Changes for page 06 Operation

Last modified by Iris on 2025/08/08 14:40

From version 54.1
edited by Stone Wu
on 2022/08/04 16:06
Change comment: There is no comment for this version
To version 56.1
edited by Jim(Forgotten)
on 2022/09/09 11:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.Jim
Content
... ... @@ -2,47 +2,45 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" %)**No.**|=**Content**
5 +|=(% scope="row" style="width: 58px;" %)**No.**|=(% style="width: 1017px;" %)**Content**
6 6  |=(% colspan="2" %)Wiring
7 -|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=5|Servo drive and servo motor must be grounded reliably.
12 -|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=7|The force of all cables is within the specified range.
14 -|=8|The wiring terminals have been insulated.
7 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|=(% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|=(% style="width: 58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably.
12 +|=(% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|=(% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range.
14 +|=(% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated.
15 15  |=(% colspan="2" %)Environment and Machinery
16 -|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 -|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
16 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
22 -== **Power-on** ==
22 +== Power-on ==
23 23  
24 -**(1) Connect the main circuit power supply**
24 +**Connect the main circuit power supply**
25 25  
26 26  After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27 27  
28 -If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.
28 +If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29 29  
30 -**(2) Set the servo drive enable (S-ON) to invalid (OFF)**
30 +**Set the servo drive enable (S-ON) to invalid (OFF)**
31 31  
32 -== **Jog operation** ==
32 +== Jog operation ==
33 33  
34 34  Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35 35  
36 -**(1) Panel jog operation**
36 +**Panel jog operation**
37 37  
38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39 39  
40 -**(2) Jog operation of servo debugging platform**
40 +**Jog operation of servo debugging platform**
41 41  
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 -
45 -
46 46  |=(% scope="row" %)**Function code**|=**Name**|=(((
47 47  **Setting method**
48 48  )))|=(((
... ... @@ -60,7 +60,6 @@
60 60  
61 61  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62 62  
63 -
64 64  |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
65 65  |=P00-04|Rotation direction|(((
66 66  Shutdown setting
... ... @@ -69,9 +69,8 @@
69 69  )))|0|0 to 1|(((
70 70  Forward rotation: Face the motor shaft to watch
71 71  
72 -0: standard setting (CW is forward rotation)
73 -
74 -1: reverse mode (CCW is forward rotation)
69 +* 0: standard setting (CW is forward rotation)
70 +* 1: reverse mode (CCW is forward rotation)
75 75  )))|-
76 76  
77 77  Table 6-3 Rotation direction parameters** **
... ... @@ -95,13 +95,10 @@
95 95  )))|(((
96 96  Effective immediately
97 97  )))|0|0 to 3|(((
98 -0: use built-in braking resistor
99 -
100 -1: use external braking resistor and natural cooling
101 -
102 -2: use external braking resistor and forced air cooling; (cannot be set)
103 -
104 -3: No braking resistor is used, it is all absorbed by capacitor.
94 +* 0: use built-in braking resistor
95 +* 1: use external braking resistor and natural cooling
96 +* 2: use external braking resistor and forced air cooling; (cannot be set)
97 +* 3: No braking resistor is used, it is all absorbed by capacitor.
105 105  )))|-
106 106  |=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
107 107  |=P00-10|External braking resistor value|(((
... ... @@ -119,28 +119,28 @@
119 119  
120 120  == **Servo operation** ==
121 121  
122 -**(1) Set the servo enable (S-ON) to valid (ON)**
115 +**Set the servo enable (S-ON) to valid (ON)**
123 123  
124 124  The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
125 125  
126 126  S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
127 127  
128 -**(2) Input the instruction and the motor rotates**
121 +**Input the instruction and the motor rotates**
129 129  
130 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
123 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
131 131  
132 -**(3) Timing diagram of power on**
125 +**Timing diagram of power on**
133 133  
127 +(% style="text-align:center" %)
128 +(((
129 +(% class="wikigeneratedid" style="display:inline-block" %)
130 +[[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
131 +)))
134 134  
135 -[[image:image-20220608163014-1.png]]
133 +== Servo shutdown ==
136 136  
137 -Figure 6-1 Timing diagram of power on
135 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
138 138  
139 -== **Servo shutdown** ==
140 -
141 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.
142 -
143 -
144 144  |=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
145 145  |=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
146 146  |=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
... ... @@ -147,17 +147,15 @@
147 147  
148 148  Table 6-5 Comparison of two shutdown modes
149 149  
150 -
151 151  |=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
152 152  |=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
153 153  
154 154  Table 6-6 Comparison of two shutdown status
155 155  
156 -**(1) Servo enable (S-ON) OFF shutdown**
148 +**Servo enable (S-ON) OFF shutdown**
157 157  
158 158  The related parameters of the servo OFF shutdown mode are shown in the table below.
159 159  
160 -
161 161  |=(% scope="row" %)**Function code**|=**Name**|=(((
162 162  **Setting method**
163 163  )))|=(((
... ... @@ -174,18 +174,17 @@
174 174  
175 175  immediately
176 176  )))|0|0 to 1|(((
177 -0: Free shutdown, and the motor shaft remains free status.
178 -
179 -1: Zero-speed shutdown, and the motor shaft remains free status.
168 +* 0: Free shutdown, and the motor shaft remains free status.
169 +* 1: Zero-speed shutdown, and the motor shaft remains free status.
180 180  )))|-
181 181  
182 -Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
172 +Table 6-7 Servo OFF shutdown mode parameters details
183 183  
184 -**(2) Emergency shutdown**
174 +**Emergency shutdown**
185 185  
186 186  It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
187 187  
188 -**(3) Overtravel shutdown**
178 +**Overtravel shutdown**
189 189  
190 190  Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
191 191  
... ... @@ -193,149 +193,98 @@
193 193  
194 194  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
195 195  
196 -
197 -|=(% scope="row" %)**Function code**|=**Name**|=(((
186 +|=(% scope="row" %)**Function code**|=(% style="width: 143px;" %)**Name**|=(% style="width: 137px;" %)(((
198 198  **Setting method**
199 -)))|=(((
188 +)))|=(% style="width: 141px;" %)(((
200 200  **Effective time**
201 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
202 -|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
203 -0: OFF (not used)
204 -
205 -01: S-ON servo enable
206 -
207 -02: A-CLR fault and Warning Clear
208 -
209 -03: POT forward drive prohibition
210 -
211 -04: NOT Reverse drive prohibition
212 -
213 -05: ZCLAMP Zero speed
214 -
215 -06: CL Clear deviation counter
216 -
217 -07: C-SIGN Inverted instruction
218 -
219 -08: E-STOP Emergency stop
220 -
221 -09: GEAR-SEL Electronic Gear Switch 1
222 -
223 -10: GAIN-SEL gain switch
224 -
225 -11: INH Instruction pulse prohibited input
226 -
227 -12: VSSEL Vibration control switch input
228 -
229 -13: INSPD1 Internal speed instruction selection 1
230 -
231 -14: INSPD2 Internal speed instruction selection 2
232 -
233 -15: INSPD3 Internal speedinstruction selection 3
234 -
235 -16: J-SEL inertia ratio switch (not implemented yet)
236 -
237 -17: MixModesel mixed mode selection
238 -
239 -20: Internal multi-segment position enable signal
240 -
241 -21: Internal multi-segment position selection 1
242 -
243 -22: Internal multi-segment position selection 2
244 -
245 -23: Internal multi-segment position selection 3
246 -
247 -24: Internal multi-segment position selection 4
248 -
249 -Others: reserved
190 +)))|=(% style="width: 84px;" %)**Default value**|=(% style="width: 100px;" %)**Range**|=**Definition**|=**Unit**
191 +|=P06-08|(% style="width:143px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|(((
192 +* 0: OFF (not used)
193 +* 01: S-ON servo enable
194 +* 02: A-CLR fault and Warning Clear
195 +* 03: POT forward drive prohibition
196 +* 04: NOT Reverse drive prohibition
197 +* 05: ZCLAMP Zero speed
198 +* 06: CL Clear deviation counter
199 +* 07: C-SIGN Inverted instruction
200 +* 08: E-STOP Emergency stop
201 +* 09: GEAR-SEL Electronic Gear Switch 1
202 +* 10: GAIN-SEL gain switch
203 +* 11: INH Instruction pulse prohibited input
204 +* 12: VSSEL Vibration control switch input
205 +* 13: INSPD1 Internal speed instruction selection 1
206 +* 14: INSPD2 Internal speed instruction selection 2
207 +* 15: INSPD3 Internal speedinstruction selection 3
208 +* 16: J-SEL inertia ratio switch (not implemented yet)
209 +* 17: MixModesel mixed mode selection
210 +* 20: Internal multi-segment position enable signal
211 +* 21: Internal multi-segment position selection 1
212 +* 22: Internal multi-segment position selection 2
213 +* 23: Internal multi-segment position selection 3
214 +* 24: Internal multi-segment position selection 4
215 +* Others: reserved
250 250  )))|-
251 -|=P06-09|DI_3 channel logic selection|Operation setting|(((
217 +|=P06-09|(% style="width:143px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
252 252  Effective immediately
253 -)))|0|0 to 1|(((
219 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
254 254  DI port input logic validity function selection.
255 255  
256 -0: Normally open input. Active low level (switch on);
257 -
258 -1: Normally closed input. Active high level (switch off);
222 +* 0: Normally open input. Active low level (switch on);
223 +* 1: Normally closed input. Active high level (switch off);
259 259  )))|-
260 -|=P06-10|DI_3 input source selection|Operation setting|(((
225 +|=P06-10|(% style="width:143px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
261 261  Effective immediately
262 -)))|0|0 to 1|(((
227 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
263 263  Select the DI_3 port type to enable
264 264  
265 -0: Hardware DI_3 input terminal
266 -
267 -1: virtual VDI_3 input terminal
230 +* 0: Hardware DI_3 input terminal
231 +* 1: virtual VDI_3 input terminal
268 268  )))|-
269 -|=P06-11|DI_4 channel function selection|(((
233 +|=P06-11|(% style="width:143px" %)DI_4 channel function selection|(% style="width:137px" %)(((
270 270  Operation setting
271 -)))|(((
235 +)))|(% style="width:141px" %)(((
272 272  again Power-on
273 -)))|4|0 to 32|(((
274 -0 off (not used)
275 -
276 -01: SON Servo enable
277 -
278 -02: A-CLR Fault and Warning Clear
279 -
280 -03: POT Forward drive prohibition
281 -
282 -04: NOT Reverse drive prohibition
283 -
284 -05: ZCLAMP Zero speed
285 -
286 -06: CL Clear deviation counter
287 -
288 -07: C-SIGN Inverted instruction
289 -
290 -08: E-STOP Emergency shutdown
291 -
292 -09: GEAR-SEL Electronic Gear Switch 1
293 -
294 -10: GAIN-SEL gain switch
295 -
296 -11: INH Instruction pulse prohibited input
297 -
298 -12: VSSEL Vibration control switch input
299 -
300 -13: INSPD1 Internal speed instruction selection 1
301 -
302 -14: INSPD2 Internal speed instruction selection 2
303 -
304 -15: INSPD3 Internal speed instruction selection 3
305 -
306 -16: J-SEL inertia ratio switch (not implemented yet)
307 -
308 -17: MixModesel mixed mode selection
309 -
310 -20: Internal multi-segment position enable signal
311 -
312 -21: Internal multi-segment position selection 1
313 -
314 -22: Internal multi-segment position selection 2
315 -
316 -23: Internal multi-segment position selection 3
317 -
318 -24: Internal multi-segment position selection 4
319 -
320 -Others: reserved
237 +)))|(% style="width:84px" %)4|(% style="width:100px" %)0 to 32|(((
238 +* 0: OFF (not used)
239 +* 01: SON Servo enable
240 +* 02: A-CLR Fault and Warning Clear
241 +* 03: POT Forward drive prohibition
242 +* 04: NOT Reverse drive prohibition
243 +* 05: ZCLAMP Zero speed
244 +* 06: CL Clear deviation counter
245 +* 07: C-SIGN Inverted instruction
246 +* 08: E-STOP Emergency shutdown
247 +* 09: GEAR-SEL Electronic Gear Switch 1
248 +* 10: GAIN-SEL gain switch
249 +* 11: INH Instruction pulse prohibited input
250 +* 12: VSSEL Vibration control switch input
251 +* 13: INSPD1 Internal speed instruction selection 1
252 +* 14: INSPD2 Internal speed instruction selection 2
253 +* 15: INSPD3 Internal speed instruction selection 3
254 +* 16: J-SEL inertia ratio switch (not implemented yet)
255 +* 17: MixModesel mixed mode selection
256 +* 20: Internal multi-segment position enable signal
257 +* 21: Internal multi-segment position selection 1
258 +* 22: Internal multi-segment position selection 2
259 +* 23: Internal multi-segment position selection 3
260 +* 24: Internal multi-segment position selection 4
261 +* Others: reserved
321 321  )))|-
322 -|=P06-12|DI_4 channel logic selection|Operation setting|(((
263 +|=P06-12|(% style="width:143px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
323 323  Effective immediately
324 -)))|0|0 to 1|(((
265 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
325 325  DI port input logic validity function selection.
326 326  
327 -0: Normally open input. Active low level (switch on);
328 -
329 -1: Normally closed input. Active high level (switch off);
268 +* 0: Normally open input. Active low level (switch on);
269 +* 1: Normally closed input. Active high level (switch off);
330 330  )))|-
331 -|=P06-13|DI_4 input source selection|Operation setting|(((
271 +|=P06-13|(% style="width:143px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
332 332  Effective immediately
333 -)))|0|0 to 1|(((
273 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
334 334  Select the DI_4 port type to enable
335 335  
336 -0: Hardware DI_4 input terminal
337 -
338 -1: virtual VDI_4 input terminal
276 +* 0: Hardware DI_4 input terminal
277 +* 1: virtual VDI_4 input terminal
339 339  )))|-
340 340  
341 341  Table 6-8 DI3 and DI4 channel parameters
... ... @@ -344,12 +344,12 @@
344 344  
345 345  When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
346 346  
347 -== **Brake device** ==
286 +== Brake device ==
348 348  
349 349  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
350 350  
351 -
352 352  |(((
291 +(% style="text-align:center" %)
353 353  [[image:image-20220611151617-1.png]]
354 354  )))
355 355  |(((
... ... @@ -364,17 +364,19 @@
364 364  ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
365 365  )))
366 366  
367 -**(1) Wiring of brake device**
306 +**Wiring of brake device**
368 368  
369 369  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
370 370  
371 371  
372 -[[image:image-20220608163136-2.png]]
311 +(% style="text-align:center" %)
312 +(((
313 +(% class="wikigeneratedid" style="display:inline-block" %)
314 +[[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
315 +)))
373 373  
374 -Figure 6-2 VD2B servo drive brake wiring
375 -
376 -
377 377  |(((
318 +(% style="text-align:center" %)
378 378  [[image:image-20220611151642-2.png]]
379 379  )))
380 380  |(((
... ... @@ -385,13 +385,12 @@
385 385  ✎It is recommended to use cables above 0.5 mm².
386 386  )))
387 387  
388 -**(2) Brake software setting**
329 +**Brake software setting**
389 389  
390 390  For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
391 391  
392 392  Related function code is as below.
393 393  
394 -
395 395  |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
396 396  **Effective time**
397 397  )))
... ... @@ -401,7 +401,6 @@
401 401  
402 402  Table 6-2 Relevant function codes for brake setting
403 403  
404 -
405 405  |=(% scope="row" %)**Function code**|=**Name**|=(((
406 406  **Setting method**
407 407  )))|=(((
... ... @@ -432,15 +432,14 @@
432 432  
433 433  According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
434 434  
435 -**(3) Servo drive brake timing in normal state**
374 +**Servo drive brake timing in normal state**
436 436  
437 437  The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
438 438  
439 -1) Brake timing when servo motor is stationary
378 +* Brake timing when servo motor is stationary
440 440  
441 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__
380 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
442 442  
443 -
444 444  |(((
445 445  [[image:image-20220611151705-3.png]]
446 446  )))
... ... @@ -450,18 +450,23 @@
450 450  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
451 451  )))
452 452  
453 -[[image:image-20220608163304-3.png]]
391 +(% style="text-align:center" %)
392 +(((
393 +(% class="wikigeneratedid" style="display:inline-block" %)
394 +[[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
395 +)))
454 454  
455 -Figure 6-3 Brake Timing of when the motor is stationary
456 -
397 +(% class="box infomessage" %)
398 +(((
457 457  ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
400 +)))
458 458  
459 -2) The brake timing when servo motor rotates
402 +* The brake timing when servo motor rotates
460 460  
461 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.
404 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
462 462  
463 -
464 464  |(((
407 +(% style="text-align:center" %)
465 465  [[image:image-20220611151719-4.png]]
466 466  )))
467 467  |(((
... ... @@ -476,31 +476,34 @@
476 476  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
477 477  )))
478 478  
479 -[[image:image-20220608163425-4.png]]
422 +(% style="text-align:center" %)
423 +(((
424 +(% class="wikigeneratedid" style="display:inline-block" %)
425 +[[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
426 +)))
480 480  
481 -Figure 6-4 Brake timing when the motor rotates
428 +**Brake timing when the servo drive fails**
482 482  
483 -**(4) Brake timing when the servo drive fails**
484 -
485 485  The brake timing (free shutdown) in the fault status is as follows.
486 486  
432 +(% style="text-align:center" %)
433 +(((
434 +(% class="wikigeneratedid" style="display:inline-block" %)
435 +[[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
436 +)))
487 487  
488 -[[image:image-20220608163541-5.png]]
489 -
490 - Figure 6-5 The brake timing (free shutdown) in the fault state
491 -
492 492  = **Position control mode** =
493 493  
494 494  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
495 495  
442 +(% style="text-align:center" %)
443 +(((
444 +(% class="wikigeneratedid" style="display:inline-block" %)
445 +[[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
446 +)))
496 496  
497 -[[image:image-20220608163643-6.png]]
498 -
499 -Figure 6-6 Position control diagram
500 -
501 501  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
502 502  
503 -
504 504  |=(% scope="row" %)**Function code**|=**Name**|=(((
505 505  **Setting method**
506 506  )))|=(((
... ... @@ -526,11 +526,10 @@
526 526  
527 527  Table 6-10 Control mode parameters
528 528  
529 -== **Position instruction input setting** ==
475 +== Position instruction input setting ==
530 530  
531 531  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
532 532  
533 -
534 534  |=(% scope="row" %)**Function code**|=**Name**|=(((
535 535  **Setting method**
536 536  )))|=(((
... ... @@ -548,70 +548,78 @@
548 548  
549 549  Table 6-11 Position instruction source parameter
550 550  
551 -**(1) The source of position instruction is pulse instruction (P01-06=0)**
496 +**The source of position instruction is pulse instruction (P01-06=0)**
552 552  
553 -1) Low-speed pulse instruction input
498 +Low-speed pulse instruction input
554 554  
555 555  |[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]]
556 556  |VD2A and VD2B servo drives|VD2F servo drive
557 557  |(% colspan="2" %)Figure 6-7 Position instruction input setting
558 558  
559 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.
504 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
560 560  
561 561  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
562 562  
508 +|=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage**
509 +|=Open collector input|200K|24V
510 +|=Differential input|500K|5V
563 563  
564 -|**Pulse method**|**Maximum frequency**|**Voltage**
565 -|Open collector input|200K|24V
566 -|Differential input|500K|5V
567 -
568 568  Table 6-12 Pulse input specifications
569 569  
570 -1.Differential input
514 +* Differential input
571 571  
572 572  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
573 573  
574 574  (% style="text-align:center" %)
575 -[[image:image-20220707092615-5.jpeg]]
519 +(((
520 +(% class="wikigeneratedid" style="display:inline-block" %)
521 +[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]]
522 +)))
576 576  
577 -Figure 6-8 Differential input connection
524 +(% class="box infomessage" %)
525 +(((
526 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
527 +)))
578 578  
579 -**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
529 +* Open collector input
580 580  
581 -2.Open collector input
582 -
583 583  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
584 584  
585 585  (% style="text-align:center" %)
586 -[[image:image-20220707092401-3.jpeg||height="530" width="834"]]
534 +(((
535 +(% class="wikigeneratedid" style="display:inline-block" %)
536 +[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="530" id="Iimage-20220707092401-3.jpeg" width="834"]]
537 +)))
587 587  
588 -Figure 6-9 Open collector input connection
589 589  
590 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
540 +(% class="box infomessage" %)
541 +(((
542 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
543 +)))
591 591  
592 -2) Position pulse frequency and anti-interference level
545 +* Position pulse frequency and anti-interference level
593 593  
594 594  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
595 595  
596 596  (% style="text-align:center" %)
597 -[[image:image-20220608163952-8.png]]
550 +(((
551 +(% class="wikigeneratedid" style="display:inline-block" %)
552 +[[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
553 +)))
598 598  
599 -Figure 6-10 Example of filtered signal waveform
600 -
601 601  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
602 602  
603 -
604 -|=(% scope="row" %)**Function code**|=**Name**|=(((
557 +|=**Function code**|=**Name**|=(((
605 605  **Setting method**
606 606  )))|=(((
607 607  **Effective time**
608 608  )))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
609 -|=P00-13|Maximum position pulse frequency|(((
562 +|P00-13|Maximum position pulse frequency|(((
610 610  Shutdown setting
611 611  )))|(((
612 612  Effective immediately
613 613  )))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
614 -|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
567 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
615 615  Operation setting
616 616  )))|(% rowspan="3" %)(((
617 617  Power-on again
... ... @@ -618,34 +618,26 @@
618 618  )))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
619 619  Set the anti-interference level of external pulse instruction.
620 620  
621 -0: no filtering;
622 -
623 -1: Filtering time 128ns
624 -
625 -2: Filtering time 256ns
626 -
627 -3: Filtering time 512ns
628 -
629 -4: Filtering time 1.024us
630 -
631 -5: Filtering time 2.048us
632 -
633 -6: Filtering time 4.096us
634 -
635 -7: Filtering time 8.192us
636 -
637 -8: Filtering time 16.384us
574 +* 0: no filtering;
575 +* 1: Filtering time 128ns
576 +* 2: Filtering time 256ns
577 +* 3: Filtering time 512ns
578 +* 4: Filtering time 1.024us
579 +* 5: Filtering time 2.048us
580 +* 6: Filtering time 4.096us
581 +* 7: Filtering time 8.192us
582 +* 8: Filtering time 16.384us
583 +* 9:
584 +** VD2: Filtering time 25.5us
585 +** VD2F: Filtering time 25.5us
638 638  )))|(% rowspan="3" %)-
639 -|=(% rowspan="2" %)9|VD2: Filtering time 25.5us
640 -|=VD2F: Filtering time 25.5us
641 641  
642 642  Table 6-13 Position pulse frequency and anti-interference level parameters
643 643  
644 -3) Position pulse type selection
590 +* Position pulse type selection
645 645  
646 646  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
647 647  
648 -
649 649  |=(% scope="row" %)**Function code**|=**Name**|=(((
650 650  **Setting method**
651 651  )))|=(((
... ... @@ -656,17 +656,12 @@
656 656  )))|(((
657 657  Power-on again
658 658  )))|0|0 to 5|(((
659 -0: direction + pulse (positive logic)
660 -
661 -1: CW/CCW
662 -
663 -2: A, B phase quadrature pulse (4 times frequency)
664 -
665 -3: Direction + pulse (negative logic)
666 -
667 -4: CW/CCW (negative logic)
668 -
669 -5: A, B phase quadrature pulse (4 times frequency negative logic)
604 +* 0: direction + pulse (positive logic)
605 +* 1: CW/CCW
606 +* 2: A, B phase quadrature pulse (4 times frequency)
607 +* 3: Direction + pulse (negative logic)
608 +* 4: CW/CCW (negative logic)
609 +* 5: A, B phase quadrature pulse (4 times frequency negative logic)
670 670  )))|-
671 671  
672 672  Table 6-14 Position pulse type selection parameter
... ... @@ -749,18 +749,20 @@
749 749  
750 750  Table 6-15 Pulse description
751 751  
752 -**(2) The source of position instruction is internal position instruction (P01-06=1)**
692 +**The source of position instruction is internal position instruction (P01-06=1)**
753 753  
754 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.
694 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
755 755  
756 756  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
757 757  
758 758  (% style="text-align:center" %)
759 -[[image:image-20220608164116-9.png]]
699 +(((
700 +(% class="wikigeneratedid" style="display:inline-block" %)
701 +[[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
702 +)))
760 760  
761 -Figure 6-11 The setting process of multi-segment position
762 762  
763 -1) Set multi-segment position running mode
705 +* Set multi-segment position running mode
764 764  
765 765  |=(% scope="row" %)**Function code**|=**Name**|=(((
766 766  **Setting method**
... ... @@ -772,11 +772,9 @@
772 772  )))|(((
773 773  Effective immediately
774 774  )))|0|0 to 2|(((
775 -0: Single running
776 -
777 -1: Cycle running
778 -
779 -2: DI switching running
717 +* 0: Single running
718 +* 1: Cycle running
719 +* 2: DI switching running
780 780  )))|-
781 781  |=P07-02|Start segment number|(((
782 782  Shutdown setting
... ... @@ -793,9 +793,8 @@
793 793  )))|(((
794 794  Effective immediately
795 795  )))|0|0 to 1|(((
796 -0: Run the remaining segments
797 -
798 -1: Run again from the start segment
736 +* 0: Run the remaining segments
737 +* 1: Run again from the start segment
799 799  )))|-
800 800  |=P07-05|Displacement instruction type|(((
801 801  Shutdown setting
... ... @@ -802,9 +802,8 @@
802 802  )))|(((
803 803  Effective immediately
804 804  )))|0|0 to 1|(((
805 -0: Relative position instruction
806 -
807 -1: Absolute position instruction
744 +* 0: Relative position instruction
745 +* 1: Absolute position instruction
808 808  )))|-
809 809  
810 810  Table 6-16 multi-segment position running mode parameters
... ... @@ -811,30 +811,35 @@
811 811  
812 812  VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
813 813  
814 -~1. Single running
752 +1. Single running
815 815  
816 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
754 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
817 817  
818 818  
819 819  (% style="text-align:center" %)
820 -[[image:image-20220608164226-10.png]]
758 +(((
759 +(% class="wikigeneratedid" style="display:inline-block" %)
760 +[[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
761 +)))
821 821  
822 -Figure 6-12 Single running curve (P07-02=1, P07-03=2)
763 +* 2. Cycle running
823 823  
824 -2. Cycle running
825 -
826 826  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
827 827  
828 -
829 829  (% style="text-align:center" %)
830 -[[image:image-20220608164327-11.png]]
768 +(((
769 +(% class="wikigeneratedid" style="display:inline-block" %)
770 +[[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
771 +)))
831 831  
832 -Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
833 -
834 -|[[image:image-20220611151917-5.png]]
773 +|(((
774 +(% style="text-align:center" %)
775 +[[image:image-20220611151917-5.png]]
776 +)))
835 835  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
836 836  
837 -3. DI switching running
779 +(% start="3" %)
780 +1. DI switching running
838 838  
839 839  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
840 840  
... ... @@ -857,68 +857,87 @@
857 857  
858 858  Table 6-18 INPOS corresponds to running segment number
859 859  
860 -The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.
803 +The operating curve in this running mode is shown in __Figure 6-14__.
861 861  
862 862  (% style="text-align:center" %)
863 -[[image:image-20220608164545-12.png]]
806 +(((
807 +(% class="wikigeneratedid" style="display:inline-block" %)
808 +[[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
809 +)))
864 864  
865 -Figure 6-14 DI switching running curve
866 -
867 867  VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
868 868  
869 -**A. Run the remaining segments**
813 +**Run the remaining segments**
870 870  
871 871  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
872 872  
873 873  (% style="text-align:center" %)
874 -[[image:image-20220608164847-13.png]]
818 +(((
819 +(% class="wikigeneratedid" style="display:inline-block" %)
820 +[[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
821 +)))
875 875  
876 -Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
877 -
878 878  (% style="text-align:center" %)
879 -[[image:image-20220608165032-14.png]]
824 +(((
825 +(% class="wikigeneratedid" style="display:inline-block" %)
826 +[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]]
827 +)))
880 880  
881 -Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
829 +**Run again from the start segment**
882 882  
883 -**B. Run again from the start segment**
884 -
885 885  In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.
886 886  
887 887  (% style="text-align:center" %)
888 -[[image:image-20220608165343-15.png]]
834 +(((
835 +(% class="wikigeneratedid" style="display:inline-block" %)
836 +[[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
837 +)))
889 889  
890 -Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
891 -
892 892  (% style="text-align:center" %)
893 -[[image:image-20220608165558-16.png]]
840 +(((
841 +(% class="wikigeneratedid" style="display:inline-block" %)
842 +[[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
843 +)))
894 894  
895 -Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
896 -
897 897  VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
898 898  
899 -A. Relative position instruction
847 +* Relative position instruction
900 900  
901 901  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
902 902  
903 903  |(((
904 -[[image:image-20220608165710-17.png]]
852 +(% style="text-align:center" %)
853 +(((
854 +(% class="wikigeneratedid" style="display:inline-block" %)
855 +[[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
856 +)))
905 905  )))|(((
906 -[[image:image-20220608165749-18.png]]
858 +(% style="text-align:center" %)
859 +(((
860 +(% class="wikigeneratedid" style="display:inline-block" %)
861 +[[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
907 907  )))
908 -|Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
863 +)))
909 909  
910 -B. Absolute position instruction
865 +* Absolute position instruction
911 911  
912 912  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
913 913  
914 914  |(((
915 -[[image:image-20220608165848-19.png]]
870 +(% style="text-align:center" %)
871 +(((
872 +(% class="wikigeneratedid" style="display:inline-block" %)
873 +[[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
874 +)))
916 916  )))|(((
917 -[[image:image-20220608170005-20.png]]
876 +(% style="text-align:center" %)
877 +(((
878 +(% class="wikigeneratedid" style="display:inline-block" %)
879 +[[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
918 918  )))
919 -|Figure 6-21 Absolute indication|Figure 6-22 Displacement
881 +)))
920 920  
921 -2) Multi-segment position running curve setting
883 +* Multi-segment position running curve setting
922 922  
923 923  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
924 924  
... ... @@ -957,11 +957,13 @@
957 957  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
958 958  
959 959  (% style="text-align:center" %)
960 -[[image:image-20220608170149-21.png]]
922 +(((
923 +(% class="wikigeneratedid" style="display:inline-block" %)
924 +[[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
925 +)))
961 961  
962 -Figure 6-23 The 1st segment running curve of motor
963 963  
964 -3) multi-segment position instruction enable
928 +* multi-segment position instruction enable
965 965  
966 966  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
967 967  
... ... @@ -972,13 +972,14 @@
972 972  DI port logic valid: Motor runs multi-segment position
973 973  )))
974 974  
939 +(% style="text-align:center" %)
975 975  [[image:image-20220611152020-6.png]]
976 976  
977 977  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
978 978  
979 -== **Electronic gear ratio** ==
944 +== Electronic gear ratio ==
980 980  
981 -**(1) Definition of electronic gear ratio**
946 +**Definition of electronic gear ratio**
982 982  
983 983  In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
984 984  
... ... @@ -989,23 +989,20 @@
989 989  (% style="text-align:center" %)
990 990  [[image:image-20220707094901-16.png]]
991 991  
992 -
993 -
994 -
995 995  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
996 996  
997 -**(2) Setting steps of electronic gear ratio**
959 +**Setting steps of electronic gear ratio**
998 998  
999 -[[image:image-20220707100850-20.jpeg]]
961 +(% style="text-align:center" %)
962 +(((
963 +(% class="wikigeneratedid" style="display:inline-block" %)
964 +[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]]
965 +)))
1000 1000  
1001 -Figure 6-24 Setting steps of electronic gear ratio
967 +**lectronic gear ratio switch setting**
1002 1002  
1003 -**(3) lectronic gear ratio switch setting**
1004 -
1005 -
1006 1006  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1007 1007  
1008 -
1009 1009  |=(% scope="row" %)**Function code**|=**Name**|=(((
1010 1010  **Setting method**
1011 1011  )))|=(((
... ... @@ -1055,7 +1055,6 @@
1055 1055  
1056 1056  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1057 1057  
1058 -
1059 1059  |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1060 1060  |=09|GEAR-SEL electronic gear switch 1|(((
1061 1061  DI port logic invalid: electronic gear ratio 1
... ... @@ -1065,16 +1065,25 @@
1065 1065  
1066 1066  Table 6-21 Switching conditions of electronic gear ratio group
1067 1067  
1068 -|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]]
1069 -|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]]
1070 -|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]]
1071 -|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]]
1029 +|=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1030 +|(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1031 +(% style="text-align:center" %)
1032 +[[image:image-20220707101328-21.png]]
1033 +)))
1034 +|(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1035 +(% style="text-align:center" %)
1036 +[[image:image-20220707101336-22.png]]
1037 +)))
1038 +|1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1039 +(% style="text-align:center" %)
1040 +[[image:image-20220707101341-23.png]]
1041 +)))
1072 1072  
1073 1073  Table 6-22 Application of electronic gear ratio
1074 1074  
1075 1075  When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1076 1076  
1077 -== **Position instruction filtering** ==
1047 +== Position instruction filtering ==
1078 1078  
1079 1079  Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1080 1080  
... ... @@ -1087,10 +1087,11 @@
1087 1087  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1088 1088  
1089 1089  (% style="text-align:center" %)
1090 -[[image:image-20220608170455-23.png]]
1060 +(((
1061 +(% class="wikigeneratedid" style="display:inline-block" %)
1062 +[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]]
1063 +)))
1091 1091  
1092 -Figure 6-25 Position instruction filtering diagram
1093 -
1094 1094  |=(% scope="row" %)**Function code**|=**Name**|=(((
1095 1095  **Setting method**
1096 1096  )))|=(((
... ... @@ -1101,9 +1101,8 @@
1101 1101  )))|(((
1102 1102  Effective immediately
1103 1103  )))|0|0 to 1|(((
1104 -0: 1st-order low-pass filtering
1105 -
1106 -1: average filtering
1075 +* 0: 1st-order low-pass filtering
1076 +* 1: average filtering
1107 1107  )))|-
1108 1108  |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1109 1109  Effective immediately
... ... @@ -1114,13 +1114,13 @@
1114 1114  
1115 1115  Table 6-23 Position instruction filter function code
1116 1116  
1117 -== **Clearance of position deviation** ==
1087 +== Clearance of position deviation ==
1118 1118  
1119 1119  Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1120 1120  
1121 1121  Position deviation = (position instruction-position feedback) (encoder unit)
1122 1122  
1123 -== **Position-related DO output function** ==
1093 +== Position-related DO output function ==
1124 1124  
1125 1125  The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1126 1126  
... ... @@ -1131,44 +1131,46 @@
1131 1131  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1132 1132  
1133 1133  (% style="text-align:center" %)
1134 -[[image:image-20220608170550-24.png]]
1104 +(((
1105 +(% class="wikigeneratedid" style="display:inline-block" %)
1106 +[[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1107 +)))
1135 1135  
1136 -Figure 6-26 Positioning completion signal output diagram
1137 -
1138 1138  When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1139 1139  
1140 1140  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1141 1141  
1142 1142  (% style="text-align:center" %)
1143 -[[image:image-20220608170650-25.png]]
1114 +(((
1115 +(% class="wikigeneratedid" style="display:inline-block" %)
1116 +[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]]
1117 +)))
1144 1144  
1145 -Figure 6-27 Positioning completion signal output with increased window filter time diagram
1146 -
1147 1147  |=(% scope="row" %)**Function code**|=**Name**|=(((
1148 1148  **Setting method**
1149 -)))|=(((
1121 +)))|=(% style="width: 129px;" %)(((
1150 1150  **Effective time**
1151 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1123 +)))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1152 1152  |=P05-12|Positioning completion threshold|(((
1153 1153  Operation setting
1154 -)))|(((
1126 +)))|(% style="width:129px" %)(((
1155 1155  Effective immediately
1156 -)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1128 +)))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1157 1157  |=P05-13|Positioning approach threshold|(((
1158 1158  Operation setting
1159 -)))|(((
1131 +)))|(% style="width:129px" %)(((
1160 1160  Effective immediately
1161 -)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1133 +)))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1162 1162  |=P05-14|Position detection window time|(((
1163 1163  Operation setting
1164 -)))|(((
1136 +)))|(% style="width:129px" %)(((
1165 1165  Effective immediately
1166 -)))|10|0 to 20000|Set positioning completion detection window time|ms
1138 +)))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1167 1167  |=P05-15|Positioning signal hold time|(((
1168 1168  Operation setting
1169 -)))|(((
1141 +)))|(% style="width:129px" %)(((
1170 1170  Effective immediately
1171 -)))|100|0 to 20000|Set positioning completion output hold time|ms
1143 +)))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1172 1172  
1173 1173  Table 6-24 Function code parameters of positioning completion
1174 1174  
... ... @@ -1187,47 +1187,46 @@
1187 1187  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1188 1188  
1189 1189  (% style="text-align:center" %)
1190 -[[image:6.28.jpg||height="260" width="806"]]
1162 +(((
1163 +(% class="wikigeneratedid" style="display:inline-block" %)
1164 +[[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1165 +)))
1191 1191  
1192 -Figure 6-28 Speed control block diagram
1167 +== Speed instruction input setting ==
1193 1193  
1194 -== **Speed instruction input setting** ==
1195 -
1196 1196  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1197 1197  
1198 -
1199 -|**Function code**|**Name**|(((
1171 +|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 189px;" %)**Name**|=(% style="width: 125px;" %)(((
1200 1200  **Setting method**
1201 -)))|(((
1173 +)))|=(% style="width: 125px;" %)(((
1202 1202  **Effective time**
1203 -)))|**Default value**|**Range**|**Definition**|**Unit**
1204 -|P01-01|Speed instruction source|(((
1175 +)))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1176 +|=(% style="width: 121px;" %)P01-01|(% style="width:189px" %)Speed instruction source|(% style="width:125px" %)(((
1205 1205  Shutdown setting
1206 -)))|(((
1178 +)))|(% style="width:125px" %)(((
1207 1207  Effective immediately
1208 -)))|1|1 to 1|(((
1209 -0: internal speed instruction
1210 -
1211 -1: AI_1 analog input (not supported by VD2F)
1180 +)))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)(((
1181 +* 0: internal speed instruction
1182 +* 1: AI_1 analog input (not supported by VD2F)
1212 1212  )))|-
1213 1213  
1214 1214  Table 6-26 Speed instruction source parameter
1215 1215  
1216 -**(1) Speed instruction source is internal speed instruction (P01-01=0)**
1187 +**Speed instruction source is internal speed instruction (P01-01=0)**
1217 1217  
1218 1218  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1219 1219  
1220 1220  (% style="width:1141px" %)
1221 -|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)(((
1192 +|=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1222 1222  **Setting**
1223 1223  
1224 1224  **method**
1225 -)))|(% colspan="2" %)(((
1196 +)))|=(% colspan="2" %)(((
1226 1226  **Effective**
1227 1227  
1228 1228  **time**
1229 -)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit**
1230 -|(% colspan="1" %)P01-02|(% colspan="2" %)(((
1200 +)))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1201 +|=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1231 1231  Internal speed
1232 1232  
1233 1233  Instruction 0
... ... @@ -1244,15 +1244,13 @@
1244 1244  
1245 1245  When DI input port:
1246 1246  
1247 -15-INSPD3: 0
1218 +* 15-INSPD3: 0
1219 +* 14-INSPD2: 0
1220 +* 13-INSPD1: 0,
1248 1248  
1249 -14-INSPD2: 0
1250 -
1251 -13-INSPD1: 0,
1252 -
1253 1253  select this speed instruction to be effective.
1254 1254  )))|(% colspan="2" %)rpm
1255 -|(% colspan="1" %)P01-23|(% colspan="2" %)(((
1224 +|=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1256 1256  Internal speed
1257 1257  
1258 1258  Instruction 1
... ... @@ -1269,15 +1269,13 @@
1269 1269  
1270 1270  When DI input port:
1271 1271  
1272 -15-INSPD3: 0
1241 +* 15-INSPD3: 0
1242 +* 14-INSPD2: 0
1243 +* 13-INSPD1: 1,
1273 1273  
1274 -14-INSPD2: 0
1275 -
1276 -13-INSPD1: 1,
1277 -
1278 1278  Select this speed instruction to be effective.
1279 1279  )))|(% colspan="2" %)rpm
1280 -|(% colspan="1" %)P01-24|(% colspan="2" %)(((
1247 +|=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1281 1281  Internal speed
1282 1282  
1283 1283  Instruction 2
... ... @@ -1294,15 +1294,13 @@
1294 1294  
1295 1295  When DI input port:
1296 1296  
1297 -15-INSPD3: 0
1264 +* 15-INSPD3: 0
1265 +* 14-INSPD2: 1
1266 +* 13-INSPD1: 0,
1298 1298  
1299 -14-INSPD2: 1
1300 -
1301 -13-INSPD1: 0,
1302 -
1303 1303  Select this speed instruction to be effective.
1304 1304  )))|(% colspan="2" %)rpm
1305 -|(% colspan="1" %)P01-25|(% colspan="2" %)(((
1270 +|=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1306 1306  Internal speed
1307 1307  
1308 1308  Instruction 3
... ... @@ -1319,15 +1319,13 @@
1319 1319  
1320 1320  When DI input port:
1321 1321  
1322 -15-INSPD3: 0
1287 +* 15-INSPD3: 0
1288 +* 14-INSPD2: 1
1289 +* 13-INSPD1: 1,
1323 1323  
1324 -14-INSPD2: 1
1325 -
1326 -13-INSPD1: 1,
1327 -
1328 1328  Select this speed instruction to be effective.
1329 1329  )))|(% colspan="2" %)rpm
1330 -|P01-26|(% colspan="2" %)(((
1293 +|=P01-26|(% colspan="2" %)(((
1331 1331  Internal speed
1332 1332  
1333 1333  Instruction 4
... ... @@ -1344,15 +1344,13 @@
1344 1344  
1345 1345  When DI input port:
1346 1346  
1347 -15-INSPD3: 1
1310 +* 15-INSPD3: 1
1311 +* 14-INSPD2: 0
1312 +* 13-INSPD1: 0,
1348 1348  
1349 -14-INSPD2: 0
1350 -
1351 -13-INSPD1: 0,
1352 -
1353 1353  Select this speed instruction to be effective.
1354 1354  )))|(% colspan="1" %)rpm
1355 -|P01-27|(% colspan="2" %)(((
1316 +|=P01-27|(% colspan="2" %)(((
1356 1356  Internal speed
1357 1357  
1358 1358  Instruction 5
... ... @@ -1369,15 +1369,13 @@
1369 1369  
1370 1370  When DI input port:
1371 1371  
1372 -15-INSPD3: 1
1333 +* 15-INSPD3: 1
1334 +* 14-INSPD2: 0
1335 +* 13-INSPD1: 1,
1373 1373  
1374 -14-INSPD2: 0
1375 -
1376 -13-INSPD1: 1,
1377 -
1378 1378  Select this speed instruction to be effective.
1379 1379  )))|(% colspan="1" %)rpm
1380 -|P01-28|(% colspan="2" %)(((
1339 +|=P01-28|(% colspan="2" %)(((
1381 1381  Internal speed
1382 1382  
1383 1383  Instruction 6
... ... @@ -1394,15 +1394,13 @@
1394 1394  
1395 1395  When DI input port:
1396 1396  
1397 -15-INSPD3: 1
1356 +* 15-INSPD3: 1
1357 +* 14-INSPD2: 1
1358 +* 13-INSPD1: 0,
1398 1398  
1399 -14-INSPD2: 1
1400 -
1401 -13-INSPD1: 0,
1402 -
1403 1403  Select this speed instruction to be effective.
1404 1404  )))|(% colspan="1" %)rpm
1405 -|P01-29|(% colspan="2" %)(((
1362 +|=P01-29|(% colspan="2" %)(((
1406 1406  Internal speed
1407 1407  
1408 1408  Instruction 7
... ... @@ -1419,21 +1419,19 @@
1419 1419  
1420 1420  When DI input port:
1421 1421  
1422 -15-INSPD3: 1
1379 +* 15-INSPD3: 1
1380 +* 14-INSPD2: 1
1381 +* 13-INSPD1: 1,
1423 1423  
1424 -14-INSPD2: 1
1425 -
1426 -13-INSPD1: 1,
1427 -
1428 1428  Select this speed instruction to be effective.
1429 1429  )))|(% colspan="1" %)rpm
1430 1430  
1431 1431  Table 6-27 Internal speed instruction parameters
1432 1432  
1433 -|**DI function code**|**function name**|**Function**
1434 -|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1435 -|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1436 -|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1388 +|=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1389 +|=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1390 +|=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1391 +|=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1437 1437  
1438 1438  Table 6-28 DI multi-speed function code description
1439 1439  
... ... @@ -1440,7 +1440,7 @@
1440 1440  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1441 1441  
1442 1442  
1443 -|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1398 +|=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1444 1444  |0|0|0|1|0
1445 1445  |0|0|1|2|1
1446 1446  |0|1|0|3|2
... ... @@ -1449,26 +1449,30 @@
1449 1449  
1450 1450  Table 6-29 Correspondence between INSPD bits and segment numbers
1451 1451  
1452 -[[image:image-20220608170845-26.png]]
1407 +(% style="text-align:center" %)
1408 +(((
1409 +(% class="wikigeneratedid" style="display:inline-block" %)
1410 +[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]]
1411 +)))
1453 1453  
1454 -Figure 6-29 Multi-segment speed running curve
1413 +**Speed instruction source is internal speed instruction (P01-01=1)**
1455 1455  
1456 -**(2) Speed instruction source is internal speed instruction (P01-01=1)**
1457 -
1458 1458  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1459 1459  
1460 1460  (% style="text-align:center" %)
1461 -[[image:image-20220608153341-5.png]]
1418 +(((
1419 +(% class="wikigeneratedid" style="display:inline-block" %)
1420 +[[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1421 +)))
1462 1462  
1463 -Figure 6-30 Analog input circuit
1464 -
1465 1465  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1466 1466  
1467 1467  (% style="text-align:center" %)
1468 -[[image:image-20220608170955-27.png]]
1426 +(((
1427 +(% class="wikigeneratedid" style="display:inline-block" %)
1428 +[[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1429 +)))
1469 1469  
1470 -Figure 6-31 Analog voltage speed instruction setting steps
1471 -
1472 1472  Explanation of related terms:
1473 1473  
1474 1474  * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
... ... @@ -1476,21 +1476,25 @@
1476 1476  * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1477 1477  
1478 1478  (% style="text-align:center" %)
1479 -[[image:image-20220608171124-28.png]]
1438 +(((
1439 +(% class="wikigeneratedid" style="display:inline-block" %)
1440 +[[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1441 +)))
1480 1480  
1481 -Figure 6-32 AI_1 diagram before and after bias
1443 +|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1444 +|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1445 +|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1446 +|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1447 +|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1482 1482  
1483 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1484 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1485 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1486 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1487 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1488 -
1489 1489  Table 6-30 AI_1 parameters
1490 1490  
1451 +(% class="box infomessage" %)
1452 +(((
1491 1491  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1454 +)))
1492 1492  
1493 -== **Acceleration and deceleration time setting** ==
1456 +== Acceleration and deceleration time setting ==
1494 1494  
1495 1495  The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1496 1496  
... ... @@ -1497,24 +1497,25 @@
1497 1497  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1498 1498  
1499 1499  (% style="text-align:center" %)
1500 -[[image:image-20220608171314-29.png]]
1463 +(((
1464 +(% class="wikigeneratedid" style="display:inline-block" %)
1465 +[[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1466 +)))
1501 1501  
1502 -Figure 6-33 of acceleration and deceleration time diagram
1503 -
1504 1504  (% style="text-align:center" %)
1505 1505  [[image:image-20220707103616-27.png]]
1506 1506  
1507 -|**Function code**|**Name**|(((
1471 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1508 1508  **Setting method**
1509 -)))|(((
1473 +)))|=(((
1510 1510  **Effective time**
1511 -)))|**Default value**|**Range**|**Definition**|**Unit**
1512 -|P01-03|Acceleration time|(((
1475 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1476 +|=P01-03|Acceleration time|(((
1513 1513  Operation setting
1514 1514  )))|(((
1515 1515  Effective immediately
1516 1516  )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1517 -|P01-04|Deceleration time|(((
1481 +|=P01-04|Deceleration time|(((
1518 1518  Operation setting
1519 1519  )))|(((
1520 1520  Effective immediately
... ... @@ -1522,7 +1522,7 @@
1522 1522  
1523 1523  Table 6-31 Acceleration and deceleration time parameters
1524 1524  
1525 -== **Speed instruction limit** ==
1489 +== Speed instruction limit ==
1526 1526  
1527 1527  In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1528 1528  
... ... @@ -1537,23 +1537,22 @@
1537 1537  
1538 1538  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1539 1539  
1540 -
1541 -|**Function code**|**Name**|(((
1504 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1542 1542  **Setting method**
1543 -)))|(((
1506 +)))|=(((
1544 1544  **Effective time**
1545 -)))|**Default value**|**Range**|**Definition**|**Unit**
1546 -|P01-10|Maximum speed threshold|(((
1508 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1509 +|=P01-10|Maximum speed threshold|(((
1547 1547  Operation setting
1548 1548  )))|(((
1549 1549  Effective immediately
1550 1550  )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1551 -|P01-12|Forward speed threshold|(((
1514 +|=P01-12|Forward speed threshold|(((
1552 1552  Operation setting
1553 1553  )))|(((
1554 1554  Effective immediately
1555 1555  )))|3000|0 to 5000|Set forward speed limit value|rpm
1556 -|P01-13|Reverse speed threshold|(((
1519 +|=P01-13|Reverse speed threshold|(((
1557 1557  Operation setting
1558 1558  )))|(((
1559 1559  Effective immediately
... ... @@ -1561,19 +1561,18 @@
1561 1561  
1562 1562  Table 6-32 Rotation speed related function codes
1563 1563  
1564 -== **Zero-speed clamp function** ==
1527 +== Zero-speed clamp function ==
1565 1565  
1566 1566  The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1567 1567  
1568 1568  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1569 1569  
1570 -
1571 -|**Function code**|**Name**|(((
1533 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1572 1572  **Setting method**
1573 -)))|(((
1535 +)))|=(((
1574 1574  **Effective time**
1575 -)))|**Default value**|**Range**|**Definition**|**Unit**
1576 -|P01-21|(((
1537 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1538 +|=P01-21|(((
1577 1577  Zero-speed clamp function selection
1578 1578  )))|(((
1579 1579  Operation setting
... ... @@ -1582,15 +1582,12 @@
1582 1582  )))|0|0 to 3|(((
1583 1583  Set the zero-speed clamp function. In speed mode:
1584 1584  
1585 -0: Force the speed to 0;
1586 -
1587 -1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1588 -
1589 -2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1590 -
1591 -3: Invalid, ignore zero-speed clamp input
1547 +* 0: Force the speed to 0;
1548 +* 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1549 +* 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1550 +* 3: Invalid, ignore zero-speed clamp input
1592 1592  )))|-
1593 -|P01-22|(((
1552 +|=P01-22|(((
1594 1594  Zero-speed clamp speed threshold
1595 1595  )))|(((
1596 1596  Operation setting
... ... @@ -1600,33 +1600,34 @@
1600 1600  
1601 1601  Table 6-33 Zero-speed clamp related parameters
1602 1602  
1562 +(% style="text-align:center" %)
1563 +(((
1564 +(% class="wikigeneratedid" style="display:inline-block" %)
1565 +[[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1566 +)))
1603 1603  
1604 -[[image:image-20220608171549-30.png]]
1568 +== Speed-related DO output function ==
1605 1605  
1606 -Figure 6-34 Zero-speed clamp diagram
1607 -
1608 -== **Speed-related DO output function** ==
1609 -
1610 1610  The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1611 1611  
1612 -**(1) Rotation detection signal**
1572 +**Rotation detection signal**
1613 1613  
1614 1614  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1615 1615  
1576 +(% style="text-align:center" %)
1577 +(((
1578 +(% class="wikigeneratedid" style="display:inline-block" %)
1579 +[[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1580 +)))
1616 1616  
1617 -[[image:image-20220608171625-31.png]]
1582 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1618 1618  
1619 -Figure 6-35 Rotation detection signal diagram
1620 -
1621 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1622 -
1623 -
1624 -|**Function code**|**Name**|(((
1584 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1625 1625  **Setting method**
1626 -)))|(((
1586 +)))|=(((
1627 1627  **Effective time**
1628 -)))|**Default value**|**Range**|**Definition**|**Unit**
1629 -|P05-16|(((
1588 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1589 +|=P05-16|(((
1630 1630  Rotation detection
1631 1631  
1632 1632  speed threshold
... ... @@ -1638,10 +1638,10 @@
1638 1638  
1639 1639  Table 6-34 Rotation detection speed threshold parameters
1640 1640  
1641 -|**DO function code**|**Function name**|**Function**
1642 -|132|(((
1601 +|=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1602 +|=132|(% style="width:247px" %)(((
1643 1643  T-COIN rotation detection
1644 -)))|(((
1604 +)))|(% style="width:695px" %)(((
1645 1645  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1646 1646  
1647 1647  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1649,22 +1649,24 @@
1649 1649  
1650 1650  Table 6-35 DO rotation detection function code
1651 1651  
1652 -**(2) Zero-speed signal**
1612 +**Zero-speed signal**
1653 1653  
1654 1654  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1655 1655  
1656 -[[image:image-20220608171904-32.png]]
1616 +(% style="text-align:center" %)
1617 +(((
1618 +(% class="wikigeneratedid" style="display:inline-block" %)
1619 +[[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1620 +)))
1657 1657  
1658 -Figure 6-36 Zero-speed signal diagram
1622 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1659 1659  
1660 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1661 -
1662 -|**Function code**|**Name**|(((
1624 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1663 1663  **Setting method**
1664 -)))|(((
1626 +)))|=(((
1665 1665  **Effective time**
1666 -)))|**Default value**|**Range**|**Definition**|**Unit**
1667 -|P05-19|Zero speed output signal threshold|(((
1628 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1629 +|=P05-19|Zero speed output signal threshold|(((
1668 1668  Operation setting
1669 1669  )))|(((
1670 1670  Effective immediately
... ... @@ -1672,30 +1672,31 @@
1672 1672  
1673 1673  Table 6-36 Zero-speed output signal threshold parameter
1674 1674  
1675 -
1676 -|**DO function code**|**Function name**|**Function**
1677 -|133|(((
1637 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1638 +|=133|(((
1678 1678  ZSP zero speed signal
1679 1679  )))|Output this signal indicates that the servo motor is stopping rotation
1680 1680  
1681 1681  Table 6-37 DO zero-speed signal function code
1682 1682  
1683 -**(3) Speed consistent signal**
1644 +**Speed consistent signal**
1684 1684  
1685 1685  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1686 1686  
1687 -[[image:image-20220608172053-33.png]]
1648 +(% style="text-align:center" %)
1649 +(((
1650 +(% class="wikigeneratedid" style="display:inline-block" %)
1651 +[[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1652 +)))
1688 1688  
1689 -Figure 6-37 Speed consistent signal diagram
1654 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1690 1690  
1691 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1692 -
1693 -|**Function code**|**Name**|(((
1656 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1694 1694  **Setting method**
1695 -)))|(((
1658 +)))|=(((
1696 1696  **Effective time**
1697 -)))|**Default value**|**Range**|**Definition**|**Unit**
1698 -|P05-17|Speed consistent signal threshold|(((
1660 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1661 +|=P05-17|Speed consistent signal threshold|(((
1699 1699  Operationsetting
1700 1700  )))|(((
1701 1701  Effective immediately
... ... @@ -1703,30 +1703,31 @@
1703 1703  
1704 1704  Table 6-38 Speed consistent signal threshold parameters
1705 1705  
1706 -
1707 -|**DO Function code**|**Function name**|**Function**
1708 -|136|(((
1669 +|=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1670 +|=136|(% style="width:262px" %)(((
1709 1709  U-COIN consistent speed
1710 -)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1672 +)))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1711 1711  
1712 1712  Table 6-39 DO speed consistent function code
1713 1713  
1714 -**(4) Speed approach signal**
1676 +**Speed approach signal**
1715 1715  
1716 1716  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1717 1717  
1718 -[[image:image-20220608172207-34.png]]
1680 +(% style="text-align:center" %)
1681 +(((
1682 +(% class="wikigeneratedid" style="display:inline-block" %)
1683 +[[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1684 +)))
1719 1719  
1720 -Figure 6-38 Speed approaching signal diagram
1686 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1721 1721  
1722 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1723 -
1724 -|**Function code**|**Name**|(((
1688 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1725 1725  **Setting method**
1726 -)))|(((
1690 +)))|=(((
1727 1727  **Effective time**
1728 -)))|**Default value**|**Range**|**Definition**|**Unit**
1729 -|P05-18|Speed approach signal threshold|(((
1692 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1693 +|=P05-18|Speed approach signal threshold|(((
1730 1730  Operation setting
1731 1731  )))|(((
1732 1732  Effective immediately
... ... @@ -1734,8 +1734,8 @@
1734 1734  
1735 1735  Table 6-40 Speed approaching signal threshold parameters
1736 1736  
1737 -|**DO function code**|**Function name**|**Function**
1738 -|137|(((
1701 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1702 +|=137|(((
1739 1739  V-NEAR speed approach
1740 1740  )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1741 1741  
... ... @@ -1745,22 +1745,22 @@
1745 1745  
1746 1746  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1747 1747  
1712 +(% style="text-align:center" %)
1713 +(((
1714 +(% class="wikigeneratedid" style="display:inline-block" %)
1715 +[[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1716 +)))
1748 1748  
1749 -[[image:image-20220608172405-35.png]]
1718 +== Torque instru**ction input setting** ==
1750 1750  
1751 -Figure 6-39 Torque mode diagram
1752 -
1753 -== **Torque instruction input setting** ==
1754 -
1755 1755  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1756 1756  
1757 -
1758 -|**Function code**|**Name**|(((
1722 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1759 1759  **Setting method**
1760 -)))|(((
1724 +)))|=(((
1761 1761  **Effective time**
1762 -)))|**Default value**|**Range**|**Definition**|**Unit**
1763 -|P01-08|Torque instruction source|(((
1726 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1727 +|=P01-07|Torque instruction source|(((
1764 1764  Shutdown setting
1765 1765  )))|(((
1766 1766  Effective immediately
... ... @@ -1772,17 +1772,16 @@
1772 1772  
1773 1773  Table 6-42 Torque instruction source parameter
1774 1774  
1775 -**(1) Torque instruction source is internal torque instruction (P01-07=0)**
1739 +**Torque instruction source is internal torque instruction (P01-07=0)**
1776 1776  
1777 1777  Torque instruction source is from inside, the value is set by function code P01-08.
1778 1778  
1779 -
1780 -|**Function code**|**Name**|(((
1743 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1781 1781  **Setting method**
1782 -)))|(((
1745 +)))|=(((
1783 1783  **Effective time**
1784 -)))|**Default value**|**Range**|**Definition**|**Unit**
1785 -|P01-08|Torque instruction keyboard set value|(((
1747 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1748 +|=P01-08|Torque instruction keyboard set value|(((
1786 1786  Operation setting
1787 1787  )))|(((
1788 1788  Effective immediately
... ... @@ -1790,22 +1790,24 @@
1790 1790  
1791 1791  Table 6-43 Torque instruction keyboard set value
1792 1792  
1793 -**(2) Torque instruction source is internal torque instruction (P01-07=1)**
1756 +**Torque instruction source is internal torque instruction (P01-07=1)**
1794 1794  
1795 1795  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1796 1796  
1797 1797  (% style="text-align:center" %)
1798 -[[image:image-20220608153646-7.png||height="213" width="408"]]
1761 +(((
1762 +(% class="wikigeneratedid" style="display:inline-block" %)
1763 +[[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1764 +)))
1799 1799  
1800 -Figure 6-40 Analog input circuit
1801 -
1802 1802  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1803 1803  
1804 1804  (% style="text-align:center" %)
1805 -[[image:image-20220608172502-36.png]]
1769 +(((
1770 +(% class="wikigeneratedid" style="display:inline-block" %)
1771 +[[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1772 +)))
1806 1806  
1807 -Figure 6-41 Analog voltage torque instruction setting steps
1808 -
1809 1809  Explanation of related terms:
1810 1810  
1811 1811  * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
... ... @@ -1813,65 +1813,74 @@
1813 1813  * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1814 1814  
1815 1815  (% style="text-align:center" %)
1816 -[[image:image-20220608172611-37.png]]
1781 +(((
1782 +(% class="wikigeneratedid" style="display:inline-block" %)
1783 +[[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1784 +)))
1817 1817  
1818 -Figure 6-42 AI_1 diagram before and after bias
1786 +|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1787 +|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1788 +|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1789 +|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1790 +|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1819 1819  
1820 -|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1821 -|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1822 -|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1823 -|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1824 -|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1825 -
1826 1826  Table 6-44 AI_1 parameters
1827 1827  
1794 +(% class="box infomessage" %)
1795 +(((
1828 1828  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1797 +)))
1829 1829  
1830 -== **Torque instruction filtering** ==
1799 +== Torque instruction filtering ==
1831 1831  
1832 -In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1801 +In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1833 1833  
1834 -|**Function code**|**Name**|(((
1803 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1835 1835  **Setting method**
1836 -)))|(((
1805 +)))|=(((
1837 1837  **Effective time**
1838 -)))|**Default value**|**Range**|**Definition**|**Unit**
1839 -|P04-04|Torque filtering time constant|(((
1807 +)))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1808 +|=P04-04|Torque filtering time constant|(((
1840 1840  Operation setting
1841 1841  )))|(((
1842 1842  Effective immediately
1843 -)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1812 +)))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1844 1844  
1845 1845  Table 6-45 Torque filtering time constant parameter details
1846 1846  
1816 +(% class="box infomessage" %)
1817 +(((
1847 1847  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1819 +)))
1848 1848  
1849 1849  (% style="text-align:center" %)
1850 -[[image:image-20220608172646-38.png]]
1822 +(((
1823 +(% class="wikigeneratedid" style="display:inline-block" %)
1824 +[[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1825 +)))
1851 1851  
1852 -Figure 6-43 Torque instruction-first-order filtering diagram
1827 +== Torque instruction limit ==
1853 1853  
1854 -== **Torque instruction limit** ==
1855 -
1856 1856  When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1857 1857  
1858 1858  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1859 1859  
1860 1860  (% style="text-align:center" %)
1861 -[[image:image-20220608172806-39.png]]
1834 +(((
1835 +(% class="wikigeneratedid" style="display:inline-block" %)
1836 +[[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1837 +)))
1862 1862  
1863 -Figure 6-44 Torque instruction limit diagram
1839 +**Set torque limit source**
1864 1864  
1865 -**(1) Set torque limit source**
1866 -
1867 1867  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1868 1868  
1869 -|**Function code**|**Name**|(((
1843 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1870 1870  **Setting method**
1871 -)))|(((
1845 +)))|=(((
1872 1872  **Effective time**
1873 -)))|**Default value**|**Range**|**Definition**|**Unit**
1874 -|P01-14|(((
1847 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1848 +|=P01-14|(((
1875 1875  Torque limit source
1876 1876  )))|(((
1877 1877  Shutdown setting
... ... @@ -1878,49 +1878,46 @@
1878 1878  )))|(((
1879 1879  Effective immediately
1880 1880  )))|0|0 to 1|(((
1881 -0: internal value
1882 -
1883 -1: AI_1 analog input
1884 -
1885 -(not supported by VD2F)
1855 +* 0: internal value
1856 +* 1: AI_1 analog input (not supported by VD2F)
1886 1886  )))|-
1887 1887  
1888 -1) Torque limit source is internal torque instruction (P01-14=0)
1859 +* Torque limit source is internal torque instruction (P01-14=0)
1889 1889  
1890 1890  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1891 1891  
1892 -|**Function code**|**Name**|(((
1863 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1893 1893  **Setting method**
1894 -)))|(((
1865 +)))|=(((
1895 1895  **Effective time**
1896 -)))|**Default value**|**Range**|**Definition**|**Unit**
1897 -|P01-15|(((
1867 +)))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1868 +|=P01-15|(((
1898 1898  Forward torque limit
1899 1899  )))|(((
1900 1900  Operation setting
1901 1901  )))|(((
1902 1902  Effective immediately
1903 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1904 -|P01-16|(((
1874 +)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1875 +|=P01-16|(((
1905 1905  Reverse torque limit
1906 1906  )))|(((
1907 1907  Operation setting
1908 1908  )))|(((
1909 1909  Effective immediately
1910 -)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1881 +)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1911 1911  
1912 1912  Table 6-46 Torque limit parameter details
1913 1913  
1914 -2) Torque limit source is external (P01-14=1)
1885 +* Torque limit source is external (P01-14=1)
1915 1915  
1916 1916  Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1917 1917  
1918 -**(2) Set torque limit DO signal output**
1889 +**Set torque limit DO signal output**
1919 1919  
1920 1920  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1921 1921  
1922 -|**DO function code**|**Function name**|**Function**
1923 -|139|(((
1893 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1894 +|=139|(((
1924 1924  T-LIMIT in torque limit
1925 1925  )))|Output of this signal indicates that the servo motor torque is limited
1926 1926  
... ... @@ -1930,21 +1930,28 @@
1930 1930  
1931 1931  In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1932 1932  
1933 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.
1904 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1934 1934  
1935 1935  |(((
1936 -[[image:image-20220608172910-40.png]]
1907 +(% style="text-align:center" %)
1908 +(((
1909 +(% class="wikigeneratedid" style="display:inline-block" %)
1910 +[[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1911 +)))
1937 1937  )))|(((
1938 -[[image:image-20220608173155-41.png]]
1913 +(% style="text-align:center" %)
1914 +(((
1915 +(% class="wikigeneratedid" style="display:inline-block" %)
1916 +[[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1939 1939  )))
1940 -|Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1918 +)))
1941 1941  
1942 -|**Function code**|**Name**|(((
1920 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1943 1943  **Setting method**
1944 -)))|(((
1922 +)))|=(((
1945 1945  **Effective time**
1946 -)))|**Default value**|**Range**|**Definition**|**Unit**
1947 -|P01-17|(((
1924 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1925 +|=P01-17|(((
1948 1948  Forward torque
1949 1949  
1950 1950  limit in torque mode
... ... @@ -1957,7 +1957,7 @@
1957 1957  
1958 1958  limit in torque mode
1959 1959  )))|0.1%
1960 -|P01-18|(((
1938 +|=P01-18|(((
1961 1961  Reverse torque
1962 1962  
1963 1963  limit in torque mode
... ... @@ -1973,9 +1973,9 @@
1973 1973  
1974 1974  Table 6-48 Speed limit parameters in torque mode
1975 1975  
1976 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__.
1954 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1977 1977  
1978 -== **Torque-related DO output functions** ==
1956 +== Torque-related DO output functions ==
1979 1979  
1980 1980  The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1981 1981  
... ... @@ -1984,26 +1984,27 @@
1984 1984  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1985 1985  
1986 1986  (% style="text-align:center" %)
1987 -[[image:image-20220608173541-42.png]]
1965 +(((
1966 +(% class="wikigeneratedid" style="display:inline-block" %)
1967 +[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||id="Iimage-20220608173541-42.png"]]
1968 +)))
1988 1988  
1989 -Figure 6-47 Torque arrival output diagram
1970 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
1990 1990  
1991 -To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1992 -
1993 -|**Function code**|**Name**|(((
1972 +|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
1994 1994  **Setting method**
1995 -)))|(((
1974 +)))|=(% style="width: 124px;" %)(((
1996 1996  **Effective time**
1997 -)))|**Default value**|**Range**|**Definition**|**Unit**
1998 -|P05-20|(((
1976 +)))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
1977 +|=P05-20|(% style="width:113px" %)(((
1999 1999  Torque arrival
2000 2000  
2001 2001  threshold
2002 -)))|(((
1981 +)))|(% style="width:100px" %)(((
2003 2003  Operation setting
2004 -)))|(((
1983 +)))|(% style="width:124px" %)(((
2005 2005  Effective immediately
2006 -)))|100|0 to 300|(((
1985 +)))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2007 2007  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2008 2008  
2009 2009  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
... ... @@ -2010,21 +2010,20 @@
2010 2010  
2011 2011  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2012 2012  )))|%
2013 -|P05-21|(((
1992 +|=P05-21|(% style="width:113px" %)(((
2014 2014  Torque arrival
2015 2015  
2016 2016  hysteresis
2017 -)))|(((
1996 +)))|(% style="width:100px" %)(((
2018 2018  Operation setting
2019 -)))|(((
1998 +)))|(% style="width:124px" %)(((
2020 2020  Effective immediately
2021 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2000 +)))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2022 2022  
2023 2023  Table 6-49 Torque arrival parameters
2024 2024  
2025 -
2026 -|**DO function code**|**Function name**|**Function**
2027 -|138|(((
2004 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2005 +|=138|(((
2028 2028  T-COIN torque arrival
2029 2029  )))|Used to determine whether the actual torque instruction has reached the set range
2030 2030  
... ... @@ -2034,35 +2034,28 @@
2034 2034  
2035 2035  Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2036 2036  
2037 -Position mode⇔ Speed mode
2015 +* Position mode⇔ Speed mode
2016 +* Position mode ⇔Torque mode
2017 +* Speed mode ⇔Torque mode
2038 2038  
2039 -Position mode ⇔Torque mode
2040 -
2041 -Speed mode ⇔Torque mode
2042 -
2043 2043  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2044 2044  
2045 -|**Function code**|**Name**|(((
2021 +|=(% scope="row" %)**Function code**|=**Name**|=(((
2046 2046  **Setting method**
2047 -)))|(((
2023 +)))|=(((
2048 2048  **Effective time**
2049 -)))|**Default value**|**Range**|**Definition**|**Unit**
2050 -|P00-01|Control mode|(((
2025 +)))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2026 +|=P00-01|Control mode|(((
2051 2051  Shutdown setting
2052 2052  )))|(((
2053 2053  Shutdown setting
2054 -)))|1|1 to 6|(((
2055 -1: Position control
2056 -
2057 -2: Speed control
2058 -
2059 -3: Torque control
2060 -
2061 -4: Position/speed mixed control
2062 -
2063 -5: Position/torque mixed control
2064 -
2065 -6: Speed/torque mixed control
2030 +)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2031 +* 1: Position control
2032 +* 2: Speed control
2033 +* 3: Torque control
2034 +* 4: Position/speed mixed control
2035 +* 5: Position/torque mixed control
2036 +* 6: Speed/torque mixed control
2066 2066  )))|-
2067 2067  
2068 2068  Table 6-51 Mixed control mode parameters
... ... @@ -2069,35 +2069,38 @@
2069 2069  
2070 2070  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2071 2071  
2072 -|**DI function code**|**Name**|**Function name**|**Function**
2073 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2074 -|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2075 -|(% rowspan="2" %)4|Valid|Speed mode
2076 -|invalid|Position mode
2077 -|(% rowspan="2" %)5|Valid|Torque mode
2078 -|invalid|Position mode
2079 -|(% rowspan="2" %)6|Valid|Torque mode
2080 -|invalid|Speed mode
2043 +|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2044 +|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2045 +(% style="margin-left:auto; margin-right:auto; width:585px" %)
2046 +|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2047 +|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2048 +|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2049 +|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2050 +|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2051 +|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2052 +|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2081 2081  )))
2082 2082  
2083 2083  Table 6-52 Description of DI function codes in control mode
2084 2084  
2057 +(% class="box infomessage" %)
2058 +(((
2085 2085  ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2060 +)))
2086 2086  
2087 2087  = **Absolute system** =
2088 2088  
2089 -== **Overview** ==
2064 +== Overview ==
2090 2090  
2091 2091  Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2092 2092  
2093 2093  The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2094 2094  
2095 -== **Single-turn absolute value system** ==
2070 +== Single-turn absolute value system ==
2096 2096  
2097 2097  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2098 2098  
2099 -
2100 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2074 +|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2101 2101  |A1 (single-turn magnetic encoder)|17|0 to 131071
2102 2102  
2103 2103  Table 6-53 Single-turn absolute encoder information
... ... @@ -2105,17 +2105,18 @@
2105 2105  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2106 2106  
2107 2107  (% style="text-align:center" %)
2108 -[[image:image-20220608173618-43.png]]
2082 +(((
2083 +(% class="wikigeneratedid" style="display:inline-block" %)
2084 +[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||id="Iimage-20220608173618-43.png"]]
2085 +)))
2109 2109  
2110 -Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2087 +== Multi-turn absolute value system ==
2111 2111  
2112 -== **Multi-turn absolute value system** ==
2113 -
2114 2114  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2115 2115  
2116 -|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2117 -|C1 (multi-turn magnetic encoder)|17|0 to 131071
2118 -|D2 (multi-turn Optical encoder)|23|0 to 8388607
2091 +|=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2092 +|=C1 (multi-turn magnetic encoder)|17|0 to 131071
2093 +|=D2 (multi-turn Optical encoder)|23|0 to 8388607
2119 2119  
2120 2120  Table 6-54 Multi-turn absolute encoder information
2121 2121  
... ... @@ -2122,20 +2122,21 @@
2122 2122  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2123 2123  
2124 2124  (% style="text-align:center" %)
2125 -[[image:image-20220608173701-44.png]]
2100 +(((
2101 +(% class="wikigeneratedid" style="display:inline-block" %)
2102 +[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2103 +)))
2126 2126  
2127 -Figure 6-49 The relationship between encoder feedback position and rotating load position
2105 +== Related functions and parameters ==
2128 2128  
2129 -== **Related functions and parameters** ==
2130 -
2131 2131  **Encoder feedback data**
2132 2132  
2133 2133  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2134 2134  
2135 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2136 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2137 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2138 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2111 +|=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2112 +|=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2113 +|=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2114 +|=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2139 2139  
2140 2140  Table 6-55 Encoder feedback data
2141 2141  
... ... @@ -2143,26 +2143,28 @@
2143 2143  
2144 2144  The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2145 2145  
2146 -|**Function code**|**Name**|(((
2122 +|=(% scope="row" %)**Function code**|=**Name**|=(((
2147 2147  **Setting**
2148 2148  
2149 2149  **method**
2150 -)))|(((
2126 +)))|=(((
2151 2151  **Effective**
2152 2152  
2153 2153  **time**
2154 -)))|**Default value**|**Range**|**Definition**|**Unit**
2155 -|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2156 -0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2157 -
2158 -1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2130 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2131 +|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2132 +* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2133 +* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2159 2159  )))|-
2160 2160  
2161 2161  This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2162 2162  
2138 +(% class="box infomessage" %)
2139 +(((
2163 2163  **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2141 +)))
2164 2164  
2165 -== **Absolute value system encoder battery box use precautions**. ==
2143 +== Absolute value system encoder battery box use precautions. ==
2166 2166  
2167 2167  **Cautions**
2168 2168  
... ... @@ -2169,10 +2169,11 @@
2169 2169  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2170 2170  
2171 2171  (% style="text-align:center" %)
2172 -[[image:image-20220707111333-28.png]]
2150 +(((
2151 +(% class="wikigeneratedid" style="display:inline-block" %)
2152 +[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||id="Iimage-20220707111333-28.png"]]
2153 +)))
2173 2173  
2174 -Figure 6-50 the encoder battery box
2175 -
2176 2176  When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2177 2177  
2178 2178  **Replace the battery**
... ... @@ -2188,20 +2188,19 @@
2188 2188  
2189 2189  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2190 2190  
2191 -|**Function code**|**Name**|(((
2170 +|=(% scope="row" %)**Function code**|=**Name**|=(((
2192 2192  **Setting method**
2193 -)))|(((
2172 +)))|=(((
2194 2194  **Effective time**
2195 -)))|**Default value**|**Range**|**Definition**|**Unit**
2196 -|P10-06|Multi-turn absolute encoder reset|(((
2174 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2175 +|=P10-06|Multi-turn absolute encoder reset|(((
2197 2197  Shutdown setting
2198 2198  )))|(((
2199 2199  Effective immediately
2200 2200  )))|0|0 to 1|(((
2201 -0: No operation
2180 +* 0: No operation
2181 +* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2202 2202  
2203 -1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2204 -
2205 2205  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2206 2206  )))|-
2207 2207  
... ... @@ -2209,7 +2209,7 @@
2209 2209  
2210 2210  **Battery selection**
2211 2211  
2212 -|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value**
2190 +|=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2213 2213  |(% rowspan="4" style="width:361px" %)(((
2214 2214  Nominal Voltage: 3.6V
2215 2215  
... ... @@ -2237,111 +2237,108 @@
2237 2237  
2238 2238  = **Other functions** =
2239 2239  
2240 -== **VDI** ==
2218 +== VDI ==
2241 2241  
2242 2242  VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2243 2243  
2222 +(% class="box infomessage" %)
2223 +(((
2244 2244  ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2225 +)))
2245 2245  
2246 2246  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2247 2247  
2248 -
2249 2249  (% style="text-align:center" %)
2250 -[[image:image-20220608173804-46.png]]
2230 +(((
2231 +(% class="wikigeneratedid" style="display:inline-block" %)
2232 +[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2233 +)))
2251 2251  
2252 -Figure 6-51 VDI_1 setting steps
2253 -
2254 -|**Function code**|**Name**|(((
2235 +|=(% scope="row" %)**Function code**|=**Name**|=(((
2255 2255  **Setting method**
2256 -)))|(((
2237 +)))|=(((
2257 2257  **Effective time**
2258 -)))|**Default value**|**Range**|**Definition**|**Unit**
2259 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2239 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2240 +|=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2260 2260  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2261 2261  
2262 2262  VDI_1 input level:
2263 2263  
2264 -0: low level
2265 -
2266 -1: high level
2245 +* 0: low level
2246 +* 1: high level
2267 2267  )))|-
2268 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2248 +|=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2269 2269  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2270 2270  
2271 2271  VDI_2 input level:
2272 2272  
2273 -0: low level
2274 -
2275 -1: high level
2253 +* 0: low level
2254 +* 1: high level
2276 2276  )))|-
2277 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2256 +|=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2278 2278  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2279 2279  
2280 2280  VDI_3 input level:
2281 2281  
2282 -0: low level
2283 -
2284 -1: high level
2261 +* 0: low level
2262 +* 1: high level
2285 2285  )))|-
2286 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2264 +|=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2287 2287  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2288 2288  
2289 2289  VDI_4 input level:
2290 2290  
2291 -0: low level
2292 -
2293 -1: high level
2269 +* 0: low level
2270 +* 1: high level
2294 2294  )))|-
2295 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2272 +|=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2296 2296  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2297 2297  
2298 2298  VDI_5 input level:
2299 2299  
2300 -0: low level
2301 -
2302 -1: high level
2277 +* 0: low level
2278 +* 1: high level
2303 2303  )))|-
2304 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2280 +|=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2305 2305  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2306 2306  
2307 2307  VDI_6 input level:
2308 2308  
2309 -0: low level
2310 -
2311 -1: high level
2285 +* 0: low level
2286 +* 1: high level
2312 2312  )))|-
2313 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2288 +|=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2314 2314  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2315 2315  
2316 2316  VDI_7 input level:
2317 2317  
2318 -0: low level
2319 -
2320 -1: high level
2293 +* 0: low level
2294 +* 1: high level
2321 2321  )))|-
2322 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2296 +|=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2323 2323  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2324 2324  
2325 2325  VDI_8 input level:
2326 2326  
2327 -0: low level
2328 -
2329 -1: high level
2301 +* 0: low level
2302 +* 1: high level
2330 2330  )))|-
2331 2331  
2332 2332  Table 6-57 Virtual VDI parameters
2333 2333  
2307 +(% class="box infomessage" %)
2308 +(((
2334 2334  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2310 +)))
2335 2335  
2336 -== **Port filtering time** ==
2312 +== Port filtering time ==
2337 2337  
2338 2338  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2339 2339  
2316 +|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2317 +|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2318 +|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2340 2340  
2341 -|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration**
2342 -|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2343 -|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2344 -
2345 2345  Table 6-58 DI terminal channel logic selection
2346 2346  
2347 2347  == **VDO** ==
... ... @@ -2351,51 +2351,49 @@
2351 2351  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2352 2352  
2353 2353  (% style="text-align:center" %)
2354 -[[image:image-20220608173957-48.png]]
2329 +(((
2330 +(% class="wikigeneratedid" style="display:inline-block" %)
2331 +[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2332 +)))
2355 2355  
2356 -Figure 6-52 VDO_2 setting steps
2357 2357  
2358 -|**Function code**|**Name**|(((
2335 +|=(% scope="row" %)**Function code**|=**Name**|=(((
2359 2359  **Setting method**
2360 -)))|(((
2337 +)))|=(((
2361 2361  **Effective time**
2362 -)))|**Default value**|**Range**|**Definition**|**Unit**
2363 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2339 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2340 +|=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2364 2364  VDO_1 output level:
2365 2365  
2366 -0: low level
2367 -
2368 -1: high level
2343 +* 0: low level
2344 +* 1: high level
2369 2369  )))|-
2370 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2346 +|=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2371 2371  VDO_2 output level:
2372 2372  
2373 -0: low level
2374 -
2375 -1: high level
2349 +* 0: low level
2350 +* 1: high level
2376 2376  )))|-
2377 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2352 +|=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2378 2378  VDO_3 output level:
2379 2379  
2380 -0: low level
2381 -
2382 -1: high level
2355 +* 0: low level
2356 +* 1: high level
2383 2383  )))|-
2384 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2358 +|=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2385 2385  VDO_4 output level:
2386 2386  
2387 -0: low level
2388 -
2389 -1: high level
2361 +* 0: low level
2362 +* 1: high level
2390 2390  )))|-
2391 2391  
2392 2392  Table 6-59 Communication control DO function parameters
2393 2393  
2394 -|**DO function number**|**Function name**|**Function**
2395 -|145|COM_VDO1 communication VDO1 output|Use communication VDO
2396 -|146|COM_VDO1 communication VDO2 output|Use communication VDO
2397 -|147|COM_VDO1 communication VDO3 output|Use communication VDO
2398 -|148|COM_VDO1 communication VDO4output|Use communication VDO
2367 +|=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2368 +|=145|COM_VDO1 communication VDO1 output|Use communication VDO
2369 +|=146|COM_VDO1 communication VDO2 output|Use communication VDO
2370 +|=147|COM_VDO1 communication VDO3 output|Use communication VDO
2371 +|=148|COM_VDO1 communication VDO4output|Use communication VDO
2399 2399  
2400 2400  Table 6-60 VDO function number
2401 2401  
... ... @@ -2403,16 +2403,16 @@
2403 2403  
2404 2404  If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2405 2405  
2406 -== **Motor overload protection** ==
2379 +== Motor overload protection ==
2407 2407  
2408 2408  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2409 2409  
2410 -|**Function code**|**Name**|(((
2383 +|=(% scope="row" %)**Function code**|=**Name**|=(((
2411 2411  **Setting method**
2412 -)))|(((
2385 +)))|=(((
2413 2413  **Effective time**
2414 -)))|**Default value**|**Range**|**Definition**|**Unit**
2415 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2387 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2388 +|=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2416 2416  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2417 2417  
2418 2418  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled