Changes for page 06 Operation

Last modified by Iris on 2025/08/08 14:40

From version 51.6
edited by Stone Wu
on 2022/07/07 09:33
Change comment: (Autosaved)
To version 43.1
edited by Joey
on 2022/06/11 15:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.1 User Manual.02 VD2 SA Series.WebHome
1 +Servo.2\. User Manual.06 VD2 SA Series Servo Drives Manual (Full V1\.1).WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.Joey
Content
... ... @@ -2,20 +2,20 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" %)**No.**|=**Content**
6 -|=(% colspan="2" %)Wiring
7 -|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=5|Servo drive and servo motor must be grounded reliably.
12 -|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=7|The force of all cables is within the specified range.
14 -|=8|The wiring terminals have been insulated.
15 -|=(% colspan="2" %)Environment and Machinery
16 -|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 -|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
5 +|**No.**|**Content**
6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|5|Servo drive and servo motor must be grounded reliably.
12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|7|The force of all cables is within the specified range.
14 +|8|The wiring terminals have been insulated.
15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
... ... @@ -25,7 +25,7 @@
25 25  
26 26  After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27 27  
28 -If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.
28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
29 29  
30 30  **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
31 31  
... ... @@ -35,7 +35,7 @@
35 35  
36 36  **(1) Panel jog operation**
37 37  
38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
39 39  
40 40  **(2) Jog operation of servo debugging platform**
41 41  
... ... @@ -42,17 +42,17 @@
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 44  
45 -
46 -|=(% scope="row" %)**Function code**|=**Name**|=(((
45 +(% class="table-bordered" %)
46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
47 47  **Setting method**
48 -)))|=(((
48 +)))|(% style="text-align:center; vertical-align:middle" %)(((
49 49  **Effective time**
50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
51 -|=P10-01|JOG speed|(((
50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
52 52  Operation setting
53 -)))|(((
53 +)))|(% style="text-align:center; vertical-align:middle" %)(((
54 54  Effective immediately
55 -)))|100|0 to 3000|JOG speed|rpm
55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
56 56  
57 57  Table 6-2 JOG speed parameter
58 58  
... ... @@ -60,19 +60,25 @@
60 60  
61 61  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62 62  
63 -
64 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
65 -|=P00-04|Rotation direction|(((
63 +(% class="table-bordered" %)
64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
65 +**Setting method**
66 +)))|(% style="text-align:center; vertical-align:middle" %)(((
67 +**Effective time**
68 +)))|(% style="text-align:center; vertical-align:middle" %)(((
69 +**Default value**
70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
66 66  Shutdown setting
67 -)))|(((
73 +)))|(% style="text-align:center; vertical-align:middle" %)(((
68 68  Effective immediately
69 -)))|0|0 to 1|(((
75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
70 70  Forward rotation: Face the motor shaft to watch
71 71  
72 72  0: standard setting (CW is forward rotation)
73 73  
74 74  1: reverse mode (CCW is forward rotation)
75 -)))|-
81 +)))|(% style="text-align:center; vertical-align:middle" %)-
76 76  
77 77  Table 6-3 Rotation direction parameters** **
78 78  
... ... @@ -85,16 +85,17 @@
85 85  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
86 86  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
87 87  
88 -|=(% scope="row" %)**Function code**|=**Name**|=(((
94 +(% class="table-bordered" %)
95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
89 89  **Setting method**
90 -)))|=(((
97 +)))|(% style="text-align:center; vertical-align:middle" %)(((
91 91  **Effective time**
92 -)))|=**Default**|=**Range**|=**Definition**|=**Unit**
93 -|=P00-09|Braking resistor setting|(((
99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
94 94  Operation setting
95 -)))|(((
102 +)))|(% style="text-align:center; vertical-align:middle" %)(((
96 96  Effective immediately
97 -)))|0|0 to 3|(((
104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
98 98  0: use built-in braking resistor
99 99  
100 100  1: use external braking resistor and natural cooling
... ... @@ -102,18 +102,18 @@
102 102  2: use external braking resistor and forced air cooling; (cannot be set)
103 103  
104 104  3: No braking resistor is used, it is all absorbed by capacitor.
105 -)))|-
106 -|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
107 -|=P00-10|External braking resistor value|(((
112 +)))|(% style="text-align:center; vertical-align:middle" %)-
113 +|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
108 108  Operation setting
109 -)))|(((
116 +)))|(% style="text-align:center; vertical-align:middle" %)(((
110 110  Effective immediately
111 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
112 -|=P00-11|External braking resistor power|(((
118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
113 113  Operation setting
114 -)))|(((
121 +)))|(% style="text-align:center; vertical-align:middle" %)(((
115 115  Effective immediately
116 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
117 117  
118 118  Table 6-4 Braking resistor parameters
119 119  
... ... @@ -127,11 +127,11 @@
127 127  
128 128  **(2) Input the instruction and the motor rotates**
129 129  
130 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
137 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
131 131  
132 132  **(3) Timing diagram of power on**
133 133  
134 -
141 +(% style="text-align:center" %)
135 135  [[image:image-20220608163014-1.png]]
136 136  
137 137  Figure 6-1 Timing diagram of power on
... ... @@ -138,19 +138,19 @@
138 138  
139 139  == **Servo shutdown** ==
140 140  
141 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.
148 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
142 142  
150 +(% class="table-bordered" %)
151 +|Shutdown mode|Shutdown description|Shutdown characteristics
152 +|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
153 +|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
143 143  
144 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
145 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
146 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
147 -
148 148  Table 6-5 Comparison of two shutdown modes
149 149  
157 +(% class="table-bordered" %)
158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
150 150  
151 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
152 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
153 -
154 154  Table 6-6 Comparison of two shutdown status
155 155  
156 156  **(1) Servo enable (S-ON) OFF shutdown**
... ... @@ -157,27 +157,27 @@
157 157  
158 158  The related parameters of the servo OFF shutdown mode are shown in the table below.
159 159  
160 -
161 -|=(% scope="row" %)**Function code**|=**Name**|=(((
167 +(% class="table-bordered" %)
168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
162 162  **Setting method**
163 -)))|=(((
170 +)))|(% style="text-align:center; vertical-align:middle" %)(((
164 164  **Effective time**
165 -)))|=(((
172 +)))|(% style="text-align:center; vertical-align:middle" %)(((
166 166  **Default value**
167 -)))|=**Range**|=**Definition**|=**Unit**
168 -|=P00-05|Servo OFF shutdown|(((
174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
169 169  Shutdown
170 170  
171 171  setting
172 -)))|(((
179 +)))|(% style="text-align:center; vertical-align:middle" %)(((
173 173  Effective
174 174  
175 175  immediately
176 -)))|0|0 to 1|(((
183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
177 177  0: Free shutdown, and the motor shaft remains free status.
178 178  
179 179  1: Zero-speed shutdown, and the motor shaft remains free status.
180 -)))|-
187 +)))|(% style="text-align:center; vertical-align:middle" %)-
181 181  
182 182  Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
183 183  
... ... @@ -193,13 +193,13 @@
193 193  
194 194  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
195 195  
196 -
197 -|=(% scope="row" %)**Function code**|=**Name**|=(((
203 +(% class="table-bordered" %)
204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
198 198  **Setting method**
199 -)))|=(((
206 +)))|(% style="text-align:center; vertical-align:middle" %)(((
200 200  **Effective time**
201 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
202 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
203 203  0: OFF (not used)
204 204  
205 205  01: S-ON servo enable
... ... @@ -247,30 +247,32 @@
247 247  24: Internal multi-segment position selection 4
248 248  
249 249  Others: reserved
250 -)))|-
251 -|=P06-09|DI_3 channel logic selection|Operation setting|(((
257 +)))|(% style="text-align:center; vertical-align:middle" %)-
258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
252 252  Effective immediately
253 -)))|0|0 to 1|(((
260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
254 254  DI port input logic validity function selection.
255 255  
256 256  0: Normally open input. Active low level (switch on);
257 257  
258 258  1: Normally closed input. Active high level (switch off);
259 -)))|-
260 -|=P06-10|DI_3 input source selection|Operation setting|(((
266 +)))|(% style="text-align:center; vertical-align:middle" %)-
267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
261 261  Effective immediately
262 -)))|0|0 to 1|(((
269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
263 263  Select the DI_3 port type to enable
264 264  
265 265  0: Hardware DI_3 input terminal
266 266  
267 267  1: virtual VDI_3 input terminal
268 -)))|-
269 -|=P06-11|DI_4 channel function selection|(((
275 +)))|(% style="text-align:center; vertical-align:middle" %)-
276 +
277 +(% class="table-bordered" %)
278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
270 270  Operation setting
271 -)))|(((
280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
272 272  again Power-on
273 -)))|4|0 to 32|(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
274 274  0 off (not used)
275 275  
276 276  01: SON Servo enable
... ... @@ -318,25 +318,25 @@
318 318  24: Internal multi-segment position selection 4
319 319  
320 320  Others: reserved
321 -)))|-
322 -|=P06-12|DI_4 channel logic selection|Operation setting|(((
330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
323 323  Effective immediately
324 -)))|0|0 to 1|(((
333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
325 325  DI port input logic validity function selection.
326 326  
327 327  0: Normally open input. Active low level (switch on);
328 328  
329 329  1: Normally closed input. Active high level (switch off);
330 -)))|-
331 -|=P06-13|DI_4 input source selection|Operation setting|(((
339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
332 332  Effective immediately
333 -)))|0|0 to 1|(((
342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
334 334  Select the DI_4 port type to enable
335 335  
336 336  0: Hardware DI_4 input terminal
337 337  
338 338  1: virtual VDI_4 input terminal
339 -)))|-
348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 340  
341 341  Table 6-8 DI3 and DI4 channel parameters
342 342  
... ... @@ -348,8 +348,9 @@
348 348  
349 349  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
350 350  
351 -
360 +(% class="table-bordered" %)
352 352  |(((
362 +(% style="text-align:center" %)
353 353  [[image:image-20220611151617-1.png]]
354 354  )))
355 355  |(((
... ... @@ -368,13 +368,14 @@
368 368  
369 369  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
370 370  
371 -
381 +(% style="text-align:center" %)
372 372  [[image:image-20220608163136-2.png]]
373 373  
374 374  Figure 6-2 VD2B servo drive brake wiring
375 375  
376 -
386 +(% class="table-bordered" %)
377 377  |(((
388 +(% style="text-align:center" %)
378 378  [[image:image-20220611151642-2.png]]
379 379  )))
380 380  |(((
... ... @@ -391,42 +391,42 @@
391 391  
392 392  Related function code is as below.
393 393  
394 -
395 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
405 +(% class="table-bordered" %)
406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
396 396  **Effective time**
397 397  )))
398 -|=144|(((
409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
399 399  BRK-OFF Brake output
400 -)))|Output the signal indicates the servo motor brake release|Power-on again
411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
401 401  
402 402  Table 6-2 Relevant function codes for brake setting
403 403  
404 -
405 -|=(% scope="row" %)**Function code**|=**Name**|=(((
415 +(% class="table-bordered" %)
416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
406 406  **Setting method**
407 -)))|=(((
418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
408 408  **Effective time**
409 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
410 -|=P1-30|Delay from brake output to instruction reception|(((
420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
411 411  Operation setting
412 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
413 -|=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
414 414  Operation setting
415 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
416 -|=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
417 417  Operation setting
418 -)))|Effective immediately|30|0 to 3000|(((
429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
419 419  When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
420 420  
421 421  When the brake output (BRK-OFF) is not allocated, this function code has no effect.
422 -)))|rpm
423 -|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm
434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
424 424  Operation setting
425 -)))|Effective immediately|500|1 to 1000|(((
436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
426 426  When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
427 427  
428 428  When brake output (BRK-OFF) is not allocated, this function code has no effect.
429 -)))|ms
440 +)))|(% style="text-align:center; vertical-align:middle" %)ms
430 430  
431 431  Table 6-9 Brake setting function codes
432 432  
... ... @@ -438,10 +438,11 @@
438 438  
439 439  1) Brake timing when servo motor is stationary
440 440  
441 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__
452 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
442 442  
443 -
454 +(% class="table-bordered" %)
444 444  |(((
456 +(% style="text-align:center" %)
445 445  [[image:image-20220611151705-3.png]]
446 446  )))
447 447  |(((
... ... @@ -450,6 +450,7 @@
450 450  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
451 451  )))
452 452  
465 +(% style="text-align:center" %)
453 453  [[image:image-20220608163304-3.png]]
454 454  
455 455  Figure 6-3 Brake Timing of when the motor is stationary
... ... @@ -458,10 +458,11 @@
458 458  
459 459  2) The brake timing when servo motor rotates
460 460  
461 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.
474 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
462 462  
463 -
476 +(% class="table-bordered" %)
464 464  |(((
478 +(% style="text-align:center" %)
465 465  [[image:image-20220611151719-4.png]]
466 466  )))
467 467  |(((
... ... @@ -476,6 +476,7 @@
476 476  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
477 477  )))
478 478  
493 +(% style="text-align:center" %)
479 479  [[image:image-20220608163425-4.png]]
480 480  
481 481  Figure 6-4 Brake timing when the motor rotates
... ... @@ -484,7 +484,7 @@
484 484  
485 485  The brake timing (free shutdown) in the fault status is as follows.
486 486  
487 -
502 +(% style="text-align:center" %)
488 488  [[image:image-20220608163541-5.png]]
489 489  
490 490   Figure 6-5 The brake timing (free shutdown) in the fault state
... ... @@ -493,7 +493,7 @@
493 493  
494 494  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
495 495  
496 -
511 +(% style="text-align:center" %)
497 497  [[image:image-20220608163643-6.png]]
498 498  
499 499  Figure 6-6 Position control diagram
... ... @@ -500,17 +500,17 @@
500 500  
501 501  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
502 502  
503 -
504 -|=(% scope="row" %)**Function code**|=**Name**|=(((
518 +(% class="table-bordered" %)
519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
505 505  **Setting method**
506 -)))|=(((
521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
507 507  **Effective time**
508 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
509 -|=P01-01|Control mode|(((
523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
510 510  Operation setting
511 -)))|(((
526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
512 512  immediately Effective
513 -)))|0|0 to 6|(((
528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
514 514  0: position control
515 515  
516 516  2: speed control
... ... @@ -522,7 +522,7 @@
522 522  5: position/torque mix control
523 523  
524 524  6: speed /torque mix control
525 -)))|-
540 +)))|(% style="text-align:center; vertical-align:middle" %)-
526 526  
527 527  Table 6-10 Control mode parameters
528 528  
... ... @@ -530,21 +530,21 @@
530 530  
531 531  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
532 532  
533 -
534 -|=(% scope="row" %)**Function code**|=**Name**|=(((
548 +(% class="table-bordered" %)
549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
535 535  **Setting method**
536 -)))|=(((
551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
537 537  **Effective time**
538 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
539 -|=P01-06|Position instruction source|(((
553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
540 540  Operation setting
541 -)))|(((
556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
542 542  immediately Effective
543 -)))|0|0 to 1|(((
558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
544 544  0: pulse instruction
545 545  
546 546  1: internal position instruction
547 -)))|-
562 +)))|(% style="text-align:center; vertical-align:middle" %)-
548 548  
549 549  Table 6-11 Position instruction source parameter
550 550  
... ... @@ -552,19 +552,20 @@
552 552  
553 553  1) Low-speed pulse instruction input
554 554  
555 -|[[image:image-20220707092316-1.png]]|[[image:image-20220707092322-2.png]]
556 -|VD2A and VD2B servo drives|VD2F servo drive
557 -|(% colspan="2" %)Figure 6-7 Position instruction input setting
570 +(% class="table-bordered" %)
571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
558 558  
559 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.
575 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
560 560  
561 561  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
562 562  
579 +(% class="table-bordered" %)
580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
563 563  
564 -|**Pulse method**|**Maximum frequency**|**Voltage**
565 -|Open collector input|200K|24V
566 -|Differential input|500K|5V
567 -
568 568  Table 6-12 Pulse input specifications
569 569  
570 570  1.Differential input
... ... @@ -572,11 +572,11 @@
572 572  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
573 573  
574 574  (% style="text-align:center" %)
575 -[[image:image-20220707092615-5.jpeg]]
591 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
576 576  
577 577  Figure 6-8 Differential input connection
578 578  
579 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
595 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
580 580  
581 581  2.Open collector input
582 582  
... ... @@ -583,11 +583,11 @@
583 583  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
584 584  
585 585  (% style="text-align:center" %)
586 -[[image:image-20220707092401-3.jpeg||height="530" width="834"]]
602 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
587 587  
588 588  Figure 6-9 Open collector input connection
589 589  
590 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
606 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
591 591  
592 592  2) Position pulse frequency and anti-interference level
593 593  
... ... @@ -600,22 +600,22 @@
600 600  
601 601  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
602 602  
603 -
604 -|=(% scope="row" %)**Function code**|=**Name**|=(((
619 +(% class="table-bordered" %)
620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
605 605  **Setting method**
606 -)))|=(((
622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
607 607  **Effective time**
608 -)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
609 -|=P00-13|Maximum position pulse frequency|(((
624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
610 610  Shutdown setting
611 -)))|(((
627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
612 612  Effective immediately
613 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
614 -|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
615 615  Operation setting
616 -)))|(% rowspan="3" %)(((
632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
617 617  Power-on again
618 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
619 619  Set the anti-interference level of external pulse instruction.
620 620  
621 621  0: no filtering;
... ... @@ -635,9 +635,9 @@
635 635  7: Filtering time 8.192us
636 636  
637 637  8: Filtering time 16.384us
638 -)))|(% rowspan="3" %)-
639 -|=(% rowspan="2" %)9|VD2: Filtering time 25.5us
640 -|=VD2F: Filtering time 25.5us
654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
656 +|VD2F: Filtering time 25.5us
641 641  
642 642  Table 6-13 Position pulse frequency and anti-interference level parameters
643 643  
... ... @@ -645,17 +645,17 @@
645 645  
646 646  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
647 647  
648 -
649 -|=(% scope="row" %)**Function code**|=**Name**|=(((
664 +(% class="table-bordered" %)
665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
650 650  **Setting method**
651 -)))|=(((
667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
652 652  **Effective time**
653 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
654 -|=P00-12|Position pulse type selection|(((
669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
655 655  Operation setting
656 -)))|(((
672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
657 657  Power-on again
658 -)))|0|0 to 5|(((
674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
659 659  0: direction + pulse (positive logic)
660 660  
661 661  1: CW/CCW
... ... @@ -667,74 +667,74 @@
667 667  4: CW/CCW (negative logic)
668 668  
669 669  5: A, B phase quadrature pulse (4 times frequency negative logic)
670 -)))|-
686 +)))|(% style="text-align:center; vertical-align:middle" %)-
671 671  
672 672  Table 6-14 Position pulse type selection parameter
673 673  
674 -
675 -|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
676 -|=0|(((
690 +(% class="table-bordered" %)
691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
677 677  Direction + pulse
678 678  
679 679  (Positive logic)
680 -)))|(((
696 +)))|(% style="text-align:center; vertical-align:middle" %)(((
681 681  PULSE
682 682  
683 683  SIGN
684 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
685 -|=1|CW/CCW|(((
700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
686 686  PULSE (CW)
687 687  
688 688  SIGN (CCW)
689 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
690 -|=2|(((
705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
691 691  AB phase orthogonal
692 692  
693 693  pulse (4 times frequency)
694 -)))|(((
710 +)))|(% style="text-align:center; vertical-align:middle" %)(((
695 695  PULSE (Phase A)
696 696  
697 697  SIGN (Phase B)
698 -)))|(((
714 +)))|(% style="text-align:center; vertical-align:middle" %)(((
699 699  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
700 700  
701 701  Phase A is 90° ahead of Phase B
702 -)))|(((
718 +)))|(% style="text-align:center; vertical-align:middle" %)(((
703 703  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
704 704  
705 705  Phase B is 90° ahead of Phase A
706 706  )))
707 -|=3|(((
723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
708 708  Direction + pulse
709 709  
710 710  (Negative logic)
711 -)))|(((
727 +)))|(% style="text-align:center; vertical-align:middle" %)(((
712 712  PULSE
713 713  
714 714  SIGN
715 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
716 -|=4|(((
731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
717 717  CW/CCW
718 718  
719 719  (Negative logic)
720 -)))|(((
736 +)))|(% style="text-align:center; vertical-align:middle" %)(((
721 721  PULSE (CW)
722 722  
723 723  SIGN (CCW)
724 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
725 -|=5|(((
740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
726 726  AB phase orthogonal
727 727  
728 728  pulse (4 times frequency negative logic)
729 -)))|(((
745 +)))|(% style="text-align:center; vertical-align:middle" %)(((
730 730  PULSE (Phase A)
731 731  
732 732  SIGN (Phase B)
733 -)))|(((
749 +)))|(% style="text-align:center; vertical-align:middle" %)(((
734 734  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
735 735  
736 736  B phase is ahead of A phase by 90°
737 -)))|(((
753 +)))|(% style="text-align:center; vertical-align:middle" %)(((
738 738  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
739 739  
740 740  A phase is ahead of B phase by 90°
... ... @@ -744,11 +744,11 @@
744 744  
745 745  **(2) The source of position instruction is internal position instruction (P01-06=1)**
746 746  
747 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.
763 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
748 748  
749 749  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
750 750  
751 -
767 +(% style="text-align:center" %)
752 752  [[image:image-20220608164116-9.png]]
753 753  
754 754  Figure 6-11 The setting process of multi-segment position
... ... @@ -755,51 +755,51 @@
755 755  
756 756  1) Set multi-segment position running mode
757 757  
758 -
759 -|=(% scope="row" %)**Function code**|=**Name**|=(((
774 +(% class="table-bordered" %)
775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
760 760  **Setting method**
761 -)))|=(((
777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
762 762  **Effective time**
763 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
764 -|=P07-01|Multi-segment position running mode|(((
779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
765 765  Shutdown setting
766 -)))|(((
782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
767 767  Effective immediately
768 -)))|0|0 to 2|(((
784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
769 769  0: Single running
770 770  
771 771  1: Cycle running
772 772  
773 773  2: DI switching running
774 -)))|-
775 -|=P07-02|Start segment number|(((
790 +)))|(% style="text-align:center; vertical-align:middle" %)-
791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
776 776  Shutdown setting
777 -)))|(((
793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
778 778  Effective immediately
779 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|-
780 -|=P07-03|End segment number|(((
795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
781 781  Shutdown setting
782 -)))|(((
798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
783 783  Effective immediately
784 -)))|1|1 to 16|last segment NO. in non-DI switching mode|-
785 -|=P07-04|Margin processing method|(((
800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
786 786  Shutdown setting
787 -)))|(((
803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
788 788  Effective immediately
789 -)))|0|0 to 1|(((
805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
790 790  0: Run the remaining segments
791 791  
792 792  1: Run again from the start segment
793 -)))|-
794 -|=P07-05|Displacement instruction type|(((
809 +)))|(% style="text-align:center; vertical-align:middle" %)-
810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
795 795  Shutdown setting
796 -)))|(((
812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
797 797  Effective immediately
798 -)))|0|0 to 1|(((
814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
799 799  0: Relative position instruction
800 800  
801 801  1: Absolute position instruction
802 -)))|-
818 +)))|(% style="text-align:center; vertical-align:middle" %)-
803 803  
804 804  Table 6-16 multi-segment position running mode parameters
805 805  
... ... @@ -807,9 +807,9 @@
807 807  
808 808  ~1. Single running
809 809  
810 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
826 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
811 811  
812 -
828 +(% style="text-align:center" %)
813 813  [[image:image-20220608164226-10.png]]
814 814  
815 815  Figure 6-12 Single running curve (P07-02=1, P07-03=2)
... ... @@ -816,14 +816,14 @@
816 816  
817 817  2. Cycle running
818 818  
819 -In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
835 +In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
820 820  
821 -
837 +(% style="text-align:center" %)
822 822  [[image:image-20220608164327-11.png]]
823 823  
824 824  Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
825 825  
826 -|[[image:image-20220611151917-5.png]]
842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
827 827  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
828 828  
829 829  3. DI switching running
... ... @@ -830,30 +830,30 @@
830 830  
831 831  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
832 832  
849 +(% class="table-bordered" %)
850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
833 833  
834 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
835 -|=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
836 -|=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
837 -|=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
838 -|=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
839 -
840 840  Table 6-17 DI function code
841 841  
842 842  The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
843 843  
860 +(% class="table-bordered" %)
861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
844 844  
845 -|=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
846 -|=0|0|0|0|1
847 -|=0|0|0|1|2
848 -|=0|0|1|0|3
849 -|=(% colspan="5" %)…………
850 -|=1|1|1|1|16
851 -
852 852  Table 6-18 INPOS corresponds to running segment number
853 853  
854 -The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.
870 +The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
855 855  
856 -
872 +(% style="text-align:center" %)
857 857  [[image:image-20220608164545-12.png]]
858 858  
859 859  Figure 6-14 DI switching running curve
... ... @@ -862,14 +862,14 @@
862 862  
863 863  **A. Run the remaining segments**
864 864  
865 -In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
881 +In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
866 866  
867 -
883 +(% style="text-align:center" %)
868 868  [[image:image-20220608164847-13.png]]
869 869  
870 870  Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
871 871  
872 -
888 +(% style="text-align:center" %)
873 873  [[image:image-20220608165032-14.png]]
874 874  
875 875  Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
... ... @@ -876,14 +876,14 @@
876 876  
877 877  **B. Run again from the start segment**
878 878  
879 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.
895 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
880 880  
881 -
897 +(% style="text-align:center" %)
882 882  [[image:image-20220608165343-15.png]]
883 883  
884 884  Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
885 885  
886 -
902 +(% style="text-align:center" %)
887 887  [[image:image-20220608165558-16.png]]
888 888  
889 889  Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
... ... @@ -895,8 +895,10 @@
895 895  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
896 896  
897 897  |(((
914 +(% style="text-align:center" %)
898 898  [[image:image-20220608165710-17.png]]
899 899  )))|(((
917 +(% style="text-align:center" %)
900 900  [[image:image-20220608165749-18.png]]
901 901  )))
902 902  |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
... ... @@ -906,8 +906,10 @@
906 906  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
907 907  
908 908  |(((
927 +(% style="text-align:center" %)
909 909  [[image:image-20220608165848-19.png]]
910 910  )))|(((
930 +(% style="text-align:center" %)
911 911  [[image:image-20220608170005-20.png]]
912 912  )))
913 913  |Figure 6-21 Absolute indication|Figure 6-22 Displacement
... ... @@ -914,44 +914,48 @@
914 914  
915 915  2) Multi-segment position running curve setting
916 916  
917 -The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
937 +The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
918 918  
919 -
920 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
921 -|=P07-09|(((
939 +(% class="table-bordered" %)
940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
941 +**Setting method**
942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
943 +**Effective time**
944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
922 922  1st segment
923 923  
924 924  displacement
925 -)))|(((
949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
926 926  Operation setting
927 -)))|(((
951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
928 928  Effective immediately
929 -)))|10000|(((
953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)(((
930 930  -2147483647 to
931 931  
932 932  2147483646
933 -)))|Position instruction, positive and negative values could be set|-
934 -|=P07-10|Maximum speed of the 1st displacement|(((
957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
935 935  Operation setting
936 -)))|(((
960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
937 937  Effective immediately
938 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
939 -|=P07-11|Acceleration and deceleration of 1st segment displacement|(((
962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
940 940  Operation setting
941 -)))|(((
965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
942 942  Effective immediately
943 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
944 -|=P07-12|Waiting time after completion of the 1st segment displacement|(((
967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
945 945  Operation setting
946 -)))|(((
970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
947 947  Effective immediately
948 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
949 949  
950 950  Table 6-19 The 1st position operation curve parameters table
951 951  
952 952  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
953 953  
954 -
978 +(% style="text-align:center" %)
955 955  [[image:image-20220608170149-21.png]]
956 956  
957 957  Figure 6-23 The 1st segment running curve of motor
... ... @@ -960,14 +960,15 @@
960 960  
961 961  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
962 962  
963 -
964 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
965 -|=20|ENINPOS: Internal multi-segment position enable signal|(((
987 +(% class="table-bordered" %)
988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
966 966  DI port logic invalid: Does not affect the current operation of the servo motor.
967 967  
968 968  DI port logic valid: Motor runs multi-segment position
969 969  )))
970 970  
995 +(% style="text-align:center" %)
971 971  [[image:image-20220611152020-6.png]]
972 972  
973 973  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
... ... @@ -982,13 +982,13 @@
982 982  
983 983  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
984 984  
985 -
1010 +(% style="text-align:center" %)
986 986  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
987 987  
988 -
1013 +(% style="text-align:center" %)
989 989  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
990 990  
991 -
1016 +(% style="text-align:center" %)
992 992  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
993 993  
994 994  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
... ... @@ -995,7 +995,7 @@
995 995  
996 996  **(2) Setting steps of electronic gear ratio**
997 997  
998 -
1023 +(% style="text-align:center" %)
999 999  [[image:image-20220608170320-22.png]]
1000 1000  
1001 1001  Figure 6-24 Setting steps of electronic gear ratio
... ... @@ -1010,7 +1010,7 @@
1010 1010  
1011 1011  Step5: Calculate the value of electronic gear ratio according to formula below.
1012 1012  
1013 -
1038 +(% style="text-align:center" %)
1014 1014  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1015 1015  
1016 1016  **(3) lectronic gear ratio switch setting**
... ... @@ -1018,59 +1018,59 @@
1018 1018  
1019 1019  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1020 1020  
1021 -
1022 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1046 +(% class="table-bordered" %)
1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1023 1023  **Setting method**
1024 -)))|=(((
1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1025 1025  **Effective time**
1026 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1027 -|=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1028 1028  Shutdown setting
1029 -)))|(((
1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1030 1030  Effective immediately
1031 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1032 1032  Instruction pulse
1033 1033  
1034 1034  unit
1035 1035  )))
1036 -|=P00-17|(((
1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1037 1037  Electronic gear 1
1038 1038  
1039 1039  numerator
1040 -)))|Operation setting|(((
1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1041 1041  Effective immediately
1042 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1043 -|=P00-18|(((
1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1044 1044  Electronic gear 1
1045 1045  
1046 1046  denominator
1047 -)))|(((
1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1048 1048  Operation setting
1049 -)))|(((
1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1050 1050  Effective immediately
1051 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1052 -|=P00-19|(((
1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1053 1053  Electronic gear 2
1054 1054  
1055 1055  numerator
1056 -)))|Operation setting|(((
1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1057 1057  Effective immediately
1058 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1059 -|=P00-20|(((
1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1060 1060  Electronic gear 2
1061 1061  
1062 1062  denominator
1063 -)))|Operation setting|(((
1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1064 1064  Effective immediately
1065 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1066 1066  
1067 1067  Table 6-20 Electronic gear ratio function code
1068 1068  
1069 1069  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1070 1070  
1071 -
1072 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1073 -|=09|GEAR-SEL electronic gear switch 1|(((
1096 +(% class="table-bordered" %)
1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1074 1074  DI port logic invalid: electronic gear ratio 1
1075 1075  
1076 1076  DI port logic valid: electronic gear ratio 2
... ... @@ -1078,10 +1078,10 @@
1078 1078  
1079 1079  Table 6-21 Switching conditions of electronic gear ratio group
1080 1080  
1081 -|=(% scope="row" %)**P00-16 value**|=**DI terminal level corresponding to DI port function 9**|=**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1082 -|=(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1083 -|=DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1084 -|=1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1085 1085  
1086 1086  Table 6-22 Application of electronic gear ratio
1087 1087  
... ... @@ -1099,32 +1099,32 @@
1099 1099  
1100 1100  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1101 1101  
1102 -
1127 +(% style="text-align:center" %)
1103 1103  [[image:image-20220608170455-23.png]]
1104 1104  
1105 1105  Figure 6-25 Position instruction filtering diagram
1106 1106  
1107 -
1108 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1132 +(% class="table-bordered" %)
1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1109 1109  **Setting method**
1110 -)))|=(((
1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1111 1111  **Effective time**
1112 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1113 -|=P04-01|Pulse instruction filtering method|(((
1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1114 1114  Shutdown setting
1115 -)))|(((
1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1116 1116  Effective immediately
1117 -)))|0|0 to 1|(((
1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)(((
1118 1118  0: 1st-order low-pass filtering
1119 1119  
1120 1120  1: average filtering
1121 -)))|-
1122 -|=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1123 1123  Effective immediately
1124 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1125 -|=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1126 1126  Effective immediately
1127 -)))|0|0 to 128|Position instruction average filtering time constant|ms
1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1128 1128  
1129 1129  Table 6-23 Position instruction filter function code
1130 1130  
... ... @@ -1144,7 +1144,7 @@
1144 1144  (% class="wikigeneratedid" %)
1145 1145  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1146 1146  
1147 -
1172 +(% style="text-align:center" %)
1148 1148  [[image:image-20220608170550-24.png]]
1149 1149  
1150 1150  Figure 6-26 Positioning completion signal output diagram
... ... @@ -1151,47 +1151,48 @@
1151 1151  
1152 1152  When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1153 1153  
1154 -To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1179 +To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1155 1155  
1181 +(% style="text-align:center" %)
1156 1156  [[image:image-20220608170650-25.png]]
1157 1157  
1158 1158  Figure 6-27 Positioning completion signal output with increased window filter time diagram
1159 1159  
1160 -
1161 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1186 +(% class="table-bordered" %)
1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1162 1162  **Setting method**
1163 -)))|=(((
1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1164 1164  **Effective time**
1165 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1166 -|=P05-12|Positioning completion threshold|(((
1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit**
1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1167 1167  Operation setting
1168 -)))|(((
1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1169 1169  Effective immediately
1170 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1171 -|=P05-13|Positioning approach threshold|(((
1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1172 1172  Operation setting
1173 -)))|(((
1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1174 1174  Effective immediately
1175 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1176 -|=P05-14|Position detection window time|(((
1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1177 1177  Operation setting
1178 -)))|(((
1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1179 1179  Effective immediately
1180 -)))|10|0 to 20000|Set positioning completion detection window time|ms
1181 -|=P05-15|Positioning signal hold time|(((
1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1182 1182  Operation setting
1183 -)))|(((
1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1184 1184  Effective immediately
1185 -)))|100|0 to 20000|Set positioning completion output hold time|ms
1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1186 1186  
1187 1187  Table 6-24 Function code parameters of positioning completion
1188 1188  
1189 -
1190 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1191 -|=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1192 -|=135|(((
1215 +(% class="table-bordered" %)
1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1193 1193  P-NEAR positioning close
1194 -)))|(((
1220 +)))|(% style="text-align:center; vertical-align:middle" %)(((
1195 1195  Output this signal indicates that the servo drive position is close.
1196 1196  )))
1197 1197  
... ... @@ -1199,9 +1199,9 @@
1199 1199  
1200 1200  = **Speed control mode** =
1201 1201  
1202 -Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1228 +Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1203 1203  
1204 -
1230 +(% style="text-align:center" %)
1205 1205  [[image:6.28.jpg||height="260" width="806"]]
1206 1206  
1207 1207  Figure 6-28 Speed control block diagram
... ... @@ -1210,21 +1210,21 @@
1210 1210  
1211 1211  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1212 1212  
1213 -
1214 -|**Function code**|**Name**|(((
1239 +(% class="table-bordered" %)
1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1215 1215  **Setting method**
1216 -)))|(((
1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1217 1217  **Effective time**
1218 -)))|**Default value**|**Range**|**Definition**|**Unit**
1219 -|P01-01|Speed instruction source|(((
1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1220 1220  Shutdown setting
1221 -)))|(((
1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1222 1222  Effective immediately
1223 -)))|1|1 to 6|(((
1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1224 1224  0: internal speed instruction
1225 1225  
1226 1226  1: AI_1 analog input (not supported by VD2F)
1227 -)))|-
1253 +)))|(% style="text-align:center; vertical-align:middle" %)-
1228 1228  
1229 1229  Table 6-26 Speed instruction source parameter
1230 1230  
... ... @@ -1232,19 +1232,19 @@
1232 1232  
1233 1233  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1234 1234  
1235 -
1236 -|**Function code**|**Name**|(((
1261 +(% class="table-bordered" %)
1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1237 1237  **Setting method**
1238 -)))|(((
1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
1239 1239  **Effective time**
1240 -)))|**Default value**|**Range**|**Definition**|**Unit**
1241 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)(((
1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit**
1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1242 1242  Internal speed Instruction 0
1243 -)))|(% rowspan="2" %)(((
1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1244 1244  Operation setting
1245 -)))|(% rowspan="2" %)(((
1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1246 1246  Effective immediately
1247 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1248 1248  Internal speed instruction 0
1249 1249  
1250 1250  When DI input port:
... ... @@ -1256,15 +1256,15 @@
1256 1256  13-INSPD1: 0,
1257 1257  
1258 1258  select this speed instruction to be effective.
1259 -)))|(% rowspan="2" %)rpm
1260 -|-5000 to 5000*
1261 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)(((
1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1262 1262  Internal speed Instruction 1
1263 -)))|(% rowspan="2" %)(((
1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1264 1264  Operation setting
1265 -)))|(% rowspan="2" %)(((
1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1266 1266  Effective immediately
1267 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1268 1268  Internal speed instruction 1
1269 1269  
1270 1270  When DI input port:
... ... @@ -1276,15 +1276,15 @@
1276 1276  13-INSPD1: 1,
1277 1277  
1278 1278  Select this speed instruction to be effective.
1279 -)))|(% rowspan="2" %)rpm
1280 -|-5000 to 5000*
1281 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)(((
1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1282 1282  Internal speed Instruction 2
1283 -)))|(% rowspan="2" %)(((
1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1284 1284  Operation setting
1285 -)))|(% rowspan="2" %)(((
1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1286 1286  Effective immediately
1287 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1288 1288  Internal speed instruction 2
1289 1289  
1290 1290  When DI input port:
... ... @@ -1296,15 +1296,15 @@
1296 1296  13-INSPD1: 0,
1297 1297  
1298 1298  Select this speed instruction to be effective.
1299 -)))|(% rowspan="2" %)rpm
1300 -|-5000 to 5000*
1301 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)(((
1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1302 1302  Internal speed Instruction 3
1303 -)))|(% rowspan="2" %)(((
1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1304 1304  Operation setting
1305 -)))|(% rowspan="2" %)(((
1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1306 1306  Effective immediately
1307 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1308 1308  Internal speed instruction 3
1309 1309  
1310 1310  When DI input port:
... ... @@ -1316,16 +1316,17 @@
1316 1316  13-INSPD1: 1,
1317 1317  
1318 1318  Select this speed instruction to be effective.
1319 -)))|(% rowspan="2" %)rpm
1320 -|-5000 to 5000*
1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1321 1321  
1322 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)(((
1348 +(% class="table-bordered" %)
1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1323 1323  Internal speed Instruction 4
1324 -)))|(% rowspan="2" %)(((
1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1325 1325  Operation setting
1326 -)))|(% rowspan="2" %)(((
1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1327 1327  Effective immediately
1328 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1329 1329  Internal speed instruction 4
1330 1330  
1331 1331  When DI input port:
... ... @@ -1337,15 +1337,15 @@
1337 1337  13-INSPD1: 0,
1338 1338  
1339 1339  Select this speed instruction to be effective.
1340 -)))|(% rowspan="2" %)rpm
1341 -|-5000 to 5000*
1342 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)(((
1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1343 1343  Internal speed Instruction 5
1344 -)))|(% rowspan="2" %)(((
1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1345 1345  Operation setting
1346 -)))|(% rowspan="2" %)(((
1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1347 1347  Effective immediately
1348 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1349 1349  Internal speed instruction 5
1350 1350  
1351 1351  When DI input port:
... ... @@ -1357,15 +1357,15 @@
1357 1357  13-INSPD1: 1,
1358 1358  
1359 1359  Select this speed instruction to be effective.
1360 -)))|(% rowspan="2" %)rpm
1361 -|-5000 to 5000*
1362 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)(((
1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1363 1363  Internal speed Instruction 6
1364 -)))|(% rowspan="2" %)(((
1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1365 1365  Operation setting
1366 -)))|(% rowspan="2" %)(((
1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1367 1367  Effective immediately
1368 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1369 1369  Internal speed instruction 6
1370 1370  
1371 1371  When DI input port:
... ... @@ -1377,15 +1377,15 @@
1377 1377  13-INSPD1: 0,
1378 1378  
1379 1379  Select this speed instruction to be effective.
1380 -)))|(% rowspan="2" %)rpm
1381 -|-5000 to 5000*
1382 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)(((
1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1383 1383  Internal speed Instruction 7
1384 -)))|(% rowspan="2" %)(((
1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1385 1385  Operation setting
1386 -)))|(% rowspan="2" %)(((
1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1387 1387  Effective immediately
1388 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1389 1389  Internal speed instruction 7
1390 1390  
1391 1391  When DI input port:
... ... @@ -1397,34 +1397,34 @@
1397 1397  13-INSPD1: 1,
1398 1398  
1399 1399  Select this speed instruction to be effective.
1400 -)))|(% rowspan="2" %)rpm
1401 -|-5000 to 5000*
1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1402 1402  
1403 1403  Table 6-27 Internal speed instruction parameters
1404 1404  
1405 1405  ✎**Note: **“*” means the set range of VD2F servo drive.
1406 1406  
1434 +(% class="table-bordered" %)
1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1407 1407  
1408 -|**DI function code**|**function name**|**Function**
1409 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1410 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1411 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1412 -
1413 1413  Table 6-28 DI multi-speed function code description
1414 1414  
1415 1415  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1416 1416  
1417 -
1418 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1419 -|0|0|0|1|0
1420 -|0|0|1|2|1
1421 -|0|1|0|3|2
1444 +(% class="table-bordered" %)
1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1422 1422  |(% colspan="5" %)......
1423 -|1|1|1|8|7
1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1424 1424  
1425 1425  Table 6-29 Correspondence between INSPD bits and segment numbers
1426 1426  
1427 -
1454 +(% style="text-align:center" %)
1428 1428  [[image:image-20220608170845-26.png]]
1429 1429  
1430 1430  Figure 6-29 Multi-segment speed running curve
... ... @@ -1433,7 +1433,7 @@
1433 1433  
1434 1434  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1435 1435  
1436 -
1463 +(% style="text-align:center" %)
1437 1437  [[image:image-20220608153341-5.png]]
1438 1438  
1439 1439  Figure 6-30 Analog input circuit
... ... @@ -1440,7 +1440,7 @@
1440 1440  
1441 1441  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1442 1442  
1443 -
1470 +(% style="text-align:center" %)
1444 1444  [[image:image-20220608170955-27.png]]
1445 1445  
1446 1446  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1453,18 +1453,18 @@
1453 1453  
1454 1454  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1455 1455  
1456 -
1483 +(% style="text-align:center" %)
1457 1457  [[image:image-20220608171124-28.png]]
1458 1458  
1459 1459  Figure 6-32 AI_1 diagram before and after bias
1460 1460  
1488 +(% class="table-bordered" %)
1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1461 1461  
1462 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1463 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1464 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1465 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1466 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1467 -
1468 1468  Table 6-30 AI_1 parameters
1469 1469  
1470 1470  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1475,7 +1475,7 @@
1475 1475  
1476 1476  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1477 1477  
1478 -
1505 +(% style="text-align:center" %)
1479 1479  [[image:image-20220608171314-29.png]]
1480 1480  
1481 1481  Figure 6-33 of acceleration and deceleration time diagram
... ... @@ -1484,22 +1484,22 @@
1484 1484  
1485 1485  Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1486 1486  
1487 -
1488 -|**Function code**|**Name**|(((
1514 +(% class="table-bordered" %)
1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1489 1489  **Setting method**
1490 -)))|(((
1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1491 1491  **Effective time**
1492 -)))|**Default value**|**Range**|**Definition**|**Unit**
1493 -|P01-03|Acceleration time|(((
1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1494 1494  Operation setting
1495 -)))|(((
1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1496 1496  Effective immediately
1497 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1498 -|P01-04|Deceleration time|(((
1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1499 1499  Operation setting
1500 -)))|(((
1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1501 1501  Effective immediately
1502 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1503 1503  
1504 1504  Table 6-31 Acceleration and deceleration time parameters
1505 1505  
... ... @@ -1518,27 +1518,27 @@
1518 1518  
1519 1519  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1520 1520  
1521 -
1522 -|**Function code**|**Name**|(((
1548 +(% class="table-bordered" %)
1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1523 1523  **Setting method**
1524 -)))|(((
1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1525 1525  **Effective time**
1526 -)))|**Default value**|**Range**|**Definition**|**Unit**
1527 -|P01-10|Maximum speed threshold|(((
1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1528 1528  Operation setting
1529 -)))|(((
1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1530 1530  Effective immediately
1531 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1532 -|P01-12|Forward speed threshold|(((
1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1533 1533  Operation setting
1534 -)))|(((
1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1535 1535  Effective immediately
1536 -)))|3000|0 to 5000|Set forward speed limit value|rpm
1537 -|P01-13|Reverse speed threshold|(((
1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1538 1538  Operation setting
1539 -)))|(((
1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1540 1540  Effective immediately
1541 -)))|3000|0 to 5000|Set reverse speed limit value|rpm
1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1542 1542  
1543 1543  Table 6-32 Rotation speed related function codes
1544 1544  
... ... @@ -1548,19 +1548,19 @@
1548 1548  
1549 1549  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1550 1550  
1551 -
1552 -|**Function code**|**Name**|(((
1578 +(% class="table-bordered" %)
1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1553 1553  **Setting method**
1554 -)))|(((
1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1555 1555  **Effective time**
1556 -)))|**Default value**|**Range**|**Definition**|**Unit**
1557 -|P01-21|(((
1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1558 1558  Zero-speed clamp function selection
1559 -)))|(((
1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1560 1560  Operation setting
1561 -)))|(((
1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1562 1562  Effective immediately
1563 -)))|0|0 to 3|(((
1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1564 1564  Set the zero-speed clamp function. In speed mode:
1565 1565  
1566 1566  0: Force the speed to 0;
... ... @@ -1570,18 +1570,18 @@
1570 1570  2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1571 1571  
1572 1572  3: Invalid, ignore zero-speed clamp input
1573 -)))|-
1574 -|P01-22|(((
1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1575 1575  Zero-speed clamp speed threshold
1576 -)))|(((
1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1577 1577  Operation setting
1578 -)))|(((
1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1579 1579  Effective immediately
1580 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1581 1581  
1582 1582  Table 6-33 Zero-speed clamp related parameters
1583 1583  
1584 -
1611 +(% style="text-align:center" %)
1585 1585  [[image:image-20220608171549-30.png]]
1586 1586  
1587 1587  Figure 6-34 Zero-speed clamp diagram
... ... @@ -1594,36 +1594,36 @@
1594 1594  
1595 1595  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1596 1596  
1597 -
1624 +(% style="text-align:center" %)
1598 1598  [[image:image-20220608171625-31.png]]
1599 1599  
1600 1600  Figure 6-35 Rotation detection signal diagram
1601 1601  
1602 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1629 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1603 1603  
1604 -
1605 -|**Function code**|**Name**|(((
1631 +(% class="table-bordered" %)
1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1606 1606  **Setting method**
1607 -)))|(((
1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1608 1608  **Effective time**
1609 -)))|**Default value**|**Range**|**Definition**|**Unit**
1610 -|P05-16|(((
1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit**
1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1611 1611  Rotation detection
1612 1612  
1613 1613  speed threshold
1614 -)))|(((
1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1615 1615  Operation setting
1616 -)))|(((
1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1617 1617  Effective immediately
1618 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm
1619 1619  
1620 1620  Table 6-34 Rotation detection speed threshold parameters
1621 1621  
1622 -
1623 -|**DO function code**|**Function name**|**Function**
1624 -|132|(((
1649 +(% class="table-bordered" %)
1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function**
1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)(((
1625 1625  T-COIN rotation detection
1626 -)))|(((
1653 +)))|(% style="width:879px" %)(((
1627 1627  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1628 1628  
1629 1629  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1635,32 +1635,32 @@
1635 1635  
1636 1636  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1637 1637  
1638 -
1665 +(% style="text-align:center" %)
1639 1639  [[image:image-20220608171904-32.png]]
1640 1640  
1641 1641  Figure 6-36 Zero-speed signal diagram
1642 1642  
1643 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1670 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1644 1644  
1645 -
1646 -|**Function code**|**Name**|(((
1672 +(% class="table-bordered" %)
1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1647 1647  **Setting method**
1648 -)))|(((
1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1649 1649  **Effective time**
1650 -)))|**Default value**|**Range**|**Definition**|**Unit**
1651 -|P05-19|Zero speed output signal threshold|(((
1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit**
1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1652 1652  Operation setting
1653 -)))|(((
1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1654 1654  Effective immediately
1655 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm
1656 1656  
1657 1657  Table 6-36 Zero-speed output signal threshold parameter
1658 1658  
1659 -
1660 -|**DO function code**|**Function name**|**Function**
1661 -|133|(((
1686 +(% class="table-bordered" %)
1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1662 1662  ZSP zero speed signal
1663 -)))|Output this signal indicates that the servo motor is stopping rotation
1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1664 1664  
1665 1665  Table 6-37 DO zero-speed signal function code
1666 1666  
... ... @@ -1668,32 +1668,32 @@
1668 1668  
1669 1669  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1670 1670  
1671 -
1698 +(% style="text-align:center" %)
1672 1672  [[image:image-20220608172053-33.png]]
1673 1673  
1674 1674  Figure 6-37 Speed consistent signal diagram
1675 1675  
1676 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1703 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1677 1677  
1678 -
1679 -|**Function code**|**Name**|(((
1705 +(% class="table-bordered" %)
1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1680 1680  **Setting method**
1681 -)))|(((
1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1682 1682  **Effective time**
1683 -)))|**Default value**|**Range**|**Definition**|**Unit**
1684 -|P05-17|Speed consistent signal threshold|(((
1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit**
1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1685 1685  Operationsetting
1686 -)))|(((
1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1687 1687  Effective immediately
1688 -)))|10|0 to 100|Set speed consistent signal threshold|rpm
1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm
1689 1689  
1690 1690  Table 6-38 Speed consistent signal threshold parameters
1691 1691  
1692 -
1693 -|**DO Function code**|**Function name**|**Function**
1694 -|136|(((
1719 +(% class="table-bordered" %)
1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1695 1695  U-COIN consistent speed
1696 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1697 1697  
1698 1698  Table 6-39 DO speed consistent function code
1699 1699  
... ... @@ -1701,32 +1701,32 @@
1701 1701  
1702 1702  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1703 1703  
1704 -
1731 +(% style="text-align:center" %)
1705 1705  [[image:image-20220608172207-34.png]]
1706 1706  
1707 1707  Figure 6-38 Speed approaching signal diagram
1708 1708  
1709 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1736 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1710 1710  
1711 -
1712 -|**Function code**|**Name**|(((
1738 +(% class="table-bordered" %)
1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1713 1713  **Setting method**
1714 -)))|(((
1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1715 1715  **Effective time**
1716 -)))|**Default value**|**Range**|**Definition**|**Unit**
1717 -|P05-18|Speed approach signal threshold|(((
1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1718 1718  Operation setting
1719 -)))|(((
1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1720 1720  Effective immediately
1721 -)))|100|10 to 6000|Set speed approach signal threshold|rpm
1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1722 1722  
1723 1723  Table 6-40 Speed approaching signal threshold parameters
1724 1724  
1725 -
1726 -|**DO function code**|**Function name**|**Function**
1727 -|137|(((
1752 +(% class="table-bordered" %)
1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1728 1728  V-NEAR speed approach
1729 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1730 1730  
1731 1731  Table 6-41 DO speed approach function code
1732 1732  
... ... @@ -1734,7 +1734,7 @@
1734 1734  
1735 1735  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1736 1736  
1737 -
1764 +(% style="text-align:center" %)
1738 1738  [[image:image-20220608172405-35.png]]
1739 1739  
1740 1740  Figure 6-39 Torque mode diagram
... ... @@ -1743,21 +1743,21 @@
1743 1743  
1744 1744  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1745 1745  
1746 -
1747 -|**Function code**|**Name**|(((
1773 +(% class="table-bordered" %)
1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1748 1748  **Setting method**
1749 -)))|(((
1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1750 1750  **Effective time**
1751 -)))|**Default value**|**Range**|**Definition**|**Unit**
1752 -|P01-08|Torque instruction source|(((
1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1753 1753  Shutdown setting
1754 -)))|(((
1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1755 1755  Effective immediately
1756 -)))|0|0 to 1|(((
1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1757 1757  0: internal torque instruction
1758 1758  
1759 1759  1: AI_1 analog input(not supported by VD2F)
1760 -)))|-
1787 +)))|(% style="text-align:center; vertical-align:middle" %)-
1761 1761  
1762 1762  Table 6-42 Torque instruction source parameter
1763 1763  
... ... @@ -1765,17 +1765,17 @@
1765 1765  
1766 1766  Torque instruction source is from inside, the value is set by function code P01-08.
1767 1767  
1768 -
1769 -|**Function code**|**Name**|(((
1795 +(% class="table-bordered" %)
1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1770 1770  **Setting method**
1771 -)))|(((
1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1772 1772  **Effective time**
1773 -)))|**Default value**|**Range**|**Definition**|**Unit**
1774 -|P01-08|Torque instruction keyboard set value|(((
1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1775 1775  Operation setting
1776 -)))|(((
1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1777 1777  Effective immediately
1778 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1779 1779  
1780 1780  Table 6-43 Torque instruction keyboard set value
1781 1781  
... ... @@ -1783,7 +1783,7 @@
1783 1783  
1784 1784  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1785 1785  
1786 -
1813 +(% style="text-align:center" %)
1787 1787  [[image:image-20220608153646-7.png||height="213" width="408"]]
1788 1788  
1789 1789  Figure 6-40 Analog input circuit
... ... @@ -1790,7 +1790,7 @@
1790 1790  
1791 1791  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1792 1792  
1793 -
1820 +(% style="text-align:center" %)
1794 1794  [[image:image-20220608172502-36.png]]
1795 1795  
1796 1796  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1803,18 +1803,18 @@
1803 1803  
1804 1804  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1805 1805  
1806 -
1833 +(% style="text-align:center" %)
1807 1807  [[image:image-20220608172611-37.png]]
1808 1808  
1809 1809  Figure 6-42 AI_1 diagram before and after bias
1810 1810  
1838 +(% class="table-bordered" %)
1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1811 1811  
1812 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1813 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1814 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1815 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1816 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1817 -
1818 1818  Table 6-44 AI_1 parameters
1819 1819  
1820 1820  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1823,23 +1823,23 @@
1823 1823  
1824 1824  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1825 1825  
1826 -
1827 -|**Function code**|**Name**|(((
1853 +(% class="table-bordered" %)
1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1828 1828  **Setting method**
1829 -)))|(((
1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1830 1830  **Effective time**
1831 -)))|**Default value**|**Range**|**Definition**|**Unit**
1832 -|P04-04|Torque filtering time constant|(((
1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1833 1833  Operation setting
1834 -)))|(((
1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1835 1835  Effective immediately
1836 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1837 1837  
1838 1838  Table 6-45 Torque filtering time constant parameter details
1839 1839  
1840 1840  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1841 1841  
1842 -
1869 +(% style="text-align:center" %)
1843 1843  [[image:image-20220608172646-38.png]]
1844 1844  
1845 1845  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1850,7 +1850,7 @@
1850 1850  
1851 1851  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1852 1852  
1853 -
1880 +(% style="text-align:center" %)
1854 1854  [[image:image-20220608172806-39.png]]
1855 1855  
1856 1856  Figure 6-44 Torque instruction limit diagram
... ... @@ -1859,50 +1859,50 @@
1859 1859  
1860 1860  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1861 1861  
1862 -
1863 -|**Function code**|**Name**|(((
1889 +(% class="table-bordered" %)
1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1864 1864  **Setting method**
1865 -)))|(((
1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1866 1866  **Effective time**
1867 -)))|**Default value**|**Range**|**Definition**|**Unit**
1868 -|P01-14|(((
1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1869 1869  Torque limit source
1870 -)))|(((
1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1871 1871  Shutdown setting
1872 -)))|(((
1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1873 1873  Effective immediately
1874 -)))|0|0 to 1|(((
1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1875 1875  0: internal value
1876 1876  
1877 1877  1: AI_1 analog input
1878 1878  
1879 1879  (not supported by VD2F)
1880 -)))|-
1907 +)))|(% style="text-align:center; vertical-align:middle" %)-
1881 1881  
1882 1882  1) Torque limit source is internal torque instruction (P01-14=0)
1883 1883  
1884 1884  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1885 1885  
1886 -
1887 -|**Function code**|**Name**|(((
1913 +(% class="table-bordered" %)
1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1888 1888  **Setting method**
1889 -)))|(((
1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1890 1890  **Effective time**
1891 -)))|**Default value**|**Range**|**Definition**|**Unit**
1892 -|P01-15|(((
1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1893 1893  Forward torque limit
1894 -)))|(((
1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1895 1895  Operation setting
1896 -)))|(((
1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1897 1897  Effective immediately
1898 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1899 -|P01-16|(((
1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1900 1900  Reverse torque limit
1901 -)))|(((
1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1902 1902  Operation setting
1903 -)))|(((
1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1904 1904  Effective immediately
1905 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1906 1906  
1907 1907  Table 6-46 Torque limit parameter details
1908 1908  
... ... @@ -1914,11 +1914,11 @@
1914 1914  
1915 1915  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1916 1916  
1917 -
1918 -|**DO function code**|**Function name**|**Function**
1919 -|139|(((
1944 +(% class="table-bordered" %)
1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1920 1920  T-LIMIT in torque limit
1921 -)))|Output of this signal indicates that the servo motor torque is limited
1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1922 1922  
1923 1923  Table 6-47 DO torque limit function codes
1924 1924  
... ... @@ -1926,50 +1926,53 @@
1926 1926  
1927 1927  In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1928 1928  
1929 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.
1956 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1930 1930  
1931 1931  |(((
1959 +(% style="text-align:center" %)
1932 1932  [[image:image-20220608172910-40.png]]
1933 1933  )))|(((
1962 +(% style="text-align:center" %)
1934 1934  [[image:image-20220608173155-41.png]]
1935 1935  )))
1936 1936  |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1937 1937  
1938 -|**Function code**|**Name**|(((
1967 +(% class="table-bordered" %)
1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1939 1939  **Setting method**
1940 -)))|(((
1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1941 1941  **Effective time**
1942 -)))|**Default value**|**Range**|**Definition**|**Unit**
1943 -|P01-17|(((
1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1944 1944  Forward torque
1945 1945  
1946 1946  limit in torque mode
1947 -)))|(((
1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1948 1948  Operation setting
1949 -)))|(((
1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1950 1950  Effective immediately
1951 -)))|3000|0 to 5000|(((
1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1952 1952  Forward torque
1953 1953  
1954 1954  limit in torque mode
1955 -)))|0.1%
1956 -|P01-18|(((
1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1957 1957  Reverse torque
1958 1958  
1959 1959  limit in torque mode
1960 -)))|(((
1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1961 1961  Operation setting
1962 -)))|(((
1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1963 1963  Effective immediately
1964 -)))|3000|0 to 5000|(((
1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1965 1965  Reverse torque
1966 1966  
1967 1967  limit in torque mode
1968 -)))|0.1%
1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1969 1969  
1970 1970  Table 6-48 Speed limit parameters in torque mode
1971 1971  
1972 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__.
2002 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__.
1973 1973  
1974 1974  == **Torque-related DO output functions** ==
1975 1975  
... ... @@ -1979,51 +1979,51 @@
1979 1979  
1980 1980  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1981 1981  
1982 -
2012 +(% style="text-align:center" %)
1983 1983  [[image:image-20220608173541-42.png]]
1984 1984  
1985 1985  Figure 6-47 Torque arrival output diagram
1986 1986  
1987 -To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2017 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1988 1988  
1989 -
1990 -|**Function code**|**Name**|(((
2019 +(% class="table-bordered" %)
2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
1991 1991  **Setting method**
1992 -)))|(((
2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
1993 1993  **Effective time**
1994 -)))|**Default value**|**Range**|**Definition**|**Unit**
1995 -|P05-20|(((
2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1996 1996  Torque arrival
1997 1997  
1998 1998  threshold
1999 -)))|(((
2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2000 2000  Operation setting
2001 -)))|(((
2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2002 2002  Effective immediately
2003 -)))|100|0 to 300|(((
2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2004 2004  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2005 2005  
2006 2006  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2007 2007  
2008 2008  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2009 -)))|%
2010 -|P05-21|(((
2039 +)))|(% style="text-align:center; vertical-align:middle" %)%
2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2011 2011  Torque arrival
2012 2012  
2013 2013  hysteresis
2014 -)))|(((
2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2015 2015  Operation setting
2016 -)))|(((
2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2017 2017  Effective immediately
2018 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2019 2019  
2020 2020  Table 6-49 Torque arrival parameters
2021 2021  
2022 -
2023 -|**DO function code**|**Function name**|**Function**
2024 -|138|(((
2052 +(% class="table-bordered" %)
2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2025 2025  T-COIN torque arrival
2026 -)))|Used to determine whether the actual torque instruction has reached the set range
2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2027 2027  
2028 2028  Table 6-50 DO Torque Arrival Function Code
2029 2029  
... ... @@ -2039,17 +2039,17 @@
2039 2039  
2040 2040  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2041 2041  
2042 -
2043 -|**Function code**|**Name**|(((
2072 +(% class="table-bordered" %)
2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2044 2044  **Setting method**
2045 -)))|(((
2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2046 2046  **Effective time**
2047 -)))|**Default value**|**Range**|**Definition**|**Unit**
2048 -|P00-01|Control mode|(((
2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2049 2049  Shutdown setting
2050 -)))|(((
2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2051 2051  Shutdown setting
2052 -)))|1|1 to 6|(((
2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)(((
2053 2053  1: Position control
2054 2054  
2055 2055  2: Speed control
... ... @@ -2061,22 +2061,23 @@
2061 2061  5: Position/torque mixed control
2062 2062  
2063 2063  6: Speed/torque mixed control
2064 -)))|-
2094 +)))|(% style="text-align:center; vertical-align:middle" %)-
2065 2065  
2066 2066  Table 6-51 Mixed control mode parameters
2067 2067  
2068 -Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2098 +Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2069 2069  
