Changes for page 06 Operation

Last modified by Iris on 2025/08/05 17:31

From version 51.20
edited by Stone Wu
on 2022/07/07 10:29
Change comment: There is no comment for this version
To version 51.29
edited by Stone Wu
on 2022/07/07 10:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1339,7 +1339,7 @@
1339 1339  Effective
1340 1340  
1341 1341  immediately
1342 -)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000*|(% colspan="2" %)(((
1342 +)))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1343 1343  Internal speed instruction 4
1344 1344  
1345 1345  When DI input port:
... ... @@ -1453,11 +1453,11 @@
1453 1453  
1454 1454  Figure 6-29 Multi-segment speed running curve
1455 1455  
1456 -**(2) Speed instruction source is internal speed instruction (P01-01=0)**
1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)**
1457 1457  
1458 1458  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1459 1459  
1460 -
1460 +(% style="text-align:center" %)
1461 1461  [[image:image-20220608153341-5.png]]
1462 1462  
1463 1463  Figure 6-30 Analog input circuit
... ... @@ -1464,7 +1464,7 @@
1464 1464  
1465 1465  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1466 1466  
1467 -
1467 +(% style="text-align:center" %)
1468 1468  [[image:image-20220608170955-27.png]]
1469 1469  
1470 1470  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1471,18 +1471,15 @@
1471 1471  
1472 1472  Explanation of related terms:
1473 1473  
1474 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1474 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1475 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1476 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1475 1475  
1476 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1477 -
1478 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1479 -
1480 -
1478 +(% style="text-align:center" %)
1481 1481  [[image:image-20220608171124-28.png]]
1482 1482  
1483 1483  Figure 6-32 AI_1 diagram before and after bias
1484 1484  
1485 -
1486 1486  |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1487 1487  |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1488 1488  |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
... ... @@ -1499,16 +1499,14 @@
1499 1499  
1500 1500  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1501 1501  
1502 -
1499 +(% style="text-align:center" %)
1503 1503  [[image:image-20220608171314-29.png]]
1504 1504  
1505 1505  Figure 6-33 of acceleration and deceleration time diagram
1506 1506  
1507 -Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]]
1504 +(% style="text-align:center" %)
1505 +[[image:image-20220707103616-27.png]]
1508 1508  
1509 -Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1510 -
1511 -
1512 1512  |**Function code**|**Name**|(((
1513 1513  **Setting method**
1514 1514  )))|(((
... ... @@ -1643,7 +1643,6 @@
1643 1643  
1644 1644  Table 6-34 Rotation detection speed threshold parameters
1645 1645  
1646 -
1647 1647  |**DO function code**|**Function name**|**Function**
1648 1648  |132|(((
1649 1649  T-COIN rotation detection
... ... @@ -1659,7 +1659,6 @@
1659 1659  
1660 1660  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1661 1661  
1662 -
1663 1663  [[image:image-20220608171904-32.png]]
1664 1664  
1665 1665  Figure 6-36 Zero-speed signal diagram
... ... @@ -1666,7 +1666,6 @@
1666 1666  
1667 1667  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1668 1668  
1669 -
1670 1670  |**Function code**|**Name**|(((
1671 1671  **Setting method**
1672 1672  )))|(((
... ... @@ -1692,7 +1692,6 @@
1692 1692  
1693 1693  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1694 1694  
1695 -
1696 1696  [[image:image-20220608172053-33.png]]
1697 1697  
1698 1698  Figure 6-37 Speed consistent signal diagram
... ... @@ -1699,7 +1699,6 @@
1699 1699  
1700 1700  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1701 1701  
1702 -
1703 1703  |**Function code**|**Name**|(((
1704 1704  **Setting method**
1705 1705  )))|(((
... ... @@ -1725,14 +1725,12 @@
1725 1725  
1726 1726  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1727 1727  
1728 -
1729 1729  [[image:image-20220608172207-34.png]]
1730 1730  
1731 1731  Figure 6-38 Speed approaching signal diagram
1732 1732  
1733 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1734 1734  
1735 -
1736 1736  |**Function code**|**Name**|(((
1737 1737  **Setting method**
1738 1738  )))|(((
... ... @@ -1746,7 +1746,6 @@
1746 1746  
1747 1747  Table 6-40 Speed approaching signal threshold parameters
1748 1748  
1749 -
1750 1750  |**DO function code**|**Function name**|**Function**
1751 1751  |137|(((
1752 1752  V-NEAR speed approach
... ... @@ -1807,7 +1807,7 @@
1807 1807  
1808 1808  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1809 1809  
1810 -
1797 +(% style="text-align:center" %)
1811 1811  [[image:image-20220608153646-7.png||height="213" width="408"]]
1812 1812  
1813 1813  Figure 6-40 Analog input circuit
... ... @@ -1814,7 +1814,7 @@
1814 1814  
1815 1815  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1816 1816  
1817 -
1804 +(% style="text-align:center" %)
1818 1818  [[image:image-20220608172502-36.png]]
1819 1819  
1820 1820  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1821,18 +1821,15 @@
1821 1821  
1822 1822  Explanation of related terms:
1823 1823  
1824 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1811 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1812 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1813 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1825 1825  
1826 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1827 -
1828 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1829 -
1830 -
1815 +(% style="text-align:center" %)
1831 1831  [[image:image-20220608172611-37.png]]
1832 1832  
1833 1833  Figure 6-42 AI_1 diagram before and after bias
1834 1834  
1835 -
1836 1836  |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1837 1837  |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1838 1838  |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
... ... @@ -1847,7 +1847,6 @@
1847 1847  
1848 1848  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1849 1849  
1850 -
1851 1851  |**Function code**|**Name**|(((
1852 1852  **Setting method**
1853 1853  )))|(((
... ... @@ -1863,7 +1863,7 @@
1863 1863  
1864 1864  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1865 1865  
1866 -
1849 +(% style="text-align:center" %)
1867 1867  [[image:image-20220608172646-38.png]]
1868 1868  
1869 1869  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1874,7 +1874,7 @@
1874 1874  
1875 1875  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1876 1876  
1877 -
1860 +(% style="text-align:center" %)
1878 1878  [[image:image-20220608172806-39.png]]
1879 1879  
1880 1880  Figure 6-44 Torque instruction limit diagram
... ... @@ -1883,7 +1883,6 @@
1883 1883  
1884 1884  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1885 1885  
1886 -
1887 1887  |**Function code**|**Name**|(((
1888 1888  **Setting method**
1889 1889  )))|(((
... ... @@ -1907,7 +1907,6 @@
1907 1907  
1908 1908  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1909 1909  
1910 -
1911 1911  |**Function code**|**Name**|(((
1912 1912  **Setting method**
1913 1913  )))|(((
... ... @@ -1938,7 +1938,6 @@
1938 1938  
1939 1939  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1940 1940  
1941 -
1942 1942  |**DO function code**|**Function name**|**Function**
1943 1943  |139|(((
1944 1944  T-LIMIT in torque limit
... ... @@ -2003,7 +2003,7 @@
2003 2003  
2004 2004  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2005 2005  
2006 -
1986 +(% style="text-align:center" %)
2007 2007  [[image:image-20220608173541-42.png]]
2008 2008  
2009 2009  Figure 6-47 Torque arrival output diagram
... ... @@ -2010,7 +2010,6 @@
2010 2010  
2011 2011  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2012 2012  
2013 -
2014 2014  |**Function code**|**Name**|(((
2015 2015  **Setting method**
2016 2016  )))|(((
... ... @@ -2055,15 +2055,14 @@
2055 2055  
2056 2056  Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2057 2057  
2058 -Position mode Speed mode
2037 +Position mode Speed mode
2059 2059  
2060 -Position mode Torque mode
2039 +Position mode Torque mode
2061 2061  
2062 -Speed mode Torque mode
2041 +Speed mode Torque mode
2063 2063  
2064 2064  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2065 2065  
2066 -
2067 2067  |**Function code**|**Name**|(((
2068 2068  **Setting method**
2069 2069  )))|(((
... ... @@ -2091,7 +2091,6 @@
2091 2091  
2092 2092  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2093 2093  
2094 -
2095 2095  |**DI function code**|**Name**|**Function name**|**Function**
2096 2096  |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2097 2097  |**P00-01**|**MixModeSel terminal logic**|**Control mode**
... ... @@ -2127,7 +2127,7 @@
2127 2127  
2128 2128  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2129 2129  
2130 -
2107 +(% style="text-align:center" %)
2131 2131  [[image:image-20220608173618-43.png]]
2132 2132  
2133 2133  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2136,7 +2136,6 @@
2136 2136  
2137 2137  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2138 2138  
2139 -
2140 2140  |**Encoder type**|**Encoder resolution (bits)**|**Data range**
2141 2141  |C1 (multi-turn magnetic encoder)|17|0 to 131071
2142 2142  |D2 (multi-turn Optical encoder)|23|0 to 8388607
... ... @@ -2145,7 +2145,7 @@
2145 2145  
2146 2146  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2147 2147  
2148 -
2124 +(% style="text-align:center" %)
2149 2149  [[image:image-20220608173701-44.png]]
2150 2150  
2151 2151  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2154,7 +2154,6 @@
2154 2154  
2155 2155  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2156 2156  
2157 -
2158 2158  |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2159 2159  |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2160 2160  |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
image-20220707103506-26.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +7.4 KB
Content
image-20220707103616-27.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +7.3 KB
Content