Changes for page 06 Operation
Last modified by Iris on 2025/07/23 15:49
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1638,7 +1638,6 @@ 1638 1638 1639 1639 Table 6-34 Rotation detection speed threshold parameters 1640 1640 1641 - 1642 1642 |**DO function code**|**Function name**|**Function** 1643 1643 |132|((( 1644 1644 T-COIN rotation detection ... ... @@ -1654,7 +1654,6 @@ 1654 1654 1655 1655 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1656 1656 1657 - 1658 1658 [[image:image-20220608171904-32.png]] 1659 1659 1660 1660 Figure 6-36 Zero-speed signal diagram ... ... @@ -1661,7 +1661,6 @@ 1661 1661 1662 1662 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1663 1663 1664 - 1665 1665 |**Function code**|**Name**|((( 1666 1666 **Setting method** 1667 1667 )))|((( ... ... @@ -1687,7 +1687,6 @@ 1687 1687 1688 1688 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1689 1689 1690 - 1691 1691 [[image:image-20220608172053-33.png]] 1692 1692 1693 1693 Figure 6-37 Speed consistent signal diagram ... ... @@ -1694,7 +1694,6 @@ 1694 1694 1695 1695 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1696 1696 1697 - 1698 1698 |**Function code**|**Name**|((( 1699 1699 **Setting method** 1700 1700 )))|((( ... ... @@ -1720,14 +1720,12 @@ 1720 1720 1721 1721 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1722 1722 1723 - 1724 1724 [[image:image-20220608172207-34.png]] 1725 1725 1726 1726 Figure 6-38 Speed approaching signal diagram 1727 1727 1728 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-4 0>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1729 1729 1730 - 1731 1731 |**Function code**|**Name**|((( 1732 1732 **Setting method** 1733 1733 )))|((( ... ... @@ -1741,7 +1741,6 @@ 1741 1741 1742 1742 Table 6-40 Speed approaching signal threshold parameters 1743 1743 1744 - 1745 1745 |**DO function code**|**Function name**|**Function** 1746 1746 |137|((( 1747 1747 V-NEAR speed approach ... ... @@ -1802,7 +1802,7 @@ 1802 1802 1803 1803 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1804 1804 1805 - 1797 +(% style="text-align:center" %) 1806 1806 [[image:image-20220608153646-7.png||height="213" width="408"]] 1807 1807 1808 1808 Figure 6-40 Analog input circuit ... ... @@ -1809,7 +1809,7 @@ 1809 1809 1810 1810 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1811 1811 1812 - 1804 +(% style="text-align:center" %) 1813 1813 [[image:image-20220608172502-36.png]] 1814 1814 1815 1815 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1816,18 +1816,15 @@ 1816 1816 1817 1817 Explanation of related terms: 1818 1818 1819 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1811 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. 1812 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1813 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1820 1820 1821 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0. 1822 - 1823 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1824 - 1825 - 1815 +(% style="text-align:center" %) 1826 1826 [[image:image-20220608172611-37.png]] 1827 1827 1828 1828 Figure 6-42 AI_1 diagram before and after bias 1829 1829 1830 - 1831 1831 |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1832 1832 |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1833 1833 |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms ... ... @@ -1842,7 +1842,6 @@ 1842 1842 1843 1843 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1844 1844 1845 - 1846 1846 |**Function code**|**Name**|((( 1847 1847 **Setting method** 1848 1848 )))|((( ... ... @@ -1858,7 +1858,7 @@ 1858 1858 1859 1859 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1860 1860 1861 - 1849 +(% style="text-align:center" %) 1862 1862 [[image:image-20220608172646-38.png]] 1863 1863 1864 1864 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1869,7 +1869,7 @@ 1869 1869 1870 1870 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1871 1871 1872 - 1860 +(% style="text-align:center" %) 1873 1873 [[image:image-20220608172806-39.png]] 1874 1874 1875 1875 Figure 6-44 Torque instruction limit diagram ... ... @@ -1878,7 +1878,6 @@ 1878 1878 1879 1879 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1880 1880 1881 - 1882 1882 |**Function code**|**Name**|((( 1883 1883 **Setting method** 1884 1884 )))|((( ... ... @@ -1902,7 +1902,6 @@ 1902 1902 1903 1903 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1904 1904 1905 - 1906 1906 |**Function code**|**Name**|((( 1907 1907 **Setting method** 1908 1908 )))|((( ... ... @@ -1933,7 +1933,6 @@ 1933 1933 1934 1934 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1935 1935 1936 - 1937 1937 |**DO function code**|**Function name**|**Function** 1938 1938 |139|((( 1939 1939 T-LIMIT in torque limit ... ... @@ -1998,7 +1998,7 @@ 1998 1998 1999 1999 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 2000 2000 2001 - 1986 +(% style="text-align:center" %) 2002 2002 [[image:image-20220608173541-42.png]] 2003 2003 2004 2004 Figure 6-47 Torque arrival output diagram ... ... @@ -2005,7 +2005,6 @@ 2005 2005 2006 2006 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 2007 2007 2008 - 2009 2009 |**Function code**|**Name**|((( 2010 2010 **Setting method** 2011 2011 )))|((( ... ... @@ -2050,15 +2050,14 @@ 2050 2050 2051 2051 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2052 2052 2053 -Position mode Speed mode2037 +Position mode⇔ Speed mode 2054 2054 2055 -Position mode Torque mode2039 +Position mode ⇔Torque mode 2056 2056 2057 -Speed mode Torque mode2041 +Speed mode ⇔Torque mode 2058 2058 2059 2059 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2060 2060 2061 - 2062 2062 |**Function code**|**Name**|((( 2063 2063 **Setting method** 2064 2064 )))|((( ... ... @@ -2086,7 +2086,6 @@ 2086 2086 2087 2087 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2088 2088 2089 - 2090 2090 |**DI function code**|**Name**|**Function name**|**Function** 2091 2091 |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2092 2092 |**P00-01**|**MixModeSel terminal logic**|**Control mode** ... ... @@ -2122,7 +2122,7 @@ 2122 2122 2123 2123 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2124 2124 2125 - 2107 +(% style="text-align:center" %) 2126 2126 [[image:image-20220608173618-43.png]] 2127 2127 2128 2128 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2131,7 +2131,6 @@ 2131 2131 2132 2132 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2133 2133 2134 - 2135 2135 |**Encoder type**|**Encoder resolution (bits)**|**Data range** 2136 2136 |C1 (multi-turn magnetic encoder)|17|0 to 131071 2137 2137 |D2 (multi-turn Optical encoder)|23|0 to 8388607 ... ... @@ -2140,7 +2140,7 @@ 2140 2140 2141 2141 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2142 2142 2143 - 2124 +(% style="text-align:center" %) 2144 2144 [[image:image-20220608173701-44.png]] 2145 2145 2146 2146 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2149,7 +2149,6 @@ 2149 2149 2150 2150 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2151 2151 2152 - 2153 2153 |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2154 2154 |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2155 2155 |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit