Changes for page 06 Operation

Last modified by Iris on 2025/08/08 14:40

From version 54.2
edited by Stone Wu
on 2022/08/30 11:07
Change comment: There is no comment for this version
To version 51.29
edited by Stone Wu
on 2022/07/07 10:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.Manual.02 VD2 SA Series.WebHome
1 +Servo.1 User Manual.02 VD2 SA Series.WebHome
Content
... ... @@ -2,45 +2,47 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" style="width: 58px;" %)**No.**|=(% style="width: 1017px;" %)**Content**
5 +|=(% scope="row" %)**No.**|=**Content**
6 6  |=(% colspan="2" %)Wiring
7 -|=(% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=(% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=(% style="width: 58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably.
12 -|=(% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=(% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range.
14 -|=(% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated.
7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|=5|Servo drive and servo motor must be grounded reliably.
12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|=7|The force of all cables is within the specified range.
14 +|=8|The wiring terminals have been insulated.
15 15  |=(% colspan="2" %)Environment and Machinery
16 -|=(% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 -|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
22 -== Power-on ==
22 +== **Power-on** ==
23 23  
24 -**Connect the main circuit power supply**
24 +**(1) Connect the main circuit power supply**
25 25  
26 26  After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27 27  
28 -If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.
29 29  
30 -**Set the servo drive enable (S-ON) to invalid (OFF)**
30 +**(2) Set the servo drive enable (S-ON) to invalid (OFF)**
31 31  
32 -== Jog operation ==
32 +== **Jog operation** ==
33 33  
34 34  Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35 35  
36 -**Panel jog operation**
36 +**(1) Panel jog operation**
37 37  
38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
39 39  
40 -**Jog operation of servo debugging platform**
40 +**(2) Jog operation of servo debugging platform**
41 41  
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 +
45 +
44 44  |=(% scope="row" %)**Function code**|=**Name**|=(((
45 45  **Setting method**
46 46  )))|=(((
... ... @@ -58,6 +58,7 @@
58 58  
59 59  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
60 60  
63 +
61 61  |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
62 62  |=P00-04|Rotation direction|(((
63 63  Shutdown setting
... ... @@ -66,8 +66,9 @@
66 66  )))|0|0 to 1|(((
67 67  Forward rotation: Face the motor shaft to watch
68 68  
69 -* 0: standard setting (CW is forward rotation)
70 -* 1: reverse mode (CCW is forward rotation)
72 +0: standard setting (CW is forward rotation)
73 +
74 +1: reverse mode (CCW is forward rotation)
71 71  )))|-
72 72  
73 73  Table 6-3 Rotation direction parameters** **
... ... @@ -91,10 +91,13 @@
91 91  )))|(((
92 92  Effective immediately
93 93  )))|0|0 to 3|(((
94 -* 0: use built-in braking resistor
95 -* 1: use external braking resistor and natural cooling
96 -* 2: use external braking resistor and forced air cooling; (cannot be set)
97 -* 3: No braking resistor is used, it is all absorbed by capacitor.
98 +0: use built-in braking resistor
99 +
100 +1: use external braking resistor and natural cooling
101 +
102 +2: use external braking resistor and forced air cooling; (cannot be set)
103 +
104 +3: No braking resistor is used, it is all absorbed by capacitor.
98 98  )))|-
99 99  |=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
100 100  |=P00-10|External braking resistor value|(((
... ... @@ -112,28 +112,28 @@
112 112  
113 113  == **Servo operation** ==
114 114  
115 -**Set the servo enable (S-ON) to valid (ON)**
122 +**(1) Set the servo enable (S-ON) to valid (ON)**
116 116  
117 117  The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
118 118  
119 119  S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
120 120  
121 -**Input the instruction and the motor rotates**
128 +**(2) Input the instruction and the motor rotates**
122 122  
123 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
130 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
124 124  
125 -**Timing diagram of power on**
132 +**(3) Timing diagram of power on**
126 126  
127 -(% style="text-align:center" %)
128 -(((
129 -(% class="wikigeneratedid" style="display:inline-block" %)
130 -[[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
131 -)))
132 132  
133 -== Servo shutdown ==
135 +[[image:image-20220608163014-1.png]]
134 134  
135 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
137 +Figure 6-1 Timing diagram of power on
136 136  
139 +== **Servo shutdown** ==
140 +
141 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.
142 +
143 +
137 137  |=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
138 138  |=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
139 139  |=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
... ... @@ -140,15 +140,17 @@
140 140  
141 141  Table 6-5 Comparison of two shutdown modes
142 142  
150 +
143 143  |=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
144 144  |=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
145 145  
146 146  Table 6-6 Comparison of two shutdown status
147 147  
148 -**Servo enable (S-ON) OFF shutdown**
156 +**(1) Servo enable (S-ON) OFF shutdown**
149 149  
150 150  The related parameters of the servo OFF shutdown mode are shown in the table below.
151 151  
160 +
152 152  |=(% scope="row" %)**Function code**|=**Name**|=(((
153 153  **Setting method**
154 154  )))|=(((
... ... @@ -165,17 +165,18 @@
165 165  
166 166  immediately
167 167  )))|0|0 to 1|(((
168 -* 0: Free shutdown, and the motor shaft remains free status.
169 -* 1: Zero-speed shutdown, and the motor shaft remains free status.
177 +0: Free shutdown, and the motor shaft remains free status.
178 +
179 +1: Zero-speed shutdown, and the motor shaft remains free status.
170 170  )))|-
171 171  
172 -Table 6-7 Servo OFF shutdown mode parameters details
182 +Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
173 173  
174 -**Emergency shutdown**
184 +**(2) Emergency shutdown**
175 175  
176 176  It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
177 177  
178 -**Overtravel shutdown**
188 +**(3) Overtravel shutdown**
179 179  
180 180  Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
181 181  
... ... @@ -183,98 +183,149 @@
183 183  
184 184  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
185 185  
186 -|=(% scope="row" %)**Function code**|=(% style="width: 143px;" %)**Name**|=(% style="width: 137px;" %)(((
196 +
197 +|=(% scope="row" %)**Function code**|=**Name**|=(((
187 187  **Setting method**
188 -)))|=(% style="width: 141px;" %)(((
199 +)))|=(((
189 189  **Effective time**
190 -)))|=(% style="width: 84px;" %)**Default value**|=(% style="width: 100px;" %)**Range**|=**Definition**|=**Unit**
191 -|=P06-08|(% style="width:143px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|(((
192 -* 0: OFF (not used)
193 -* 01: S-ON servo enable
194 -* 02: A-CLR fault and Warning Clear
195 -* 03: POT forward drive prohibition
196 -* 04: NOT Reverse drive prohibition
197 -* 05: ZCLAMP Zero speed
198 -* 06: CL Clear deviation counter
199 -* 07: C-SIGN Inverted instruction
200 -* 08: E-STOP Emergency stop
201 -* 09: GEAR-SEL Electronic Gear Switch 1
202 -* 10: GAIN-SEL gain switch
203 -* 11: INH Instruction pulse prohibited input
204 -* 12: VSSEL Vibration control switch input
205 -* 13: INSPD1 Internal speed instruction selection 1
206 -* 14: INSPD2 Internal speed instruction selection 2
207 -* 15: INSPD3 Internal speedinstruction selection 3
208 -* 16: J-SEL inertia ratio switch (not implemented yet)
209 -* 17: MixModesel mixed mode selection
210 -* 20: Internal multi-segment position enable signal
211 -* 21: Internal multi-segment position selection 1
212 -* 22: Internal multi-segment position selection 2
213 -* 23: Internal multi-segment position selection 3
214 -* 24: Internal multi-segment position selection 4
215 -* Others: reserved
201 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
202 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
203 +0: OFF (not used)
204 +
205 +01: S-ON servo enable
206 +
207 +02: A-CLR fault and Warning Clear
208 +
209 +03: POT forward drive prohibition
210 +
211 +04: NOT Reverse drive prohibition
212 +
213 +05: ZCLAMP Zero speed
214 +
215 +06: CL Clear deviation counter
216 +
217 +07: C-SIGN Inverted instruction
218 +
219 +08: E-STOP Emergency stop
220 +
221 +09: GEAR-SEL Electronic Gear Switch 1
222 +
223 +10: GAIN-SEL gain switch
224 +
225 +11: INH Instruction pulse prohibited input
226 +
227 +12: VSSEL Vibration control switch input
228 +
229 +13: INSPD1 Internal speed instruction selection 1
230 +
231 +14: INSPD2 Internal speed instruction selection 2
232 +
233 +15: INSPD3 Internal speedinstruction selection 3
234 +
235 +16: J-SEL inertia ratio switch (not implemented yet)
236 +
237 +17: MixModesel mixed mode selection
238 +
239 +20: Internal multi-segment position enable signal
240 +
241 +21: Internal multi-segment position selection 1
242 +
243 +22: Internal multi-segment position selection 2
244 +
245 +23: Internal multi-segment position selection 3
246 +
247 +24: Internal multi-segment position selection 4
248 +
249 +Others: reserved
216 216  )))|-
217 -|=P06-09|(% style="width:143px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
251 +|=P06-09|DI_3 channel logic selection|Operation setting|(((
218 218  Effective immediately
219 -)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
253 +)))|0|0 to 1|(((
220 220  DI port input logic validity function selection.
221 221  
222 -* 0: Normally open input. Active low level (switch on);
223 -* 1: Normally closed input. Active high level (switch off);
256 +0: Normally open input. Active low level (switch on);
257 +
258 +1: Normally closed input. Active high level (switch off);
224 224  )))|-
225 -|=P06-10|(% style="width:143px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
260 +|=P06-10|DI_3 input source selection|Operation setting|(((
226 226  Effective immediately
227 -)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
262 +)))|0|0 to 1|(((
228 228  Select the DI_3 port type to enable
229 229  
230 -* 0: Hardware DI_3 input terminal
231 -* 1: virtual VDI_3 input terminal
265 +0: Hardware DI_3 input terminal
266 +
267 +1: virtual VDI_3 input terminal
232 232  )))|-
233 -|=P06-11|(% style="width:143px" %)DI_4 channel function selection|(% style="width:137px" %)(((
269 +|=P06-11|DI_4 channel function selection|(((
234 234  Operation setting
235 -)))|(% style="width:141px" %)(((
271 +)))|(((
236 236  again Power-on
237 -)))|(% style="width:84px" %)4|(% style="width:100px" %)0 to 32|(((
238 -* 0: OFF (not used)
239 -* 01: SON Servo enable
240 -* 02: A-CLR Fault and Warning Clear
241 -* 03: POT Forward drive prohibition
242 -* 04: NOT Reverse drive prohibition
243 -* 05: ZCLAMP Zero speed
244 -* 06: CL Clear deviation counter
245 -* 07: C-SIGN Inverted instruction
246 -* 08: E-STOP Emergency shutdown
247 -* 09: GEAR-SEL Electronic Gear Switch 1
248 -* 10: GAIN-SEL gain switch
249 -* 11: INH Instruction pulse prohibited input
250 -* 12: VSSEL Vibration control switch input
251 -* 13: INSPD1 Internal speed instruction selection 1
252 -* 14: INSPD2 Internal speed instruction selection 2
253 -* 15: INSPD3 Internal speed instruction selection 3
254 -* 16: J-SEL inertia ratio switch (not implemented yet)
255 -* 17: MixModesel mixed mode selection
256 -* 20: Internal multi-segment position enable signal
257 -* 21: Internal multi-segment position selection 1
258 -* 22: Internal multi-segment position selection 2
259 -* 23: Internal multi-segment position selection 3
260 -* 24: Internal multi-segment position selection 4
261 -* Others: reserved
273 +)))|4|0 to 32|(((
274 +0 off (not used)
275 +
276 +01: SON Servo enable
277 +
278 +02: A-CLR Fault and Warning Clear
279 +
280 +03: POT Forward drive prohibition
281 +
282 +04: NOT Reverse drive prohibition
283 +
284 +05: ZCLAMP Zero speed
285 +
286 +06: CL Clear deviation counter
287 +
288 +07: C-SIGN Inverted instruction
289 +
290 +08: E-STOP Emergency shutdown
291 +
292 +09: GEAR-SEL Electronic Gear Switch 1
293 +
294 +10: GAIN-SEL gain switch
295 +
296 +11: INH Instruction pulse prohibited input
297 +
298 +12: VSSEL Vibration control switch input
299 +
300 +13: INSPD1 Internal speed instruction selection 1
301 +
302 +14: INSPD2 Internal speed instruction selection 2
303 +
304 +15: INSPD3 Internal speed instruction selection 3
305 +
306 +16: J-SEL inertia ratio switch (not implemented yet)
307 +
308 +17: MixModesel mixed mode selection
309 +
310 +20: Internal multi-segment position enable signal
311 +
312 +21: Internal multi-segment position selection 1
313 +
314 +22: Internal multi-segment position selection 2
315 +
316 +23: Internal multi-segment position selection 3
317 +
318 +24: Internal multi-segment position selection 4
319 +
320 +Others: reserved
262 262  )))|-
263 -|=P06-12|(% style="width:143px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
322 +|=P06-12|DI_4 channel logic selection|Operation setting|(((
264 264  Effective immediately
265 -)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
324 +)))|0|0 to 1|(((
266 266  DI port input logic validity function selection.
267 267  
268 -* 0: Normally open input. Active low level (switch on);
269 -* 1: Normally closed input. Active high level (switch off);
327 +0: Normally open input. Active low level (switch on);
328 +
329 +1: Normally closed input. Active high level (switch off);
270 270  )))|-
271 -|=P06-13|(% style="width:143px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
331 +|=P06-13|DI_4 input source selection|Operation setting|(((
272 272  Effective immediately
273 -)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
333 +)))|0|0 to 1|(((
274 274  Select the DI_4 port type to enable
275 275  
276 -* 0: Hardware DI_4 input terminal
277 -* 1: virtual VDI_4 input terminal
336 +0: Hardware DI_4 input terminal
337 +
338 +1: virtual VDI_4 input terminal
278 278  )))|-
279 279  
280 280  Table 6-8 DI3 and DI4 channel parameters
... ... @@ -283,12 +283,12 @@
283 283  
284 284  When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
285 285  
286 -== Brake device ==
347 +== **Brake device** ==
287 287  
288 288  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
289 289  
351 +
290 290  |(((
291 -(% style="text-align:center" %)
292 292  [[image:image-20220611151617-1.png]]
293 293  )))
294 294  |(((
... ... @@ -303,19 +303,17 @@
303 303  ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
304 304  )))
305 305  
306 -**Wiring of brake device**
367 +**(1) Wiring of brake device**
307 307  
308 308  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
309 309  
310 310  
311 -(% style="text-align:center" %)
312 -(((
313 -(% class="wikigeneratedid" style="display:inline-block" %)
314 -[[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
315 -)))
372 +[[image:image-20220608163136-2.png]]
316 316  
374 +Figure 6-2 VD2B servo drive brake wiring
375 +
376 +
317 317  |(((
318 -(% style="text-align:center" %)
319 319  [[image:image-20220611151642-2.png]]
320 320  )))
321 321  |(((
... ... @@ -326,12 +326,13 @@
326 326  ✎It is recommended to use cables above 0.5 mm².
327 327  )))
328 328  
329 -**Brake software setting**
388 +**(2) Brake software setting**
330 330  
331 331  For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
332 332  
333 333  Related function code is as below.
334 334  
394 +
335 335  |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
336 336  **Effective time**
337 337  )))
... ... @@ -341,6 +341,7 @@
341 341  
342 342  Table 6-2 Relevant function codes for brake setting
343 343  
404 +
344 344  |=(% scope="row" %)**Function code**|=**Name**|=(((
345 345  **Setting method**
346 346  )))|=(((
... ... @@ -371,14 +371,15 @@
371 371  
372 372  According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
373 373  
374 -**Servo drive brake timing in normal state**
435 +**(3) Servo drive brake timing in normal state**
375 375  
376 376  The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
377 377  
378 -* Brake timing when servo motor is stationary
439 +1) Brake timing when servo motor is stationary
379 379  
380 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
441 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__
381 381  
443 +
382 382  |(((
383 383  [[image:image-20220611151705-3.png]]
384 384  )))
... ... @@ -388,23 +388,18 @@
388 388  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
389 389  )))
390 390  
391 -(% style="text-align:center" %)
392 -(((
393 -(% class="wikigeneratedid" style="display:inline-block" %)
394 -[[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
395 -)))
453 +[[image:image-20220608163304-3.png]]
396 396  
397 -(% class="box infomessage" %)
398 -(((
455 +Figure 6-3 Brake Timing of when the motor is stationary
456 +
399 399  ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
400 -)))
401 401  
402 -* The brake timing when servo motor rotates
459 +2) The brake timing when servo motor rotates
403 403  
404 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
461 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.
405 405  
463 +
406 406  |(((
407 -(% style="text-align:center" %)
408 408  [[image:image-20220611151719-4.png]]
409 409  )))
410 410  |(((
... ... @@ -419,34 +419,31 @@
419 419  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
420 420  )))
421 421  
422 -(% style="text-align:center" %)
423 -(((
424 -(% class="wikigeneratedid" style="display:inline-block" %)
425 -[[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
426 -)))
479 +[[image:image-20220608163425-4.png]]
427 427  
428 -**Brake timing when the servo drive fails**
481 +Figure 6-4 Brake timing when the motor rotates
429 429  
483 +**(4) Brake timing when the servo drive fails**
484 +
430 430  The brake timing (free shutdown) in the fault status is as follows.
431 431  
432 -(% style="text-align:center" %)
433 -(((
434 -(% class="wikigeneratedid" style="display:inline-block" %)
435 -[[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
436 -)))
437 437  
488 +[[image:image-20220608163541-5.png]]
489 +
490 + Figure 6-5 The brake timing (free shutdown) in the fault state
491 +
438 438  = **Position control mode** =
439 439  
440 440  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
441 441  
442 -(% style="text-align:center" %)
443 -(((
444 -(% class="wikigeneratedid" style="display:inline-block" %)
445 -[[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
446 -)))
447 447  
497 +[[image:image-20220608163643-6.png]]
498 +
499 +Figure 6-6 Position control diagram
500 +
448 448  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
449 449  
503 +
450 450  |=(% scope="row" %)**Function code**|=**Name**|=(((
451 451  **Setting method**
452 452  )))|=(((
... ... @@ -472,10 +472,11 @@
472 472  
473 473  Table 6-10 Control mode parameters
474 474  
475 -== Position instruction input setting ==
529 +== **Position instruction input setting** ==
476 476  
477 477  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
478 478  
533 +
479 479  |=(% scope="row" %)**Function code**|=**Name**|=(((
480 480  **Setting method**
481 481  )))|=(((
... ... @@ -493,78 +493,70 @@
493 493  
494 494  Table 6-11 Position instruction source parameter
495 495  
496 -**The source of position instruction is pulse instruction (P01-06=0)**
551 +**(1) The source of position instruction is pulse instruction (P01-06=0)**
497 497  
498 -Low-speed pulse instruction input
553 +1) Low-speed pulse instruction input
499 499  
500 -|[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]]
555 +|[[image:image-20220707092316-1.png]]|[[image:image-20220707092322-2.png]]
501 501  |VD2A and VD2B servo drives|VD2F servo drive
502 502  |(% colspan="2" %)Figure 6-7 Position instruction input setting
503 503  
504 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
559 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.
505 505  
506 506  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
507 507  
508 -|=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage**
509 -|=Open collector input|200K|24V
510 -|=Differential input|500K|5V
511 511  
564 +|**Pulse method**|**Maximum frequency**|**Voltage**
565 +|Open collector input|200K|24V
566 +|Differential input|500K|5V
567 +
512 512  Table 6-12 Pulse input specifications
513 513  
514 -* Differential input
570 +1.Differential input
515 515  
516 516  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
517 517  
518 518  (% style="text-align:center" %)
519 -(((
520 -(% class="wikigeneratedid" style="display:inline-block" %)
521 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]]
522 -)))
575 +[[image:image-20220707092615-5.jpeg]]
523 523  
524 -(% class="box infomessage" %)
525 -(((
526 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
527 -)))
577 +Figure 6-8 Differential input connection
528 528  
529 -* Open collector input
579 +**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
530 530  
581 +2.Open collector input
582 +
531 531  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
532 532  
533 533  (% style="text-align:center" %)
534 -(((
535 -(% class="wikigeneratedid" style="display:inline-block" %)
536 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="530" id="Iimage-20220707092401-3.jpeg" width="834"]]
537 -)))
586 +[[image:image-20220707092401-3.jpeg||height="530" width="834"]]
538 538  
588 +Figure 6-9 Open collector input connection
539 539  
540 -(% class="box infomessage" %)
541 -(((
542 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
543 -)))
590 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
544 544  
545 -* Position pulse frequency and anti-interference level
592 +2) Position pulse frequency and anti-interference level
546 546  
547 547  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
548 548  
549 549  (% style="text-align:center" %)
550 -(((
551 -(% class="wikigeneratedid" style="display:inline-block" %)
552 -[[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
553 -)))
597 +[[image:image-20220608163952-8.png]]
554 554  
599 +Figure 6-10 Example of filtered signal waveform
600 +
555 555  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
556 556  
557 -|=**Function code**|=**Name**|=(((
603 +
604 +|=(% scope="row" %)**Function code**|=**Name**|=(((
558 558  **Setting method**
559 559  )))|=(((
560 560  **Effective time**
561 561  )))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
562 -|P00-13|Maximum position pulse frequency|(((
609 +|=P00-13|Maximum position pulse frequency|(((
563 563  Shutdown setting
564 564  )))|(((
565 565  Effective immediately
566 566  )))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
567 -|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
614 +|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
568 568  Operation setting
569 569  )))|(% rowspan="3" %)(((
570 570  Power-on again
... ... @@ -571,26 +571,34 @@
571 571  )))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
572 572  Set the anti-interference level of external pulse instruction.
573 573  
574 -* 0: no filtering;
575 -* 1: Filtering time 128ns
576 -* 2: Filtering time 256ns
577 -* 3: Filtering time 512ns
578 -* 4: Filtering time 1.024us
579 -* 5: Filtering time 2.048us
580 -* 6: Filtering time 4.096us
581 -* 7: Filtering time 8.192us
582 -* 8: Filtering time 16.384us
583 -* 9:
584 -** VD2: Filtering time 25.5us
585 -** VD2F: Filtering time 25.5us
621 +0: no filtering;
622 +
623 +1: Filtering time 128ns
624 +
625 +2: Filtering time 256ns
626 +
627 +3: Filtering time 512ns
628 +
629 +4: Filtering time 1.024us
630 +
631 +5: Filtering time 2.048us
632 +
633 +6: Filtering time 4.096us
634 +
635 +7: Filtering time 8.192us
636 +
637 +8: Filtering time 16.384us
586 586  )))|(% rowspan="3" %)-
639 +|=(% rowspan="2" %)9|VD2: Filtering time 25.5us
640 +|=VD2F: Filtering time 25.5us
587 587  
588 588  Table 6-13 Position pulse frequency and anti-interference level parameters
589 589  
590 -* Position pulse type selection
644 +3) Position pulse type selection
591 591  
592 592  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
593 593  
648 +
594 594  |=(% scope="row" %)**Function code**|=**Name**|=(((
595 595  **Setting method**
596 596  )))|=(((
... ... @@ -601,12 +601,17 @@
601 601  )))|(((
602 602  Power-on again
603 603  )))|0|0 to 5|(((
604 -* 0: direction + pulse (positive logic)
605 -* 1: CW/CCW
606 -* 2: A, B phase quadrature pulse (4 times frequency)
607 -* 3: Direction + pulse (negative logic)
608 -* 4: CW/CCW (negative logic)
609 -* 5: A, B phase quadrature pulse (4 times frequency negative logic)
659 +0: direction + pulse (positive logic)
660 +
661 +1: CW/CCW
662 +
663 +2: A, B phase quadrature pulse (4 times frequency)
664 +
665 +3: Direction + pulse (negative logic)
666 +
667 +4: CW/CCW (negative logic)
668 +
669 +5: A, B phase quadrature pulse (4 times frequency negative logic)
610 610  )))|-
611 611  
612 612  Table 6-14 Position pulse type selection parameter
... ... @@ -682,7 +682,7 @@
682 682  )))|(((
683 683  
684 684  
685 -[[image:image-20220707094437-15.jpeg]]
745 +[[image:image-20220707094437-15.jpeg]]
686 686  
687 687  Phase A is ahead of B phase by 90°
688 688  )))
... ... @@ -689,20 +689,18 @@
689 689  
690 690  Table 6-15 Pulse description
691 691  
692 -**The source of position instruction is internal position instruction (P01-06=1)**
752 +**(2) The source of position instruction is internal position instruction (P01-06=1)**
693 693  
694 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
754 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.
695 695  
696 696  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
697 697  
698 698  (% style="text-align:center" %)
699 -(((
700 -(% class="wikigeneratedid" style="display:inline-block" %)
701 -[[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
702 -)))
759 +[[image:image-20220608164116-9.png]]
703 703  
761 +Figure 6-11 The setting process of multi-segment position
704 704  
705 -* Set multi-segment position running mode
763 +1) Set multi-segment position running mode
706 706  
707 707  |=(% scope="row" %)**Function code**|=**Name**|=(((
708 708  **Setting method**
... ... @@ -714,9 +714,11 @@
714 714  )))|(((
715 715  Effective immediately
716 716  )))|0|0 to 2|(((
717 -* 0: Single running
718 -* 1: Cycle running
719 -* 2: DI switching running
775 +0: Single running
776 +
777 +1: Cycle running
778 +
779 +2: DI switching running
720 720  )))|-
721 721  |=P07-02|Start segment number|(((
722 722  Shutdown setting
... ... @@ -733,8 +733,9 @@
733 733  )))|(((
734 734  Effective immediately
735 735  )))|0|0 to 1|(((
736 -* 0: Run the remaining segments
737 -* 1: Run again from the start segment
796 +0: Run the remaining segments
797 +
798 +1: Run again from the start segment
738 738  )))|-
739 739  |=P07-05|Displacement instruction type|(((
740 740  Shutdown setting
... ... @@ -741,8 +741,9 @@
741 741  )))|(((
742 742  Effective immediately
743 743  )))|0|0 to 1|(((
744 -* 0: Relative position instruction
745 -* 1: Absolute position instruction
805 +0: Relative position instruction
806 +
807 +1: Absolute position instruction
746 746  )))|-
747 747  
748 748  Table 6-16 multi-segment position running mode parameters
... ... @@ -749,35 +749,30 @@
749 749  
750 750  VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
751 751  
752 -1. Single running
814 +~1. Single running
753 753  
754 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
816 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
755 755  
756 756  
757 757  (% style="text-align:center" %)
758 -(((
759 -(% class="wikigeneratedid" style="display:inline-block" %)
760 -[[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
761 -)))
820 +[[image:image-20220608164226-10.png]]
762 762  
763 -* 2. Cycle running
822 +Figure 6-12 Single running curve (P07-02=1, P07-03=2)
764 764  
824 +2. Cycle running
825 +
765 765  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
766 766  
767 -(% style="text-align:center" %)
768 -(((
769 -(% class="wikigeneratedid" style="display:inline-block" %)
770 -[[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
771 -)))
772 772  
773 -|(((
774 774  (% style="text-align:center" %)
775 -[[image:image-20220611151917-5.png]]
776 -)))
830 +[[image:image-20220608164327-11.png]]
831 +
832 +Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
833 +
834 +|[[image:image-20220611151917-5.png]]
777 777  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
778 778  
779 -(% start="3" %)
780 -1. DI switching running
837 +3. DI switching running
781 781  
782 782  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
783 783  
... ... @@ -800,87 +800,68 @@
800 800  
801 801  Table 6-18 INPOS corresponds to running segment number
802 802  
803 -The operating curve in this running mode is shown in __Figure 6-14__.
860 +The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.
804 804  
805 805  (% style="text-align:center" %)
806 -(((
807 -(% class="wikigeneratedid" style="display:inline-block" %)
808 -[[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
809 -)))
863 +[[image:image-20220608164545-12.png]]
810 810  
865 +Figure 6-14 DI switching running curve
866 +
811 811  VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
812 812  
813 -**Run the remaining segments**
869 +**A. Run the remaining segments**
814 814  
815 815  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
816 816  
817 817  (% style="text-align:center" %)
818 -(((
819 -(% class="wikigeneratedid" style="display:inline-block" %)
820 -[[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
821 -)))
874 +[[image:image-20220608164847-13.png]]
822 822  
876 +Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
877 +
823 823  (% style="text-align:center" %)
824 -(((
825 -(% class="wikigeneratedid" style="display:inline-block" %)
826 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]]
827 -)))
879 +[[image:image-20220608165032-14.png]]
828 828  
829 -**Run again from the start segment**
881 +Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
830 830  
883 +**B. Run again from the start segment**
884 +
831 831  In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.
832 832  
833 833  (% style="text-align:center" %)
834 -(((
835 -(% class="wikigeneratedid" style="display:inline-block" %)
836 -[[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
837 -)))
888 +[[image:image-20220608165343-15.png]]
838 838  
890 +Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
891 +
839 839  (% style="text-align:center" %)
840 -(((
841 -(% class="wikigeneratedid" style="display:inline-block" %)
842 -[[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
843 -)))
893 +[[image:image-20220608165558-16.png]]
844 844  
895 +Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
896 +
845 845  VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
846 846  
847 -* Relative position instruction
899 +A. Relative position instruction
848 848  
849 849  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
850 850  
851 851  |(((
852 -(% style="text-align:center" %)
853 -(((
854 -(% class="wikigeneratedid" style="display:inline-block" %)
855 -[[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
856 -)))
904 +[[image:image-20220608165710-17.png]]
857 857  )))|(((
858 -(% style="text-align:center" %)
859 -(((
860 -(% class="wikigeneratedid" style="display:inline-block" %)
861 -[[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
906 +[[image:image-20220608165749-18.png]]
862 862  )))
863 -)))
908 +|Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
864 864  
865 -* Absolute position instruction
910 +B. Absolute position instruction
866 866  
867 867  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
868 868  
869 869  |(((
870 -(% style="text-align:center" %)
871 -(((
872 -(% class="wikigeneratedid" style="display:inline-block" %)
873 -[[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
874 -)))
915 +[[image:image-20220608165848-19.png]]
875 875  )))|(((
876 -(% style="text-align:center" %)
877 -(((
878 -(% class="wikigeneratedid" style="display:inline-block" %)
879 -[[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
917 +[[image:image-20220608170005-20.png]]
880 880  )))
881 -)))
919 +|Figure 6-21 Absolute indication|Figure 6-22 Displacement
882 882  
883 -* Multi-segment position running curve setting
921 +2) Multi-segment position running curve setting
884 884  
885 885  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
886 886  
... ... @@ -919,13 +919,11 @@
919 919  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
920 920  
921 921  (% style="text-align:center" %)
922 -(((
923 -(% class="wikigeneratedid" style="display:inline-block" %)
924 -[[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
925 -)))
960 +[[image:image-20220608170149-21.png]]
926 926  
962 +Figure 6-23 The 1st segment running curve of motor
927 927  
928 -* multi-segment position instruction enable
964 +3) multi-segment position instruction enable
929 929  
930 930  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
931 931  
... ... @@ -936,14 +936,13 @@
936 936  DI port logic valid: Motor runs multi-segment position
937 937  )))
938 938  
939 -(% style="text-align:center" %)
940 940  [[image:image-20220611152020-6.png]]
941 941  
942 942  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
943 943  
944 -== Electronic gear ratio ==
979 +== **Electronic gear ratio** ==
945 945  
946 -**Definition of electronic gear ratio**
981 +**(1) Definition of electronic gear ratio**
947 947  
948 948  In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
949 949  
... ... @@ -954,20 +954,23 @@
954 954  (% style="text-align:center" %)
955 955  [[image:image-20220707094901-16.png]]
956 956  
992 +
993 +
994 +
957 957  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
958 958  
959 -**Setting steps of electronic gear ratio**
997 +**(2) Setting steps of electronic gear ratio**
960 960  
961 -(% style="text-align:center" %)
962 -(((
963 -(% class="wikigeneratedid" style="display:inline-block" %)
964 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]]
965 -)))
999 +[[image:image-20220707100850-20.jpeg]]
966 966  
967 -**lectronic gear ratio switch setting**
1001 +Figure 6-24 Setting steps of electronic gear ratio
968 968  
1003 +**(3) lectronic gear ratio switch setting**
1004 +
1005 +
969 969  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
970 970  
1008 +
971 971  |=(% scope="row" %)**Function code**|=**Name**|=(((
972 972  **Setting method**
973 973  )))|=(((
... ... @@ -1017,6 +1017,7 @@
1017 1017  
1018 1018  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1019 1019  
1058 +
1020 1020  |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1021 1021  |=09|GEAR-SEL electronic gear switch 1|(((
1022 1022  DI port logic invalid: electronic gear ratio 1
... ... @@ -1026,25 +1026,16 @@
1026 1026  
1027 1027  Table 6-21 Switching conditions of electronic gear ratio group
1028 1028  
1029 -|=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1030 -|(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1031 -(% style="text-align:center" %)
1032 -[[image:image-20220707101328-21.png]]
1033 -)))
1034 -|(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1035 -(% style="text-align:center" %)
1036 -[[image:image-20220707101336-22.png]]
1037 -)))
1038 -|1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1039 -(% style="text-align:center" %)
1040 -[[image:image-20220707101341-23.png]]
1041 -)))
1068 +|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]]
1069 +|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]]
1070 +|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]]
1071 +|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]]
1042 1042  
1043 1043  Table 6-22 Application of electronic gear ratio
1044 1044  
1045 1045  When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1046 1046  
1047 -== Position instruction filtering ==
1077 +== **Position instruction filtering** ==
1048 1048  
1049 1049  Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1050 1050  
... ... @@ -1057,11 +1057,10 @@
1057 1057  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1058 1058  
1059 1059  (% style="text-align:center" %)
1060 -(((
1061 -(% class="wikigeneratedid" style="display:inline-block" %)
1062 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]]
1063 -)))
1090 +[[image:image-20220608170455-23.png]]
1064 1064  
1092 +Figure 6-25 Position instruction filtering diagram
1093 +
1065 1065  |=(% scope="row" %)**Function code**|=**Name**|=(((
1066 1066  **Setting method**
1067 1067  )))|=(((
... ... @@ -1072,8 +1072,9 @@
1072 1072  )))|(((
1073 1073  Effective immediately
1074 1074  )))|0|0 to 1|(((
1075 -* 0: 1st-order low-pass filtering
1076 -* 1: average filtering
1104 +0: 1st-order low-pass filtering
1105 +
1106 +1: average filtering
1077 1077  )))|-
1078 1078  |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1079 1079  Effective immediately
... ... @@ -1084,13 +1084,13 @@
1084 1084  
1085 1085  Table 6-23 Position instruction filter function code
1086 1086  
1087 -== Clearance of position deviation ==
1117 +== **Clearance of position deviation** ==
1088 1088  
1089 1089  Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1090 1090  
1091 1091  Position deviation = (position instruction-position feedback) (encoder unit)
1092 1092  
1093 -== Position-related DO output function ==
1123 +== **Position-related DO output function** ==
1094 1094  
1095 1095  The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1096 1096  
... ... @@ -1101,46 +1101,44 @@
1101 1101  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1102 1102  
1103 1103  (% style="text-align:center" %)
1104 -(((
1105 -(% class="wikigeneratedid" style="display:inline-block" %)
1106 -[[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1107 -)))
1134 +[[image:image-20220608170550-24.png]]
1108 1108  
1136 +Figure 6-26 Positioning completion signal output diagram
1137 +
1109 1109  When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1110 1110  
1111 1111  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1112 1112  
1113 1113  (% style="text-align:center" %)
1114 -(((
1115 -(% class="wikigeneratedid" style="display:inline-block" %)
1116 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]]
1117 -)))
1143 +[[image:image-20220608170650-25.png]]
1118 1118  
1145 +Figure 6-27 Positioning completion signal output with increased window filter time diagram
1146 +
1119 1119  |=(% scope="row" %)**Function code**|=**Name**|=(((
1120 1120  **Setting method**
1121 -)))|=(% style="width: 129px;" %)(((
1149 +)))|=(((
1122 1122  **Effective time**
1123 -)))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1151 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1124 1124  |=P05-12|Positioning completion threshold|(((
1125 1125  Operation setting
1126 -)))|(% style="width:129px" %)(((
1154 +)))|(((
1127 1127  Effective immediately
1128 -)))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1156 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1129 1129  |=P05-13|Positioning approach threshold|(((
1130 1130  Operation setting
1131 -)))|(% style="width:129px" %)(((
1159 +)))|(((
1132 1132  Effective immediately
1133 -)))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1161 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1134 1134  |=P05-14|Position detection window time|(((
1135 1135  Operation setting
1136 -)))|(% style="width:129px" %)(((
1164 +)))|(((
1137 1137  Effective immediately
1138 -)))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1166 +)))|10|0 to 20000|Set positioning completion detection window time|ms
1139 1139  |=P05-15|Positioning signal hold time|(((
1140 1140  Operation setting
1141 -)))|(% style="width:129px" %)(((
1169 +)))|(((
1142 1142  Effective immediately
1143 -)))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1171 +)))|100|0 to 20000|Set positioning completion output hold time|ms
1144 1144  
1145 1145  Table 6-24 Function code parameters of positioning completion
1146 1146  
... ... @@ -1159,46 +1159,47 @@
1159 1159  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1160 1160  
1161 1161  (% style="text-align:center" %)
1162 -(((
1163 -(% class="wikigeneratedid" style="display:inline-block" %)
1164 -[[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1165 -)))
1190 +[[image:6.28.jpg||height="260" width="806"]]
1166 1166  
1167 -== Speed instruction input setting ==
1192 +Figure 6-28 Speed control block diagram
1168 1168  
1194 +== **Speed instruction input setting** ==
1195 +
1169 1169  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1170 1170  
1171 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 189px;" %)**Name**|=(% style="width: 125px;" %)(((
1198 +
1199 +|**Function code**|**Name**|(((
1172 1172  **Setting method**
1173 -)))|=(% style="width: 125px;" %)(((
1201 +)))|(((
1174 1174  **Effective time**
1175 -)))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1176 -|=(% style="width: 121px;" %)P01-01|(% style="width:189px" %)Speed instruction source|(% style="width:125px" %)(((
1203 +)))|**Default value**|**Range**|**Definition**|**Unit**
1204 +|P01-01|Speed instruction source|(((
1177 1177  Shutdown setting
1178 -)))|(% style="width:125px" %)(((
1206 +)))|(((
1179 1179  Effective immediately
1180 -)))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)(((
1181 -* 0: internal speed instruction
1182 -* 1: AI_1 analog input (not supported by VD2F)
1208 +)))|1|1 to 1|(((
1209 +0: internal speed instruction
1210 +
1211 +1: AI_1 analog input (not supported by VD2F)
1183 1183  )))|-
1184 1184  
1185 1185  Table 6-26 Speed instruction source parameter
1186 1186  
1187 -**Speed instruction source is internal speed instruction (P01-01=0)**
1216 +**(1) Speed instruction source is internal speed instruction (P01-01=0)**
1188 1188  
1189 1189  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1190 1190  
1191 1191  (% style="width:1141px" %)
1192 -|=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1221 +|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)(((
1193 1193  **Setting**
1194 1194  
1195 1195  **method**
1196 -)))|=(% colspan="2" %)(((
1225 +)))|(% colspan="2" %)(((
1197 1197  **Effective**
1198 1198  
1199 1199  **time**
1200 -)))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1201 -|=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1229 +)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit**
1230 +|(% colspan="1" %)P01-02|(% colspan="2" %)(((
1202 1202  Internal speed
1203 1203  
1204 1204  Instruction 0
... ... @@ -1215,13 +1215,15 @@
1215 1215  
1216 1216  When DI input port:
1217 1217  
1218 -* 15-INSPD3: 0
1219 -* 14-INSPD2: 0
1220 -* 13-INSPD1: 0,
1247 +15-INSPD3: 0
1221 1221  
1249 +14-INSPD2: 0
1250 +
1251 +13-INSPD1: 0,
1252 +
1222 1222  select this speed instruction to be effective.
1223 1223  )))|(% colspan="2" %)rpm
1224 -|=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1255 +|(% colspan="1" %)P01-23|(% colspan="2" %)(((
1225 1225  Internal speed
1226 1226  
1227 1227  Instruction 1
... ... @@ -1238,13 +1238,15 @@
1238 1238  
1239 1239  When DI input port:
1240 1240  
1241 -* 15-INSPD3: 0
1242 -* 14-INSPD2: 0
1243 -* 13-INSPD1: 1,
1272 +15-INSPD3: 0
1244 1244  
1274 +14-INSPD2: 0
1275 +
1276 +13-INSPD1: 1,
1277 +
1245 1245  Select this speed instruction to be effective.
1246 1246  )))|(% colspan="2" %)rpm
1247 -|=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1280 +|(% colspan="1" %)P01-24|(% colspan="2" %)(((
1248 1248  Internal speed
1249 1249  
1250 1250  Instruction 2
... ... @@ -1261,13 +1261,15 @@
1261 1261  
1262 1262  When DI input port:
1263 1263  
1264 -* 15-INSPD3: 0
1265 -* 14-INSPD2: 1
1266 -* 13-INSPD1: 0,
1297 +15-INSPD3: 0
1267 1267  
1299 +14-INSPD2: 1
1300 +
1301 +13-INSPD1: 0,
1302 +
1268 1268  Select this speed instruction to be effective.
1269 1269  )))|(% colspan="2" %)rpm
1270 -|=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1305 +|(% colspan="1" %)P01-25|(% colspan="2" %)(((
1271 1271  Internal speed
1272 1272  
1273 1273  Instruction 3
... ... @@ -1284,13 +1284,15 @@
1284 1284  
1285 1285  When DI input port:
1286 1286  
1287 -* 15-INSPD3: 0
1288 -* 14-INSPD2: 1
1289 -* 13-INSPD1: 1,
1322 +15-INSPD3: 0
1290 1290  
1324 +14-INSPD2: 1
1325 +
1326 +13-INSPD1: 1,
1327 +
1291 1291  Select this speed instruction to be effective.
1292 1292  )))|(% colspan="2" %)rpm
1293 -|=P01-26|(% colspan="2" %)(((
1330 +|P01-26|(% colspan="2" %)(((
1294 1294  Internal speed
1295 1295  
1296 1296  Instruction 4
... ... @@ -1307,13 +1307,15 @@
1307 1307  
1308 1308  When DI input port:
1309 1309  
1310 -* 15-INSPD3: 1
1311 -* 14-INSPD2: 0
1312 -* 13-INSPD1: 0,
1347 +15-INSPD3: 1
1313 1313  
1349 +14-INSPD2: 0
1350 +
1351 +13-INSPD1: 0,
1352 +
1314 1314  Select this speed instruction to be effective.
1315 1315  )))|(% colspan="1" %)rpm
1316 -|=P01-27|(% colspan="2" %)(((
1355 +|P01-27|(% colspan="2" %)(((
1317 1317  Internal speed
1318 1318  
1319 1319  Instruction 5
... ... @@ -1330,13 +1330,15 @@
1330 1330  
1331 1331  When DI input port:
1332 1332  
1333 -* 15-INSPD3: 1
1334 -* 14-INSPD2: 0
1335 -* 13-INSPD1: 1,
1372 +15-INSPD3: 1
1336 1336  
1374 +14-INSPD2: 0
1375 +
1376 +13-INSPD1: 1,
1377 +
1337 1337  Select this speed instruction to be effective.
1338 1338  )))|(% colspan="1" %)rpm
1339 -|=P01-28|(% colspan="2" %)(((
1380 +|P01-28|(% colspan="2" %)(((
1340 1340  Internal speed
1341 1341  
1342 1342  Instruction 6
... ... @@ -1353,13 +1353,15 @@
1353 1353  
1354 1354  When DI input port:
1355 1355  
1356 -* 15-INSPD3: 1
1357 -* 14-INSPD2: 1
1358 -* 13-INSPD1: 0,
1397 +15-INSPD3: 1
1359 1359  
1399 +14-INSPD2: 1
1400 +
1401 +13-INSPD1: 0,
1402 +
1360 1360  Select this speed instruction to be effective.
1361 1361  )))|(% colspan="1" %)rpm
1362 -|=P01-29|(% colspan="2" %)(((
1405 +|P01-29|(% colspan="2" %)(((
1363 1363  Internal speed
1364 1364  
1365 1365  Instruction 7
... ... @@ -1376,19 +1376,21 @@
1376 1376  
1377 1377  When DI input port:
1378 1378  
1379 -* 15-INSPD3: 1
1380 -* 14-INSPD2: 1
1381 -* 13-INSPD1: 1,
1422 +15-INSPD3: 1
1382 1382  
1424 +14-INSPD2: 1
1425 +
1426 +13-INSPD1: 1,
1427 +
1383 1383  Select this speed instruction to be effective.
1384 1384  )))|(% colspan="1" %)rpm
1385 1385  
1386 1386  Table 6-27 Internal speed instruction parameters
1387 1387  
1388 -|=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1389 -|=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1390 -|=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1391 -|=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1433 +|**DI function code**|**function name**|**Function**
1434 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1435 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1436 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1392 1392  
1393 1393  Table 6-28 DI multi-speed function code description
1394 1394  
... ... @@ -1395,7 +1395,7 @@
1395 1395  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1396 1396  
1397 1397  
1398 -|=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1443 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1399 1399  |0|0|0|1|0
1400 1400  |0|0|1|2|1
1401 1401  |0|1|0|3|2
... ... @@ -1404,30 +1404,26 @@
1404 1404  
1405 1405  Table 6-29 Correspondence between INSPD bits and segment numbers
1406 1406  
1407 -(% style="text-align:center" %)
1408 -(((
1409 -(% class="wikigeneratedid" style="display:inline-block" %)
1410 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]]
1411 -)))
1452 +[[image:image-20220608170845-26.png]]
1412 1412  
1413 -**Speed instruction source is internal speed instruction (P01-01=1)**
1454 +Figure 6-29 Multi-segment speed running curve
1414 1414  
1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)**
1457 +
1415 1415  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1416 1416  
1417 1417  (% style="text-align:center" %)
1418 -(((
1419 -(% class="wikigeneratedid" style="display:inline-block" %)
1420 -[[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1421 -)))
1461 +[[image:image-20220608153341-5.png]]
1422 1422  
1463 +Figure 6-30 Analog input circuit
1464 +
1423 1423  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1424 1424  
1425 1425  (% style="text-align:center" %)
1426 -(((
1427 -(% class="wikigeneratedid" style="display:inline-block" %)
1428 -[[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1429 -)))
1468 +[[image:image-20220608170955-27.png]]
1430 1430  
1470 +Figure 6-31 Analog voltage speed instruction setting steps
1471 +
1431 1431  Explanation of related terms:
1432 1432  
1433 1433  * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
... ... @@ -1435,25 +1435,21 @@
1435 1435  * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1436 1436  
1437 1437  (% style="text-align:center" %)
1438 -(((
1439 -(% class="wikigeneratedid" style="display:inline-block" %)
1440 -[[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1441 -)))
1479 +[[image:image-20220608171124-28.png]]
1442 1442  
1443 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1444 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1445 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1446 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1447 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1481 +Figure 6-32 AI_1 diagram before and after bias
1448 1448  
1483 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1484 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1485 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1486 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1487 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1488 +
1449 1449  Table 6-30 AI_1 parameters
1450 1450  
1451 -(% class="box infomessage" %)
1452 -(((
1453 1453  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1454 -)))
1455 1455  
1456 -== Acceleration and deceleration time setting ==
1493 +== **Acceleration and deceleration time setting** ==
1457 1457  
1458 1458  The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1459 1459  
... ... @@ -1460,25 +1460,24 @@
1460 1460  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1461 1461  
1462 1462  (% style="text-align:center" %)
1463 -(((
1464 -(% class="wikigeneratedid" style="display:inline-block" %)
1465 -[[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1466 -)))
1500 +[[image:image-20220608171314-29.png]]
1467 1467  
1502 +Figure 6-33 of acceleration and deceleration time diagram
1503 +
1468 1468  (% style="text-align:center" %)
1469 1469  [[image:image-20220707103616-27.png]]
1470 1470  
1471 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1507 +|**Function code**|**Name**|(((
1472 1472  **Setting method**
1473 -)))|=(((
1509 +)))|(((
1474 1474  **Effective time**
1475 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1476 -|=P01-03|Acceleration time|(((
1511 +)))|**Default value**|**Range**|**Definition**|**Unit**
1512 +|P01-03|Acceleration time|(((
1477 1477  Operation setting
1478 1478  )))|(((
1479 1479  Effective immediately
1480 1480  )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1481 -|=P01-04|Deceleration time|(((
1517 +|P01-04|Deceleration time|(((
1482 1482  Operation setting
1483 1483  )))|(((
1484 1484  Effective immediately
... ... @@ -1486,7 +1486,7 @@
1486 1486  
1487 1487  Table 6-31 Acceleration and deceleration time parameters
1488 1488  
1489 -== Speed instruction limit ==
1525 +== **Speed instruction limit** ==
1490 1490  
1491 1491  In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1492 1492  
... ... @@ -1501,22 +1501,23 @@
1501 1501  
1502 1502  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1503 1503  
1504 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1540 +
1541 +|**Function code**|**Name**|(((
1505 1505  **Setting method**
1506 -)))|=(((
1543 +)))|(((
1507 1507  **Effective time**
1508 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1509 -|=P01-10|Maximum speed threshold|(((
1545 +)))|**Default value**|**Range**|**Definition**|**Unit**
1546 +|P01-10|Maximum speed threshold|(((
1510 1510  Operation setting
1511 1511  )))|(((
1512 1512  Effective immediately
1513 1513  )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1514 -|=P01-12|Forward speed threshold|(((
1551 +|P01-12|Forward speed threshold|(((
1515 1515  Operation setting
1516 1516  )))|(((
1517 1517  Effective immediately
1518 1518  )))|3000|0 to 5000|Set forward speed limit value|rpm
1519 -|=P01-13|Reverse speed threshold|(((
1556 +|P01-13|Reverse speed threshold|(((
1520 1520  Operation setting
1521 1521  )))|(((
1522 1522  Effective immediately
... ... @@ -1524,18 +1524,19 @@
1524 1524  
1525 1525  Table 6-32 Rotation speed related function codes
1526 1526  
1527 -== Zero-speed clamp function ==
1564 +== **Zero-speed clamp function** ==
1528 1528  
1529 1529  The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1530 1530  
1531 1531  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1532 1532  
1533 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1570 +
1571 +|**Function code**|**Name**|(((
1534 1534  **Setting method**
1535 -)))|=(((
1573 +)))|(((
1536 1536  **Effective time**
1537 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1538 -|=P01-21|(((
1575 +)))|**Default value**|**Range**|**Definition**|**Unit**
1576 +|P01-21|(((
1539 1539  Zero-speed clamp function selection
1540 1540  )))|(((
1541 1541  Operation setting
... ... @@ -1544,12 +1544,15 @@
1544 1544  )))|0|0 to 3|(((
1545 1545  Set the zero-speed clamp function. In speed mode:
1546 1546  
1547 -* 0: Force the speed to 0;
1548 -* 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1549 -* 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1550 -* 3: Invalid, ignore zero-speed clamp input
1585 +0: Force the speed to 0;
1586 +
1587 +1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1588 +
1589 +2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1590 +
1591 +3: Invalid, ignore zero-speed clamp input
1551 1551  )))|-
1552 -|=P01-22|(((
1593 +|P01-22|(((
1553 1553  Zero-speed clamp speed threshold
1554 1554  )))|(((
1555 1555  Operation setting
... ... @@ -1559,34 +1559,33 @@
1559 1559  
1560 1560  Table 6-33 Zero-speed clamp related parameters
1561 1561  
1562 -(% style="text-align:center" %)
1563 -(((
1564 -(% class="wikigeneratedid" style="display:inline-block" %)
1565 -[[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1566 -)))
1567 1567  
1568 -== Speed-related DO output function ==
1604 +[[image:image-20220608171549-30.png]]
1569 1569  
1606 +Figure 6-34 Zero-speed clamp diagram
1607 +
1608 +== **Speed-related DO output function** ==
1609 +
