Changes for page 06 Operation

Last modified by Iris on 2025/07/23 15:49

From version 51.31
edited by Stone Wu
on 2022/07/07 10:58
Change comment: (Autosaved)
To version 51.21
edited by Stone Wu
on 2022/07/07 10:30
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1453,11 +1453,11 @@
1453 1453  
1454 1454  Figure 6-29 Multi-segment speed running curve
1455 1455  
1456 -**(2) Speed instruction source is internal speed instruction (P01-01=1)**
1456 +**(2) Speed instruction source is internal speed instruction (P01-01=0)**
1457 1457  
1458 1458  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1459 1459  
1460 -(% style="text-align:center" %)
1460 +
1461 1461  [[image:image-20220608153341-5.png]]
1462 1462  
1463 1463  Figure 6-30 Analog input circuit
... ... @@ -1464,7 +1464,7 @@
1464 1464  
1465 1465  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1466 1466  
1467 -(% style="text-align:center" %)
1467 +
1468 1468  [[image:image-20220608170955-27.png]]
1469 1469  
1470 1470  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1471,15 +1471,18 @@
1471 1471  
1472 1472  Explanation of related terms:
1473 1473  
1474 -* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1475 -* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1476 -* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1474 +Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1477 1477  
1478 -(% style="text-align:center" %)
1476 +Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1477 +
1478 +Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1479 +
1480 +
1479 1479  [[image:image-20220608171124-28.png]]
1480 1480  
1481 1481  Figure 6-32 AI_1 diagram before and after bias
1482 1482  
1485 +
1483 1483  |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1484 1484  |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1485 1485  |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
... ... @@ -1496,14 +1496,16 @@
1496 1496  
1497 1497  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1498 1498  
1499 -(% style="text-align:center" %)
1502 +
1500 1500  [[image:image-20220608171314-29.png]]
1501 1501  
1502 1502  Figure 6-33 of acceleration and deceleration time diagram
1503 1503  
1504 -(% style="text-align:center" %)
1505 -[[image:image-20220707103616-27.png]]
1507 +Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]]
1506 1506  
1509 +Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1510 +
1511 +
1507 1507  |**Function code**|**Name**|(((
1508 1508  **Setting method**
1509 1509  )))|(((
... ... @@ -1638,6 +1638,7 @@
1638 1638  
1639 1639  Table 6-34 Rotation detection speed threshold parameters
1640 1640  
1646 +
1641 1641  |**DO function code**|**Function name**|**Function**
1642 1642  |132|(((
1643 1643  T-COIN rotation detection
... ... @@ -1653,6 +1653,7 @@
1653 1653  
1654 1654  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1655 1655  
1662 +
1656 1656  [[image:image-20220608171904-32.png]]
1657 1657  
1658 1658  Figure 6-36 Zero-speed signal diagram
... ... @@ -1659,6 +1659,7 @@
1659 1659  
1660 1660  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1661 1661  
1669 +
1662 1662  |**Function code**|**Name**|(((
1663 1663  **Setting method**
1664 1664  )))|(((
... ... @@ -1684,6 +1684,7 @@
1684 1684  
1685 1685  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1686 1686  
1695 +
1687 1687  [[image:image-20220608172053-33.png]]
1688 1688  
1689 1689  Figure 6-37 Speed consistent signal diagram
... ... @@ -1690,6 +1690,7 @@
1690 1690  
1691 1691  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1692 1692  
1702 +
1693 1693  |**Function code**|**Name**|(((
1694 1694  **Setting method**
1695 1695  )))|(((
... ... @@ -1715,12 +1715,14 @@
1715 1715  
1716 1716  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1717 1717  
1728 +
1718 1718  [[image:image-20220608172207-34.png]]
1719 1719  
1720 1720  Figure 6-38 Speed approaching signal diagram
1721 1721  
1722 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1733 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1723 1723  
1735 +
1724 1724  |**Function code**|**Name**|(((
1725 1725  **Setting method**
1726 1726  )))|(((
... ... @@ -1734,6 +1734,7 @@
1734 1734  
1735 1735  Table 6-40 Speed approaching signal threshold parameters
1736 1736  
1749 +
1737 1737  |**DO function code**|**Function name**|**Function**
1738 1738  |137|(((
1739 1739  V-NEAR speed approach
... ... @@ -1794,7 +1794,7 @@
1794 1794  
1795 1795  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1796 1796  
1797 -(% style="text-align:center" %)
1810 +
1798 1798  [[image:image-20220608153646-7.png||height="213" width="408"]]
1799 1799  
1800 1800  Figure 6-40 Analog input circuit
... ... @@ -1801,7 +1801,7 @@
1801 1801  
1802 1802  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1803 1803  
1804 -(% style="text-align:center" %)
1817 +
1805 1805  [[image:image-20220608172502-36.png]]
1806 1806  
1807 1807  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1808,15 +1808,18 @@
1808 1808  
1809 1809  Explanation of related terms:
1810 1810  
1811 -* Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1812 -* Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1813 -* Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1824 +Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1814 1814  
1815 -(% style="text-align:center" %)
1826 +Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1827 +
1828 +Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1829 +
1830 +
1816 1816  [[image:image-20220608172611-37.png]]
1817 1817  
1818 1818  Figure 6-42 AI_1 diagram before and after bias
1819 1819  
1835 +
1820 1820  |**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1821 1821  |P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1822 1822  |P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
... ... @@ -1831,6 +1831,7 @@
1831 1831  
1832 1832  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1833 1833  
1850 +
1834 1834  |**Function code**|**Name**|(((
1835 1835  **Setting method**
1836 1836  )))|(((
... ... @@ -1846,7 +1846,7 @@
1846 1846  
1847 1847  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1848 1848  
1849 -(% style="text-align:center" %)
1866 +
1850 1850  [[image:image-20220608172646-38.png]]
1851 1851  
1852 1852  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1857,7 +1857,7 @@
1857 1857  
1858 1858  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1859 1859  
1860 -(% style="text-align:center" %)
1877 +
1861 1861  [[image:image-20220608172806-39.png]]
1862 1862  
1863 1863  Figure 6-44 Torque instruction limit diagram
... ... @@ -1866,6 +1866,7 @@
1866 1866  
1867 1867  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1868 1868  
1886 +
1869 1869  |**Function code**|**Name**|(((
1870 1870  **Setting method**
1871 1871  )))|(((
... ... @@ -1889,6 +1889,7 @@
1889 1889  
1890 1890  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1891 1891  
1910 +
1892 1892  |**Function code**|**Name**|(((
1893 1893  **Setting method**
1894 1894  )))|(((
... ... @@ -1919,6 +1919,7 @@
1919 1919  
1920 1920  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1921 1921  
1941 +
1922 1922  |**DO function code**|**Function name**|**Function**
1923 1923  |139|(((
1924 1924  T-LIMIT in torque limit
... ... @@ -1983,7 +1983,7 @@
1983 1983  
1984 1984  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1985 1985  
1986 -(% style="text-align:center" %)
2006 +
1987 1987  [[image:image-20220608173541-42.png]]
1988 1988  
1989 1989  Figure 6-47 Torque arrival output diagram
... ... @@ -1990,6 +1990,7 @@
1990 1990  
1991 1991  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1992 1992  
2013 +
1993 1993  |**Function code**|**Name**|(((
1994 1994  **Setting method**
1995 1995  )))|(((
... ... @@ -2034,14 +2034,15 @@
2034 2034  
2035 2035  Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2036 2036  
2037 -Position mode Speed mode
2058 +Position mode Speed mode
2038 2038  
2039 -Position mode Torque mode
2060 +Position mode Torque mode
2040 2040  
2041 -Speed mode Torque mode
2062 +Speed mode Torque mode
2042 2042  
2043 2043  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2044 2044  
2066 +
2045 2045  |**Function code**|**Name**|(((
2046 2046  **Setting method**
2047 2047  )))|(((
... ... @@ -2069,6 +2069,7 @@
2069 2069  
2070 2070  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2071 2071  
2094 +
2072 2072  |**DI function code**|**Name**|**Function name**|**Function**
2073 2073  |17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2074 2074  |**P00-01**|**MixModeSel terminal logic**|**Control mode**
... ... @@ -2104,7 +2104,7 @@
2104 2104  
2105 2105  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2106 2106  
2107 -(% style="text-align:center" %)
2130 +
2108 2108  [[image:image-20220608173618-43.png]]
2109 2109  
2110 2110  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2113,6 +2113,7 @@
2113 2113  
2114 2114  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2115 2115  
2139 +
2116 2116  |**Encoder type**|**Encoder resolution (bits)**|**Data range**
2117 2117  |C1 (multi-turn magnetic encoder)|17|0 to 131071
2118 2118  |D2 (multi-turn Optical encoder)|23|0 to 8388607
... ... @@ -2121,7 +2121,7 @@
2121 2121  
2122 2122  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2123 2123  
2124 -(% style="text-align:center" %)
2148 +
2125 2125  [[image:image-20220608173701-44.png]]
2126 2126  
2127 2127  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2130,6 +2130,7 @@
2130 2130  
2131 2131  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2132 2132  
2157 +
2133 2133  |**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2134 2134  |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2135 2135  |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
image-20220707103506-26.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.4 KB
Content
image-20220707103616-27.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.3 KB
Content