Changes for page 06 Operation

Last modified by Iris on 2025/07/23 15:49

From version 51.26
edited by Stone Wu
on 2022/07/07 10:44
Change comment: There is no comment for this version
To version 51.30
edited by Stone Wu
on 2022/07/07 10:53
Change comment: (Autosaved)

Summary

Details

Page properties
Content
... ... @@ -1794,7 +1794,7 @@
1794 1794  
1795 1795  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1796 1796  
1797 -
1797 +(% style="text-align:center" %)
1798 1798  [[image:image-20220608153646-7.png||height="213" width="408"]]
1799 1799  
1800 1800  Figure 6-40 Analog input circuit
... ... @@ -1801,7 +1801,7 @@
1801 1801  
1802 1802  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1803 1803  
1804 -
1804 +(% style="text-align:center" %)
1805 1805  [[image:image-20220608172502-36.png]]
1806 1806  
1807 1807  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1808,18 +1808,15 @@
1808 1808  
1809 1809  Explanation of related terms:
1810 1810  
1811 -Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1811 +* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1812 +* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1813 +* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1812 1812  
1813 -Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1814 -
1815 -Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1816 -
1817 -
1815 +(% style="text-align:center" %)
1818 1818  [[image:image-20220608172611-37.png]]
1819 1819  
1820 1820  Figure 6-42 AI_1 diagram before and after bias
1821 1821  
1822 -
1823 1823  |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1824 1824  |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1825 1825  |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
... ... @@ -1834,7 +1834,6 @@
1834 1834  
1835 1835  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1836 1836  
1837 -
1838 1838  |**Function code**|**Name**|(((
1839 1839  **Setting method**
1840 1840  )))|(((
... ... @@ -1850,7 +1850,7 @@
1850 1850  
1851 1851  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1852 1852  
1853 -
1849 +(% style="text-align:center" %)
1854 1854  [[image:image-20220608172646-38.png]]
1855 1855  
1856 1856  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1861,7 +1861,7 @@
1861 1861  
1862 1862  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1863 1863  
1864 -
1860 +(% style="text-align:center" %)
1865 1865  [[image:image-20220608172806-39.png]]
1866 1866  
1867 1867  Figure 6-44 Torque instruction limit diagram
... ... @@ -1870,7 +1870,6 @@
1870 1870  
1871 1871  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1872 1872  
1873 -
1874 1874  |**Function code**|**Name**|(((
1875 1875  **Setting method**
1876 1876  )))|(((
... ... @@ -1894,7 +1894,6 @@
1894 1894  
1895 1895  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1896 1896  
1897 -
1898 1898  |**Function code**|**Name**|(((
1899 1899  **Setting method**
1900 1900  )))|(((
... ... @@ -1925,7 +1925,6 @@
1925 1925  
1926 1926  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1927 1927  
1928 -
1929 1929  |**DO function code**|**Function name**|**Function**
1930 1930  |139|(((
1931 1931  T-LIMIT in torque limit
... ... @@ -1990,7 +1990,7 @@
1990 1990  
1991 1991  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1992 1992  
1993 -
1986 +(% style="text-align:center" %)
1994 1994  [[image:image-20220608173541-42.png]]
1995 1995  
1996 1996  Figure 6-47 Torque arrival output diagram
... ... @@ -1997,7 +1997,6 @@
1997 1997  
1998 1998  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1999 1999  
2000 -
2001 2001  |**Function code**|**Name**|(((
2002 2002  **Setting method**
2003 2003  )))|(((
... ... @@ -2042,15 +2042,14 @@
2042 2042  
2043 2043  Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2044 2044  
2045 -Position mode Speed mode
2037 +Position mode Speed mode
2046 2046  
2047 -Position mode Torque mode
2039 +Position mode Torque mode
2048 2048  
2049 -Speed mode Torque mode
2041 +Speed mode Torque mode
2050 2050  
2051 2051  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2052 2052  
2053 -
2054 2054  |**Function code**|**Name**|(((
2055 2055  **Setting method**
2056 2056  )))|(((
... ... @@ -2078,7 +2078,6 @@
2078 2078  
2079 2079  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2080 2080  
2081 -
2082 2082  |**DI function code**|**Name**|**Function name**|**Function**
2083 2083  |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2084 2084  |**P00-01**|**MixModeSel terminal logic**|**Control mode**
... ... @@ -2114,7 +2114,7 @@
2114 2114  
2115 2115  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2116 2116  
2117 -
2107 +(% style="text-align:center" %)
2118 2118  [[image:image-20220608173618-43.png]]
2119 2119  
2120 2120  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2123,7 +2123,6 @@
2123 2123  
2124 2124  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2125 2125  
2126 -
2127 2127  |**Encoder type**|**Encoder resolution (bits)**|**Data range**
2128 2128  |C1 (multi-turn magnetic encoder)|17|0 to 131071
2129 2129  |D2 (multi-turn Optical encoder)|23|0 to 8388607
... ... @@ -2132,7 +2132,7 @@
2132 2132  
2133 2133  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2134 2134  
2135 -
2124 +(% style="text-align:center" %)
2136 2136  [[image:image-20220608173701-44.png]]
2137 2137  
2138 2138  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2141,7 +2141,6 @@
2141 2141  
2142 2142  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2143 2143  
2144 -
2145 2145  |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2146 2146  |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2147 2147  |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit