Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
To version 43.1
edited by Joey
on 2022/06/11 15:24
on 2022/06/11 15:24
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1User Manual.02VD2 SA Series.WebHome1 +Servo.2\. User Manual.06 VD2 SA Series Servo Drives Manual (Full V1\.1).WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.Joey - Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -| =(% scope="row" %)**No.**|=**Content**6 -| =(% colspan="2" %)Wiring7 -| =1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -| =2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -| =3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -| =4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -| =5|Servo drive and servo motor must be grounded reliably.12 -| =6|When using an external braking resistor, the short wiring between drive C and D must be removed.13 -| =7|The force of all cables is within the specified range.14 -| =8|The wiring terminals have been insulated.15 -| =(% colspan="2" %)Environment and Machinery16 -| =1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -| =2|The servo drive and external braking resistor are not placed on combustible objects.18 -| =3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.5 +|**No.**|**Content** 6 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring 7 +|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|5|Servo drive and servo motor must be grounded reliably. 12 +|6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|7|The force of all cables is within the specified range. 14 +|8|The wiring terminals have been insulated. 15 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery 16 +|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -25,7 +25,7 @@ 25 25 26 26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal. 27 27 28 -If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault. 29 29 30 30 **(2) Set the servo drive enable (S-ON) to invalid (OFF)** 31 31 ... ... @@ -35,7 +35,7 @@ 35 35 36 36 **(1) Panel jog operation** 37 37 38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__. 39 39 40 40 **(2) Jog operation of servo debugging platform** 41 41 ... ... @@ -42,17 +42,17 @@ 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 44 45 - 46 -| =(% scope="row" %)**Function code**|=**Name**|=(((45 +(% class="table-bordered" %) 46 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 47 47 **Setting method** 48 -)))|=((( 48 +)))|(% style="text-align:center; vertical-align:middle" %)((( 49 49 **Effective time** 50 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 51 -|=P10-01|JOG speed|((( 50 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 51 +|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)((( 52 52 Operation setting 53 -)))|((( 53 +)))|(% style="text-align:center; vertical-align:middle" %)((( 54 54 Effective immediately 55 -)))|100|0 to 3000|JOG speed|rpm 55 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm 56 56 57 57 Table 6-2 JOG speed parameter 58 58 ... ... @@ -60,19 +60,25 @@ 60 60 61 61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 62 62 63 - 64 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 65 -|=P00-04|Rotation direction|((( 63 +(% class="table-bordered" %) 64 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 65 +**Setting method** 66 +)))|(% style="text-align:center; vertical-align:middle" %)((( 67 +**Effective time** 68 +)))|(% style="text-align:center; vertical-align:middle" %)((( 69 +**Default value** 70 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 71 +|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)((( 66 66 Shutdown setting 67 -)))|((( 73 +)))|(% style="text-align:center; vertical-align:middle" %)((( 68 68 Effective immediately 69 -)))|0|0 to 1|((( 75 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 70 70 Forward rotation: Face the motor shaft to watch 71 71 72 72 0: standard setting (CW is forward rotation) 73 73 74 74 1: reverse mode (CCW is forward rotation) 75 -)))|- 81 +)))|(% style="text-align:center; vertical-align:middle" %)- 76 76 77 77 Table 6-3 Rotation direction parameters** ** 78 78 ... ... @@ -85,16 +85,17 @@ 85 85 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 86 86 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 87 87 88 -|=(% scope="row" %)**Function code**|=**Name**|=((( 94 +(% class="table-bordered" %) 95 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 89 89 **Setting method** 90 -)))|=((( 97 +)))|(% style="text-align:center; vertical-align:middle" %)((( 91 91 **Effective time** 92 -)))|=**Default**|=**Range**|=**Definition**|=**Unit** 93 -|=P00-09|Braking resistor setting|((( 99 +)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 100 +|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)((( 94 94 Operation setting 95 -)))|((( 102 +)))|(% style="text-align:center; vertical-align:middle" %)((( 96 96 Effective immediately 97 -)))|0|0 to 3|((( 104 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|((( 98 98 0: use built-in braking resistor 99 99 100 100 1: use external braking resistor and natural cooling ... ... @@ -102,18 +102,18 @@ 102 102 2: use external braking resistor and forced air cooling; (cannot be set) 103 103 104 104 3: No braking resistor is used, it is all absorbed by capacitor. 105 -)))|- 106 -| =(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).107 -|=P00-10|External braking resistor value|((( 112 +)))|(% style="text-align:center; vertical-align:middle" %)- 113 +|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 114 +|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)((( 108 108 Operation setting 109 -)))|((( 116 +)))|(% style="text-align:center; vertical-align:middle" %)((( 110 110 Effective immediately 111 -)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 112 -|=P00-11|External braking resistor power|((( 118 +)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω 119 +|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)((( 113 113 Operation setting 114 -)))|((( 121 +)))|(% style="text-align:center; vertical-align:middle" %)((( 115 115 Effective immediately 116 -)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 123 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W 117 117 118 118 Table 6-4 Braking resistor parameters 119 119 ... ... @@ -127,11 +127,11 @@ 127 127 128 128 **(2) Input the instruction and the motor rotates** 129 129 130 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.137 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected. 131 131 132 132 **(3) Timing diagram of power on** 133 133 134 - 141 +(% style="text-align:center" %) 135 135 [[image:image-20220608163014-1.png]] 136 136 137 137 Figure 6-1 Timing diagram of power on ... ... @@ -138,19 +138,19 @@ 138 138 139 139 == **Servo shutdown** == 140 140 141 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.148 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. 142 142 150 +(% class="table-bordered" %) 151 +|Shutdown mode|Shutdown description|Shutdown characteristics 152 +|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 153 +|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 143 143 144 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 145 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 146 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 147 - 148 148 Table 6-5 Comparison of two shutdown modes 149 149 157 +(% class="table-bordered" %) 158 +|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked** 159 +|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 150 150 151 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 152 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 153 - 154 154 Table 6-6 Comparison of two shutdown status 155 155 156 156 **(1) Servo enable (S-ON) OFF shutdown** ... ... @@ -157,27 +157,27 @@ 157 157 158 158 The related parameters of the servo OFF shutdown mode are shown in the table below. 159 159 160 - 161 -| =(% scope="row" %)**Function code**|=**Name**|=(((167 +(% class="table-bordered" %) 168 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 162 162 **Setting method** 163 -)))|=((( 170 +)))|(% style="text-align:center; vertical-align:middle" %)((( 164 164 **Effective time** 165 -)))|=((( 172 +)))|(% style="text-align:center; vertical-align:middle" %)((( 166 166 **Default value** 167 -)))|=**Range**|=**Definition**|=**Unit** 168 -|=P00-05|Servo OFF shutdown|((( 174 +)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 175 +|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)((( 169 169 Shutdown 170 170 171 171 setting 172 -)))|((( 179 +)))|(% style="text-align:center; vertical-align:middle" %)((( 173 173 Effective 174 174 175 175 immediately 176 -)))|0|0 to 1|((( 183 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 177 177 0: Free shutdown, and the motor shaft remains free status. 178 178 179 179 1: Zero-speed shutdown, and the motor shaft remains free status. 180 -)))|- 187 +)))|(% style="text-align:center; vertical-align:middle" %)- 181 181 182 182 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 183 183 ... ... @@ -193,13 +193,13 @@ 193 193 194 194 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 195 195 196 - 197 -| =(% scope="row" %)**Function code**|=**Name**|=(((203 +(% class="table-bordered" %) 204 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 198 198 **Setting method** 199 -)))|=((( 206 +)))|(% style="text-align:center; vertical-align:middle" %)((( 200 200 **Effective time** 201 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 202 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 208 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 209 +|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|((( 203 203 0: OFF (not used) 204 204 205 205 01: S-ON servo enable ... ... @@ -247,30 +247,32 @@ 247 247 24: Internal multi-segment position selection 4 248 248 249 249 Others: reserved 250 -)))|- 251 -|=P06-09|DI_3 channel logic selection|Operation setting|((( 257 +)))|(% style="text-align:center; vertical-align:middle" %)- 258 +|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)((( 252 252 Effective immediately 253 -)))|0|0 to 1|((( 260 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 254 254 DI port input logic validity function selection. 255 255 256 256 0: Normally open input. Active low level (switch on); 257 257 258 258 1: Normally closed input. Active high level (switch off); 259 -)))|- 260 -|=P06-10|DI_3 input source selection|Operation setting|((( 266 +)))|(% style="text-align:center; vertical-align:middle" %)- 267 +|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)((( 261 261 Effective immediately 262 -)))|0|0 to 1|((( 269 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 263 263 Select the DI_3 port type to enable 264 264 265 265 0: Hardware DI_3 input terminal 266 266 267 267 1: virtual VDI_3 input terminal 268 -)))|- 269 -|=P06-11|DI_4 channel function selection|((( 275 +)))|(% style="text-align:center; vertical-align:middle" %)- 276 + 277 +(% class="table-bordered" %) 278 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 270 270 Operation setting 271 -)))|((( 280 +)))|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 272 272 again Power-on 273 -)))|4|0 to 32|((( 282 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)((( 274 274 0 off (not used) 275 275 276 276 01: SON Servo enable ... ... @@ -318,25 +318,25 @@ 318 318 24: Internal multi-segment position selection 4 319 319 320 320 Others: reserved 321 -)))|- 322 -|=P06-12|DI_4 channel logic selection|Operation setting|((( 330 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 331 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 323 323 Effective immediately 324 -)))|0|0 to 1|((( 333 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)((( 325 325 DI port input logic validity function selection. 326 326 327 327 0: Normally open input. Active low level (switch on); 328 328 329 329 1: Normally closed input. Active high level (switch off); 330 -)))|- 331 -|=P06-13|DI_4 input source selection|Operation setting|((( 339 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 340 +|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 332 332 Effective immediately 333 -)))|0|0 to 1|((( 342 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)((( 334 334 Select the DI_4 port type to enable 335 335 336 336 0: Hardware DI_4 input terminal 337 337 338 338 1: virtual VDI_4 input terminal 339 -)))|- 348 +)))|(% style="text-align:center; vertical-align:middle; width:56px" %)- 340 340 341 341 Table 6-8 DI3 and DI4 channel parameters 342 342 ... ... @@ -348,8 +348,9 @@ 348 348 349 349 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 350 350 351 - 360 +(% class="table-bordered" %) 352 352 |((( 362 +(% style="text-align:center" %) 353 353 [[image:image-20220611151617-1.png]] 354 354 ))) 355 355 |((( ... ... @@ -368,13 +368,14 @@ 368 368 369 369 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 370 370 371 - 381 +(% style="text-align:center" %) 372 372 [[image:image-20220608163136-2.png]] 373 373 374 374 Figure 6-2 VD2B servo drive brake wiring 375 375 376 - 386 +(% class="table-bordered" %) 377 377 |((( 388 +(% style="text-align:center" %) 378 378 [[image:image-20220611151642-2.png]] 379 379 ))) 380 380 |((( ... ... @@ -391,42 +391,42 @@ 391 391 392 392 Related function code is as below. 393 393 394 - 395 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((405 +(% class="table-bordered" %) 406 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)((( 396 396 **Effective time** 397 397 ))) 398 -|=144|((( 409 +|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)((( 399 399 BRK-OFF Brake output 400 -)))|Output the signal indicates the servo motor brake release|Power-on again 411 +)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again 401 401 402 402 Table 6-2 Relevant function codes for brake setting 403 403 404 - 405 -| =(% scope="row" %)**Function code**|=**Name**|=(((415 +(% class="table-bordered" %) 416 +|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 406 406 **Setting method** 407 -)))|=((( 418 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 408 408 **Effective time** 409 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 410 -|=P1-30|Delay from brake output to instruction reception|((( 420 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 421 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 411 411 Operation setting 412 -)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms 413 -|=P1-31|In static state, delay from brake output OFF to the motor is power off|((( 423 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms 424 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 414 414 Operation setting 415 -)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms 416 -|=P1-32|Rotation status, when the brake output OFF, the speed threshold|((( 426 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms 427 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 417 417 Operation setting 418 -)))|Effective immediately|30|0 to 3000|((( 429 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)((( 419 419 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. 420 420 421 421 When the brake output (BRK-OFF) is not allocated, this function code has no effect. 422 -)))|rpm 423 -|=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|((( 433 +)))|(% style="text-align:center; vertical-align:middle" %)rpm 434 +|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 424 424 Operation setting 425 -)))|Effective immediately|500|1 to 1000|((( 436 +)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)((( 426 426 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. 427 427 428 428 When brake output (BRK-OFF) is not allocated, this function code has no effect. 429 -)))|ms 440 +)))|(% style="text-align:center; vertical-align:middle" %)ms 430 430 431 431 Table 6-9 Brake setting function codes 432 432 ... ... @@ -438,10 +438,11 @@ 438 438 439 439 1) Brake timing when servo motor is stationary 440 440 441 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__452 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__ 442 442 443 - 454 +(% class="table-bordered" %) 444 444 |((( 456 +(% style="text-align:center" %) 445 445 [[image:image-20220611151705-3.png]] 446 446 ))) 447 447 |((( ... ... @@ -450,6 +450,7 @@ 450 450 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 451 451 ))) 452 452 465 +(% style="text-align:center" %) 453 453 [[image:image-20220608163304-3.png]] 454 454 455 455 Figure 6-3 Brake Timing of when the motor is stationary ... ... @@ -458,10 +458,11 @@ 458 458 459 459 2) The brake timing when servo motor rotates 460 460 461 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.474 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__. 462 462 463 - 476 +(% class="table-bordered" %) 464 464 |((( 478 +(% style="text-align:center" %) 465 465 [[image:image-20220611151719-4.png]] 466 466 ))) 467 467 |((( ... ... @@ -476,6 +476,7 @@ 476 476 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 477 477 ))) 478 478 493 +(% style="text-align:center" %) 479 479 [[image:image-20220608163425-4.png]] 480 480 481 481 Figure 6-4 Brake timing when the motor rotates ... ... @@ -484,7 +484,7 @@ 484 484 485 485 The brake timing (free shutdown) in the fault status is as follows. 486 486 487 - 502 +(% style="text-align:center" %) 488 488 [[image:image-20220608163541-5.png]] 489 489 490 490 Figure 6-5 The brake timing (free shutdown) in the fault state ... ... @@ -493,7 +493,7 @@ 493 493 494 494 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 495 495 496 - 511 +(% style="text-align:center" %) 497 497 [[image:image-20220608163643-6.png]] 498 498 499 499 Figure 6-6 Position control diagram ... ... @@ -500,17 +500,17 @@ 500 500 501 501 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 502 502 503 - 504 -| =(% scope="row" %)**Function code**|=**Name**|=(((518 +(% class="table-bordered" %) 519 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 505 505 **Setting method** 506 -)))|=((( 521 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 507 507 **Effective time** 508 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 509 -|=P01-01|Control mode|((( 523 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 524 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 510 510 Operation setting 511 -)))|((( 526 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 512 512 immediately Effective 513 -)))|0|0 to 6|(((528 +)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)((( 514 514 0: position control 515 515 516 516 2: speed control ... ... @@ -522,7 +522,7 @@ 522 522 5: position/torque mix control 523 523 524 524 6: speed /torque mix control 525 -)))|- 540 +)))|(% style="text-align:center; vertical-align:middle" %)- 526 526 527 527 Table 6-10 Control mode parameters 528 528 ... ... @@ -530,21 +530,21 @@ 530 530 531 531 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 532 532 533 - 534 -| =(% scope="row" %)**Function code**|=**Name**|=(((548 +(% class="table-bordered" %) 549 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 535 535 **Setting method** 536 -)))|=((( 551 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)((( 537 537 **Effective time** 538 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 539 -|=P01-06|Position instruction source|((( 553 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 554 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 540 540 Operation setting 541 -)))|((( 556 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)((( 542 542 immediately Effective 543 -)))|0|0 to 1|((( 558 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)((( 544 544 0: pulse instruction 545 545 546 546 1: internal position instruction 547 -)))|- 562 +)))|(% style="text-align:center; vertical-align:middle" %)- 548 548 549 549 Table 6-11 Position instruction source parameter 550 550 ... ... @@ -552,19 +552,20 @@ 552 552 553 553 1) Low-speed pulse instruction input 554 554 555 -|[[image:image-20220707092316-1.png]]|[[image:image-20220707092322-2.png]] 556 -|VD2A and VD2B servo drives|VD2F servo drive 557 -|(% colspan="2" %)Figure 6-7 Position instruction input setting 570 +(% class="table-bordered" %) 571 +|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]] 572 +|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive 573 +|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting 558 558 559 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.575 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__. 560 560 561 561 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 562 562 579 +(% class="table-bordered" %) 580 +|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage** 581 +|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V 582 +|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V 563 563 564 -|**Pulse method**|**Maximum frequency**|**Voltage** 565 -|Open collector input|200K|24V 566 -|Differential input|500K|5V 567 - 568 568 Table 6-12 Pulse input specifications 569 569 570 570 1.Differential input ... ... @@ -572,11 +572,11 @@ 572 572 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 573 573 574 574 (% style="text-align:center" %) 575 -[[image: image-20220707092615-5.jpeg]]591 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]] 576 576 577 577 Figure 6-8 Differential input connection 578 578 579 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”595 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 580 580 581 581 2.Open collector input 582 582 ... ... @@ -583,11 +583,11 @@ 583 583 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 584 584 585 585 (% style="text-align:center" %) 586 -[[image: image-20220707092401-3.jpeg||height="530" width="834"]]602 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]] 587 587 588 588 Figure 6-9 Open collector input connection 589 589 590 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”606 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 591 591 592 592 2) Position pulse frequency and anti-interference level 593 593 ... ... @@ -600,22 +600,22 @@ 600 600 601 601 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 602 602 603 - 604 -| =(% scope="row" %)**Function code**|=**Name**|=(((619 +(% class="table-bordered" %) 620 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 605 605 **Setting method** 606 -)))|=((( 622 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)((( 607 607 **Effective time** 608 -)))|=**Default value**|=**Range**| =(% colspan="2" %)**Definition**|=**Unit**609 -|=P00-13|Maximum position pulse frequency|((( 624 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 625 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)((( 610 610 Shutdown setting 611 -)))|((( 627 +)))|(% style="text-align:center; vertical-align:middle; width:176px" %)((( 612 612 Effective immediately 613 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 614 -| =(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((629 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz 630 +|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)((( 615 615 Operation setting 616 -)))|(% rowspan="3" %)((( 632 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)((( 617 617 Power-on again 618 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 634 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)((( 619 619 Set the anti-interference level of external pulse instruction. 620 620 621 621 0: no filtering; ... ... @@ -635,9 +635,9 @@ 635 635 7: Filtering time 8.192us 636 636 637 637 8: Filtering time 16.384us 638 -)))|(% rowspan="3" %)- 639 -| =(% rowspan="2" %)9|VD2: Filtering time 25.5us640 -| =VD2F: Filtering time 25.5us654 +)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)- 655 +|(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us 656 +|VD2F: Filtering time 25.5us 641 641 642 642 Table 6-13 Position pulse frequency and anti-interference level parameters 643 643 ... ... @@ -645,17 +645,17 @@ 645 645 646 646 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 647 647 648 - 649 -| =(% scope="row" %)**Function code**|=**Name**|=(((664 +(% class="table-bordered" %) 665 +|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 650 650 **Setting method** 651 -)))|=((( 667 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 652 652 **Effective time** 653 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 654 -|=P00-12|Position pulse type selection|((( 669 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 670 +|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 655 655 Operation setting 656 -)))|((( 672 +)))|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 657 657 Power-on again 658 -)))|0|0 to 5|((( 674 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)((( 659 659 0: direction + pulse (positive logic) 660 660 661 661 1: CW/CCW ... ... @@ -667,74 +667,74 @@ 667 667 4: CW/CCW (negative logic) 668 668 669 669 5: A, B phase quadrature pulse (4 times frequency negative logic) 670 -)))|- 686 +)))|(% style="text-align:center; vertical-align:middle" %)- 671 671 672 672 Table 6-14 Position pulse type selection parameter 673 673 674 - 675 -| =(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**676 -|=0|((( 690 +(% class="table-bordered" %) 691 +|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse** 692 +|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 677 677 Direction + pulse 678 678 679 679 (Positive logic) 680 -)))|((( 696 +)))|(% style="text-align:center; vertical-align:middle" %)((( 681 681 PULSE 682 682 683 683 SIGN 684 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 685 -|=1|CW/CCW|((( 700 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]] 701 +|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)((( 686 686 PULSE (CW) 687 687 688 688 SIGN (CCW) 689 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 690 -|=2|((( 705 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]] 706 +|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 691 691 AB phase orthogonal 692 692 693 693 pulse (4 times frequency) 694 -)))|((( 710 +)))|(% style="text-align:center; vertical-align:middle" %)((( 695 695 PULSE (Phase A) 696 696 697 697 SIGN (Phase B) 698 -)))|((( 714 +)))|(% style="text-align:center; vertical-align:middle" %)((( 699 699 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]] 700 700 701 701 Phase A is 90° ahead of Phase B 702 -)))|((( 718 +)))|(% style="text-align:center; vertical-align:middle" %)((( 703 703 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]] 704 704 705 705 Phase B is 90° ahead of Phase A 706 706 ))) 707 -|=3|((( 723 +|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 708 708 Direction + pulse 709 709 710 710 (Negative logic) 711 -)))|((( 727 +)))|(% style="text-align:center; vertical-align:middle" %)((( 712 712 PULSE 713 713 714 714 SIGN 715 -)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 716 -|=4|((( 731 +)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]] 732 +|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 717 717 CW/CCW 718 718 719 719 (Negative logic) 720 -)))|((( 736 +)))|(% style="text-align:center; vertical-align:middle" %)((( 721 721 PULSE (CW) 722 722 723 723 SIGN (CCW) 724 -)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 725 -|=5|((( 740 +)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]] 741 +|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)((( 726 726 AB phase orthogonal 727 727 728 728 pulse (4 times frequency negative logic) 729 -)))|((( 745 +)))|(% style="text-align:center; vertical-align:middle" %)((( 730 730 PULSE (Phase A) 731 731 732 732 SIGN (Phase B) 733 -)))|((( 749 +)))|(% style="text-align:center; vertical-align:middle" %)((( 734 734 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]] 735 735 736 736 B phase is ahead of A phase by 90° 737 -)))|((( 753 +)))|(% style="text-align:center; vertical-align:middle" %)((( 738 738 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]] 739 739 740 740 A phase is ahead of B phase by 90° ... ... @@ -744,11 +744,11 @@ 744 744 745 745 **(2) The source of position instruction is internal position instruction (P01-06=1)** 746 746 747 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.763 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__. 748 748 749 749 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 750 750 751 - 767 +(% style="text-align:center" %) 752 752 [[image:image-20220608164116-9.png]] 753 753 754 754 Figure 6-11 The setting process of multi-segment position ... ... @@ -755,51 +755,51 @@ 755 755 756 756 1) Set multi-segment position running mode 757 757 758 - 759 -| =(% scope="row" %)**Function code**|=**Name**|=(((774 +(% class="table-bordered" %) 775 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 760 760 **Setting method** 761 -)))|=((( 777 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 762 762 **Effective time** 763 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 764 -|=P07-01|Multi-segment position running mode|((( 779 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 780 +|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 765 765 Shutdown setting 766 -)))|((( 782 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 767 767 Effective immediately 768 -)))|0|0 to 2|((( 784 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|((( 769 769 0: Single running 770 770 771 771 1: Cycle running 772 772 773 773 2: DI switching running 774 -)))|- 775 -|=P07-02|Start segment number|((( 790 +)))|(% style="text-align:center; vertical-align:middle" %)- 791 +|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 776 776 Shutdown setting 777 -)))|((( 793 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 778 778 Effective immediately 779 -)))|1|1 to 16|1st segment NO. in non-DI switching mode|- 780 -|=P07-03|End segment number|((( 795 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)- 796 +|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 781 781 Shutdown setting 782 -)))|((( 798 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 783 783 Effective immediately 784 -)))|1|1 to 16|last segment NO. in non-DI switching mode|- 785 -|=P07-04|Margin processing method|((( 800 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)- 801 +|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 786 786 Shutdown setting 787 -)))|((( 803 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 788 788 Effective immediately 789 -)))|0|0 to 1|((( 805 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 790 790 0: Run the remaining segments 791 791 792 792 1: Run again from the start segment 793 -)))|- 794 -|=P07-05|Displacement instruction type|((( 809 +)))|(% style="text-align:center; vertical-align:middle" %)- 810 +|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 795 795 Shutdown setting 796 -)))|((( 812 +)))|(% style="text-align:center; vertical-align:middle; width:200px" %)((( 797 797 Effective immediately 798 -)))|0|0 to 1|((( 814 +)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 799 799 0: Relative position instruction 800 800 801 801 1: Absolute position instruction 802 -)))|- 818 +)))|(% style="text-align:center; vertical-align:middle" %)- 803 803 804 804 Table 6-16 multi-segment position running mode parameters 805 805 ... ... @@ -807,9 +807,9 @@ 807 807 808 808 ~1. Single running 809 809 810 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively826 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 811 811 812 - 828 +(% style="text-align:center" %) 813 813 [[image:image-20220608164226-10.png]] 814 814 815 815 Figure 6-12 Single running curve (P07-02=1, P07-03=2) ... ... @@ -816,14 +816,14 @@ 816 816 817 817 2. Cycle running 818 818 819 -In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.835 +In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 820 820 821 - 837 +(% style="text-align:center" %) 822 822 [[image:image-20220608164327-11.png]] 823 823 824 824 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 825 825 826 -|[[image:image-20220611151917-5.png]] 842 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]] 827 827 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 828 828 829 829 3. DI switching running ... ... @@ -830,30 +830,30 @@ 830 830 831 831 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 832 832 849 +(% class="table-bordered" %) 850 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 851 +|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 852 +|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 853 +|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 854 +|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 833 833 834 -|=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 835 -|=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number 836 -|=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number 837 -|=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number 838 -|=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number 839 - 840 840 Table 6-17 DI function code 841 841 842 842 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number. 843 843 860 +(% class="table-bordered" %) 861 +|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number** 862 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1 863 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2 864 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3 865 +|(% colspan="5" style="text-align:center; vertical-align:middle" %)………… 866 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16 844 844 845 -|=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number** 846 -|=0|0|0|0|1 847 -|=0|0|0|1|2 848 -|=0|0|1|0|3 849 -|=(% colspan="5" %)………… 850 -|=1|1|1|1|16 851 - 852 852 Table 6-18 INPOS corresponds to running segment number 853 853 854 -The operating curve in this running mode is shown in __[[Figure 6-14>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.870 +The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__. 855 855 856 - 872 +(% style="text-align:center" %) 857 857 [[image:image-20220608164545-12.png]] 858 858 859 859 Figure 6-14 DI switching running curve ... ... @@ -862,14 +862,14 @@ 862 862 863 863 **A. Run the remaining segments** 864 864 865 -In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.881 +In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively. 866 866 867 - 883 +(% style="text-align:center" %) 868 868 [[image:image-20220608164847-13.png]] 869 869 870 870 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 871 871 872 - 888 +(% style="text-align:center" %) 873 873 [[image:image-20220608165032-14.png]] 874 874 875 875 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) ... ... @@ -876,14 +876,14 @@ 876 876 877 877 **B. Run again from the start segment** 878 878 879 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.895 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively. 880 880 881 - 897 +(% style="text-align:center" %) 882 882 [[image:image-20220608165343-15.png]] 883 883 884 884 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 885 885 886 - 902 +(% style="text-align:center" %) 887 887 [[image:image-20220608165558-16.png]] 888 888 889 889 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) ... ... @@ -895,8 +895,10 @@ 895 895 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 896 896 897 897 |((( 914 +(% style="text-align:center" %) 898 898 [[image:image-20220608165710-17.png]] 899 899 )))|((( 917 +(% style="text-align:center" %) 900 900 [[image:image-20220608165749-18.png]] 901 901 ))) 902 902 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram ... ... @@ -906,8 +906,10 @@ 906 906 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 907 907 908 908 |((( 927 +(% style="text-align:center" %) 909 909 [[image:image-20220608165848-19.png]] 910 910 )))|((( 930 +(% style="text-align:center" %) 911 911 [[image:image-20220608170005-20.png]] 912 912 ))) 913 913 |Figure 6-21 Absolute indication|Figure 6-22 Displacement ... ... @@ -914,44 +914,48 @@ 914 914 915 915 2) Multi-segment position running curve setting 916 916 917 -The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.937 +The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 918 918 919 - 920 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 921 -|=P07-09|((( 939 +(% class="table-bordered" %) 940 +|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 941 +**Setting method** 942 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 943 +**Effective time** 944 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 945 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)((( 922 922 1st segment 923 923 924 924 displacement 925 -)))|((( 949 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 926 926 Operation setting 927 -)))|((( 951 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 928 928 Effective immediately 929 -)))|10000|((( 953 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)((( 930 930 -2147483647 to 931 931 932 932 2147483646 933 -)))|Position instruction, positive and negative values could be set|- 934 -|=P07-10|Maximum speed of the 1st displacement|((( 957 +)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)- 958 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 935 935 Operation setting 936 -)))|((( 960 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 937 937 Effective immediately 938 -)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm 939 -|=P07-11|Acceleration and deceleration of 1st segment displacement|((( 962 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm 963 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 940 940 Operation setting 941 -)))|((( 965 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 942 942 Effective immediately 943 -)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms 944 -|=P07-12|Waiting time after completion of the 1st segment displacement|((( 967 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms 968 +|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 945 945 Operation setting 946 -)))|((( 970 +)))|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 947 947 Effective immediately 948 -)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06 972 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06 949 949 950 950 Table 6-19 The 1st position operation curve parameters table 951 951 952 952 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 953 953 954 - 978 +(% style="text-align:center" %) 955 955 [[image:image-20220608170149-21.png]] 956 956 957 957 Figure 6-23 The 1st segment running curve of motor ... ... @@ -960,14 +960,15 @@ 960 960 961 961 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 962 962 963 - 964 -| =(% scope="row" %)**DI function code**|=**Function name**|=**Function**965 -|=20|ENINPOS: Internal multi-segment position enable signal|((( 987 +(% class="table-bordered" %) 988 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 989 +|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)((( 966 966 DI port logic invalid: Does not affect the current operation of the servo motor. 967 967 968 968 DI port logic valid: Motor runs multi-segment position 969 969 ))) 970 970 995 +(% style="text-align:center" %) 971 971 [[image:image-20220611152020-6.png]] 972 972 973 973 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! ... ... @@ -982,13 +982,13 @@ 982 982 983 983 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 984 984 985 - 1010 +(% style="text-align:center" %) 986 986 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]] 987 987 988 - 1013 +(% style="text-align:center" %) 989 989 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]] 990 990 991 - 1016 +(% style="text-align:center" %) 992 992 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]] 993 993 994 994 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! ... ... @@ -995,7 +995,7 @@ 995 995 996 996 **(2) Setting steps of electronic gear ratio** 997 997 998 - 1023 +(% style="text-align:center" %) 999 999 [[image:image-20220608170320-22.png]] 1000 1000 1001 1001 Figure 6-24 Setting steps of electronic gear ratio ... ... @@ -1010,7 +1010,7 @@ 1010 1010 1011 1011 Step5: Calculate the value of electronic gear ratio according to formula below. 1012 1012 1013 - 1038 +(% style="text-align:center" %) 1014 1014 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]] 1015 1015 1016 1016 **(3) lectronic gear ratio switch setting** ... ... @@ -1018,59 +1018,59 @@ 1018 1018 1019 1019 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 1020 1020 1021 - 1022 -| =(% scope="row" %)**Function code**|=**Name**|=(((1046 +(% class="table-bordered" %) 1047 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1023 1023 **Setting method** 1024 -)))|=((( 1049 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1025 1025 **Effective time** 1026 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1027 -|=P00-16|Number of instruction pulses when the motor rotates one circle|((( 1051 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1052 +|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1028 1028 Shutdown setting 1029 -)))|((( 1054 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1030 1030 Effective immediately 1031 -)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|((( 1056 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)((( 1032 1032 Instruction pulse 1033 1033 1034 1034 unit 1035 1035 ))) 1036 -|=P00-17|((( 1061 +|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1037 1037 Electronic gear 1 1038 1038 1039 1039 numerator 1040 -)))|Operation setting|((( 1065 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1041 1041 Effective immediately 1042 -)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1043 -|=P00-18|((( 1067 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1068 +|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1044 1044 Electronic gear 1 1045 1045 1046 1046 denominator 1047 -)))|((( 1072 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1048 1048 Operation setting 1049 -)))|((( 1074 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1050 1050 Effective immediately 1051 -)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1052 -|=P00-19|((( 1076 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1077 +|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1053 1053 Electronic gear 2 1054 1054 1055 1055 numerator 1056 -)))|Operation setting|((( 1081 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1057 1057 Effective immediately 1058 -)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1059 -|=P00-20|((( 1083 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1084 +|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)((( 1060 1060 Electronic gear 2 1061 1061 1062 1062 denominator 1063 -)))|Operation setting|((( 1088 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1064 1064 Effective immediately 1065 -)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|- 1090 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)- 1066 1066 1067 1067 Table 6-20 Electronic gear ratio function code 1068 1068 1069 1069 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1070 1070 1071 - 1072 -| =(% scope="row" %)**DI function code**|=**Function name**|=**Function**1073 -|=09|GEAR-SEL electronic gear switch 1|((( 1096 +(% class="table-bordered" %) 1097 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1098 +|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)((( 1074 1074 DI port logic invalid: electronic gear ratio 1 1075 1075 1076 1076 DI port logic valid: electronic gear ratio 2 ... ... @@ -1078,10 +1078,10 @@ 1078 1078 1079 1079 Table 6-21 Switching conditions of electronic gear ratio group 1080 1080 1081 -| =(% scope="row" %)**P00-16 value**|=**DI terminal level corresponding to DI port function 9**|=**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]1082 -| =(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]1083 -|=DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1084 -|=1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1106 +|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] 1107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]] 1108 +|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]] 1109 +|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]] 1085 1085 1086 1086 Table 6-22 Application of electronic gear ratio 1087 1087 ... ... @@ -1099,32 +1099,32 @@ 1099 1099 1100 1100 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1101 1101 1102 - 1127 +(% style="text-align:center" %) 1103 1103 [[image:image-20220608170455-23.png]] 1104 1104 1105 1105 Figure 6-25 Position instruction filtering diagram 1106 1106 1107 - 1108 -| =(% scope="row" %)**Function code**|=**Name**|=(((1132 +(% class="table-bordered" %) 1133 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 1109 1109 **Setting method** 1110 -)))|=((( 1135 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1111 1111 **Effective time** 1112 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1113 -|=P04-01|Pulse instruction filtering method|((( 1137 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit** 1138 +|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 1114 1114 Shutdown setting 1115 -)))|((( 1140 +)))|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1116 1116 Effective immediately 1117 -)))|0|0 to 1|((( 1142 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)((( 1118 1118 0: 1st-order low-pass filtering 1119 1119 1120 1120 1: average filtering 1121 -)))|- 1122 -|=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1146 +)))|(% style="text-align:center; vertical-align:middle; width:72px" %)- 1147 +|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1123 1123 Effective immediately 1124 -)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms 1125 -|=P04-03|Position instruction average filtering time constant|Shutdown setting|((( 1149 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms 1150 +|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)((( 1126 1126 Effective immediately 1127 -)))|0|0 to 128|Position instruction average filtering time constant|ms 1152 +)))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms 1128 1128 1129 1129 Table 6-23 Position instruction filter function code 1130 1130 ... ... @@ -1144,7 +1144,7 @@ 1144 1144 (% class="wikigeneratedid" %) 1145 1145 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1146 1146 1147 - 1172 +(% style="text-align:center" %) 1148 1148 [[image:image-20220608170550-24.png]] 1149 1149 1150 1150 Figure 6-26 Positioning completion signal output diagram ... ... @@ -1151,47 +1151,48 @@ 1151 1151 1152 1152 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27. 1153 1153 1154 -To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.1179 +To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1155 1155 1181 +(% style="text-align:center" %) 1156 1156 [[image:image-20220608170650-25.png]] 1157 1157 1158 1158 Figure 6-27 Positioning completion signal output with increased window filter time diagram 1159 1159 1160 - 1161 -| =(% scope="row" %)**Function code**|=**Name**|=(((1186 +(% class="table-bordered" %) 1187 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1162 1162 **Setting method** 1163 -)))|=((( 1189 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1164 1164 **Effective time** 1165 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1166 -|=P05-12|Positioning completion threshold|((( 1191 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit** 1192 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1167 1167 Operation setting 1168 -)))|((( 1194 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1169 1169 Effective immediately 1170 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1171 -|=P05-13|Positioning approach threshold|((( 1196 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit 1197 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1172 1172 Operation setting 1173 -)))|((( 1199 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1174 1174 Effective immediately 1175 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1176 -|=P05-14|Position detection window time|((( 1201 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit 1202 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1177 1177 Operation setting 1178 -)))|((( 1204 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1179 1179 Effective immediately 1180 -)))|10|0 to 20000|Set positioning completion detection window time|ms 1181 -|=P05-15|Positioning signal hold time|((( 1206 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms 1207 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1182 1182 Operation setting 1183 -)))|((( 1209 +)))|(% style="text-align:center; vertical-align:middle; width:224px" %)((( 1184 1184 Effective immediately 1185 -)))|100|0 to 20000|Set positioning completion output hold time|ms 1211 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms 1186 1186 1187 1187 Table 6-24 Function code parameters of positioning completion 1188 1188 1189 - 1190 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1191 -|=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete. 1192 -|=135|((( 1215 +(% class="table-bordered" %) 1216 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1217 +|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete. 1218 +|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)((( 1193 1193 P-NEAR positioning close 1194 -)))|((( 1220 +)))|(% style="text-align:center; vertical-align:middle" %)((( 1195 1195 Output this signal indicates that the servo drive position is close. 1196 1196 ))) 1197 1197 ... ... @@ -1199,9 +1199,9 @@ 1199 1199 1200 1200 = **Speed control mode** = 1201 1201 1202 -Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http s://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.1228 +Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1203 1203 1204 - 1230 +(% style="text-align:center" %) 1205 1205 [[image:6.28.jpg||height="260" width="806"]] 1206 1206 1207 1207 Figure 6-28 Speed control block diagram ... ... @@ -1210,21 +1210,21 @@ 1210 1210 1211 1211 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1212 1212 1213 - 1214 -|**Function code**|**Name**|((( 1239 +(% class="table-bordered" %) 1240 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1215 1215 **Setting method** 1216 -)))|((( 1242 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1217 1217 **Effective time** 1218 -)))|**Default value**|**Range**|**Definition**|**Unit** 1219 -|P01-01|Speed instruction source|((( 1244 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1245 +|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1220 1220 Shutdown setting 1221 -)))|((( 1247 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1222 1222 Effective immediately 1223 -)))|1|1 to 6|((( 1249 +)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)((( 1224 1224 0: internal speed instruction 1225 1225 1226 1226 1: AI_1 analog input (not supported by VD2F) 1227 -)))|- 1253 +)))|(% style="text-align:center; vertical-align:middle" %)- 1228 1228 1229 1229 Table 6-26 Speed instruction source parameter 1230 1230 ... ... @@ -1232,19 +1232,19 @@ 1232 1232 1233 1233 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below. 1234 1234 1235 - 1236 -|**Function code**|**Name**|((( 1261 +(% class="table-bordered" %) 1262 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)((( 1237 1237 **Setting method** 1238 -)))|((( 1264 +)))|(% style="text-align:center; vertical-align:middle; width:191px" %)((( 1239 1239 **Effective time** 1240 -)))|**Default value**|**Range**|**Definition**|**Unit** 1241 -|(% rowspan="2" %)P01-02|(% rowspan="2" %)((( 1266 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit** 1267 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1242 1242 Internal speed Instruction 0 1243 -)))|(% rowspan="2" %)((( 1269 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1244 1244 Operation setting 1245 -)))|(% rowspan="2" %)((( 1271 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1246 1246 Effective immediately 1247 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1273 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1248 1248 Internal speed instruction 0 1249 1249 1250 1250 When DI input port: ... ... @@ -1256,15 +1256,15 @@ 1256 1256 13-INSPD1: 0, 1257 1257 1258 1258 select this speed instruction to be effective. 1259 -)))|(% rowspan="2" %)rpm 1260 -|-5000 to 5000* 1261 -|(% rowspan="2" %)P01-23|(% rowspan="2" %)((( 1285 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1286 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1287 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1262 1262 Internal speed Instruction 1 1263 -)))|(% rowspan="2" %)((( 1289 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1264 1264 Operation setting 1265 -)))|(% rowspan="2" %)((( 1291 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1266 1266 Effective immediately 1267 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1293 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1268 1268 Internal speed instruction 1 1269 1269 1270 1270 When DI input port: ... ... @@ -1276,15 +1276,15 @@ 1276 1276 13-INSPD1: 1, 1277 1277 1278 1278 Select this speed instruction to be effective. 1279 -)))|(% rowspan="2" %)rpm 1280 -|-5000 to 5000* 1281 -|(% rowspan="2" %)P01-24|(% rowspan="2" %)((( 1305 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1306 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1307 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1282 1282 Internal speed Instruction 2 1283 -)))|(% rowspan="2" %)((( 1309 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1284 1284 Operation setting 1285 -)))|(% rowspan="2" %)((( 1311 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1286 1286 Effective immediately 1287 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1313 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1288 1288 Internal speed instruction 2 1289 1289 1290 1290 When DI input port: ... ... @@ -1296,15 +1296,15 @@ 1296 1296 13-INSPD1: 0, 1297 1297 1298 1298 Select this speed instruction to be effective. 1299 -)))|(% rowspan="2" %)rpm 1300 -|-5000 to 5000* 1301 -|(% rowspan="2" %)P01-25|(% rowspan="2" %)((( 1325 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1326 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1327 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)((( 1302 1302 Internal speed Instruction 3 1303 -)))|(% rowspan="2" %)((( 1329 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1304 1304 Operation setting 1305 -)))|(% rowspan="2" %)((( 1331 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)((( 1306 1306 Effective immediately 1307 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1333 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)((( 1308 1308 Internal speed instruction 3 1309 1309 1310 1310 When DI input port: ... ... @@ -1316,16 +1316,17 @@ 1316 1316 13-INSPD1: 1, 1317 1317 1318 1318 Select this speed instruction to be effective. 1319 -)))|(% rowspan="2" %)rpm 1320 -|-5000 to 5000* 1345 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm 1346 +|(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000* 1321 1321 1322 -|(% rowspan="2" %)P01-26|(% rowspan="2" %)((( 1348 +(% class="table-bordered" %) 1349 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1323 1323 Internal speed Instruction 4 1324 -)))|(% rowspan="2" %)((( 1351 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1325 1325 Operation setting 1326 -)))|(% rowspan="2" %)((( 1353 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1327 1327 Effective immediately 1328 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1355 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1329 1329 Internal speed instruction 4 1330 1330 1331 1331 When DI input port: ... ... @@ -1337,15 +1337,15 @@ 1337 1337 13-INSPD1: 0, 1338 1338 1339 1339 Select this speed instruction to be effective. 1340 -)))|(% rowspan="2" %)rpm 1341 -|-5000 to 5000* 1342 -|(% rowspan="2" %)P01-27|(% rowspan="2" %)((( 1367 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1368 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1369 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1343 1343 Internal speed Instruction 5 1344 -)))|(% rowspan="2" %)((( 1371 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1345 1345 Operation setting 1346 -)))|(% rowspan="2" %)((( 1373 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1347 1347 Effective immediately 1348 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1375 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1349 1349 Internal speed instruction 5 1350 1350 1351 1351 When DI input port: ... ... @@ -1357,15 +1357,15 @@ 1357 1357 13-INSPD1: 1, 1358 1358 1359 1359 Select this speed instruction to be effective. 1360 -)))|(% rowspan="2" %)rpm 1361 -|-5000 to 5000* 1362 -|(% rowspan="2" %)P01-28|(% rowspan="2" %)((( 1387 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1388 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1389 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1363 1363 Internal speed Instruction 6 1364 -)))|(% rowspan="2" %)((( 1391 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1365 1365 Operation setting 1366 -)))|(% rowspan="2" %)((( 1393 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1367 1367 Effective immediately 1368 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1395 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1369 1369 Internal speed instruction 6 1370 1370 1371 1371 When DI input port: ... ... @@ -1377,15 +1377,15 @@ 1377 1377 13-INSPD1: 0, 1378 1378 1379 1379 Select this speed instruction to be effective. 1380 -)))|(% rowspan="2" %)rpm 1381 -|-5000 to 5000* 1382 -|(% rowspan="2" %)P01-29|(% rowspan="2" %)((( 1407 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1408 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1409 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)((( 1383 1383 Internal speed Instruction 7 1384 -)))|(% rowspan="2" %)((( 1411 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)((( 1385 1385 Operation setting 1386 -)))|(% rowspan="2" %)((( 1413 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)((( 1387 1387 Effective immediately 1388 -)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)((( 1415 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)((( 1389 1389 Internal speed instruction 7 1390 1390 1391 1391 When DI input port: ... ... @@ -1397,34 +1397,34 @@ 1397 1397 13-INSPD1: 1, 1398 1398 1399 1399 Select this speed instruction to be effective. 1400 -)))|(% rowspan="2" %)rpm 1401 -|-5000 to 5000* 1427 +)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm 1428 +|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000* 1402 1402 1403 1403 Table 6-27 Internal speed instruction parameters 1404 1404 1405 1405 ✎**Note: **“*” means the set range of VD2F servo drive. 1406 1406 1434 +(% class="table-bordered" %) 1435 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1436 +|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1437 +|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1438 +|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1407 1407 1408 -|**DI function code**|**function name**|**Function** 1409 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1410 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1411 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1412 - 1413 1413 Table 6-28 DI multi-speed function code description 1414 1414 1415 1415 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1416 1416 1417 - 1418 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1419 -|0|0|0|1|0 1420 -|0|0|1|2|1 1421 -|0|1|0|3|2 1444 +(% class="table-bordered" %) 1445 +|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number** 1446 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0 1447 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1 1448 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2 1422 1422 |(% colspan="5" %)...... 1423 -|1|1|1|8|7 1450 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7 1424 1424 1425 1425 Table 6-29 Correspondence between INSPD bits and segment numbers 1426 1426 1427 - 1454 +(% style="text-align:center" %) 1428 1428 [[image:image-20220608170845-26.png]] 1429 1429 1430 1430 Figure 6-29 Multi-segment speed running curve ... ... @@ -1433,7 +1433,7 @@ 1433 1433 1434 1434 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1435 1435 1436 - 1463 +(% style="text-align:center" %) 1437 1437 [[image:image-20220608153341-5.png]] 1438 1438 1439 1439 Figure 6-30 Analog input circuit ... ... @@ -1440,7 +1440,7 @@ 1440 1440 1441 1441 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1442 1442 1443 - 1470 +(% style="text-align:center" %) 1444 1444 [[image:image-20220608170955-27.png]] 1445 1445 1446 1446 Figure 6-31 Analog voltage speed instruction setting steps ... ... @@ -1453,18 +1453,18 @@ 1453 1453 1454 1454 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1455 1455 1456 - 1483 +(% style="text-align:center" %) 1457 1457 [[image:image-20220608171124-28.png]] 1458 1458 1459 1459 Figure 6-32 AI_1 diagram before and after bias 1460 1460 1488 +(% class="table-bordered" %) 1489 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit** 1490 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1491 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms 1492 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1493 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV 1461 1461 1462 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1463 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1464 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1465 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1466 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1467 - 1468 1468 Table 6-30 AI_1 parameters 1469 1469 1470 1470 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1475,7 +1475,7 @@ 1475 1475 1476 1476 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1477 1477 1478 - 1505 +(% style="text-align:center" %) 1479 1479 [[image:image-20220608171314-29.png]] 1480 1480 1481 1481 Figure 6-33 of acceleration and deceleration time diagram ... ... @@ -1484,22 +1484,22 @@ 1484 1484 1485 1485 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]] 1486 1486 1487 - 1488 -|**Function code**|**Name**|((( 1514 +(% class="table-bordered" %) 1515 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1489 1489 **Setting method** 1490 -)))|((( 1517 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1491 1491 **Effective time** 1492 -)))|**Default value**|**Range**|**Definition**|**Unit** 1493 -|P01-03|Acceleration time|((( 1519 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit** 1520 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1494 1494 Operation setting 1495 -)))|((( 1522 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1496 1496 Effective immediately 1497 -)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1498 -|P01-04|Deceleration time|((( 1524 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms 1525 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1499 1499 Operation setting 1500 -)))|((( 1527 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1501 1501 Effective immediately 1502 -)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms 1529 +)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms 1503 1503 1504 1504 Table 6-31 Acceleration and deceleration time parameters 1505 1505 ... ... @@ -1518,27 +1518,27 @@ 1518 1518 1519 1519 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1520 1520 1521 - 1522 -|**Function code**|**Name**|((( 1548 +(% class="table-bordered" %) 1549 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1523 1523 **Setting method** 1524 -)))|((( 1551 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1525 1525 **Effective time** 1526 -)))|**Default value**|**Range**|**Definition**|**Unit** 1527 -|P01-10|Maximum speed threshold|((( 1553 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit** 1554 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1528 1528 Operation setting 1529 -)))|((( 1556 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1530 1530 Effective immediately 1531 -)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1532 -|P01-12|Forward speed threshold|((( 1558 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1559 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1533 1533 Operation setting 1534 -)))|((( 1561 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1535 1535 Effective immediately 1536 -)))|3000|0 to 5000|Set forward speed limit value|rpm 1537 -|P01-13|Reverse speed threshold|((( 1563 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1564 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 1538 1538 Operation setting 1539 -)))|((( 1566 +)))|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 1540 1540 Effective immediately 1541 -)))|3000|0 to 5000|Set reverse speed limit value|rpm 1568 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm 1542 1542 1543 1543 Table 6-32 Rotation speed related function codes 1544 1544 ... ... @@ -1548,19 +1548,19 @@ 1548 1548 1549 1549 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1550 1550 1551 - 1552 -|**Function code**|**Name**|((( 1578 +(% class="table-bordered" %) 1579 +|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1553 1553 **Setting method** 1554 -)))|((( 1581 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1555 1555 **Effective time** 1556 -)))|**Default value**|**Range**|**Definition**|**Unit** 1557 -|P01-21|((( 1583 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit** 1584 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1558 1558 Zero-speed clamp function selection 1559 -)))|((( 1586 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1560 1560 Operation setting 1561 -)))|((( 1588 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1562 1562 Effective immediately 1563 -)))|0|0 to 3|((( 1590 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)((( 1564 1564 Set the zero-speed clamp function. In speed mode: 1565 1565 1566 1566 0: Force the speed to 0; ... ... @@ -1570,18 +1570,18 @@ 1570 1570 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1571 1571 1572 1572 3: Invalid, ignore zero-speed clamp input 1573 -)))|- 1574 -|P01-22|((( 1600 +)))|(% style="text-align:center; vertical-align:middle; width:58px" %)- 1601 +|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1575 1575 Zero-speed clamp speed threshold 1576 -)))|((( 1603 +)))|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 1577 1577 Operation setting 1578 -)))|((( 1605 +)))|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1579 1579 Effective immediately 1580 -)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm 1607 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm 1581 1581 1582 1582 Table 6-33 Zero-speed clamp related parameters 1583 1583 1584 - 1611 +(% style="text-align:center" %) 1585 1585 [[image:image-20220608171549-30.png]] 1586 1586 1587 1587 Figure 6-34 Zero-speed clamp diagram ... ... @@ -1594,36 +1594,36 @@ 1594 1594 1595 1595 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1596 1596 1597 - 1624 +(% style="text-align:center" %) 1598 1598 [[image:image-20220608171625-31.png]] 1599 1599 1600 1600 Figure 6-35 Rotation detection signal diagram 1601 1601 1602 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1629 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1603 1603 1604 - 1605 -|**Function code**|**Name**|((( 1631 +(% class="table-bordered" %) 1632 +|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)((( 1606 1606 **Setting method** 1607 -)))|((( 1634 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 1608 1608 **Effective time** 1609 -)))|**Default value**|**Range**|**Definition**|**Unit** 1610 -|P05-16|((( 1636 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit** 1637 +|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)((( 1611 1611 Rotation detection 1612 1612 1613 1613 speed threshold 1614 -)))|((( 1641 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)((( 1615 1615 Operation setting 1616 -)))|((( 1643 +)))|(% style="text-align:center; vertical-align:middle; width:175px" %)((( 1617 1617 Effective immediately 1618 -)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm 1645 +)))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm 1619 1619 1620 1620 Table 6-34 Rotation detection speed threshold parameters 1621 1621 1622 - 1623 -|**DO function code**|**Function name**|**Function** 1624 -|132|((( 1649 +(% class="table-bordered" %) 1650 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function** 1651 +|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)((( 1625 1625 T-COIN rotation detection 1626 -)))|((( 1653 +)))|(% style="width:879px" %)((( 1627 1627 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1628 1628 1629 1629 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1635,32 +1635,32 @@ 1635 1635 1636 1636 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1637 1637 1638 - 1665 +(% style="text-align:center" %) 1639 1639 [[image:image-20220608171904-32.png]] 1640 1640 1641 1641 Figure 6-36 Zero-speed signal diagram 1642 1642 1643 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1670 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1644 1644 1645 - 1646 -|**Function code**|**Name**|((( 1672 +(% class="table-bordered" %) 1673 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1647 1647 **Setting method** 1648 -)))|((( 1675 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 1649 1649 **Effective time** 1650 -)))|**Default value**|**Range**|**Definition**|**Unit** 1651 -|P05-19|Zero speed output signal threshold|((( 1677 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit** 1678 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1652 1652 Operation setting 1653 -)))|((( 1680 +)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 1654 1654 Effective immediately 1655 -)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm 1682 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm 1656 1656 1657 1657 Table 6-36 Zero-speed output signal threshold parameter 1658 1658 1659 - 1660 -|**DO function code**|**Function name**|**Function** 1661 -|133|((( 1686 +(% class="table-bordered" %) 1687 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 1688 +|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)((( 1662 1662 ZSP zero speed signal 1663 -)))|Output this signal indicates that the servo motor is stopping rotation 1690 +)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation 1664 1664 1665 1665 Table 6-37 DO zero-speed signal function code 1666 1666 ... ... @@ -1668,32 +1668,32 @@ 1668 1668 1669 1669 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1670 1670 1671 - 1698 +(% style="text-align:center" %) 1672 1672 [[image:image-20220608172053-33.png]] 1673 1673 1674 1674 Figure 6-37 Speed consistent signal diagram 1675 1675 1676 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1703 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1677 1677 1678 - 1679 -|**Function code**|**Name**|((( 1705 +(% class="table-bordered" %) 1706 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1680 1680 **Setting method** 1681 -)))|((( 1708 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1682 1682 **Effective time** 1683 -)))|**Default value**|**Range**|**Definition**|**Unit** 1684 -|P05-17|Speed consistent signal threshold|((( 1710 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit** 1711 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)((( 1685 1685 Operationsetting 1686 -)))|((( 1713 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1687 1687 Effective immediately 1688 -)))|10|0 to 100|Set speed consistent signal threshold|rpm 1715 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm 1689 1689 1690 1690 Table 6-38 Speed consistent signal threshold parameters 1691 1691 1692 - 1693 -|**DO Function code**|**Function name**|**Function** 1694 -|136|((( 1719 +(% class="table-bordered" %) 1720 +|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function** 1721 +|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)((( 1695 1695 U-COIN consistent speed 1696 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1723 +)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1697 1697 1698 1698 Table 6-39 DO speed consistent function code 1699 1699 ... ... @@ -1701,32 +1701,32 @@ 1701 1701 1702 1702 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1703 1703 1704 - 1731 +(% style="text-align:center" %) 1705 1705 [[image:image-20220608172207-34.png]] 1706 1706 1707 1707 Figure 6-38 Speed approaching signal diagram 1708 1708 1709 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.1736 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__. 1710 1710 1711 - 1712 -|**Function code**|**Name**|((( 1738 +(% class="table-bordered" %) 1739 +|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)((( 1713 1713 **Setting method** 1714 -)))|((( 1741 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 1715 1715 **Effective time** 1716 -)))|**Default value**|**Range**|**Definition**|**Unit** 1717 -|P05-18|Speed approach signal threshold|((( 1743 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1744 +|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)((( 1718 1718 Operation setting 1719 -)))|((( 1746 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 1720 1720 Effective immediately 1721 -)))|100|10 to 6000|Set speed approach signal threshold|rpm 1748 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm 1722 1722 1723 1723 Table 6-40 Speed approaching signal threshold parameters 1724 1724 1725 - 1726 -|**DO function code**|**Function name**|**Function** 1727 -|137|((( 1752 +(% class="table-bordered" %) 1753 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function** 1754 +|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)((( 1728 1728 V-NEAR speed approach 1729 -)))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1756 +)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value 1730 1730 1731 1731 Table 6-41 DO speed approach function code 1732 1732 ... ... @@ -1734,7 +1734,7 @@ 1734 1734 1735 1735 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1736 1736 1737 - 1764 +(% style="text-align:center" %) 1738 1738 [[image:image-20220608172405-35.png]] 1739 1739 1740 1740 Figure 6-39 Torque mode diagram ... ... @@ -1743,21 +1743,21 @@ 1743 1743 1744 1744 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1745 1745 1746 - 1747 -|**Function code**|**Name**|((( 1773 +(% class="table-bordered" %) 1774 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1748 1748 **Setting method** 1749 -)))|((( 1776 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1750 1750 **Effective time** 1751 -)))|**Default value**|**Range**|**Definition**|**Unit** 1752 -|P01-08|Torque instruction source|((( 1778 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1779 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1753 1753 Shutdown setting 1754 -)))|((( 1781 +)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 1755 1755 Effective immediately 1756 -)))|0|0 to 1|((( 1783 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)((( 1757 1757 0: internal torque instruction 1758 1758 1759 1759 1: AI_1 analog input(not supported by VD2F) 1760 -)))|- 1787 +)))|(% style="text-align:center; vertical-align:middle" %)- 1761 1761 1762 1762 Table 6-42 Torque instruction source parameter 1763 1763 ... ... @@ -1765,17 +1765,17 @@ 1765 1765 1766 1766 Torque instruction source is from inside, the value is set by function code P01-08. 1767 1767 1768 - 1769 -|**Function code**|**Name**|((( 1795 +(% class="table-bordered" %) 1796 +|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 1770 1770 **Setting method** 1771 -)))|((( 1798 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 1772 1772 **Effective time** 1773 -)))|**Default value**|**Range**|**Definition**|**Unit** 1774 -|P01-08|Torque instruction keyboard set value|((( 1800 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1801 +|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 1775 1775 Operation setting 1776 -)))|((( 1803 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 1777 1777 Effective immediately 1778 -)))|0|-3000 to 3000|-300.0% to 300.0%|0.1% 1805 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1% 1779 1779 1780 1780 Table 6-43 Torque instruction keyboard set value 1781 1781 ... ... @@ -1783,7 +1783,7 @@ 1783 1783 1784 1784 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1785 1785 1786 - 1813 +(% style="text-align:center" %) 1787 1787 [[image:image-20220608153646-7.png||height="213" width="408"]] 1788 1788 1789 1789 Figure 6-40 Analog input circuit ... ... @@ -1790,7 +1790,7 @@ 1790 1790 1791 1791 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1792 1792 1793 - 1820 +(% style="text-align:center" %) 1794 1794 [[image:image-20220608172502-36.png]] 1795 1795 1796 1796 Figure 6-41 Analog voltage torque instruction setting steps ... ... @@ -1803,18 +1803,18 @@ 1803 1803 1804 1804 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1805 1805 1806 - 1833 +(% style="text-align:center" %) 1807 1807 [[image:image-20220608172611-37.png]] 1808 1808 1809 1809 Figure 6-42 AI_1 diagram before and after bias 1810 1810 1838 +(% class="table-bordered" %) 1839 +|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1840 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV 1841 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms 1842 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV 1843 +|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV 1811 1811 1812 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1813 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1814 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1815 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1816 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1817 - 1818 1818 Table 6-44 AI_1 parameters 1819 1819 1820 1820 ✎**Note: **“☆” means VD2F servo drive does not support the function code . ... ... @@ -1823,23 +1823,23 @@ 1823 1823 1824 1824 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1825 1825 1826 - 1827 -|**Function code**|**Name**|((( 1853 +(% class="table-bordered" %) 1854 +|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)((( 1828 1828 **Setting method** 1829 -)))|((( 1856 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1830 1830 **Effective time** 1831 -)))|**Default value**|**Range**|**Definition**|**Unit** 1832 -|P04-04|Torque filtering time constant|((( 1858 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1859 +|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)((( 1833 1833 Operation setting 1834 -)))|((( 1861 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1835 1835 Effective immediately 1836 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1863 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms 1837 1837 1838 1838 Table 6-45 Torque filtering time constant parameter details 1839 1839 1840 1840 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1841 1841 1842 - 1869 +(% style="text-align:center" %) 1843 1843 [[image:image-20220608172646-38.png]] 1844 1844 1845 1845 Figure 6-43 Torque instruction-first-order filtering diagram ... ... @@ -1850,7 +1850,7 @@ 1850 1850 1851 1851 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1852 1852 1853 - 1880 +(% style="text-align:center" %) 1854 1854 [[image:image-20220608172806-39.png]] 1855 1855 1856 1856 Figure 6-44 Torque instruction limit diagram ... ... @@ -1859,50 +1859,50 @@ 1859 1859 1860 1860 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1861 1861 1862 - 1863 -|**Function code**|**Name**|((( 1889 +(% class="table-bordered" %) 1890 +|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 1864 1864 **Setting method** 1865 -)))|((( 1892 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 1866 1866 **Effective time** 1867 -)))|**Default value**|**Range**|**Definition**|**Unit** 1868 -|P01-14|((( 1894 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1895 +|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)((( 1869 1869 Torque limit source 1870 -)))|((( 1897 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 1871 1871 Shutdown setting 1872 -)))|((( 1899 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 1873 1873 Effective immediately 1874 -)))|0|0 to 1|((( 1901 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)((( 1875 1875 0: internal value 1876 1876 1877 1877 1: AI_1 analog input 1878 1878 1879 1879 (not supported by VD2F) 1880 -)))|- 1907 +)))|(% style="text-align:center; vertical-align:middle" %)- 1881 1881 1882 1882 1) Torque limit source is internal torque instruction (P01-14=0) 1883 1883 1884 1884 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1885 1885 1886 - 1887 -|**Function code**|**Name**|((( 1913 +(% class="table-bordered" %) 1914 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1888 1888 **Setting method** 1889 -)))|((( 1916 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1890 1890 **Effective time** 1891 -)))|**Default value**|**Range**|**Definition**|**Unit** 1892 -|P01-15|((( 1918 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit** 1919 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)((( 1893 1893 Forward torque limit 1894 -)))|((( 1921 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1895 1895 Operation setting 1896 -)))|((( 1923 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1897 1897 Effective immediately 1898 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1899 -|P01-16|((( 1925 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1% 1926 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)((( 1900 1900 Reverse torque limit 1901 -)))|((( 1928 +)))|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 1902 1902 Operation setting 1903 -)))|((( 1930 +)))|(% style="text-align:center; vertical-align:middle; width:169px" %)((( 1904 1904 Effective immediately 1905 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1932 +)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1% 1906 1906 1907 1907 Table 6-46 Torque limit parameter details 1908 1908 ... ... @@ -1914,11 +1914,11 @@ 1914 1914 1915 1915 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1916 1916 1917 - 1918 -|**DO function code**|**Function name**|**Function** 1919 -|139|((( 1944 +(% class="table-bordered" %) 1945 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function** 1946 +|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)((( 1920 1920 T-LIMIT in torque limit 1921 -)))|Output of this signal indicates that the servo motor torque is limited 1948 +)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited 1922 1922 1923 1923 Table 6-47 DO torque limit function codes 1924 1924 ... ... @@ -1926,50 +1926,53 @@ 1926 1926 1927 1927 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited. 1928 1928 1929 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.1956 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__. 1930 1930 1931 1931 |((( 1959 +(% style="text-align:center" %) 1932 1932 [[image:image-20220608172910-40.png]] 1933 1933 )))|((( 1962 +(% style="text-align:center" %) 1934 1934 [[image:image-20220608173155-41.png]] 1935 1935 ))) 1936 1936 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1937 1937 1938 -|**Function code**|**Name**|((( 1967 +(% class="table-bordered" %) 1968 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1939 1939 **Setting method** 1940 -)))|((( 1970 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1941 1941 **Effective time** 1942 -)))|**Default value**|**Range**|**Definition**|**Unit** 1943 -|P01-17|((( 1972 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 1973 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1944 1944 Forward torque 1945 1945 1946 1946 limit in torque mode 1947 -)))|((( 1977 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1948 1948 Operation setting 1949 -)))|((( 1979 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1950 1950 Effective immediately 1951 -)))|3000|0 to 5000|((( 1981 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)((( 1952 1952 Forward torque 1953 1953 1954 1954 limit in torque mode 1955 -)))|0.1% 1956 -|P01-18|((( 1985 +)))|(% style="text-align:center; vertical-align:middle" %)0.1% 1986 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 1957 1957 Reverse torque 1958 1958 1959 1959 limit in torque mode 1960 -)))|((( 1990 +)))|(% style="text-align:center; vertical-align:middle; width:140px" %)((( 1961 1961 Operation setting 1962 -)))|((( 1992 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 1963 1963 Effective immediately 1964 -)))|3000|0 to 5000|((( 1994 +)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)((( 1965 1965 Reverse torque 1966 1966 1967 1967 limit in torque mode 1968 -)))|0.1% 1998 +)))|(% style="text-align:center; vertical-align:middle" %)0.1% 1969 1969 1970 1970 Table 6-48 Speed limit parameters in torque mode 1971 1971 1972 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__.2002 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__. 1973 1973 1974 1974 == **Torque-related DO output functions** == 1975 1975 ... ... @@ -1979,51 +1979,51 @@ 1979 1979 1980 1980 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1981 1981 1982 - 2012 +(% style="text-align:center" %) 1983 1983 [[image:image-20220608173541-42.png]] 1984 1984 1985 1985 Figure 6-47 Torque arrival output diagram 1986 1986 1987 -To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.2017 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1988 1988 1989 - 1990 -|**Function code**|**Name**|((( 2019 +(% class="table-bordered" %) 2020 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 1991 1991 **Setting method** 1992 -)))|((( 2022 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 1993 1993 **Effective time** 1994 -)))|**Default value**|**Range**|**Definition**|**Unit** 1995 -|P05-20|((( 2024 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2025 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1996 1996 Torque arrival 1997 1997 1998 1998 threshold 1999 -)))|((( 2029 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2000 2000 Operation setting 2001 -)))|((( 2031 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2002 2002 Effective immediately 2003 -)))|100|0 to 300|((( 2033 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)((( 2004 2004 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2005 2005 2006 2006 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; 2007 2007 2008 2008 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2009 -)))|% 2010 -|P05-21|((( 2039 +)))|(% style="text-align:center; vertical-align:middle" %)% 2040 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 2011 2011 Torque arrival 2012 2012 2013 2013 hysteresis 2014 -)))|((( 2044 +)))|(% style="text-align:center; vertical-align:middle; width:137px" %)((( 2015 2015 Operation setting 2016 -)))|((( 2046 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 2017 2017 Effective immediately 2018 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2048 +)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)% 2019 2019 2020 2020 Table 6-49 Torque arrival parameters 2021 2021 2022 - 2023 -|**DO function code**|**Function name**|**Function** 2024 -|138|((( 2052 +(% class="table-bordered" %) 2053 +|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function** 2054 +|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)((( 2025 2025 T-COIN torque arrival 2026 -)))|Used to determine whether the actual torque instruction has reached the set range 2056 +)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range 2027 2027 2028 2028 Table 6-50 DO Torque Arrival Function Code 2029 2029 ... ... @@ -2039,17 +2039,17 @@ 2039 2039 2040 2040 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2041 2041 2042 - 2043 -|**Function code**|**Name**|((( 2072 +(% class="table-bordered" %) 2073 +|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 2044 2044 **Setting method** 2045 -)))|((( 2075 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)((( 2046 2046 **Effective time** 2047 -)))|**Default value**|**Range**|**Definition**|**Unit** 2048 -|P00-01|Control mode|((( 2077 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2078 +|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 2049 2049 Shutdown setting 2050 -)))|((( 2080 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)((( 2051 2051 Shutdown setting 2052 -)))|1|1 to 6|((( 2082 +)))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)((( 2053 2053 1: Position control 2054 2054 2055 2055 2: Speed control ... ... @@ -2061,22 +2061,23 @@ 2061 2061 5: Position/torque mixed control 2062 2062 2063 2063 6: Speed/torque mixed control 2064 -)))|- 2094 +)))|(% style="text-align:center; vertical-align:middle" %)- 2065 2065 2066 2066 Table 6-51 Mixed control mode parameters 2067 2067 2068 -Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>http s://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.2098 +Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2069 2069 2070 - 2071 -|**DI function code**|**Name**|**Function name**|**Function** 2072 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2073 -|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2074 -|(% rowspan="2" %)4|Valid|Speed mode 2075 -|invalid|Position mode 2076 -|(% rowspan="2" %)5|Valid|Torque mode 2077 -|invalid|Position mode 2078 -|(% rowspan="2" %)6|Valid|Torque mode 2079 -|invalid|Speed mode 2100 +(% class="table-bordered" %) 2101 +|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2102 +|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2103 +(% class="table-bordered" %) 2104 +|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode** 2105 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2106 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2107 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2108 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode 2109 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode 2110 +|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode 2080 2080 ))) 2081 2081 2082 2082 Table 6-52 Description of DI function codes in control mode ... ... @@ -2095,15 +2095,15 @@ 2095 2095 2096 2096 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2097 2097 2129 +(% class="table-bordered" %) 2130 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2131 +|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2098 2098 2099 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2100 -|A1 (single-turn magnetic encoder)|17|0 to 131071 2101 - 2102 2102 Table 6-53 Single-turn absolute encoder information 2103 2103 2104 2104 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2105 2105 2106 - 2137 +(% style="text-align:center" %) 2107 2107 [[image:image-20220608173618-43.png]] 2108 2108 2109 2109 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position ... ... @@ -2112,16 +2112,16 @@ 2112 2112 2113 2113 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2114 2114 2146 +(% class="table-bordered" %) 2147 +|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range** 2148 +|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071 2149 +|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607 2115 2115 2116 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2117 -|C1 (multi-turn magnetic encoder)|17|0 to 131071 2118 -|D2 (multi-turn Optical encoder)|23|0 to 8388607 2119 - 2120 2120 Table 6-54 Multi-turn absolute encoder information 2121 2121 2122 2122 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2123 2123 2124 - 2155 +(% style="text-align:center" %) 2125 2125 [[image:image-20220608173701-44.png]] 2126 2126 2127 2127 Figure 6-49 The relationship between encoder feedback position and rotating load position ... ... @@ -2130,12 +2130,12 @@ 2130 2130 2131 2131 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2132 2132 2164 +(% class="table-bordered" %) 2165 +|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type** 2166 +|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2167 +|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit 2168 +|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit 2133 2133 2134 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2135 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2136 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2137 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2138 - 2139 2139 Table 6-55 Encoder feedback data 2140 2140 2141 2141 == **Absolute value system encoder battery box use precautions** == ... ... @@ -2142,7 +2142,7 @@ 2142 2142 2143 2143 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2144 2144 2145 - 2176 +(% style="text-align:center" %) 2146 2146 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]] 2147 2147 2148 2148 Figure 6-50 the encoder battery box ... ... @@ -2155,23 +2155,23 @@ 2155 2155 2156 2156 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2157 2157 2158 - 2159 -|**Function code**|**Name**|((( 2189 +(% class="table-bordered" %) 2190 +|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 2160 2160 **Setting method** 2161 -)))|((( 2192 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 2162 2162 **Effective time** 2163 -)))|**Default value**|**Range**|**Definition**|**Unit** 2164 -|P10-06|Multi-turn absolute encoder reset|((( 2194 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2195 +|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)((( 2165 2165 Shutdown setting 2166 -)))|((( 2197 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 2167 2167 Effective immediately 2168 -)))|0|0 to 1|((( 2199 +)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)((( 2169 2169 0: No operation 2170 2170 2171 2171 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2172 2172 2173 2173 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2174 -)))|- 2205 +)))|(% style="text-align:center; vertical-align:middle" %)- 2175 2175 2176 2176 Table 6-56 Absolute encoder reset enable parameter 2177 2177 ... ... @@ -2189,18 +2189,18 @@ 2189 2189 2190 2190 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2191 2191 2192 - 2223 +(% style="text-align:center" %) 2193 2193 [[image:image-20220608173804-46.png]] 2194 2194 2195 2195 Figure 6-51 VDI_1 setting steps 2196 2196 2197 - 2198 -|**Function code**|**Name**|((( 2228 +(% class="table-bordered" %) 2229 +|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)((( 2199 2199 **Setting method** 2200 -)))|((( 2231 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 2201 2201 **Effective time** 2202 -)))|**Default value**|**Range**|**Definition**|**Unit** 2203 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2233 +)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2234 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2204 2204 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2205 2205 2206 2206 VDI_1 input level: ... ... @@ -2208,8 +2208,8 @@ 2208 2208 0: low level 2209 2209 2210 2210 1: high level 2211 -)))|- 2212 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2242 +)))|(% style="text-align:center; vertical-align:middle" %)- 2243 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2213 2213 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2214 2214 2215 2215 VDI_2 input level: ... ... @@ -2217,8 +2217,8 @@ 2217 2217 0: low level 2218 2218 2219 2219 1: high level 2220 -)))|- 2221 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2251 +)))|(% style="text-align:center; vertical-align:middle" %)- 2252 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2222 2222 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2223 2223 2224 2224 VDI_3 input level: ... ... @@ -2226,8 +2226,8 @@ 2226 2226 0: low level 2227 2227 2228 2228 1: high level 2229 -)))|- 2230 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2260 +)))|(% style="text-align:center; vertical-align:middle" %)- 2261 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2231 2231 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2232 2232 2233 2233 VDI_4 input level: ... ... @@ -2235,8 +2235,8 @@ 2235 2235 0: low level 2236 2236 2237 2237 1: high level 2238 -)))|- 2239 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2269 +)))|(% style="text-align:center; vertical-align:middle" %)- 2270 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2240 2240 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2241 2241 2242 2242 VDI_5 input level: ... ... @@ -2244,8 +2244,8 @@ 2244 2244 0: low level 2245 2245 2246 2246 1: high level 2247 -)))|- 2248 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2278 +)))|(% style="text-align:center; vertical-align:middle" %)- 2279 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2249 2249 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2250 2250 2251 2251 VDI_6 input level: ... ... @@ -2253,8 +2253,8 @@ 2253 2253 0: low level 2254 2254 2255 2255 1: high level 2256 -)))|- 2257 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2287 +)))|(% style="text-align:center; vertical-align:middle" %)- 2288 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2258 2258 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2259 2259 2260 2260 VDI_7 input level: ... ... @@ -2262,8 +2262,8 @@ 2262 2262 0: low level 2263 2263 2264 2264 1: high level 2265 -)))|- 2266 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2296 +)))|(% style="text-align:center; vertical-align:middle" %)- 2297 +|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)((( 2267 2267 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2268 2268 2269 2269 VDI_8 input level: ... ... @@ -2271,7 +2271,7 @@ 2271 2271 0: low level 2272 2272 2273 2273 1: high level 2274 -)))|- 2305 +)))|(% style="text-align:center; vertical-align:middle" %)- 2275 2275 2276 2276 Table 6-57 Virtual VDI parameters 2277 2277 ... ... @@ -2281,11 +2281,11 @@ 2281 2281 2282 2282 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2283 2283 2315 +(% class="table-bordered" %) 2316 +|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration** 2317 +|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2318 +|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2284 2284 2285 -|**Setting value**|**DI channel logic selection**|**Illustration** 2286 -|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]] 2287 -|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]] 2288 - 2289 2289 Table 6-58 DI terminal channel logic selection 2290 2290 2291 2291 == **VDO** == ... ... @@ -2294,55 +2294,55 @@ 2294 2294 2295 2295 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2296 2296 2297 - 2328 +(% style="text-align:center" %) 2298 2298 [[image:image-20220608173957-48.png]] 2299 2299 2300 2300 Figure 6-52 VDO_2 setting steps 2301 2301 2302 - 2303 -|**Function code**|**Name**|((( 2333 +(% class="table-bordered" %) 2334 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)((( 2304 2304 **Setting method** 2305 -)))|((( 2336 +)))|(% style="text-align:center; vertical-align:middle" %)((( 2306 2306 **Effective time** 2307 -)))|**Default value**|**Range**|**Definition**|**Unit** 2308 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2338 +)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2339 +|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2309 2309 VDO_1 output level: 2310 2310 2311 2311 0: low level 2312 2312 2313 2313 1: high level 2314 -)))|- 2315 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2345 +)))|(% style="text-align:center; vertical-align:middle" %)- 2346 +|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2316 2316 VDO_2 output level: 2317 2317 2318 2318 0: low level 2319 2319 2320 2320 1: high level 2321 -)))|- 2322 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2352 +)))|(% style="text-align:center; vertical-align:middle" %)- 2353 +|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2323 2323 VDO_3 output level: 2324 2324 2325 2325 0: low level 2326 2326 2327 2327 1: high level 2328 -)))|- 2329 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2359 +)))|(% style="text-align:center; vertical-align:middle" %)- 2360 +|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|((( 2330 2330 VDO_4 output level: 2331 2331 2332 2332 0: low level 2333 2333 2334 2334 1: high level 2335 -)))|- 2366 +)))|(% style="text-align:center; vertical-align:middle" %)- 2336 2336 2337 2337 Table 6-59 Communication control DO function parameters 2338 2338 2370 +(% class="table-bordered" %) 2371 +|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function** 2372 +|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2373 +|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2374 +|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2375 +|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO 2339 2339 2340 -|**DO function number**|**Function name**|**Function** 2341 -|145|COM_VDO1 communication VDO1 output|Use communication VDO 2342 -|146|COM_VDO1 communication VDO2 output|Use communication VDO 2343 -|147|COM_VDO1 communication VDO3 output|Use communication VDO 2344 -|148|COM_VDO1 communication VDO4output|Use communication VDO 2345 - 2346 2346 Table 6-60 VDO function number 2347 2347 2348 2348 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation ... ... @@ -2353,17 +2353,17 @@ 2353 2353 2354 2354 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2355 2355 2356 - 2357 -|**Function code**|**Name**|((( 2387 +(% class="table-bordered" %) 2388 +|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)((( 2358 2358 **Setting method** 2359 -)))|((( 2390 +)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 2360 2360 **Effective time** 2361 -)))|**Default value**|**Range**|**Definition**|**Unit** 2362 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2392 +)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 2393 +|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)((( 2363 2363 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2364 2364 2365 2365 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled 2366 -)))|% 2397 +)))|(% style="text-align:center; vertical-align:middle" %)% 2367 2367 2368 2368 In the following cases, it could be modified according to the actual heat generation of the motor 2369 2369
- image-20220707092316-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -277.2 KB - Content
- image-20220707092322-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -277.2 KB - Content
- image-20220707092401-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -73.4 KB - Content
- image-20220707092440-4.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -33.1 KB - Content
- image-20220707092615-5.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.4 KB - Content