Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 8 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1 UserManual.02 VD2 SA Series.WebHome1 +Servo.Manual.02 VD2 SA Series.WebHome - Content
-
... ... @@ -2,47 +2,45 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|=(% scope="row" %)**No.**|=**Content** 5 +|=(% scope="row" style="width: 58px;" %)**No.**|=(% style="width: 1017px;" %)**Content** 6 6 |=(% colspan="2" %)Wiring 7 -|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 -|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 -|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 -|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 -|=5|Servo drive and servo motor must be grounded reliably. 12 -|=6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 -|=7|The force of all cables is within the specified range. 14 -|=8|The wiring terminals have been insulated. 7 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=(% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=(% style="width: 58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably. 12 +|=(% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=(% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range. 14 +|=(% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated. 15 15 |=(% colspan="2" %)Environment and Machinery 16 -|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 -|=2|The servo drive and external braking resistor are not placed on combustible objects. 18 -|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 16 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects. 18 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 22 -== **Power-on**==22 +== Power-on == 23 23 24 -** (1)Connect the main circuit power supply**24 +**Connect the main circuit power supply** 25 25 26 26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal. 27 27 28 -If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.28 +If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault. 29 29 30 -** (2)Set the servo drive enable (S-ON) to invalid (OFF)**30 +**Set the servo drive enable (S-ON) to invalid (OFF)** 31 31 32 -== **Jog operation**==32 +== Jog operation == 33 33 34 34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform. 35 35 36 -** (1)Panel jog operation**36 +**Panel jog operation** 37 37 38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/ 2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__. 39 39 40 -** (2)Jog operation of servo debugging platform**40 +**Jog operation of servo debugging platform** 41 41 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 - 45 - 46 46 |=(% scope="row" %)**Function code**|=**Name**|=((( 47 47 **Setting method** 48 48 )))|=((( ... ... @@ -60,7 +60,6 @@ 60 60 61 61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 62 62 63 - 64 64 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 65 65 |=P00-04|Rotation direction|((( 66 66 Shutdown setting ... ... @@ -69,9 +69,8 @@ 69 69 )))|0|0 to 1|((( 70 70 Forward rotation: Face the motor shaft to watch 71 71 72 -0: standard setting (CW is forward rotation) 73 - 74 -1: reverse mode (CCW is forward rotation) 69 +* 0: standard setting (CW is forward rotation) 70 +* 1: reverse mode (CCW is forward rotation) 75 75 )))|- 76 76 77 77 Table 6-3 Rotation direction parameters** ** ... ... @@ -95,13 +95,10 @@ 95 95 )))|((( 96 96 Effective immediately 97 97 )))|0|0 to 3|((( 98 -0: use built-in braking resistor 99 - 100 -1: use external braking resistor and natural cooling 101 - 102 -2: use external braking resistor and forced air cooling; (cannot be set) 103 - 104 -3: No braking resistor is used, it is all absorbed by capacitor. 94 +* 0: use built-in braking resistor 95 +* 1: use external braking resistor and natural cooling 96 +* 2: use external braking resistor and forced air cooling; (cannot be set) 97 +* 3: No braking resistor is used, it is all absorbed by capacitor. 105 105 )))|- 106 106 |=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 107 107 |=P00-10|External braking resistor value|((( ... ... @@ -119,28 +119,28 @@ 119 119 120 120 == **Servo operation** == 121 121 122 -** (1)Set the servo enable (S-ON) to valid (ON)**115 +**Set the servo enable (S-ON) to valid (ON)** 123 123 124 124 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked. 125 125 126 126 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration". 127 127 128 -** (2)Input the instruction and the motor rotates**121 +**Input the instruction and the motor rotates** 129 129 130 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>> https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.123 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected. 131 131 132 -** (3)Timing diagram of power on**125 +**Timing diagram of power on** 133 133 127 +(% style="text-align:center" %) 128 +((( 129 +(% class="wikigeneratedid" style="display:inline-block" %) 130 +[[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]] 131 +))) 134 134 135 - [[image:image-20220608163014-1.png]]133 +== Servo shutdown == 136 136 137 - Figure6-1Timingdiagramof poweron135 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__. 138 138 139 -== **Servo shutdown** == 140 - 141 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. 142 - 143 - 144 144 |=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 145 145 |=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 146 146 |=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. ... ... @@ -147,17 +147,15 @@ 147 147 148 148 Table 6-5 Comparison of two shutdown modes 149 149 150 - 151 151 |=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 152 152 |=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 153 153 154 154 Table 6-6 Comparison of two shutdown status 155 155 156 -** (1)Servo enable (S-ON) OFF shutdown**148 +**Servo enable (S-ON) OFF shutdown** 157 157 158 158 The related parameters of the servo OFF shutdown mode are shown in the table below. 159 159 160 - 161 161 |=(% scope="row" %)**Function code**|=**Name**|=((( 162 162 **Setting method** 163 163 )))|=((( ... ... @@ -174,18 +174,17 @@ 174 174 175 175 immediately 176 176 )))|0|0 to 1|((( 177 -0: Free shutdown, and the motor shaft remains free status. 178 - 179 -1: Zero-speed shutdown, and the motor shaft remains free status. 168 +* 0: Free shutdown, and the motor shaft remains free status. 169 +* 1: Zero-speed shutdown, and the motor shaft remains free status. 180 180 )))|- 181 181 182 -Table 6-7 Table6-1Servo OFF shutdown mode parameters details172 +Table 6-7 Servo OFF shutdown mode parameters details 183 183 184 -** (2)Emergency shutdown**174 +**Emergency shutdown** 185 185 186 186 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". 187 187 188 -** (3)Overtravel shutdown**178 +**Overtravel shutdown** 189 189 190 190 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel. 191 191 ... ... @@ -193,149 +193,98 @@ 193 193 194 194 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 195 195 196 - 197 -|=(% scope="row" %)**Function code**|=**Name**|=((( 186 +|=(% scope="row" %)**Function code**|=(% style="width: 143px;" %)**Name**|=(% style="width: 137px;" %)((( 198 198 **Setting method** 199 -)))|=((( 188 +)))|=(% style="width: 141px;" %)((( 200 200 **Effective time** 201 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 202 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 203 -0: OFF (not used) 204 - 205 -01: S-ON servo enable 206 - 207 -02: A-CLR fault and Warning Clear 208 - 209 -03: POT forward drive prohibition 210 - 211 -04: NOT Reverse drive prohibition 212 - 213 -05: ZCLAMP Zero speed 214 - 215 -06: CL Clear deviation counter 216 - 217 -07: C-SIGN Inverted instruction 218 - 219 -08: E-STOP Emergency stop 220 - 221 -09: GEAR-SEL Electronic Gear Switch 1 222 - 223 -10: GAIN-SEL gain switch 224 - 225 -11: INH Instruction pulse prohibited input 226 - 227 -12: VSSEL Vibration control switch input 228 - 229 -13: INSPD1 Internal speed instruction selection 1 230 - 231 -14: INSPD2 Internal speed instruction selection 2 232 - 233 -15: INSPD3 Internal speedinstruction selection 3 234 - 235 -16: J-SEL inertia ratio switch (not implemented yet) 236 - 237 -17: MixModesel mixed mode selection 238 - 239 -20: Internal multi-segment position enable signal 240 - 241 -21: Internal multi-segment position selection 1 242 - 243 -22: Internal multi-segment position selection 2 244 - 245 -23: Internal multi-segment position selection 3 246 - 247 -24: Internal multi-segment position selection 4 248 - 249 -Others: reserved 190 +)))|=(% style="width: 84px;" %)**Default value**|=(% style="width: 100px;" %)**Range**|=**Definition**|=**Unit** 191 +|=P06-08|(% style="width:143px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|((( 192 +* 0: OFF (not used) 193 +* 01: S-ON servo enable 194 +* 02: A-CLR fault and Warning Clear 195 +* 03: POT forward drive prohibition 196 +* 04: NOT Reverse drive prohibition 197 +* 05: ZCLAMP Zero speed 198 +* 06: CL Clear deviation counter 199 +* 07: C-SIGN Inverted instruction 200 +* 08: E-STOP Emergency stop 201 +* 09: GEAR-SEL Electronic Gear Switch 1 202 +* 10: GAIN-SEL gain switch 203 +* 11: INH Instruction pulse prohibited input 204 +* 12: VSSEL Vibration control switch input 205 +* 13: INSPD1 Internal speed instruction selection 1 206 +* 14: INSPD2 Internal speed instruction selection 2 207 +* 15: INSPD3 Internal speedinstruction selection 3 208 +* 16: J-SEL inertia ratio switch (not implemented yet) 209 +* 17: MixModesel mixed mode selection 210 +* 20: Internal multi-segment position enable signal 211 +* 21: Internal multi-segment position selection 1 212 +* 22: Internal multi-segment position selection 2 213 +* 23: Internal multi-segment position selection 3 214 +* 24: Internal multi-segment position selection 4 215 +* Others: reserved 250 250 )))|- 251 -|=P06-09|DI_3 channel logic selection|Operation setting|((( 217 +|=P06-09|(% style="width:143px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 252 252 Effective immediately 253 -)))|0|0 to 1|((( 219 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 254 254 DI port input logic validity function selection. 255 255 256 -0: Normally open input. Active low level (switch on); 257 - 258 -1: Normally closed input. Active high level (switch off); 222 +* 0: Normally open input. Active low level (switch on); 223 +* 1: Normally closed input. Active high level (switch off); 259 259 )))|- 260 -|=P06-10|DI_3 input source selection|Operation setting|((( 225 +|=P06-10|(% style="width:143px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 261 261 Effective immediately 262 -)))|0|0 to 1|((( 227 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 263 263 Select the DI_3 port type to enable 264 264 265 -0: Hardware DI_3 input terminal 266 - 267 -1: virtual VDI_3 input terminal 230 +* 0: Hardware DI_3 input terminal 231 +* 1: virtual VDI_3 input terminal 268 268 )))|- 269 -|=P06-11|DI_4 channel function selection|((( 233 +|=P06-11|(% style="width:143px" %)DI_4 channel function selection|(% style="width:137px" %)((( 270 270 Operation setting 271 -)))|((( 235 +)))|(% style="width:141px" %)((( 272 272 again Power-on 273 -)))|4|0 to 32|((( 274 -0 off (not used) 275 - 276 -01: SON Servo enable 277 - 278 -02: A-CLR Fault and Warning Clear 279 - 280 -03: POT Forward drive prohibition 281 - 282 -04: NOT Reverse drive prohibition 283 - 284 -05: ZCLAMP Zero speed 285 - 286 -06: CL Clear deviation counter 287 - 288 -07: C-SIGN Inverted instruction 289 - 290 -08: E-STOP Emergency shutdown 291 - 292 -09: GEAR-SEL Electronic Gear Switch 1 293 - 294 -10: GAIN-SEL gain switch 295 - 296 -11: INH Instruction pulse prohibited input 297 - 298 -12: VSSEL Vibration control switch input 299 - 300 -13: INSPD1 Internal speed instruction selection 1 301 - 302 -14: INSPD2 Internal speed instruction selection 2 303 - 304 -15: INSPD3 Internal speed instruction selection 3 305 - 306 -16: J-SEL inertia ratio switch (not implemented yet) 307 - 308 -17: MixModesel mixed mode selection 309 - 310 -20: Internal multi-segment position enable signal 311 - 312 -21: Internal multi-segment position selection 1 313 - 314 -22: Internal multi-segment position selection 2 315 - 316 -23: Internal multi-segment position selection 3 317 - 318 -24: Internal multi-segment position selection 4 319 - 320 -Others: reserved 237 +)))|(% style="width:84px" %)4|(% style="width:100px" %)0 to 32|((( 238 +* 0: OFF (not used) 239 +* 01: SON Servo enable 240 +* 02: A-CLR Fault and Warning Clear 241 +* 03: POT Forward drive prohibition 242 +* 04: NOT Reverse drive prohibition 243 +* 05: ZCLAMP Zero speed 244 +* 06: CL Clear deviation counter 245 +* 07: C-SIGN Inverted instruction 246 +* 08: E-STOP Emergency shutdown 247 +* 09: GEAR-SEL Electronic Gear Switch 1 248 +* 10: GAIN-SEL gain switch 249 +* 11: INH Instruction pulse prohibited input 250 +* 12: VSSEL Vibration control switch input 251 +* 13: INSPD1 Internal speed instruction selection 1 252 +* 14: INSPD2 Internal speed instruction selection 2 253 +* 15: INSPD3 Internal speed instruction selection 3 254 +* 16: J-SEL inertia ratio switch (not implemented yet) 255 +* 17: MixModesel mixed mode selection 256 +* 20: Internal multi-segment position enable signal 257 +* 21: Internal multi-segment position selection 1 258 +* 22: Internal multi-segment position selection 2 259 +* 23: Internal multi-segment position selection 3 260 +* 24: Internal multi-segment position selection 4 261 +* Others: reserved 321 321 )))|- 322 -|=P06-12|DI_4 channel logic selection|Operation setting|((( 263 +|=P06-12|(% style="width:143px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 323 323 Effective immediately 324 -)))|0|0 to 1|((( 265 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 325 325 DI port input logic validity function selection. 326 326 327 -0: Normally open input. Active low level (switch on); 328 - 329 -1: Normally closed input. Active high level (switch off); 268 +* 0: Normally open input. Active low level (switch on); 269 +* 1: Normally closed input. Active high level (switch off); 330 330 )))|- 331 -|=P06-13|DI_4 input source selection|Operation setting|((( 271 +|=P06-13|(% style="width:143px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 332 332 Effective immediately 333 -)))|0|0 to 1|((( 273 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 334 334 Select the DI_4 port type to enable 335 335 336 -0: Hardware DI_4 input terminal 337 - 338 -1: virtual VDI_4 input terminal 276 +* 0: Hardware DI_4 input terminal 277 +* 1: virtual VDI_4 input terminal 339 339 )))|- 340 340 341 341 Table 6-8 DI3 and DI4 channel parameters ... ... @@ -344,12 +344,12 @@ 344 344 345 345 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state. 346 346 347 -== **Brake device**==286 +== Brake device == 348 348 349 349 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 350 350 351 - 352 352 |((( 291 +(% style="text-align:center" %) 353 353 [[image:image-20220611151617-1.png]] 354 354 ))) 355 355 |((( ... ... @@ -364,17 +364,19 @@ 364 364 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function. 365 365 ))) 366 366 367 -** (1)Wiring of brake device**306 +**Wiring of brake device** 368 368 369 369 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 370 370 371 371 372 -[[image:image-20220608163136-2.png]] 311 +(% style="text-align:center" %) 312 +((( 313 +(% class="wikigeneratedid" style="display:inline-block" %) 314 +[[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]] 315 +))) 373 373 374 -Figure 6-2 VD2B servo drive brake wiring 375 - 376 - 377 377 |((( 318 +(% style="text-align:center" %) 378 378 [[image:image-20220611151642-2.png]] 379 379 ))) 380 380 |((( ... ... @@ -385,13 +385,12 @@ 385 385 ✎It is recommended to use cables above 0.5 mm². 386 386 ))) 387 387 388 -** (2)Brake software setting**329 +**Brake software setting** 389 389 390 390 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined. 391 391 392 392 Related function code is as below. 393 393 394 - 395 395 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=((( 396 396 **Effective time** 397 397 ))) ... ... @@ -401,7 +401,6 @@ 401 401 402 402 Table 6-2 Relevant function codes for brake setting 403 403 404 - 405 405 |=(% scope="row" %)**Function code**|=**Name**|=((( 406 406 **Setting method** 407 407 )))|=((( ... ... @@ -432,15 +432,14 @@ 432 432 433 433 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive. 434 434 435 -** (3)Servo drive brake timing in normal state**374 +**Servo drive brake timing in normal state** 436 436 437 437 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above). 438 438 439 - 1)Brake timing when servo motor is stationary378 +* Brake timing when servo motor is stationary 440 440 441 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __ [[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__380 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__ 442 442 443 - 444 444 |((( 445 445 [[image:image-20220611151705-3.png]] 446 446 ))) ... ... @@ -450,18 +450,23 @@ 450 450 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 451 451 ))) 452 452 453 -[[image:image-20220608163304-3.png]] 391 +(% style="text-align:center" %) 392 +((( 393 +(% class="wikigeneratedid" style="display:inline-block" %) 394 +[[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]] 395 +))) 454 454 455 - Figure6-3 BrakeTiming ofwhen the motor istationary456 - 397 +(% class="box infomessage" %) 398 +((( 457 457 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor. 400 +))) 458 458 459 - 2)The brake timing when servo motor rotates402 +* The brake timing when servo motor rotates 460 460 461 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __ [[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.404 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__. 462 462 463 - 464 464 |((( 407 +(% style="text-align:center" %) 465 465 [[image:image-20220611151719-4.png]] 466 466 ))) 467 467 |((( ... ... @@ -476,31 +476,34 @@ 476 476 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 477 477 ))) 478 478 479 -[[image:image-20220608163425-4.png]] 422 +(% style="text-align:center" %) 423 +((( 424 +(% class="wikigeneratedid" style="display:inline-block" %) 425 +[[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]] 426 +))) 480 480 481 - Figure 6-4Brake timing when themotor rotates428 +**Brake timing when the servo drive fails** 482 482 483 -**(4) Brake timing when the servo drive fails** 484 - 485 485 The brake timing (free shutdown) in the fault status is as follows. 486 486 432 +(% style="text-align:center" %) 433 +((( 434 +(% class="wikigeneratedid" style="display:inline-block" %) 435 +[[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]] 436 +))) 487 487 488 -[[image:image-20220608163541-5.png]] 489 - 490 - Figure 6-5 The brake timing (free shutdown) in the fault state 491 - 492 492 = **Position control mode** = 493 493 494 494 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 495 495 442 +(% style="text-align:center" %) 443 +((( 444 +(% class="wikigeneratedid" style="display:inline-block" %) 445 +[[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]] 446 +))) 496 496 497 -[[image:image-20220608163643-6.png]] 498 - 499 -Figure 6-6 Position control diagram 500 - 501 501 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 502 502 503 - 504 504 |=(% scope="row" %)**Function code**|=**Name**|=((( 505 505 **Setting method** 506 506 )))|=((( ... ... @@ -526,11 +526,10 @@ 526 526 527 527 Table 6-10 Control mode parameters 528 528 529 -== **Position instruction input setting**==475 +== Position instruction input setting == 530 530 531 531 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 532 532 533 - 534 534 |=(% scope="row" %)**Function code**|=**Name**|=((( 535 535 **Setting method** 536 536 )))|=((( ... ... @@ -548,70 +548,78 @@ 548 548 549 549 Table 6-11 Position instruction source parameter 550 550 551 -** (1)The source of position instruction is pulse instruction (P01-06=0)**496 +**The source of position instruction is pulse instruction (P01-06=0)** 552 552 553 - 1)Low-speed pulse instruction input498 +Low-speed pulse instruction input 554 554 555 -|[[image:image-20220 707092316-1.png]]|[[image:image-20220707092322-2.png]]500 +|[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]] 556 556 |VD2A and VD2B servo drives|VD2F servo drive 557 557 |(% colspan="2" %)Figure 6-7 Position instruction input setting 558 558 559 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __ [[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.504 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__. 560 560 561 561 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 562 562 508 +|=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage** 509 +|=Open collector input|200K|24V 510 +|=Differential input|500K|5V 563 563 564 -|**Pulse method**|**Maximum frequency**|**Voltage** 565 -|Open collector input|200K|24V 566 -|Differential input|500K|5V 567 - 568 568 Table 6-12 Pulse input specifications 569 569 570 - 1.Differential input514 +* Differential input 571 571 572 572 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 573 573 574 574 (% style="text-align:center" %) 575 -[[image:image-20220707092615-5.jpeg]] 519 +((( 520 +(% class="wikigeneratedid" style="display:inline-block" %) 521 +[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]] 522 +))) 576 576 577 -Figure 6-8 Differential input connection 524 +(% class="box infomessage" %) 525 +((( 526 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__” 527 +))) 578 578 579 - ✎**Note:**Thedifferentialinputconnection of the VD2F drive differs only from the signalpin number. Please refer to “__[[4.4.3 position instructioninputsignal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”529 +* Open collector input 580 580 581 -2.Open collector input 582 - 583 583 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 584 584 585 585 (% style="text-align:center" %) 586 -[[image:image-20220707092401-3.jpeg||height="530" width="834"]] 534 +((( 535 +(% class="wikigeneratedid" style="display:inline-block" %) 536 +[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="530" id="Iimage-20220707092401-3.jpeg" width="834"]] 537 +))) 587 587 588 -Figure 6-9 Open collector input connection 589 589 590 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 540 +(% class="box infomessage" %) 541 +((( 542 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__” 543 +))) 591 591 592 - 2)Position pulse frequency and anti-interference level545 +* Position pulse frequency and anti-interference level 593 593 594 594 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 595 595 596 596 (% style="text-align:center" %) 597 -[[image:image-20220608163952-8.png]] 550 +((( 551 +(% class="wikigeneratedid" style="display:inline-block" %) 552 +[[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]] 553 +))) 598 598 599 -Figure 6-10 Example of filtered signal waveform 600 - 601 601 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 602 602 603 - 604 -|=(% scope="row" %)**Function code**|=**Name**|=((( 557 +|=**Function code**|=**Name**|=((( 605 605 **Setting method** 606 606 )))|=((( 607 607 **Effective time** 608 608 )))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit** 609 -| =P00-13|Maximum position pulse frequency|(((562 +|P00-13|Maximum position pulse frequency|((( 610 610 Shutdown setting 611 611 )))|((( 612 612 Effective immediately 613 613 )))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 614 -| =(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((567 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 615 615 Operation setting 616 616 )))|(% rowspan="3" %)((( 617 617 Power-on again ... ... @@ -618,34 +618,26 @@ 618 618 )))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 619 619 Set the anti-interference level of external pulse instruction. 620 620 621 -0: no filtering; 622 - 623 -1: Filtering time 128ns 624 - 625 -2: Filtering time 256ns 626 - 627 -3: Filtering time 512ns 628 - 629 -4: Filtering time 1.024us 630 - 631 -5: Filtering time 2.048us 632 - 633 -6: Filtering time 4.096us 634 - 635 -7: Filtering time 8.192us 636 - 637 -8: Filtering time 16.384us 574 +* 0: no filtering; 575 +* 1: Filtering time 128ns 576 +* 2: Filtering time 256ns 577 +* 3: Filtering time 512ns 578 +* 4: Filtering time 1.024us 579 +* 5: Filtering time 2.048us 580 +* 6: Filtering time 4.096us 581 +* 7: Filtering time 8.192us 582 +* 8: Filtering time 16.384us 583 +* 9: 584 +** VD2: Filtering time 25.5us 585 +** VD2F: Filtering time 25.5us 638 638 )))|(% rowspan="3" %)- 639 -|=(% rowspan="2" %)9|VD2: Filtering time 25.5us 640 -|=VD2F: Filtering time 25.5us 641 641 642 642 Table 6-13 Position pulse frequency and anti-interference level parameters 643 643 644 - 3)Position pulse type selection590 +* Position pulse type selection 645 645 646 646 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 647 647 648 - 649 649 |=(% scope="row" %)**Function code**|=**Name**|=((( 650 650 **Setting method** 651 651 )))|=((( ... ... @@ -656,17 +656,12 @@ 656 656 )))|((( 657 657 Power-on again 658 658 )))|0|0 to 5|((( 659 -0: direction + pulse (positive logic) 660 - 661 -1: CW/CCW 662 - 663 -2: A, B phase quadrature pulse (4 times frequency) 664 - 665 -3: Direction + pulse (negative logic) 666 - 667 -4: CW/CCW (negative logic) 668 - 669 -5: A, B phase quadrature pulse (4 times frequency negative logic) 604 +* 0: direction + pulse (positive logic) 605 +* 1: CW/CCW 606 +* 2: A, B phase quadrature pulse (4 times frequency) 607 +* 3: Direction + pulse (negative logic) 608 +* 4: CW/CCW (negative logic) 609 +* 5: A, B phase quadrature pulse (4 times frequency negative logic) 670 670 )))|- 671 671 672 672 Table 6-14 Position pulse type selection parameter ... ... @@ -742,7 +742,7 @@ 742 742 )))|((( 743 743 744 744 745 -[[image:image-20220707094437-15.jpeg]] 685 +[[image:image-20220707094437-15.jpeg]] 746 746 747 747 Phase A is ahead of B phase by 90° 748 748 ))) ... ... @@ -749,18 +749,20 @@ 749 749 750 750 Table 6-15 Pulse description 751 751 752 -** (2)The source of position instruction is internal position instruction (P01-06=1)**692 +**The source of position instruction is internal position instruction (P01-06=1)** 753 753 754 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __ [[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.694 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__. 755 755 756 756 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 757 757 758 758 (% style="text-align:center" %) 759 -[[image:image-20220608164116-9.png]] 699 +((( 700 +(% class="wikigeneratedid" style="display:inline-block" %) 701 +[[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]] 702 +))) 760 760 761 -Figure 6-11 The setting process of multi-segment position 762 762 763 - 1)Set multi-segment position running mode705 +* Set multi-segment position running mode 764 764 765 765 |=(% scope="row" %)**Function code**|=**Name**|=((( 766 766 **Setting method** ... ... @@ -772,11 +772,9 @@ 772 772 )))|((( 773 773 Effective immediately 774 774 )))|0|0 to 2|((( 775 -0: Single running 776 - 777 -1: Cycle running 778 - 779 -2: DI switching running 717 +* 0: Single running 718 +* 1: Cycle running 719 +* 2: DI switching running 780 780 )))|- 781 781 |=P07-02|Start segment number|((( 782 782 Shutdown setting ... ... @@ -793,9 +793,8 @@ 793 793 )))|((( 794 794 Effective immediately 795 795 )))|0|0 to 1|((( 796 -0: Run the remaining segments 797 - 798 -1: Run again from the start segment 736 +* 0: Run the remaining segments 737 +* 1: Run again from the start segment 799 799 )))|- 800 800 |=P07-05|Displacement instruction type|((( 801 801 Shutdown setting ... ... @@ -802,9 +802,8 @@ 802 802 )))|((( 803 803 Effective immediately 804 804 )))|0|0 to 1|((( 805 -0: Relative position instruction 806 - 807 -1: Absolute position instruction 744 +* 0: Relative position instruction 745 +* 1: Absolute position instruction 808 808 )))|- 809 809 810 810 Table 6-16 multi-segment position running mode parameters ... ... @@ -811,30 +811,35 @@ 811 811 812 812 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements. 813 813 814 - ~1. Single running752 +1. Single running 815 815 816 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __ [[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively754 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 817 817 818 818 819 819 (% style="text-align:center" %) 820 -[[image:image-20220608164226-10.png]] 758 +((( 759 +(% class="wikigeneratedid" style="display:inline-block" %) 760 +[[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]] 761 +))) 821 821 822 - Figure6-12Single runningcurve (P07-02=1, P07-03=2)763 +* 2. Cycle running 823 823 824 -2. Cycle running 825 - 826 826 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 827 827 828 - 829 829 (% style="text-align:center" %) 830 -[[image:image-20220608164327-11.png]] 768 +((( 769 +(% class="wikigeneratedid" style="display:inline-block" %) 770 +[[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]] 771 +))) 831 831 832 -Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 833 - 834 -|[[image:image-20220611151917-5.png]] 773 +|((( 774 +(% style="text-align:center" %) 775 +[[image:image-20220611151917-5.png]] 776 +))) 835 835 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 836 836 837 -3. DI switching running 779 +(% start="3" %) 780 +1. DI switching running 838 838 839 839 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 840 840 ... ... @@ -857,68 +857,87 @@ 857 857 858 858 Table 6-18 INPOS corresponds to running segment number 859 859 860 -The operating curve in this running mode is shown in __ [[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.803 +The operating curve in this running mode is shown in __Figure 6-14__. 861 861 862 862 (% style="text-align:center" %) 863 -[[image:image-20220608164545-12.png]] 806 +((( 807 +(% class="wikigeneratedid" style="display:inline-block" %) 808 +[[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]] 809 +))) 864 864 865 -Figure 6-14 DI switching running curve 866 - 867 867 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04. 868 868 869 -** A.Run the remaining segments**813 +**Run the remaining segments** 870 870 871 871 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively. 872 872 873 873 (% style="text-align:center" %) 874 -[[image:image-20220608164847-13.png]] 818 +((( 819 +(% class="wikigeneratedid" style="display:inline-block" %) 820 +[[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]] 821 +))) 875 875 876 -Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 877 - 878 878 (% style="text-align:center" %) 879 -[[image:image-20220608165032-14.png]] 824 +((( 825 +(% class="wikigeneratedid" style="display:inline-block" %) 826 +[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]] 827 +))) 880 880 881 - Figure 6-16 Cycle running-runtheremainingsegment(P07-02=1, P07-03=4)829 +**Run again from the start segment** 882 882 883 -**B. Run again from the start segment** 884 - 885 885 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively. 886 886 887 887 (% style="text-align:center" %) 888 -[[image:image-20220608165343-15.png]] 834 +((( 835 +(% class="wikigeneratedid" style="display:inline-block" %) 836 +[[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]] 837 +))) 889 889 890 -Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 891 - 892 892 (% style="text-align:center" %) 893 -[[image:image-20220608165558-16.png]] 840 +((( 841 +(% class="wikigeneratedid" style="display:inline-block" %) 842 +[[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]] 843 +))) 894 894 895 -Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) 896 - 897 897 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05. 898 898 899 - A.Relative position instruction847 +* Relative position instruction 900 900 901 901 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 902 902 903 903 |((( 904 -[[image:image-20220608165710-17.png]] 852 +(% style="text-align:center" %) 853 +((( 854 +(% class="wikigeneratedid" style="display:inline-block" %) 855 +[[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]] 856 +))) 905 905 )))|((( 906 -[[image:image-20220608165749-18.png]] 858 +(% style="text-align:center" %) 859 +((( 860 +(% class="wikigeneratedid" style="display:inline-block" %) 861 +[[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]] 907 907 ))) 908 - |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram863 +))) 909 909 910 - B.Absolute position instruction865 +* Absolute position instruction 911 911 912 912 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 913 913 914 914 |((( 915 -[[image:image-20220608165848-19.png]] 870 +(% style="text-align:center" %) 871 +((( 872 +(% class="wikigeneratedid" style="display:inline-block" %) 873 +[[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]] 874 +))) 916 916 )))|((( 917 -[[image:image-20220608170005-20.png]] 876 +(% style="text-align:center" %) 877 +((( 878 +(% class="wikigeneratedid" style="display:inline-block" %) 879 +[[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]] 918 918 ))) 919 - |Figure 6-21 Absolute indication|Figure 6-22 Displacement881 +))) 920 920 921 - 2)Multi-segment position running curve setting883 +* Multi-segment position running curve setting 922 922 923 923 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 924 924 ... ... @@ -957,11 +957,13 @@ 957 957 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 958 958 959 959 (% style="text-align:center" %) 960 -[[image:image-20220608170149-21.png]] 922 +((( 923 +(% class="wikigeneratedid" style="display:inline-block" %) 924 +[[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]] 925 +))) 961 961 962 -Figure 6-23 The 1st segment running curve of motor 963 963 964 - 3)multi-segment position instruction enable928 +* multi-segment position instruction enable 965 965 966 966 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 967 967 ... ... @@ -972,13 +972,14 @@ 972 972 DI port logic valid: Motor runs multi-segment position 973 973 ))) 974 974 939 +(% style="text-align:center" %) 975 975 [[image:image-20220611152020-6.png]] 976 976 977 977 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 978 978 979 -== **Electronic gear ratio**==944 +== Electronic gear ratio == 980 980 981 -** (1)Definition of electronic gear ratio**946 +**Definition of electronic gear ratio** 982 982 983 983 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio. 984 984 ... ... @@ -989,23 +989,20 @@ 989 989 (% style="text-align:center" %) 990 990 [[image:image-20220707094901-16.png]] 991 991 992 - 993 - 994 - 995 995 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! 996 996 997 -** (2)Setting steps of electronic gear ratio**959 +**Setting steps of electronic gear ratio** 998 998 999 -[[image:image-20220707100850-20.jpeg]] 961 +(% style="text-align:center" %) 962 +((( 963 +(% class="wikigeneratedid" style="display:inline-block" %) 964 +[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]] 965 +))) 1000 1000 1001 - Figure 6-24 Setting steps of electronic gear ratio967 +**lectronic gear ratio switch setting** 1002 1002 1003 -**(3) lectronic gear ratio switch setting** 1004 - 1005 - 1006 1006 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 1007 1007 1008 - 1009 1009 |=(% scope="row" %)**Function code**|=**Name**|=((( 1010 1010 **Setting method** 1011 1011 )))|=((( ... ... @@ -1055,7 +1055,6 @@ 1055 1055 1056 1056 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1057 1057 1058 - 1059 1059 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 1060 1060 |=09|GEAR-SEL electronic gear switch 1|((( 1061 1061 DI port logic invalid: electronic gear ratio 1 ... ... @@ -1065,16 +1065,25 @@ 1065 1065 1066 1066 Table 6-21 Switching conditions of electronic gear ratio group 1067 1067 1068 -|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]] 1069 -|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]] 1070 -|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]] 1071 -|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]] 1029 +|=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** 1030 +|(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)((( 1031 +(% style="text-align:center" %) 1032 +[[image:image-20220707101328-21.png]] 1033 +))) 1034 +|(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)((( 1035 +(% style="text-align:center" %) 1036 +[[image:image-20220707101336-22.png]] 1037 +))) 1038 +|1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)((( 1039 +(% style="text-align:center" %) 1040 +[[image:image-20220707101341-23.png]] 1041 +))) 1072 1072 1073 1073 Table 6-22 Application of electronic gear ratio 1074 1074 1075 1075 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid. 1076 1076 1077 -== **Position instruction filtering**==1047 +== Position instruction filtering == 1078 1078 1079 1079 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation. 1080 1080 ... ... @@ -1087,10 +1087,11 @@ 1087 1087 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1088 1088 1089 1089 (% style="text-align:center" %) 1090 -[[image:image-20220608170455-23.png]] 1060 +((( 1061 +(% class="wikigeneratedid" style="display:inline-block" %) 1062 +[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]] 1063 +))) 1091 1091 1092 -Figure 6-25 Position instruction filtering diagram 1093 - 1094 1094 |=(% scope="row" %)**Function code**|=**Name**|=((( 1095 1095 **Setting method** 1096 1096 )))|=((( ... ... @@ -1101,9 +1101,8 @@ 1101 1101 )))|((( 1102 1102 Effective immediately 1103 1103 )))|0|0 to 1|((( 1104 -0: 1st-order low-pass filtering 1105 - 1106 -1: average filtering 1075 +* 0: 1st-order low-pass filtering 1076 +* 1: average filtering 1107 1107 )))|- 1108 1108 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1109 1109 Effective immediately ... ... @@ -1114,13 +1114,13 @@ 1114 1114 1115 1115 Table 6-23 Position instruction filter function code 1116 1116 1117 -== **Clearance of position deviation**==1087 +== Clearance of position deviation == 1118 1118 1119 1119 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal; 1120 1120 1121 1121 Position deviation = (position instruction-position feedback) (encoder unit) 1122 1122 1123 -== **Position-related DO output function**==1093 +== Position-related DO output function == 1124 1124 1125 1125 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use. 1126 1126 ... ... @@ -1131,44 +1131,46 @@ 1131 1131 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1132 1132 1133 1133 (% style="text-align:center" %) 1134 -[[image:image-20220608170550-24.png]] 1104 +((( 1105 +(% class="wikigeneratedid" style="display:inline-block" %) 1106 +[[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]] 1107 +))) 1135 1135 1136 -Figure 6-26 Positioning completion signal output diagram 1137 - 1138 1138 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27. 