Changes for page 06 Operation

Last modified by Iris on 2025/08/05 17:31

From version 51.19
edited by Stone Wu
on 2022/07/07 10:28
Change comment: (Autosaved)
To version 51.28
edited by Stone Wu
on 2022/07/07 10:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1327,7 +1327,7 @@
1327 1327  
1328 1328  Select this speed instruction to be effective.
1329 1329  )))|(% colspan="2" %)rpm
1330 -|(% colspan="2" %)P01-26|(% colspan="2" %)(((
1330 +|P01-26|(% colspan="2" %)(((
1331 1331  Internal speed
1332 1332  
1333 1333  Instruction 4
... ... @@ -1339,7 +1339,7 @@
1339 1339  Effective
1340 1340  
1341 1341  immediately
1342 -)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000*|(% colspan="2" %)(((
1342 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1343 1343  Internal speed instruction 4
1344 1344  
1345 1345  When DI input port:
... ... @@ -1352,7 +1352,7 @@
1352 1352  
1353 1353  Select this speed instruction to be effective.
1354 1354  )))|(% colspan="1" %)rpm
1355 -|(% colspan="2" %)P01-27|(% colspan="2" %)(((
1355 +|P01-27|(% colspan="2" %)(((
1356 1356  Internal speed
1357 1357  
1358 1358  Instruction 5
... ... @@ -1377,7 +1377,7 @@
1377 1377  
1378 1378  Select this speed instruction to be effective.
1379 1379  )))|(% colspan="1" %)rpm
1380 -|(% colspan="2" %)P01-28|(% colspan="2" %)(((
1380 +|P01-28|(% colspan="2" %)(((
1381 1381  Internal speed
1382 1382  
1383 1383  Instruction 6
... ... @@ -1402,7 +1402,7 @@
1402 1402  
1403 1403  Select this speed instruction to be effective.
1404 1404  )))|(% colspan="1" %)rpm
1405 -|(% colspan="2" %)P01-29|(% colspan="2" %)(((
1405 +|P01-29|(% colspan="2" %)(((
1406 1406  Internal speed
1407 1407  
1408 1408  Instruction 7
... ... @@ -1430,9 +1430,6 @@
1430 1430  
1431 1431  Table 6-27 Internal speed instruction parameters
1432 1432  
1433 -✎**Note: **“*” means the set range of VD2F servo drive.
1434 -
1435 -
1436 1436  |**DI function code**|**function name**|**Function**
1437 1437  |13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1438 1438  |14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
... ... @@ -1452,16 +1452,15 @@
1452 1452  
1453 1453  Table 6-29 Correspondence between INSPD bits and segment numbers
1454 1454  
1455 -
1456 1456  [[image:image-20220608170845-26.png]]
1457 1457  
1458 1458  Figure 6-29 Multi-segment speed running curve
1459 1459  
1460 -**(2) Speed instruction source is internal speed instruction (P01-01=0)**
1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)**
1461 1461  
1462 1462  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1463 1463  
1464 -
1460 +(% style="text-align:center" %)
1465 1465  [[image:image-20220608153341-5.png]]
1466 1466  
1467 1467  Figure 6-30 Analog input circuit
... ... @@ -1468,7 +1468,7 @@
1468 1468  
1469 1469  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1470 1470  
1471 -
1467 +(% style="text-align:center" %)
1472 1472  [[image:image-20220608170955-27.png]]
1473 1473  
1474 1474  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1475,18 +1475,15 @@
1475 1475  
1476 1476  Explanation of related terms:
1477 1477  
1478 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1474 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1475 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1476 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1479 1479  
1480 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1481 -
1482 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1483 -
1484 -
1478 +(% style="text-align:center" %)
1485 1485  [[image:image-20220608171124-28.png]]
1486 1486  
1487 1487  Figure 6-32 AI_1 diagram before and after bias
1488 1488  
1489 -
1490 1490  |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1491 1491  |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1492 1492  |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
... ... @@ -1503,16 +1503,14 @@
1503 1503  
1504 1504  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1505 1505  