2070 -
2071 -|**DI function code**|**Name**|**Function name**|**Function**
2072 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2073 -|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2074 -|(% rowspan="2" %)4|Valid|Speed mode
2075 -|invalid|Position mode
2076 -|(% rowspan="2" %)5|Valid|Torque mode
2077 -|invalid|Position mode
2078 -|(% rowspan="2" %)6|Valid|Torque mode
2079 -|invalid|Speed mode
2100 +(% class="table-bordered" %)
2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2103 +(% class="table-bordered" %)
2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2080 2080  )))
2081 2081  
2082 2082  Table 6-52 Description of DI function codes in control mode
... ... @@ -2095,15 +2095,15 @@
2095 2095  
2096 2096  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2097 2097  
2129 +(% class="table-bordered" %)
2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2098 2098  
2099 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2100 -|A1 (single-turn magnetic encoder)|17|0 to 131071
2101 -
2102 2102  Table 6-53 Single-turn absolute encoder information
2103 2103  
2104 2104  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2105 2105  
2106 -
2137 +(% style="text-align:center" %)
2107 2107  [[image:image-20220608173618-43.png]]
2108 2108  
2109 2109  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2112,16 +2112,16 @@
2112 2112  
2113 2113  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2114 2114  
2146 +(% class="table-bordered" %)
2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2115 2115  
2116 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2117 -|C1 (multi-turn magnetic encoder)|17|0 to 131071
2118 -|D2 (multi-turn Optical encoder)|23|0 to 8388607
2119 -
2120 2120  Table 6-54 Multi-turn absolute encoder information
2121 2121  
2122 2122  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2123 2123  
2124 -
2155 +(% style="text-align:center" %)
2125 2125  [[image:image-20220608173701-44.png]]
2126 2126  
2127 2127  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2130,12 +2130,12 @@
2130 2130  
2131 2131  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2132 2132  
2164 +(% class="table-bordered" %)
2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2133 2133  
2134 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2135 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2136 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2137 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2138 -
2139 2139  Table 6-55 Encoder feedback data
2140 2140  
2141 2141  == **Absolute value system encoder battery box use precautions** ==
... ... @@ -2142,7 +2142,7 @@
2142 2142  
2143 2143  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2144 2144  
2145 -
2176 +(% style="text-align:center" %)
2146 2146  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2147 2147  
2148 2148  Figure 6-50 the encoder battery box
... ... @@ -2155,23 +2155,23 @@
2155 2155  
2156 2156  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2157 2157  
2158 -
2159 -|**Function code**|**Name**|(((
2189 +(% class="table-bordered" %)
2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2160 2160  **Setting method**
2161 -)))|(((
2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2162 2162  **Effective time**
2163 -)))|**Default value**|**Range**|**Definition**|**Unit**
2164 -|P10-06|Multi-turn absolute encoder reset|(((
2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2165 2165  Shutdown setting
2166 -)))|(((
2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2167 2167  Effective immediately
2168 -)))|0|0 to 1|(((
2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2169 2169  0: No operation
2170 2170  
2171 2171  1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2172 2172  
2173 2173  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2174 -)))|-
2205 +)))|(% style="text-align:center; vertical-align:middle" %)-
2175 2175  
2176 2176  Table 6-56 Absolute encoder reset enable parameter
2177 2177  
... ... @@ -2189,18 +2189,18 @@
2189 2189  
2190 2190  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2191 2191  
2192 -
2223 +(% style="text-align:center" %)
2193 2193  [[image:image-20220608173804-46.png]]
2194 2194  
2195 2195  Figure 6-51 VDI_1 setting steps
2196 2196  
2197 -
2198 -|**Function code**|**Name**|(((
2228 +(% class="table-bordered" %)
2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2199 2199  **Setting method**
2200 -)))|(((
2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2201 2201  **Effective time**
2202 -)))|**Default value**|**Range**|**Definition**|**Unit**
2203 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2204 2204  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2205 2205  
2206 2206  VDI_1 input level:
... ... @@ -2208,8 +2208,8 @@
2208 2208  0: low level
2209 2209  
2210 2210  1: high level
2211 -)))|-
2212 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2242 +)))|(% style="text-align:center; vertical-align:middle" %)-
2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2213 2213  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2214 2214  
2215 2215  VDI_2 input level:
... ... @@ -2217,8 +2217,8 @@
2217 2217  0: low level
2218 2218  
2219 2219  1: high level
2220 -)))|-
2221 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2251 +)))|(% style="text-align:center; vertical-align:middle" %)-
2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2222 2222  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2223 2223  
2224 2224  VDI_3 input level:
... ... @@ -2226,8 +2226,8 @@
2226 2226  0: low level
2227 2227  
2228 2228  1: high level
2229 -)))|-
2230 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2260 +)))|(% style="text-align:center; vertical-align:middle" %)-
2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2231 2231  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2232 2232  
2233 2233  VDI_4 input level:
... ... @@ -2235,8 +2235,8 @@
2235 2235  0: low level
2236 2236  
2237 2237  1: high level
2238 -)))|-
2239 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2269 +)))|(% style="text-align:center; vertical-align:middle" %)-
2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2240 2240  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2241 2241  
2242 2242  VDI_5 input level:
... ... @@ -2244,8 +2244,8 @@
2244 2244  0: low level
2245 2245  
2246 2246  1: high level
2247 -)))|-
2248 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2278 +)))|(% style="text-align:center; vertical-align:middle" %)-
2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2249 2249  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2250 2250  
2251 2251  VDI_6 input level:
... ... @@ -2253,8 +2253,8 @@
2253 2253  0: low level
2254 2254  
2255 2255  1: high level
2256 -)))|-
2257 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2287 +)))|(% style="text-align:center; vertical-align:middle" %)-
2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2258 2258  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2259 2259  
2260 2260  VDI_7 input level:
... ... @@ -2262,8 +2262,8 @@
2262 2262  0: low level
2263 2263  
2264 2264  1: high level
2265 -)))|-
2266 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2296 +)))|(% style="text-align:center; vertical-align:middle" %)-
2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2267 2267  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2268 2268  
2269 2269  VDI_8 input level:
... ... @@ -2271,7 +2271,7 @@
2271 2271  0: low level
2272 2272  
2273 2273  1: high level
2274 -)))|-
2305 +)))|(% style="text-align:center; vertical-align:middle" %)-
2275 2275  
2276 2276  Table 6-57 Virtual VDI parameters
2277 2277  
... ... @@ -2281,11 +2281,11 @@
2281 2281  
2282 2282  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2283 2283  
2315 +(% class="table-bordered" %)
2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2284 2284  
2285 -|**Setting value**|**DI channel logic selection**|**Illustration**
2286 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2287 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2288 -
2289 2289  Table 6-58 DI terminal channel logic selection
2290 2290  
2291 2291  == **VDO** ==
... ... @@ -2294,55 +2294,55 @@
2294 2294  
2295 2295  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2296 2296  
2297 -
2328 +(% style="text-align:center" %)
2298 2298  [[image:image-20220608173957-48.png]]
2299 2299  
2300 2300  Figure 6-52 VDO_2 setting steps
2301 2301  
2302 -
2303 -|**Function code**|**Name**|(((
2333 +(% class="table-bordered" %)
2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2304 2304  **Setting method**
2305 -)))|(((
2336 +)))|(% style="text-align:center; vertical-align:middle" %)(((
2306 2306  **Effective time**
2307 -)))|**Default value**|**Range**|**Definition**|**Unit**
2308 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2309 2309  VDO_1 output level:
2310 2310  
2311 2311  0: low level
2312 2312  
2313 2313  1: high level
2314 -)))|-
2315 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2345 +)))|(% style="text-align:center; vertical-align:middle" %)-
2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2316 2316  VDO_2 output level:
2317 2317  
2318 2318  0: low level
2319 2319  
2320 2320  1: high level
2321 -)))|-
2322 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2352 +)))|(% style="text-align:center; vertical-align:middle" %)-
2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2323 2323  VDO_3 output level:
2324 2324  
2325 2325  0: low level
2326 2326  
2327 2327  1: high level
2328 -)))|-
2329 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2359 +)))|(% style="text-align:center; vertical-align:middle" %)-
2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2330 2330  VDO_4 output level:
2331 2331  
2332 2332  0: low level
2333 2333  
2334 2334  1: high level
2335 -)))|-
2366 +)))|(% style="text-align:center; vertical-align:middle" %)-
2336 2336  
2337 2337  Table 6-59 Communication control DO function parameters
2338 2338  
2370 +(% class="table-bordered" %)
2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2339 2339  
2340 -|**DO function number**|**Function name**|**Function**
2341 -|145|COM_VDO1 communication VDO1 output|Use communication VDO
2342 -|146|COM_VDO1 communication VDO2 output|Use communication VDO
2343 -|147|COM_VDO1 communication VDO3 output|Use communication VDO
2344 -|148|COM_VDO1 communication VDO4output|Use communication VDO
2345 -
2346 2346  Table 6-60 VDO function number
2347 2347  
2348 2348  ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
... ... @@ -2353,17 +2353,17 @@
2353 2353  
2354 2354  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2355 2355  
2356 -
2357 -|**Function code**|**Name**|(((
2387 +(% class="table-bordered" %)
2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2358 2358  **Setting method**
2359 -)))|(((
2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2360 2360  **Effective time**
2361 -)))|**Default value**|**Range**|**Definition**|**Unit**
2362 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2363 2363  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2364 2364  
2365 2365  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2366 -)))|%
2397 +)))|(% style="text-align:center; vertical-align:middle" %)%
2367 2367  
2368 2368  In the following cases, it could be modified according to the actual heat generation of the motor
2369 2369  
image-20220707092316-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -277.2 KB
Content
image-20220707092322-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -277.2 KB
Content
image-20220707092401-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -73.4 KB
Content
image-20220707092440-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -33.1 KB
Content
image-20220707092615-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -61.4 KB
Content