1139 1139 1140 1140 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1141 1141 1142 1142 (% style="text-align:center" %) 1143 -[[image:image-20220608170650-25.png]] 1114 +((( 1115 +(% class="wikigeneratedid" style="display:inline-block" %) 1116 +[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]] 1117 +))) 1144 1144 1145 -Figure 6-27 Positioning completion signal output with increased window filter time diagram 1146 - 1147 1147 |=(% scope="row" %)**Function code**|=**Name**|=((( 1148 1148 **Setting method** 1149 -)))|=((( 1121 +)))|=(% style="width: 129px;" %)((( 1150 1150 **Effective time** 1151 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1123 +)))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit** 1152 1152 |=P05-12|Positioning completion threshold|((( 1153 1153 Operation setting 1154 -)))|((( 1126 +)))|(% style="width:129px" %)((( 1155 1155 Effective immediately 1156 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1128 +)))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1157 1157 |=P05-13|Positioning approach threshold|((( 1158 1158 Operation setting 1159 -)))|((( 1131 +)))|(% style="width:129px" %)((( 1160 1160 Effective immediately 1161 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1133 +)))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1162 1162 |=P05-14|Position detection window time|((( 1163 1163 Operation setting 1164 -)))|((( 1136 +)))|(% style="width:129px" %)((( 1165 1165 Effective immediately 1166 -)))|10|0 to 20000|Set positioning completion detection window time|ms 1138 +)))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms 1167 1167 |=P05-15|Positioning signal hold time|((( 1168 1168 Operation setting 1169 -)))|((( 1141 +)))|(% style="width:129px" %)((( 1170 1170 Effective immediately 1171 -)))|100|0 to 20000|Set positioning completion output hold time|ms 1143 +)))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms 1172 1172 1173 1173 Table 6-24 Function code parameters of positioning completion 1174 1174 ... ... @@ -1187,47 +1187,46 @@ 1187 1187 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1188 1188 1189 1189 (% style="text-align:center" %) 1190 -[[image:6.28.jpg||height="260" width="806"]] 1162 +((( 1163 +(% class="wikigeneratedid" style="display:inline-block" %) 1164 +[[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]] 1165 +))) 1191 1191 1192 - Figure6-28Speedcontrolblockdiagram1167 +== Speed instruction input setting == 1193 1193 1194 -== **Speed instruction input setting** == 1195 - 1196 1196 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1197 1197 1198 - 1199 -|**Function code**|**Name**|((( 1171 +|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 189px;" %)**Name**|=(% style="width: 125px;" %)((( 1200 1200 **Setting method** 1201 -)))|((( 1173 +)))|=(% style="width: 125px;" %)((( 1202 1202 **Effective time** 1203 -)))|**Default value**|**Range**|**Definition**|**Unit** 1204 -|P01-01|Speed instruction source|((( 1175 +)))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit** 1176 +|=(% style="width: 121px;" %)P01-01|(% style="width:189px" %)Speed instruction source|(% style="width:125px" %)((( 1205 1205 Shutdown setting 1206 -)))|((( 1178 +)))|(% style="width:125px" %)((( 1207 1207 Effective immediately 1208 -)))|1|1 to 1|((( 1209 -0: internal speed instruction 1210 - 1211 -1: AI_1 analog input (not supported by VD2F) 1180 +)))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)((( 1181 +* 0: internal speed instruction 1182 +* 1: AI_1 analog input (not supported by VD2F) 1212 1212 )))|- 1213 1213 1214 1214 Table 6-26 Speed instruction source parameter 1215 1215 1216 -** (1)Speed instruction source is internal speed instruction (P01-01=0)**1187 +**Speed instruction source is internal speed instruction (P01-01=0)** 1217 1217 1218 1218 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo 1219 1219 1220 1220 (% style="width:1141px" %) 1221 -|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)((( 1192 +|=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)((( 1222 1222 **Setting** 1223 1223 1224 1224 **method** 1225 -)))|(% colspan="2" %)((( 1196 +)))|=(% colspan="2" %)((( 1226 1226 **Effective** 1227 1227 1228 1228 **time** 1229 -)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit** 1230 -|(% colspan="1" %)P01-02|(% colspan="2" %)((( 1200 +)))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit** 1201 +|=(% colspan="1" %)P01-02|(% colspan="2" %)((( 1231 1231 Internal speed 1232 1232 1233 1233 Instruction 0 ... ... @@ -1244,15 +1244,13 @@ 1244 1244 1245 1245 When DI input port: 1246 1246 1247 -15-INSPD3: 0 1218 +* 15-INSPD3: 0 1219 +* 14-INSPD2: 0 1220 +* 13-INSPD1: 0, 1248 1248 1249 -14-INSPD2: 0 1250 - 1251 -13-INSPD1: 0, 1252 - 1253 1253 select this speed instruction to be effective. 1254 1254 )))|(% colspan="2" %)rpm 1255 -|(% colspan="1" %)P01-23|(% colspan="2" %)((( 1224 +|=(% colspan="1" %)P01-23|(% colspan="2" %)((( 1256 1256 Internal speed 1257 1257 1258 1258 Instruction 1 ... ... @@ -1269,15 +1269,13 @@ 1269 1269 1270 1270 When DI input port: 1271 1271 1272 -15-INSPD3: 0 1241 +* 15-INSPD3: 0 1242 +* 14-INSPD2: 0 1243 +* 13-INSPD1: 1, 1273 1273 1274 -14-INSPD2: 0 1275 - 1276 -13-INSPD1: 1, 1277 - 1278 1278 Select this speed instruction to be effective. 1279 1279 )))|(% colspan="2" %)rpm 1280 -|(% colspan="1" %)P01-24|(% colspan="2" %)((( 1247 +|=(% colspan="1" %)P01-24|(% colspan="2" %)((( 1281 1281 Internal speed 1282 1282 1283 1283 Instruction 2 ... ... @@ -1294,15 +1294,13 @@ 1294 1294 1295 1295 When DI input port: 1296 1296 1297 -15-INSPD3: 0 1264 +* 15-INSPD3: 0 1265 +* 14-INSPD2: 1 1266 +* 13-INSPD1: 0, 1298 1298 1299 -14-INSPD2: 1 1300 - 1301 -13-INSPD1: 0, 1302 - 1303 1303 Select this speed instruction to be effective. 1304 1304 )))|(% colspan="2" %)rpm 1305 -|(% colspan="1" %)P01-25|(% colspan="2" %)((( 1270 +|=(% colspan="1" %)P01-25|(% colspan="2" %)((( 1306 1306 Internal speed 1307 1307 1308 1308 Instruction 3 ... ... @@ -1319,15 +1319,13 @@ 1319 1319 1320 1320 When DI input port: 1321 1321 1322 -15-INSPD3: 0 1287 +* 15-INSPD3: 0 1288 +* 14-INSPD2: 1 1289 +* 13-INSPD1: 1, 1323 1323 1324 -14-INSPD2: 1 1325 - 1326 -13-INSPD1: 1, 1327 - 1328 1328 Select this speed instruction to be effective. 1329 1329 )))|(% colspan="2" %)rpm 1330 -|P01-26|(% colspan="2" %)((( 1293 +|=P01-26|(% colspan="2" %)((( 1331 1331 Internal speed 1332 1332 1333 1333 Instruction 4 ... ... @@ -1344,15 +1344,13 @@ 1344 1344 1345 1345 When DI input port: 1346 1346 1347 -15-INSPD3: 1 1310 +* 15-INSPD3: 1 1311 +* 14-INSPD2: 0 1312 +* 13-INSPD1: 0, 1348 1348 1349 -14-INSPD2: 0 1350 - 1351 -13-INSPD1: 0, 1352 - 1353 1353 Select this speed instruction to be effective. 1354 1354 )))|(% colspan="1" %)rpm 1355 -|P01-27|(% colspan="2" %)((( 1316 +|=P01-27|(% colspan="2" %)((( 1356 1356 Internal speed 1357 1357 1358 1358 Instruction 5 ... ... @@ -1369,15 +1369,13 @@ 1369 1369 1370 1370 When DI input port: 1371 1371 1372 -15-INSPD3: 1 1333 +* 15-INSPD3: 1 1334 +* 14-INSPD2: 0 1335 +* 13-INSPD1: 1, 1373 1373 1374 -14-INSPD2: 0 1375 - 1376 -13-INSPD1: 1, 1377 - 1378 1378 Select this speed instruction to be effective. 1379 1379 )))|(% colspan="1" %)rpm 1380 -|P01-28|(% colspan="2" %)((( 1339 +|=P01-28|(% colspan="2" %)((( 1381 1381 Internal speed 1382 1382 1383 1383 Instruction 6 ... ... @@ -1394,15 +1394,13 @@ 1394 1394 1395 1395 When DI input port: 1396 1396 1397 -15-INSPD3: 1 1356 +* 15-INSPD3: 1 1357 +* 14-INSPD2: 1 1358 +* 13-INSPD1: 0, 1398 1398 1399 -14-INSPD2: 1 1400 - 1401 -13-INSPD1: 0, 1402 - 1403 1403 Select this speed instruction to be effective. 1404 1404 )))|(% colspan="1" %)rpm 1405 -|P01-29|(% colspan="2" %)((( 1362 +|=P01-29|(% colspan="2" %)((( 1406 1406 Internal speed 1407 1407 1408 1408 Instruction 7 ... ... @@ -1419,21 +1419,19 @@ 1419 1419 1420 1420 When DI input port: 1421 1421 1422 -15-INSPD3: 1 1379 +* 15-INSPD3: 1 1380 +* 14-INSPD2: 1 1381 +* 13-INSPD1: 1, 1423 1423 1424 -14-INSPD2: 1 1425 - 1426 -13-INSPD1: 1, 1427 - 1428 1428 Select this speed instruction to be effective. 1429 1429 )))|(% colspan="1" %)rpm 1430 1430 1431 1431 Table 6-27 Internal speed instruction parameters 1432 1432 1433 -|**DI function code**|**function name**|**Function** 1434 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1435 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1436 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1388 +|=(% scope="row" %)**DI function code**|=**function name**|=**Function** 1389 +|=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1390 +|=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1391 +|=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1437 1437 1438 1438 Table 6-28 DI multi-speed function code description 1439 1439 ... ... @@ -1440,7 +1440,7 @@ 1440 1440 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1441 1441 1442 1442 1443 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1398 +|=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number** 1444 1444 |0|0|0|1|0 1445 1445 |0|0|1|2|1 1446 1446 |0|1|0|3|2 ... ... @@ -1449,26 +1449,30 @@ 1449 1449 1450 1450 Table 6-29 Correspondence between INSPD bits and segment numbers 1451 1451 1452 -[[image:image-20220608170845-26.png]] 1407 +(% style="text-align:center" %) 1408 +((( 1409 +(% class="wikigeneratedid" style="display:inline-block" %) 1410 +[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]] 1411 +))) 1453 1453 1454 - Figure6-29 Multi-segment speed runningcurve1413 +**Speed instruction source is internal speed instruction (P01-01=1)** 1455 1455 1456 -**(2) Speed instruction source is internal speed instruction (P01-01=1)** 1457 - 1458 1458 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1459 1459 1460 1460 (% style="text-align:center" %) 1461 -[[image:image-20220608153341-5.png]] 1418 +((( 1419 +(% class="wikigeneratedid" style="display:inline-block" %) 1420 +[[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]] 1421 +))) 1462 1462 1463 -Figure 6-30 Analog input circuit 1464 - 1465 1465 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1466 1466 1467 1467 (% style="text-align:center" %) 1468 -[[image:image-20220608170955-27.png]] 1426 +((( 1427 +(% class="wikigeneratedid" style="display:inline-block" %) 1428 +[[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]] 1429 +))) 1469 1469 1470 -Figure 6-31 Analog voltage speed instruction setting steps 1471 - 1472 1472 Explanation of related terms: 1473 1473 1474 1474 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. ... ... @@ -1476,21 +1476,25 @@ 1476 1476 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1477 1477 1478 1478 (% style="text-align:center" %) 1479 -[[image:image-20220608171124-28.png]] 1438 +((( 1439 +(% class="wikigeneratedid" style="display:inline-block" %) 1440 +[[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]] 1441 +))) 1480 1480 1481 -Figure 6-32 AI_1 diagram before and after bias 1443 +|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 1444 +|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1445 +|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1446 +|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1447 +|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1482 1482 1483 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1484 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1485 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1486 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1487 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1488 - 1489 1489 Table 6-30 AI_1 parameters 1490 1490 1451 +(% class="box infomessage" %) 1452 +((( 1491 1491 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 1454 +))) 1492 1492 1493 -== **Acceleration and deceleration time setting**==1456 +== Acceleration and deceleration time setting == 1494 1494 1495 1495 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration. 1496 1496 ... ... @@ -1497,24 +1497,25 @@ 1497 1497 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1498 1498 1499 1499 (% style="text-align:center" %) 1500 -[[image:image-20220608171314-29.png]] 1463 +((( 1464 +(% class="wikigeneratedid" style="display:inline-block" %) 1465 +[[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]] 1466 +))) 1501 1501 1502 -Figure 6-33 of acceleration and deceleration time diagram 1503 - 1504 1504 (% style="text-align:center" %) 1505 1505 [[image:image-20220707103616-27.png]] 1506 1506 1507 -|**Function code**|**Name**|((( 1471 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1508 1508 **Setting method** 1509 -)))|((( 1473 +)))|=((( 1510 1510 **Effective time** 1511 -)))|**Default value**|**Range**|**Definition**|**Unit** 1512 -|P01-03|Acceleration time|((( 1475 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1476 +|=P01-03|Acceleration time|((( 1513 1513 Operation setting 1514 1514 )))|((( 1515 1515 Effective immediately 1516 1516 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1517 -|P01-04|Deceleration time|((( 1481 +|=P01-04|Deceleration time|((( 1518 1518 Operation setting 1519 1519 )))|((( 1520 1520 Effective immediately ... ... @@ -1522,7 +1522,7 @@ 1522 1522 1523 1523 Table 6-31 Acceleration and deceleration time parameters 1524 1524 1525 -== **Speed instruction limit**==1489 +== Speed instruction limit == 1526 1526 1527 1527 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include: 1528 1528 ... ... @@ -1537,23 +1537,22 @@ 1537 1537 1538 1538 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1539 1539 1540 - 1541 -|**Function code**|**Name**|((( 1504 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1542 1542 **Setting method** 1543 -)))|((( 1506 +)))|=((( 1544 1544 **Effective time** 1545 -)))|**Default value**|**Range**|**Definition**|**Unit** 1546 -|P01-10|Maximum speed threshold|((( 1508 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1509 +|=P01-10|Maximum speed threshold|((( 1547 1547 Operation setting 1548 1548 )))|((( 1549 1549 Effective immediately 1550 1550 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1551 -|P01-12|Forward speed threshold|((( 1514 +|=P01-12|Forward speed threshold|((( 1552 1552 Operation setting 1553 1553 )))|((( 1554 1554 Effective immediately 1555 1555 )))|3000|0 to 5000|Set forward speed limit value|rpm 1556 -|P01-13|Reverse speed threshold|((( 1519 +|=P01-13|Reverse speed threshold|((( 1557 1557 Operation setting 1558 1558 )))|((( 1559 1559 Effective immediately ... ... @@ -1561,19 +1561,18 @@ 1561 1561 1562 1562 Table 6-32 Rotation speed related function codes 1563 1563 1564 -== **Zero-speed clamp function**==1527 +== Zero-speed clamp function == 1565 1565 1566 1566 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid. 1567 1567 1568 1568 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1569 1569 1570 - 1571 -|**Function code**|**Name**|((( 1533 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1572 1572 **Setting method** 1573 -)))|((( 1535 +)))|=((( 1574 1574 **Effective time** 1575 -)))|**Default value**|**Range**|**Definition**|**Unit** 1576 -|P01-21|((( 1537 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1538 +|=P01-21|((( 1577 1577 Zero-speed clamp function selection 1578 1578 )))|((( 1579 1579 Operation setting ... ... @@ -1582,15 +1582,12 @@ 1582 1582 )))|0|0 to 3|((( 1583 1583 Set the zero-speed clamp function. In speed mode: 1584 1584 1585 -0: Force the speed to 0; 1586 - 1587 -1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 1588 - 1589 -2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1590 - 1591 -3: Invalid, ignore zero-speed clamp input 1547 +* 0: Force the speed to 0; 1548 +* 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 1549 +* 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1550 +* 3: Invalid, ignore zero-speed clamp input 1592 1592 )))|- 1593 -|P01-22|((( 1552 +|=P01-22|((( 1594 1594 Zero-speed clamp speed threshold 1595 1595 )))|((( 1596 1596 Operation setting ... ... @@ -1600,33 +1600,34 @@ 1600 1600 1601 1601 Table 6-33 Zero-speed clamp related parameters 1602 1602 1562 +(% style="text-align:center" %) 1563 +((( 1564 +(% class="wikigeneratedid" style="display:inline-block" %) 1565 +[[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]] 1566 +))) 1603 1603 1604 - [[image:image-20220608171549-30.png]]1568 +== Speed-related DO output function == 1605 1605 1606 -Figure 6-34 Zero-speed clamp diagram 1607 - 1608 -== **Speed-related DO output function** == 1609 - 1610 1610 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use. 1611 1611 1612 -** (1)Rotation detection signal**1572 +**Rotation detection signal** 1613 1613 1614 1614 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1615 1615 1576 +(% style="text-align:center" %) 1577 +((( 1578 +(% class="wikigeneratedid" style="display:inline-block" %) 1579 +[[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]] 1580 +))) 1616 1616 1617 - [[image:image-20220608171625-31.png]]1582 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__. 1618 1618 1619 -Figure 6-35 Rotation detection signal diagram 1620 - 1621 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1622 - 1623 - 1624 -|**Function code**|**Name**|((( 1584 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1625 1625 **Setting method** 1626 -)))|((( 1586 +)))|=((( 1627 1627 **Effective time** 1628 -)))|**Default value**|**Range**|**Definition**|**Unit** 1629 -|P05-16|((( 1588 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1589 +|=P05-16|((( 1630 1630 Rotation detection 1631 1631 1632 1632 speed threshold ... ... @@ -1638,10 +1638,10 @@ 1638 1638 1639 1639 Table 6-34 Rotation detection speed threshold parameters 1640 1640 1641 -|**DO function code**|**Function name**|**Function** 1642 -|132|((( 1601 +|=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function** 1602 +|=132|(% style="width:247px" %)((( 1643 1643 T-COIN rotation detection 1644 -)))|((( 1604 +)))|(% style="width:695px" %)((( 1645 1645 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1646 1646 1647 1647 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1649,22 +1649,24 @@ 1649 1649 1650 1650 Table 6-35 DO rotation detection function code 1651 1651 1652 -** (2)Zero-speed signal**1612 +**Zero-speed signal** 1653 1653 1654 1654 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1655 1655 1656 -[[image:image-20220608171904-32.png]] 1616 +(% style="text-align:center" %) 1617 +((( 1618 +(% class="wikigeneratedid" style="display:inline-block" %) 1619 +[[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]] 1620 +))) 1657 1657 1658 - Figure6-36Zero-speed signaldiagram1622 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__. 1659 1659 1660 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1661 - 1662 -|**Function code**|**Name**|((( 1624 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1663 1663 **Setting method** 1664 -)))|((( 1626 +)))|=((( 1665 1665 **Effective time** 1666 -)))|**Default value**|**Range**|**Definition**|**Unit** 1667 -|P05-19|Zero speed output signal threshold|((( 1628 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1629 +|=P05-19|Zero speed output signal threshold|((( 1668 1668 Operation setting 1669 1669 )))|((( 1670 1670 Effective immediately ... ... @@ -1672,30 +1672,31 @@ 1672 1672 1673 1673 Table 6-36 Zero-speed output signal threshold parameter 1674 1674 1675 - 1676 -|**DO function code**|**Function name**|**Function** 1677 -|133|((( 1637 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 1638 +|=133|((( 1678 1678 ZSP zero speed signal 1679 1679 )))|Output this signal indicates that the servo motor is stopping rotation 1680 1680 1681 1681 Table 6-37 DO zero-speed signal function code 1682 1682 1683 -** (3)Speed consistent signal**1644 +**Speed consistent signal** 1684 1684 1685 1685 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1686 1686 1687 -[[image:image-20220608172053-33.png]] 1648 +(% style="text-align:center" %) 1649 +((( 1650 +(% class="wikigeneratedid" style="display:inline-block" %) 1651 +[[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]] 1652 +))) 1688 1688 1689 - Figure6-37Speed consistentsignal diagram1654 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__. 1690 1690 1691 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1692 - 1693 -|**Function code**|**Name**|((( 1656 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1694 1694 **Setting method** 1695 -)))|((( 1658 +)))|=((( 1696 1696 **Effective time** 1697 -)))|**Default value**|**Range**|**Definition**|**Unit** 1698 -|P05-17|Speed consistent signal threshold|((( 1660 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1661 +|=P05-17|Speed consistent signal threshold|((( 1699 1699 Operationsetting 1700 1700 )))|((( 1701 1701 Effective immediately ... ... @@ -1703,30 +1703,31 @@ 1703 1703 1704 1704 Table 6-38 Speed consistent signal threshold parameters 1705 1705 1706 - 1707 -|**DO Function code**|**Function name**|**Function** 1708 -|136|((( 1669 +|=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function** 1670 +|=136|(% style="width:262px" %)((( 1709 1709 U-COIN consistent speed 1710 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1672 +)))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1711 1711 1712 1712 Table 6-39 DO speed consistent function code 1713 1713 1714 -** (4)Speed approach signal**1676 +**Speed approach signal** 1715 1715 1716 1716 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1717 1717 1718 -[[image:image-20220608172207-34.png]] 1680 +(% style="text-align:center" %) 1681 +((( 1682 +(% class="wikigeneratedid" style="display:inline-block" %) 1683 +[[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]] 1684 +))) 1719 1719 1720 - Figure6-38Speed approachingsignal diagram1686 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__. 1721 1721 1722 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1723 - 1724 -|**Function code**|**Name**|((( 1688 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1725 1725 **Setting method** 1726 -)))|((( 1690 +)))|=((( 1727 1727 **Effective time** 1728 -)))|**Default value**|**Range**|**Definition**|**Unit** 1729 -|P05-18|Speed approach signal threshold|((( 1692 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1693 +|=P05-18|Speed approach signal threshold|((( 1730 1730 Operation setting 1731 1731 )))|((( 1732 1732 Effective immediately ... ... @@ -1734,8 +1734,8 @@ 1734 1734 1735 1735 Table 6-40 Speed approaching signal threshold parameters 1736 1736 1737 -|**DO function code**|**Function name**|**Function** 1738 -|137|((( 1701 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 1702 +|=137|((( 1739 1739 V-NEAR speed approach 1740 1740 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1741 1741 ... ... @@ -1745,22 +1745,22 @@ 1745 1745 1746 1746 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1747 1747 1712 +(% style="text-align:center" %) 1713 +((( 1714 +(% class="wikigeneratedid" style="display:inline-block" %) 1715 +[[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]] 1716 +))) 1748 1748 1749 - [[image:image-20220608172405-35.png]]1718 +== Torque instru**ction input setting** == 1750 1750 1751 -Figure 6-39 Torque mode diagram 1752 - 1753 -== **Torque instruction input setting** == 1754 - 1755 1755 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1756 1756 1757 - 1758 -|**Function code**|**Name**|((( 1722 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1759 1759 **Setting method** 1760 -)))|((( 1724 +)))|=((( 1761 1761 **Effective time** 1762 -)))|**Default value**|**Range**|**Definition**|**Unit** 1763 -|P01-08|Torque instruction source|((( 1726 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1727 +|=P01-08|Torque instruction source|((( 1764 1764 Shutdown setting 1765 1765 )))|((( 1766 1766 Effective immediately ... ... @@ -1772,17 +1772,16 @@ 1772 1772 1773 1773 Table 6-42 Torque instruction source parameter 1774 1774 1775 -** (1)Torque instruction source is internal torque instruction (P01-07=0)**1739 +**Torque instruction source is internal torque instruction (P01-07=0)** 1776 1776 1777 1777 Torque instruction source is from inside, the value is set by function code P01-08. 1778 1778 1779 - 1780 -|**Function code**|**Name**|((( 1743 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1781 1781 **Setting method** 1782 -)))|((( 1745 +)))|=((( 1783 1783 **Effective time** 1784 -)))|**Default value**|**Range**|**Definition**|**Unit** 1785 -|P01-08|Torque instruction keyboard set value|((( 1747 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1748 +|=P01-08|Torque instruction keyboard set value|((( 1786 1786 Operation setting 1787 1787 )))|((( 1788 1788 Effective immediately ... ... @@ -1790,22 +1790,24 @@ 1790 1790 1791 1791 Table 6-43 Torque instruction keyboard set value 1792 1792 1793 -** (2)Torque instruction source is internal torque instruction (P01-07=1)**1756 +**Torque instruction source is internal torque instruction (P01-07=1)** 1794 1794 1795 1795 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1796 1796 1797 1797 (% style="text-align:center" %) 1798 -[[image:image-20220608153646-7.png||height="213" width="408"]] 1761 +((( 1762 +(% class="wikigeneratedid" style="display:inline-block" %) 1763 +[[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]] 1764 +))) 1799 1799 1800 -Figure 6-40 Analog input circuit 1801 - 1802 1802 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1803 1803 1804 1804 (% style="text-align:center" %) 1805 -[[image:image-20220608172502-36.png]] 1769 +((( 1770 +(% class="wikigeneratedid" style="display:inline-block" %) 1771 +[[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]] 1772 +))) 1806 1806 1807 -Figure 6-41 Analog voltage torque instruction setting steps 1808 - 1809 1809 Explanation of related terms: 1810 1810 1811 1811 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. ... ... @@ -1813,65 +1813,74 @@ 1813 1813 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1814 1814 1815 1815 (% style="text-align:center" %) 1816 -[[image:image-20220608172611-37.png]] 1781 +((( 1782 +(% class="wikigeneratedid" style="display:inline-block" %) 1783 +[[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]] 1784 +))) 1817 1817 1818 -Figure 6-42 AI_1 diagram before and after bias 1786 +|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 1787 +|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1788 +|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1789 +|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1790 +|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1819 1819 1820 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1821 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1822 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1823 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1824 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1825 - 1826 1826 Table 6-44 AI_1 parameters 1827 1827 1794 +(% class="box infomessage" %) 1795 +((( 1828 1828 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 1797 +))) 1829 1829 1830 -== **Torque instruction filtering**==1799 +== Torque instruction filtering == 1831 1831 1832 -In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __ [[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.1801 +In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__. 1833 1833 1834 -|**Function code**|**Name**|((( 1803 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1835 1835 **Setting method** 1836 -)))|((( 1805 +)))|=((( 1837 1837 **Effective time** 1838 -)))|**Default value**|**Range**|**Definition**|**Unit** 1839 -|P04-04|Torque filtering time constant|((( 1807 +)))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit** 1808 +|=P04-04|Torque filtering time constant|((( 1840 1840 Operation setting 1841 1841 )))|((( 1842 1842 Effective immediately 1843 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1812 +)))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1844 1844 1845 1845 Table 6-45 Torque filtering time constant parameter details 1846 1846 1816 +(% class="box infomessage" %) 1817 +((( 1847 1847 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1819 +))) 1848 1848 1849 1849 (% style="text-align:center" %) 1850 -[[image:image-20220608172646-38.png]] 1822 +((( 1823 +(% class="wikigeneratedid" style="display:inline-block" %) 1824 +[[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]] 1825 +))) 1851 1851 1852 - Figure6-43Torque instruction-first-orderfiltering diagram1827 +== Torque instruction limit == 1853 1853 1854 -== **Torque instruction limit** == 1855 - 1856 1856 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer. 1857 1857 1858 1858 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1859 1859 1860 1860 (% style="text-align:center" %) 1861 -[[image:image-20220608172806-39.png]] 1834 +((( 1835 +(% class="wikigeneratedid" style="display:inline-block" %) 1836 +[[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]] 1837 +))) 1862 1862 1863 - Figure6-44 Torqueinstructionlimitdiagram1839 +**Set torque limit source** 1864 1864 1865 -**(1) Set torque limit source** 1866 - 1867 1867 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1868 1868 1869 -|**Function code**|**Name**|((( 1843 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1870 1870 **Setting method** 1871 -)))|((( 1845 +)))|=((( 1872 1872 **Effective time** 1873 -)))|**Default value**|**Range**|**Definition**|**Unit** 1874 -|P01-14|((( 1847 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1848 +|=P01-14|((( 1875 1875 Torque limit source 1876 1876 )))|((( 1877 1877 Shutdown setting ... ... @@ -1878,49 +1878,46 @@ 1878 1878 )))|((( 1879 1879 Effective immediately 1880 1880 )))|0|0 to 1|((( 1881 -0: internal value 1882 - 1883 -1: AI_1 analog input 1884 - 1885 -(not supported by VD2F) 1855 +* 0: internal value 1856 +* 1: AI_1 analog input (not supported by VD2F) 1886 1886 )))|- 1887 1887 1888 - 1)Torque limit source is internal torque instruction (P01-14=0)1859 +* Torque limit source is internal torque instruction (P01-14=0) 1889 1889 1890 1890 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1891 1891 1892 -|**Function code**|**Name**|((( 1863 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1893 1893 **Setting method** 1894 -)))|((( 1865 +)))|=((( 1895 1895 **Effective time** 1896 -)))|**Default value**|**Range**|**Definition**|**Unit** 1897 -|P01-15|((( 1867 +)))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit** 1868 +|=P01-15|((( 1898 1898 Forward torque limit 1899 1899 )))|((( 1900 1900 Operation setting 1901 1901 )))|((( 1902 1902 Effective immediately 1903 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1904 -|P01-16|((( 1874 +)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1875 +|=P01-16|((( 1905 1905 Reverse torque limit 1906 1906 )))|((( 1907 1907 Operation setting 1908 1908 )))|((( 1909 1909 Effective immediately 1910 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1881 +)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1911 1911 1912 1912 Table 6-46 Torque limit parameter details 1913 1913 1914 - 2)Torque limit source is external (P01-14=1)1885 +* Torque limit source is external (P01-14=1) 1915 1915 1916 1916 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal. 1917 1917 1918 -** (2)Set torque limit DO signal output**1889 +**Set torque limit DO signal output** 1919 1919 1920 1920 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1921 1921 1922 -|**DO function code**|**Function name**|**Function** 1923 -|139|((( 1893 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 1894 +|=139|((( 1924 1924 T-LIMIT in torque limit 1925 1925 )))|Output of this signal indicates that the servo motor torque is limited 1926 1926 ... ... @@ -1930,21 +1930,28 @@ 1930 1930 1931 1931 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited. 1932 1932 1933 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __ [[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.1904 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__. 1934 1934 1935 1935 |((( 1936 -[[image:image-20220608172910-40.png]] 1907 +(% style="text-align:center" %) 1908 +((( 1909 +(% class="wikigeneratedid" style="display:inline-block" %) 1910 +[[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]] 1911 +))) 1937 1937 )))|((( 1938 -[[image:image-20220608173155-41.png]] 1913 +(% style="text-align:center" %) 1914 +((( 1915 +(% class="wikigeneratedid" style="display:inline-block" %) 1916 +[[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]] 1939 1939 ))) 1940 - |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve1918 +))) 1941 1941 1942 -|**Function code**|**Name**|((( 1920 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1943 1943 **Setting method** 1944 -)))|((( 1922 +)))|=((( 1945 1945 **Effective time** 1946 -)))|**Default value**|**Range**|**Definition**|**Unit** 1947 -|P01-17|((( 1924 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1925 +|=P01-17|((( 1948 1948 Forward torque 1949 1949 1950 1950 limit in torque mode ... ... @@ -1957,7 +1957,7 @@ 1957 1957 1958 1958 limit in torque mode 1959 1959 )))|0.1% 1960 -|P01-18|((( 1938 +|=P01-18|((( 1961 1961 Reverse torque 1962 1962 1963 1963 limit in torque mode ... ... @@ -1973,7 +1973,7 @@ 1973 1973 1974 1974 Table 6-48 Speed limit parameters in torque mode 1975 1975 1976 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/ 2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__.1954 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__. 1977 1977 1978 1978 == **Torque-related DO output functions** == 1979 1979 ... ... @@ -2162,24 +2162,32 @@ 2162 2162 2163 2163 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death. 2164 2164 2165 -== **Absolute value system encoder battery box use precautions** == 2143 +== **Absolute value system encoder battery box use precautions**. == 2166 2166 2167 - Er.40 (Encoder battery failure) will occur whenthe batteryis turnedonfor the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.2145 +**Cautions** 2168 2168 2147 +Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2169 2169 2170 -[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]] 2149 +(% style="text-align:center" %) 2150 +[[image:image-20220707111333-28.png]] 2171 2171 2172 -Figure 6-50 2152 +Figure 6-50 the encoder battery box 2173 2173 2174 -When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage The specific replacement method is as follows:2154 +When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. 2175 2175 2176 -1. Step1 The servo drive is powered on and is in a non-operational state; 2177 -1. Step2 Replace the battery; 2178 -1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings. 2156 +**Replace the battery** 2179 2179 2180 - When theservodriveispoweredoff, ifthe battery is replacedand powered on again,Er.40 (encoderbatteryfailure)will occur,andthemulti-turndatawill changesuddenly. Pleaseset the functioncodeP10-03 or P10-06 to 1 tocleartheencoderfault alarms andperformthe origin returnfunctionoperation again.2158 +Please replace the battery while keeping the servo drive and motor well connected and the power on. 2181 2181 2160 +The specific replacement method is as follows: 2182 2182 2162 +* Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover. 2163 +* Step2 Remove the old battery. 2164 +* Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement. 2165 +* Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing. 2166 + 2167 +When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2168 + 2183 2183 |**Function code**|**Name**|((( 2184 2184 **Setting method** 2185 2185 )))|((( ... ... @@ -2199,12 +2199,36 @@ 2199 2199 2200 2200 Table 6-56 Absolute encoder reset enable parameter 2201 2201 2202 - ✎**Note: **If the batteryisreplaced when the servo drive is powered off, the encoder data will be lost.2188 +**Battery selection** 2203 2203 2190 +|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value** 2191 +|(% rowspan="4" style="width:361px" %)((( 2192 +Nominal Voltage: 3.6V 2193 + 2194 +Nominal capacity: 2700mAh 2195 +)))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6 2196 +|(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1 2197 +|(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40 2198 +|(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60 2199 + 2200 +Table 6-57 Absolute value encoder battery information 2201 + 2202 +**✎Note: ** 2203 + 2204 +If the battery is replaced when the servo drive is powered off, the encoder data will be lost. 2205 + 2204 2204 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost. 2205 2205 2206 - =**Overview**=2208 +Correct placement of batteries +, - direction 2207 2207 2210 +1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion! 2211 +1. This battery cannot be charged. 2212 +1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement) 2213 +1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture. 2214 +1. After the replacement of the battery, please dispose of it according to local laws and regulations. 2215 + 2216 += **Other functions** = 2217 + 2208 2208 == **VDI** == 2209 2209 2210 2210 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use. ... ... @@ -2214,11 +2214,11 @@ 2214 2214 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2215 2215 2216 2216 2227 +(% style="text-align:center" %) 2217 2217 [[image:image-20220608173804-46.png]] 2218 2218 2219 2219 Figure 6-51 VDI_1 setting steps 2220 2220 2221 - 2222 2222 |**Function code**|**Name**|((( 2223 2223 **Setting method** 2224 2224 )))|((( ... ... @@ -2306,9 +2306,9 @@ 2306 2306 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2307 2307 2308 2308 2309 -|**Setting value**|**DI channel logic selection**|**Illustration** 2310 -|0|Active high level|[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]2311 -|1|Active low level|[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]2319 +|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration** 2320 +|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2321 +|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2312 2312 2313 2313 Table 6-58 DI terminal channel logic selection 2314 2314 ... ... @@ -2318,12 +2318,11 @@ 2318 2318 2319 2319 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2320 2320 2321 - 2331 +(% style="text-align:center" %) 2322 2322 [[image:image-20220608173957-48.png]] 2323 2323 2324 2324 Figure 6-52 VDO_2 setting steps 2325 2325 2326 - 2327 2327 |**Function code**|**Name**|((( 2328 2328 **Setting method** 2329 2329 )))|((( ... ... @@ -2360,7 +2360,6 @@ 2360 2360 2361 2361 Table 6-59 Communication control DO function parameters 2362 2362 2363 - 2364 2364 |**DO function number**|**Function name**|**Function** 2365 2365 |145|COM_VDO1 communication VDO1 output|Use communication VDO 2366 2366 |146|COM_VDO1 communication VDO2 output|Use communication VDO ... ... @@ -2377,7 +2377,6 @@ 2377 2377 2378 2378 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2379 2379 2380 - 2381 2381 |**Function code**|**Name**|((( 2382 2382 **Setting method** 2383 2383 )))|(((
- image-20220707111333-28.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +44.1 KB - Content
- image-20220707112813-29.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.5 KB - Content
- image-20220707112819-30.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.9 KB - Content
- image-20220707113050-31.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.5 KB - Content
- image-20220707113057-32.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.4 KB - Content
- image-20220707113205-33.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220804160519-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +982.3 KB - Content
- image-20220804160624-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +975.3 KB - Content