1506 -
1499 +(% style="text-align:center" %)
1507 1507  [[image:image-20220608171314-29.png]]
1508 1508  
1509 1509  Figure 6-33 of acceleration and deceleration time diagram
1510 1510  
1511 -Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]]
1504 +(% style="text-align:center" %)
1505 +[[image:image-20220707103616-27.png]]
1512 1512  
1513 -Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1514 -
1515 -
1516 1516  |**Function code**|**Name**|(((
1517 1517  **Setting method**
1518 1518  )))|(((
... ... @@ -1647,7 +1647,6 @@
1647 1647  
1648 1648  Table 6-34 Rotation detection speed threshold parameters
1649 1649  
1650 -
1651 1651  |**DO function code**|**Function name**|**Function**
1652 1652  |132|(((
1653 1653  T-COIN rotation detection
... ... @@ -1663,7 +1663,6 @@
1663 1663  
1664 1664  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1665 1665  
1666 -
1667 1667  [[image:image-20220608171904-32.png]]
1668 1668  
1669 1669  Figure 6-36 Zero-speed signal diagram
... ... @@ -1670,7 +1670,6 @@
1670 1670  
1671 1671  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1672 1672  
1673 -
1674 1674  |**Function code**|**Name**|(((
1675 1675  **Setting method**
1676 1676  )))|(((
... ... @@ -1696,7 +1696,6 @@
1696 1696  
1697 1697  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1698 1698  
1699 -
1700 1700  [[image:image-20220608172053-33.png]]
1701 1701  
1702 1702  Figure 6-37 Speed consistent signal diagram
... ... @@ -1703,7 +1703,6 @@
1703 1703  
1704 1704  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1705 1705  
1706 -
1707 1707  |**Function code**|**Name**|(((
1708 1708  **Setting method**
1709 1709  )))|(((
... ... @@ -1729,14 +1729,12 @@
1729 1729  
1730 1730  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1731 1731  
1732 -
1733 1733  [[image:image-20220608172207-34.png]]
1734 1734  
1735 1735  Figure 6-38 Speed approaching signal diagram
1736 1736  
1737 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1738 1738  
1739 -
1740 1740  |**Function code**|**Name**|(((
1741 1741  **Setting method**
1742 1742  )))|(((
... ... @@ -1750,7 +1750,6 @@
1750 1750  
1751 1751  Table 6-40 Speed approaching signal threshold parameters
1752 1752  
1753 -
1754 1754  |**DO function code**|**Function name**|**Function**
1755 1755  |137|(((
1756 1756  V-NEAR speed approach
... ... @@ -1811,7 +1811,7 @@
1811 1811  
1812 1812  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1813 1813  
1814 -
1797 +(% style="text-align:center" %)
1815 1815  [[image:image-20220608153646-7.png||height="213" width="408"]]
1816 1816  
1817 1817  Figure 6-40 Analog input circuit
... ... @@ -1818,7 +1818,7 @@
1818 1818  
1819 1819  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1820 1820  
1821 -
1804 +(% style="text-align:center" %)
1822 1822  [[image:image-20220608172502-36.png]]
1823 1823  
1824 1824  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1825,18 +1825,15 @@
1825 1825  
1826 1826  Explanation of related terms:
1827 1827  
1828 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1811 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1812 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1813 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1829 1829  
1830 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1831 -
1832 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1833 -
1834 -
1815 +(% style="text-align:center" %)
1835 1835  [[image:image-20220608172611-37.png]]
1836 1836  
1837 1837  Figure 6-42 AI_1 diagram before and after bias
1838 1838  
1839 -
1840 1840  |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1841 1841  |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1842 1842  |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
... ... @@ -1851,7 +1851,6 @@
1851 1851  
1852 1852  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1853 1853  
1854 -
1855 1855  |**Function code**|**Name**|(((
1856 1856  **Setting method**
1857 1857  )))|(((
... ... @@ -1867,7 +1867,7 @@
1867 1867  
1868 1868  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1869 1869  
1870 -
1849 +(% style="text-align:center" %)
1871 1871  [[image:image-20220608172646-38.png]]
1872 1872  
1873 1873  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1878,7 +1878,7 @@
1878 1878  
1879 1879  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1880 1880  
1881 -
1860 +(% style="text-align:center" %)
1882 1882  [[image:image-20220608172806-39.png]]
1883 1883  
1884 1884  Figure 6-44 Torque instruction limit diagram
... ... @@ -1887,7 +1887,6 @@
1887 1887  
1888 1888  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1889 1889  
1890 -
1891 1891  |**Function code**|**Name**|(((
1892 1892  **Setting method**
1893 1893  )))|(((
... ... @@ -1911,7 +1911,6 @@
1911 1911  
1912 1912  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1913 1913  
1914 -
1915 1915  |**Function code**|**Name**|(((
1916 1916  **Setting method**
1917 1917  )))|(((
... ... @@ -1942,7 +1942,6 @@
1942 1942  
1943 1943  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1944 1944  
1945 -
1946 1946  |**DO function code**|**Function name**|**Function**
1947 1947  |139|(((
1948 1948  T-LIMIT in torque limit
... ... @@ -2007,7 +2007,7 @@
2007 2007  
2008 2008  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2009 2009  
2010 -
1986 +(% style="text-align:center" %)
2011 2011  [[image:image-20220608173541-42.png]]
2012 2012  
2013 2013  Figure 6-47 Torque arrival output diagram
... ... @@ -2014,7 +2014,6 @@
2014 2014  
2015 2015  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2016 2016  
2017 -
2018 2018  |**Function code**|**Name**|(((
2019 2019  **Setting method**
2020 2020  )))|(((
... ... @@ -2059,15 +2059,14 @@
2059 2059  
2060 2060  Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2061 2061  
2062 -Position mode Speed mode
2037 +Position mode Speed mode
2063 2063  
2064 -Position mode Torque mode
2039 +Position mode Torque mode
2065 2065  
2066 -Speed mode Torque mode
2041 +Speed mode Torque mode
2067 2067  
2068 2068  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2069 2069  
2070 -
2071 2071  |**Function code**|**Name**|(((
2072 2072  **Setting method**
2073 2073  )))|(((
... ... @@ -2095,7 +2095,6 @@
2095 2095  
2096 2096  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2097 2097  
2098 -
2099 2099  |**DI function code**|**Name**|**Function name**|**Function**
2100 2100  |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2101 2101  |**P00-01**|**MixModeSel terminal logic**|**Control mode**
... ... @@ -2131,7 +2131,7 @@
2131 2131  
2132 2132  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2133 2133  
2134 -
2107 +(% style="text-align:center" %)
2135 2135  [[image:image-20220608173618-43.png]]
2136 2136  
2137 2137  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2140,7 +2140,6 @@
2140 2140  
2141 2141  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2142 2142  
2143 -
2144 2144  |**Encoder type**|**Encoder resolution (bits)**|**Data range**
2145 2145  |C1 (multi-turn magnetic encoder)|17|0 to 131071
2146 2146  |D2 (multi-turn Optical encoder)|23|0 to 8388607
... ... @@ -2149,7 +2149,7 @@
2149 2149  
2150 2150  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2151 2151  
2152 -
2124 +(% style="text-align:center" %)
2153 2153  [[image:image-20220608173701-44.png]]
2154 2154  
2155 2155  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2158,7 +2158,6 @@
2158 2158  
2159 2159  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2160 2160  
2161 -
2162 2162  |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2163 2163  |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2164 2164  |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
image-20220707103506-26.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +7.4 KB
Content
image-20220707103616-27.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +7.3 KB
Content