Changes for page 06 Operation
Last modified by Iris on 2025/08/05 10:23
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1453,11 +1453,11 @@ 1453 1453 1454 1454 Figure 6-29 Multi-segment speed running curve 1455 1455 1456 -**(2) Speed instruction source is internal speed instruction (P01-01= 0)**1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)** 1457 1457 1458 1458 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1459 1459 1460 - 1460 +(% style="text-align:center" %) 1461 1461 [[image:image-20220608153341-5.png]] 1462 1462 1463 1463 Figure 6-30 Analog input circuit ... ... @@ -1464,7 +1464,7 @@ 1464 1464 1465 1465 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1466 1466 1467 - 1467 +(% style="text-align:center" %) 1468 1468 [[image:image-20220608170955-27.png]] 1469 1469 1470 1470 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1471,18 +1471,15 @@ 1471 1471 1472 1472 Explanation of related terms: 1473 1473 1474 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1474 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1475 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1476 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1475 1475 1476 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1477 - 1478 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1479 - 1480 - 1478 +(% style="text-align:center" %) 1481 1481 [[image:image-20220608171124-28.png]] 1482 1482 1483 1483 Figure 6-32 AI_1 diagram before and after bias 1484 1484 1485 - 1486 1486 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1487 1487 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1488 1488 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1499,16 +1499,14 @@ 1499 1499 1500 1500 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1501 1501 1502 - 1499 +(% style="text-align:center" %) 1503 1503 [[image:image-20220608171314-29.png]] 1504 1504 1505 1505 Figure 6-33 of acceleration and deceleration time diagram 1506 1506 1507 -Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]] 1504 +(% style="text-align:center" %) 1505 +[[image:image-20220707103616-27.png]] 1508 1508 1509 -Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1510 - 1511 - 1512 1512 |**Function code**|**Name**|((( 1513 1513 **Setting method** 1514 1514 )))|((( ... ... @@ -1643,7 +1643,6 @@ 1643 1643 1644 1644 Table 6-34 Rotation detection speed threshold parameters 1645 1645 1646 - 1647 1647 |**DO function code**|**Function name**|**Function** 1648 1648 |132|((( 1649 1649 T-COIN rotation detection ... ... @@ -1659,7 +1659,6 @@ 1659 1659 1660 1660 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1661 1661 1662 - 1663 1663 [[image:image-20220608171904-32.png]] 1664 1664 1665 1665 Figure 6-36 Zero-speed signal diagram ... ... @@ -1666,7 +1666,6 @@ 1666 1666 1667 1667 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1668 1668 1669 - 1670 1670 |**Function code**|**Name**|((( 1671 1671 **Setting method** 1672 1672 )))|((( ... ... @@ -1692,7 +1692,6 @@ 1692 1692 1693 1693 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1694 1694 1695 - 1696 1696 [[image:image-20220608172053-33.png]] 1697 1697 1698 1698 Figure 6-37 Speed consistent signal diagram ... ... @@ -1699,7 +1699,6 @@ 1699 1699 1700 1700 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1701 1701 1702 - 1703 1703 |**Function code**|**Name**|((( 1704 1704 **Setting method** 1705 1705 )))|((( ... ... @@ -1725,14 +1725,12 @@ 1725 1725 1726 1726 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1727 1727 1728 - 1729 1729 [[image:image-20220608172207-34.png]] 1730 1730 1731 1731 Figure 6-38 Speed approaching signal diagram 1732 1732 1733 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-4 0>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1734 1734 1735 - 1736 1736 |**Function code**|**Name**|((( 1737 1737 **Setting method** 1738 1738 )))|((( ... ... @@ -1746,7 +1746,6 @@ 1746 1746 1747 1747 Table 6-40 Speed approaching signal threshold parameters 1748 1748 1749 - 1750 1750 |**DO function code**|**Function name**|**Function** 1751 1751 |137|((( 1752 1752 V-NEAR speed approach ... ... @@ -1807,7 +1807,7 @@ 1807 1807 1808 1808 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1809 1809 1810 - 1797 +(% style="text-align:center" %) 1811 1811 [[image:image-20220608153646-7.png||height="213" width="408"]] 1812 1812 1813 1813 Figure 6-40 Analog input circuit ... ... @@ -1814,7 +1814,7 @@ 1814 1814 1815 1815 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1816 1816 1817 - 1804 +(% style="text-align:center" %) 1818 1818 [[image:image-20220608172502-36.png]] 1819 1819 1820 1820 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1821,18 +1821,15 @@ 1821 1821 1822 1822 Explanation of related terms: 1823 1823 1824 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1811 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1812 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1813 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1825 1825 1826 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1827 - 1828 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1829 - 1830 - 1815 +(% style="text-align:center" %) 1831 1831 [[image:image-20220608172611-37.png]] 1832 1832 1833 1833 Figure 6-42 AI_1 diagram before and after bias 1834 1834 1835 - 1836 1836 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1837 1837 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1838 1838 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1847,7 +1847,6 @@ 1847 1847 1848 1848 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1849 1849 1850 - 1851 1851 |**Function code**|**Name**|((( 1852 1852 **Setting method** 1853 1853 )))|((( ... ... @@ -1863,7 +1863,7 @@ 1863 1863 1864 1864 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1865 1865 1866 - 1849 +(% style="text-align:center" %) 1867 1867 [[image:image-20220608172646-38.png]] 1868 1868 1869 1869 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1874,7 +1874,7 @@ 1874 1874 1875 1875 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1876 1876 1877 - 1860 +(% style="text-align:center" %) 1878 1878 [[image:image-20220608172806-39.png]] 1879 1879 1880 1880 Figure 6-44 Torque instruction limit diagram ... ... @@ -1883,7 +1883,6 @@ 1883 1883 1884 1884 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1885 1885 1886 - 1887 1887 |**Function code**|**Name**|((( 1888 1888 **Setting method** 1889 1889 )))|((( ... ... @@ -1907,7 +1907,6 @@ 1907 1907 1908 1908 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1909 1909 1910 - 1911 1911 |**Function code**|**Name**|((( 1912 1912 **Setting method** 1913 1913 )))|((( ... ... @@ -1938,7 +1938,6 @@ 1938 1938 1939 1939 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1940 1940 1941 - 1942 1942 |**DO function code**|**Function name**|**Function** 1943 1943 |139|((( 1944 1944 T-LIMIT in torque limit ... ... @@ -2003,7 +2003,7 @@ 2003 2003 2004 2004 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 2005 2005 2006 - 1986 +(% style="text-align:center" %) 2007 2007 [[image:image-20220608173541-42.png]] 2008 2008 2009 2009 Figure 6-47 Torque arrival output diagram ... ... @@ -2010,7 +2010,6 @@ 2010 2010 2011 2011 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 2012 2012 2013 - 2014 2014 |**Function code**|**Name**|((( 2015 2015 **Setting method** 2016 2016 )))|((( ... ... @@ -2055,15 +2055,14 @@ 2055 2055 2056 2056 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2057 2057 2058 -Position mode Speed mode2037 +Position mode⇔ Speed mode 2059 2059 2060 -Position mode Torque mode2039 +Position mode ⇔Torque mode 2061 2061 2062 -Speed mode Torque mode2041 +Speed mode ⇔Torque mode 2063 2063 2064 2064 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2065 2065 2066 - 2067 2067 |**Function code**|**Name**|((( 2068 2068 **Setting method** 2069 2069 )))|((( ... ... @@ -2091,7 +2091,6 @@ 2091 2091 2092 2092 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2093 2093 2094 - 2095 2095 |**DI function code**|**Name**|**Function name**|**Function** 2096 2096 |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2097 2097 |**P00-01**|**MixModeSel terminal logic**|**Control mode** ... ... @@ -2127,7 +2127,7 @@ 2127 2127 2128 2128 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2129 2129 2130 - 2107 +(% style="text-align:center" %) 2131 2131 [[image:image-20220608173618-43.png]] 2132 2132 2133 2133 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2136,7 +2136,6 @@ 2136 2136 2137 2137 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2138 2138 2139 - 2140 2140 |**Encoder type**|**Encoder resolution (bits)**|**Data range** 2141 2141 |C1 (multi-turn magnetic encoder)|17|0 to 131071 2142 2142 |D2 (multi-turn Optical encoder)|23|0 to 8388607 ... ... @@ -2145,7 +2145,7 @@ 2145 2145 2146 2146 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2147 2147 2148 - 2124 +(% style="text-align:center" %) 2149 2149 [[image:image-20220608173701-44.png]] 2150 2150 2151 2151 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2154,7 +2154,6 @@ 2154 2154 2155 2155 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2156 2156 2157 - 2158 2158 |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2159 2159 |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2160 2160 |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
- image-20220707103506-26.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.4 KB - Content
- image-20220707103616-27.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +7.3 KB - Content