Changes for page 06 Operation
Last modified by Iris on 2025/08/05 17:31
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1327,7 +1327,7 @@ 1327 1327 1328 1328 Select this speed instruction to be effective. 1329 1329 )))|(% colspan="2" %)rpm 1330 -| (% colspan="2" %)P01-26|(% colspan="2" %)(((1330 +|P01-26|(% colspan="2" %)((( 1331 1331 Internal speed 1332 1332 1333 1333 Instruction 4 ... ... @@ -1339,7 +1339,7 @@ 1339 1339 Effective 1340 1340 1341 1341 immediately 1342 -)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000 *|(% colspan="2" %)(((1342 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)((( 1343 1343 Internal speed instruction 4 1344 1344 1345 1345 When DI input port: ... ... @@ -1352,7 +1352,7 @@ 1352 1352 1353 1353 Select this speed instruction to be effective. 1354 1354 )))|(% colspan="1" %)rpm 1355 -| (% colspan="2" %)P01-27|(% colspan="2" %)(((1355 +|P01-27|(% colspan="2" %)((( 1356 1356 Internal speed 1357 1357 1358 1358 Instruction 5 ... ... @@ -1377,7 +1377,7 @@ 1377 1377 1378 1378 Select this speed instruction to be effective. 1379 1379 )))|(% colspan="1" %)rpm 1380 -| (% colspan="2" %)P01-28|(% colspan="2" %)(((1380 +|P01-28|(% colspan="2" %)((( 1381 1381 Internal speed 1382 1382 1383 1383 Instruction 6 ... ... @@ -1402,7 +1402,7 @@ 1402 1402 1403 1403 Select this speed instruction to be effective. 1404 1404 )))|(% colspan="1" %)rpm 1405 -| (% colspan="2" %)P01-29|(% colspan="2" %)(((1405 +|P01-29|(% colspan="2" %)((( 1406 1406 Internal speed 1407 1407 1408 1408 Instruction 7 ... ... @@ -1430,9 +1430,6 @@ 1430 1430 1431 1431 Table 6-27 Internal speed instruction parameters 1432 1432 1433 -✎**Note: **“*” means the set range of VD2F servo drive. 1434 - 1435 - 1436 1436 |**DI function code**|**function name**|**Function** 1437 1437 |13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1438 1438 |14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number ... ... @@ -1452,16 +1452,15 @@ 1452 1452 1453 1453 Table 6-29 Correspondence between INSPD bits and segment numbers 1454 1454 1455 - 1456 1456 [[image:image-20220608170845-26.png]] 1457 1457 1458 1458 Figure 6-29 Multi-segment speed running curve 1459 1459 1460 -**(2) Speed instruction source is internal speed instruction (P01-01= 0)**1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)** 1461 1461 1462 1462 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1463 1463 1464 - 1460 +(% style="text-align:center" %) 1465 1465 [[image:image-20220608153341-5.png]] 1466 1466 1467 1467 Figure 6-30 Analog input circuit ... ... @@ -1468,7 +1468,7 @@ 1468 1468 1469 1469 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1470 1470 1471 - 1467 +(% style="text-align:center" %) 1472 1472 [[image:image-20220608170955-27.png]] 1473 1473 1474 1474 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1475,18 +1475,15 @@ 1475 1475 1476 1476 Explanation of related terms: 1477 1477 1478 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1474 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1475 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1476 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1479 1479 1480 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1481 - 1482 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1483 - 1484 - 1478 +(% style="text-align:center" %) 1485 1485 [[image:image-20220608171124-28.png]] 1486 1486 1487 1487 Figure 6-32 AI_1 diagram before and after bias 1488 1488 1489 - 1490 1490 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1491 1491 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1492 1492 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1503,16 +1503,14 @@ 1503 1503 1504 1504 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1505 1505 1506 - 1499 +(% style="text-align:center" %) 1507 1507 [[image:image-20220608171314-29.png]] 1508 1508 1509 1509 Figure 6-33 of acceleration and deceleration time diagram 1510 1510 1511 -Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]] 1504 +(% style="text-align:center" %) 1505 +[[image:image-20220707103616-27.png]] 1512 1512 1513 -Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1514 - 1515 - 1516 1516 |**Function code**|**Name**|((( 1517 1517 **Setting method** 1518 1518 )))|((( ... ... @@ -1647,7 +1647,6 @@ 1647 1647 1648 1648 Table 6-34 Rotation detection speed threshold parameters 1649 1649 1650 - 1651 1651 |**DO function code**|**Function name**|**Function** 1652 1652 |132|((( 1653 1653 T-COIN rotation detection ... ... @@ -1663,7 +1663,6 @@ 1663 1663 1664 1664 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1665 1665 1666 - 1667 1667 [[image:image-20220608171904-32.png]] 1668 1668 1669 1669 Figure 6-36 Zero-speed signal diagram ... ... @@ -1670,7 +1670,6 @@ 1670 1670 1671 1671 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1672 1672 1673 - 1674 1674 |**Function code**|**Name**|((( 1675 1675 **Setting method** 1676 1676 )))|((( ... ... @@ -1696,7 +1696,6 @@ 1696 1696 1697 1697 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1698 1698 1699 - 1700 1700 [[image:image-20220608172053-33.png]] 1701 1701 1702 1702 Figure 6-37 Speed consistent signal diagram ... ... @@ -1703,7 +1703,6 @@ 1703 1703 1704 1704 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1705 1705 1706 - 1707 1707 |**Function code**|**Name**|((( 1708 1708 **Setting method** 1709 1709 )))|((( ... ... @@ -1729,14 +1729,12 @@ 1729 1729 1730 1730 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1731 1731 1732 - 1733 1733 [[image:image-20220608172207-34.png]] 1734 1734 1735 1735 Figure 6-38 Speed approaching signal diagram 1736 1736 1737 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-4 0>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1738 1738 1739 - 1740 1740 |**Function code**|**Name**|((( 1741 1741 **Setting method** 1742 1742 )))|((( ... ... @@ -1750,7 +1750,6 @@ 1750 1750 1751 1751 Table 6-40 Speed approaching signal threshold parameters 1752 1752 1753 - 1754 1754 |**DO function code**|**Function name**|**Function** 1755 1755 |137|((( 1756 1756 V-NEAR speed approach ... ... @@ -1811,7 +1811,7 @@ 1811 1811 1812 1812 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1813 1813 1814 - 1797 +(% style="text-align:center" %) 1815 1815 [[image:image-20220608153646-7.png||height="213" width="408"]] 1816 1816 1817 1817 Figure 6-40 Analog input circuit ... ... @@ -1818,7 +1818,7 @@ 1818 1818 1819 1819 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1820 1820 1821 - 1804 +(% style="text-align:center" %) 1822 1822 [[image:image-20220608172502-36.png]] 1823 1823 1824 1824 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1825,18 +1825,15 @@ 1825 1825 1826 1826 Explanation of related terms: 1827 1827 1828 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1811 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1812 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1813 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1829 1829 1830 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1831 - 1832 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1833 - 1834 - 1815 +(% style="text-align:center" %) 1835 1835 [[image:image-20220608172611-37.png]] 1836 1836 1837 1837 Figure 6-42 AI_1 diagram before and after bias 1838 1838 1839 - 1840 1840 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1841 1841 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1842 1842 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1851,7 +1851,6 @@ 1851 1851 1852 1852 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1853 1853 1854 - 1855 1855 |**Function code**|**Name**|((( 1856 1856 **Setting method** 1857 1857 )))|((( ... ... @@ -1867,7 +1867,7 @@ 1867 1867 1868 1868 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1869 1869 1870 - 1849 +(% style="text-align:center" %) 1871 1871 [[image:image-20220608172646-38.png]] 1872 1872 1873 1873 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1878,7 +1878,7 @@ 1878 1878 1879 1879 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1880 1880 1881 - 1860 +(% style="text-align:center" %) 1882 1882 [[image:image-20220608172806-39.png]] 1883 1883 1884 1884 Figure 6-44 Torque instruction limit diagram ... ... @@ -1887,7 +1887,6 @@ 1887 1887 1888 1888 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1889 1889 1890 - 1891 1891 |**Function code**|**Name**|((( 1892 1892 **Setting method** 1893 1893 )))|((( ... ... @@ -1911,7 +1911,6 @@ 1911 1911 1912 1912 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1913 1913 1914 - 1915 1915 |**Function code**|**Name**|((( 1916 1916 **Setting method** 1917 1917 )))|((( ... ... @@ -1942,7 +1942,6 @@ 1942 1942 1943 1943 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1944 1944 1945 - 1946 1946 |**DO function code**|**Function name**|**Function** 1947 1947 |139|((( 1948 1948 T-LIMIT in torque limit ... ... @@ -2007,7 +2007,7 @@ 2007 2007 2008 2008 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 2009 2009 2010 - 1986 +(% style="text-align:center" %) 2011 2011 [[image:image-20220608173541-42.png]] 2012 2012 2013 2013 Figure 6-47 Torque arrival output diagram ... ... @@ -2014,7 +2014,6 @@ 2014 2014 2015 2015 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 2016 2016 2017 - 2018 2018 |**Function code**|**Name**|((( 2019 2019 **Setting method** 2020 2020 )))|((( ... ... @@ -2059,15 +2059,14 @@ 2059 2059 2060 2060 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2061 2061 2062 -Position mode Speed mode2037 +Position mode⇔ Speed mode 2063 2063 2064 -Position mode Torque mode2039 +Position mode ⇔Torque mode 2065 2065 2066 -Speed mode Torque mode2041 +Speed mode ⇔Torque mode 2067 2067 2068 2068 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2069 2069 2070 - 2071 2071 |**Function code**|**Name**|((( 2072 2072 **Setting method** 2073 2073 )))|((( ... ... @@ -2095,7 +2095,6 @@ 2095 2095 2096 2096 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2097 2097 2098 - 2099 2099 |**DI function code**|**Name**|**Function name**|**Function** 2100 2100 |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2101 2101 |**P00-01**|**MixModeSel terminal logic**|**Control mode** ... ... @@ -2131,7 +2131,7 @@ 2131 2131 2132 2132 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2133 2133 2134 - 2107 +(% style="text-align:center" %) 2135 2135 [[image:image-20220608173618-43.png]] 2136 2136 2137 2137 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2140,7 +2140,6 @@ 2140 2140 2141 2141 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2142 2142 2143 - 2144 2144 |**Encoder type**|**Encoder resolution (bits)**|**Data range** 2145 2145 |C1 (multi-turn magnetic encoder)|17|0 to 131071 2146 2146 |D2 (multi-turn Optical encoder)|23|0 to 8388607 ... ... @@ -2149,7 +2149,7 @@ 2149 2149 2150 2150 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2151 2151 2152 - 2124 +(% style="text-align:center" %) 2153 2153 [[image:image-20220608173701-44.png]] 2154 2154 2155 2155 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2158,7 +2158,6 @@ 2158 2158 2159 2159 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2160 2160 2161 - 2162 2162 |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2163 2163 |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2164 2164 |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
- image-20220707103506-26.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.4 KB - Content
- image-20220707103616-27.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.3 KB - Content