284 1284 1285 1285 Select this speed instruction to be effective. 1286 -)))|(% rowspan="2" %)rpm 1287 -|-5000 to 5000* 1288 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1289 -Internal speed Instruction 3 1290 -)))|(% rowspan="2" %)((( 1291 -Operation setting 1292 -)))|(% rowspan="2" %)((( 1293 -Effective immediately 1294 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1304 +)))|(% colspan="2" %)rpm 1305 +|(% colspan="1" %)P01-25|(% colspan="2" %)((( 1306 +Internal speed 1307 + 1308 +Instruction 3 1309 +)))|(% colspan="2" %)((( 1310 +Operation 1311 + 1312 +setting 1313 +)))|(% colspan="2" %)((( 1314 +Effective 1315 + 1316 +immediately 1317 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1295 1295 Internal speed instruction 3 1296 1296 1297 1297 When DI input port: ... ... @@ -1303,16 +1303,20 @@ 1303 1303 13-INSPD1: 1, 1304 1304 1305 1305 Select this speed instruction to be effective. 1306 -)))|(% rowspan="2" %)rpm 1307 -|-5000 to 5000* 1329 +)))|(% colspan="2" %)rpm 1330 +|P01-26|(% colspan="2" %)((( 1331 +Internal speed 1308 1308 1309 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1310 -Internal speed Instruction 4 1311 -)))|(% rowspan="2" %)((( 1312 -Operation setting 1313 -)))|(% rowspan="2" %)((( 1314 -Effective immediately 1315 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1333 +Instruction 4 1334 +)))|(% colspan="2" %)((( 1335 +Operation 1336 + 1337 +setting 1338 +)))|(% colspan="2" %)((( 1339 +Effective 1340 + 1341 +immediately 1342 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1316 1316 Internal speed instruction 4 1317 1317 1318 1318 When DI input port: ... ... @@ -1324,15 +1324,20 @@ 1324 1324 13-INSPD1: 0, 1325 1325 1326 1326 Select this speed instruction to be effective. 1327 -)))|(% rowspan="2" %)rpm 1328 -|-5000 to 5000* 1329 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1330 -Internal speed Instruction 5 1331 -)))|(% rowspan="2" %)((( 1332 -Operation setting 1333 -)))|(% rowspan="2" %)((( 1334 -Effective immediately 1335 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1354 +)))|(% colspan="1" %)rpm 1355 +|P01-27|(% colspan="2" %)((( 1356 +Internal speed 1357 + 1358 +Instruction 5 1359 +)))|(% colspan="2" %)((( 1360 +Operation 1361 + 1362 +setting 1363 +)))|(% colspan="2" %)((( 1364 +Effective 1365 + 1366 +immediately 1367 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1336 1336 Internal speed instruction 5 1337 1337 1338 1338 When DI input port: ... ... @@ -1344,15 +1344,20 @@ 1344 1344 13-INSPD1: 1, 1345 1345 1346 1346 Select this speed instruction to be effective. 1347 -)))|(% rowspan="2" %)rpm 1348 -|-5000 to 5000* 1349 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1350 -Internal speed Instruction 6 1351 -)))|(% rowspan="2" %)((( 1352 -Operation setting 1353 -)))|(% rowspan="2" %)((( 1354 -Effective immediately 1355 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1379 +)))|(% colspan="1" %)rpm 1380 +|P01-28|(% colspan="2" %)((( 1381 +Internal speed 1382 + 1383 +Instruction 6 1384 +)))|(% colspan="2" %)((( 1385 +Operation 1386 + 1387 +setting 1388 +)))|(% colspan="2" %)((( 1389 +Effective 1390 + 1391 +immediately 1392 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1356 1356 Internal speed instruction 6 1357 1357 1358 1358 When DI input port: ... ... @@ -1364,15 +1364,20 @@ 1364 1364 13-INSPD1: 0, 1365 1365 1366 1366 Select this speed instruction to be effective. 1367 -)))|(% rowspan="2" %)rpm 1368 -|-5000 to 5000* 1369 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1370 -Internal speed Instruction 7 1371 -)))|(% rowspan="2" %)((( 1372 -Operation setting 1373 -)))|(% rowspan="2" %)((( 1374 -Effective immediately 1375 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1404 +)))|(% colspan="1" %)rpm 1405 +|P01-29|(% colspan="2" %)((( 1406 +Internal speed 1407 + 1408 +Instruction 7 1409 +)))|(% colspan="2" %)((( 1410 +Operation 1411 + 1412 +setting 1413 +)))|(% colspan="2" %)((( 1414 +Effective 1415 + 1416 +immediately 1417 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1376 1376 Internal speed instruction 7 1377 1377 1378 1378 When DI input port: ... ... @@ -1384,14 +1384,10 @@ 1384 1384 13-INSPD1: 1, 1385 1385 1386 1386 Select this speed instruction to be effective. 1387 -)))|(% rowspan="2" %)rpm 1388 -|-5000 to 5000* 1429 +)))|(% colspan="1" %)rpm 1389 1389 1390 1390 Table 6-27 Internal speed instruction parameters 1391 1391 1392 -✎**Note: **“*” means the set range of VD2F servo drive. 1393 - 1394 - 1395 1395 |**DI function code**|**function name**|**Function** 1396 1396 |13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1397 1397 |14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number ... ... @@ -1411,16 +1411,15 @@ 1411 1411 1412 1412 Table 6-29 Correspondence between INSPD bits and segment numbers 1413 1413 1414 - 1415 1415 [[image:image-20220608170845-26.png]] 1416 1416 1417 1417 Figure 6-29 Multi-segment speed running curve 1418 1418 1419 -**(2) Speed instruction source is internal speed instruction (P01-01= 0)**1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)** 1420 1420 1421 1421 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1422 1422 1423 - 1460 +(% style="text-align:center" %) 1424 1424 [[image:image-20220608153341-5.png]] 1425 1425 1426 1426 Figure 6-30 Analog input circuit ... ... @@ -1427,7 +1427,7 @@ 1427 1427 1428 1428 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1429 1429 1430 - 1467 +(% style="text-align:center" %) 1431 1431 [[image:image-20220608170955-27.png]] 1432 1432 1433 1433 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1434,18 +1434,15 @@ 1434 1434 1435 1435 Explanation of related terms: 1436 1436 1437 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1474 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1475 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1476 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1438 1438 1439 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1440 - 1441 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1442 - 1443 - 1478 +(% style="text-align:center" %) 1444 1444 [[image:image-20220608171124-28.png]] 1445 1445 1446 1446 Figure 6-32 AI_1 diagram before and after bias 1447 1447 1448 - 1449 1449 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1450 1450 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1451 1451 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1462,16 +1462,14 @@ 1462 1462 1463 1463 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1464 1464 1465 - 1499 +(% style="text-align:center" %) 1466 1466 [[image:image-20220608171314-29.png]] 1467 1467 1468 1468 Figure 6-33 of acceleration and deceleration time diagram 1469 1469 1470 -Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]] 1504 +(% style="text-align:center" %) 1505 +[[image:image-20220707103616-27.png]] 1471 1471 1472 -Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1473 - 1474 - 1475 1475 |**Function code**|**Name**|((( 1476 1476 **Setting method** 1477 1477 )))|((( ... ... @@ -1606,7 +1606,6 @@ 1606 1606 1607 1607 Table 6-34 Rotation detection speed threshold parameters 1608 1608 1609 - 1610 1610 |**DO function code**|**Function name**|**Function** 1611 1611 |132|((( 1612 1612 T-COIN rotation detection ... ... @@ -1622,7 +1622,6 @@ 1622 1622 1623 1623 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1624 1624 1625 - 1626 1626 [[image:image-20220608171904-32.png]] 1627 1627 1628 1628 Figure 6-36 Zero-speed signal diagram ... ... @@ -1629,7 +1629,6 @@ 1629 1629 1630 1630 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1631 1631 1632 - 1633 1633 |**Function code**|**Name**|((( 1634 1634 **Setting method** 1635 1635 )))|((( ... ... @@ -1655,7 +1655,6 @@ 1655 1655 1656 1656 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1657 1657 1658 - 1659 1659 [[image:image-20220608172053-33.png]] 1660 1660 1661 1661 Figure 6-37 Speed consistent signal diagram ... ... @@ -1662,7 +1662,6 @@ 1662 1662 1663 1663 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1664 1664 1665 - 1666 1666 |**Function code**|**Name**|((( 1667 1667 **Setting method** 1668 1668 )))|((( ... ... @@ -1688,14 +1688,12 @@ 1688 1688 1689 1689 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1690 1690 1691 - 1692 1692 [[image:image-20220608172207-34.png]] 1693 1693 1694 1694 Figure 6-38 Speed approaching signal diagram 1695 1695 1696 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-4 0>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1697 1697 1698 - 1699 1699 |**Function code**|**Name**|((( 1700 1700 **Setting method** 1701 1701 )))|((( ... ... @@ -1709,7 +1709,6 @@ 1709 1709 1710 1710 Table 6-40 Speed approaching signal threshold parameters 1711 1711 1712 - 1713 1713 |**DO function code**|**Function name**|**Function** 1714 1714 |137|((( 1715 1715 V-NEAR speed approach ... ... @@ -1770,7 +1770,7 @@ 1770 1770 1771 1771 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1772 1772 1773 - 1797 +(% style="text-align:center" %) 1774 1774 [[image:image-20220608153646-7.png||height="213" width="408"]] 1775 1775 1776 1776 Figure 6-40 Analog input circuit ... ... @@ -1777,7 +1777,7 @@ 1777 1777 1778 1778 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1779 1779 1780 - 1804 +(% style="text-align:center" %) 1781 1781 [[image:image-20220608172502-36.png]] 1782 1782 1783 1783 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1784,18 +1784,15 @@ 1784 1784 1785 1785 Explanation of related terms: 1786 1786 1787 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1811 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1812 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1813 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1788 1788 1789 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1790 - 1791 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1792 - 1793 - 1815 +(% style="text-align:center" %) 1794 1794 [[image:image-20220608172611-37.png]] 1795 1795 1796 1796 Figure 6-42 AI_1 diagram before and after bias 1797 1797 1798 - 1799 1799 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1800 1800 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1801 1801 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1810,7 +1810,6 @@ 1810 1810 1811 1811 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1812 1812 1813 - 1814 1814 |**Function code**|**Name**|((( 1815 1815 **Setting method** 1816 1816 )))|((( ... ... @@ -1826,7 +1826,7 @@ 1826 1826 1827 1827 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1828 1828 1829 - 1849 +(% style="text-align:center" %) 1830 1830 [[image:image-20220608172646-38.png]] 1831 1831 1832 1832 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1837,7 +1837,7 @@ 1837 1837 1838 1838 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1839 1839 1840 - 1860 +(% style="text-align:center" %) 1841 1841 [[image:image-20220608172806-39.png]] 1842 1842 1843 1843 Figure 6-44 Torque instruction limit diagram ... ... @@ -1846,7 +1846,6 @@ 1846 1846 1847 1847 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1848 1848 1849 - 1850 1850 |**Function code**|**Name**|((( 1851 1851 **Setting method** 1852 1852 )))|((( ... ... @@ -1870,7 +1870,6 @@ 1870 1870 1871 1871 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1872 1872 1873 - 1874 1874 |**Function code**|**Name**|((( 1875 1875 **Setting method** 1876 1876 )))|((( ... ... @@ -1901,7 +1901,6 @@ 1901 1901 1902 1902 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1903 1903 1904 - 1905 1905 |**DO function code**|**Function name**|**Function** 1906 1906 |139|((( 1907 1907 T-LIMIT in torque limit ... ... @@ -1966,7 +1966,7 @@ 1966 1966 1967 1967 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1968 1968 1969 - 1986 +(% style="text-align:center" %) 1970 1970 [[image:image-20220608173541-42.png]] 1971 1971 1972 1972 Figure 6-47 Torque arrival output diagram ... ... @@ -1973,7 +1973,6 @@ 1973 1973 1974 1974 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1975 1975 1976 - 1977 1977 |**Function code**|**Name**|((( 1978 1978 **Setting method** 1979 1979 )))|((( ... ... @@ -2018,15 +2018,14 @@ 2018 2018 2019 2019 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2020 2020 2021 -Position mode Speed mode2037 +Position mode⇔ Speed mode 2022 2022 2023 -Position mode Torque mode2039 +Position mode ⇔Torque mode 2024 2024 2025 -Speed mode Torque mode2041 +Speed mode ⇔Torque mode 2026 2026 2027 2027 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2028 2028 2029 - 2030 2030 |**Function code**|**Name**|((( 2031 2031 **Setting method** 2032 2032 )))|((( ... ... @@ -2054,7 +2054,6 @@ 2054 2054 2055 2055 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2056 2056 2057 - 2058 2058 |**DI function code**|**Name**|**Function name**|**Function** 2059 2059 |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2060 2060 |**P00-01**|**MixModeSel terminal logic**|**Control mode** ... ... @@ -2090,7 +2090,7 @@ 2090 2090 2091 2091 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2092 2092 2093 - 2107 +(% style="text-align:center" %) 2094 2094 [[image:image-20220608173618-43.png]] 2095 2095 2096 2096 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2099,7 +2099,6 @@ 2099 2099 2100 2100 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2101 2101 2102 - 2103 2103 |**Encoder type**|**Encoder resolution (bits)**|**Data range** 2104 2104 |C1 (multi-turn magnetic encoder)|17|0 to 131071 2105 2105 |D2 (multi-turn Optical encoder)|23|0 to 8388607 ... ... @@ -2108,7 +2108,7 @@ 2108 2108 2109 2109 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2110 2110 2111 - 2124 +(% style="text-align:center" %) 2112 2112 [[image:image-20220608173701-44.png]] 2113 2113 2114 2114 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2117,7 +2117,6 @@ 2117 2117 2118 2118 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2119 2119 2120 - 2121 2121 |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2122 2122 |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2123 2123 |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
- image-20220707103506-26.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.4 KB - Content
- image-20220707103616-27.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.3 KB - Content