1570 1570  The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1571 1571  
1572 -**Rotation detection signal**
1612 +**(1) Rotation detection signal**
1573 1573  
1574 1574  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1575 1575  
1576 -(% style="text-align:center" %)
1577 -(((
1578 -(% class="wikigeneratedid" style="display:inline-block" %)
1579 -[[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1580 -)))
1581 1581  
1582 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1617 +[[image:image-20220608171625-31.png]]
1583 1583  
1584 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1619 +Figure 6-35 Rotation detection signal diagram
1620 +
1621 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1622 +
1623 +
1624 +|**Function code**|**Name**|(((
1585 1585  **Setting method**
1586 -)))|=(((
1626 +)))|(((
1587 1587  **Effective time**
1588 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1589 -|=P05-16|(((
1628 +)))|**Default value**|**Range**|**Definition**|**Unit**
1629 +|P05-16|(((
1590 1590  Rotation detection
1591 1591  
1592 1592  speed threshold
... ... @@ -1598,10 +1598,10 @@
1598 1598  
1599 1599  Table 6-34 Rotation detection speed threshold parameters
1600 1600  
1601 -|=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1602 -|=132|(% style="width:247px" %)(((
1641 +|**DO function code**|**Function name**|**Function**
1642 +|132|(((
1603 1603  T-COIN rotation detection
1604 -)))|(% style="width:695px" %)(((
1644 +)))|(((
1605 1605  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1606 1606  
1607 1607  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1609,24 +1609,22 @@
1609 1609  
1610 1610  Table 6-35 DO rotation detection function code
1611 1611  
1612 -**Zero-speed signal**
1652 +**(2) Zero-speed signal**
1613 1613  
1614 1614  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1615 1615  
1616 -(% style="text-align:center" %)
1617 -(((
1618 -(% class="wikigeneratedid" style="display:inline-block" %)
1619 -[[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1620 -)))
1656 +[[image:image-20220608171904-32.png]]
1621 1621  
1622 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1658 +Figure 6-36 Zero-speed signal diagram
1623 1623  
1624 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1660 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1661 +
1662 +|**Function code**|**Name**|(((
1625 1625  **Setting method**
1626 -)))|=(((
1664 +)))|(((
1627 1627  **Effective time**
1628 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1629 -|=P05-19|Zero speed output signal threshold|(((
1666 +)))|**Default value**|**Range**|**Definition**|**Unit**
1667 +|P05-19|Zero speed output signal threshold|(((
1630 1630  Operation setting
1631 1631  )))|(((
1632 1632  Effective immediately
... ... @@ -1634,31 +1634,30 @@
1634 1634  
1635 1635  Table 6-36 Zero-speed output signal threshold parameter
1636 1636  
1637 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1638 -|=133|(((
1675 +
1676 +|**DO function code**|**Function name**|**Function**
1677 +|133|(((
1639 1639  ZSP zero speed signal
1640 1640  )))|Output this signal indicates that the servo motor is stopping rotation
1641 1641  
1642 1642  Table 6-37 DO zero-speed signal function code
1643 1643  
1644 -**Speed consistent signal**
1683 +**(3) Speed consistent signal**
1645 1645  
1646 1646  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1647 1647  
1648 -(% style="text-align:center" %)
1649 -(((
1650 -(% class="wikigeneratedid" style="display:inline-block" %)
1651 -[[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1652 -)))
1687 +[[image:image-20220608172053-33.png]]
1653 1653  
1654 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1689 +Figure 6-37 Speed consistent signal diagram
1655 1655  
1656 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1691 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1692 +
1693 +|**Function code**|**Name**|(((
1657 1657  **Setting method**
1658 -)))|=(((
1695 +)))|(((
1659 1659  **Effective time**
1660 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1661 -|=P05-17|Speed consistent signal threshold|(((
1697 +)))|**Default value**|**Range**|**Definition**|**Unit**
1698 +|P05-17|Speed consistent signal threshold|(((
1662 1662  Operationsetting
1663 1663  )))|(((
1664 1664  Effective immediately
... ... @@ -1666,31 +1666,30 @@
1666 1666  
1667 1667  Table 6-38 Speed consistent signal threshold parameters
1668 1668  
1669 -|=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1670 -|=136|(% style="width:262px" %)(((
1706 +
1707 +|**DO Function code**|**Function name**|**Function**
1708 +|136|(((
1671 1671  U-COIN consistent speed
1672 -)))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1710 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1673 1673  
1674 1674  Table 6-39 DO speed consistent function code
1675 1675  
1676 -**Speed approach signal**
1714 +**(4) Speed approach signal**
1677 1677  
1678 1678  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1679 1679  
1680 -(% style="text-align:center" %)
1681 -(((
1682 -(% class="wikigeneratedid" style="display:inline-block" %)
1683 -[[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1684 -)))
1718 +[[image:image-20220608172207-34.png]]
1685 1685  
1686 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1720 +Figure 6-38 Speed approaching signal diagram
1687 1687  
1688 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1723 +
1724 +|**Function code**|**Name**|(((
1689 1689  **Setting method**
1690 -)))|=(((
1726 +)))|(((
1691 1691  **Effective time**
1692 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1693 -|=P05-18|Speed approach signal threshold|(((
1728 +)))|**Default value**|**Range**|**Definition**|**Unit**
1729 +|P05-18|Speed approach signal threshold|(((
1694 1694  Operation setting
1695 1695  )))|(((
1696 1696  Effective immediately
... ... @@ -1698,8 +1698,8 @@
1698 1698  
1699 1699  Table 6-40 Speed approaching signal threshold parameters
1700 1700  
1701 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1702 -|=137|(((
1737 +|**DO function code**|**Function name**|**Function**
1738 +|137|(((
1703 1703  V-NEAR speed approach
1704 1704  )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1705 1705  
... ... @@ -1709,22 +1709,22 @@
1709 1709  
1710 1710  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1711 1711  
1712 -(% style="text-align:center" %)
1713 -(((
1714 -(% class="wikigeneratedid" style="display:inline-block" %)
1715 -[[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1716 -)))
1717 1717  
1718 -== Torque instru**ction input setting** ==
1749 +[[image:image-20220608172405-35.png]]
1719 1719  
1751 +Figure 6-39 Torque mode diagram
1752 +
1753 +== **Torque instruction input setting** ==
1754 +
1720 1720  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1721 1721  
1722 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1757 +
1758 +|**Function code**|**Name**|(((
1723 1723  **Setting method**
1724 -)))|=(((
1760 +)))|(((
1725 1725  **Effective time**
1726 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1727 -|=P01-08|Torque instruction source|(((
1762 +)))|**Default value**|**Range**|**Definition**|**Unit**
1763 +|P01-08|Torque instruction source|(((
1728 1728  Shutdown setting
1729 1729  )))|(((
1730 1730  Effective immediately
... ... @@ -1736,16 +1736,17 @@
1736 1736  
1737 1737  Table 6-42 Torque instruction source parameter
1738 1738  
1739 -**Torque instruction source is internal torque instruction (P01-07=0)**
1775 +**(1) Torque instruction source is internal torque instruction (P01-07=0)**
1740 1740  
1741 1741  Torque instruction source is from inside, the value is set by function code P01-08.
1742 1742  
1743 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1779 +
1780 +|**Function code**|**Name**|(((
1744 1744  **Setting method**
1745 -)))|=(((
1782 +)))|(((
1746 1746  **Effective time**
1747 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1748 -|=P01-08|Torque instruction keyboard set value|(((
1784 +)))|**Default value**|**Range**|**Definition**|**Unit**
1785 +|P01-08|Torque instruction keyboard set value|(((
1749 1749  Operation setting
1750 1750  )))|(((
1751 1751  Effective immediately
... ... @@ -1753,24 +1753,22 @@
1753 1753  
1754 1754  Table 6-43 Torque instruction keyboard set value
1755 1755  
1756 -**Torque instruction source is internal torque instruction (P01-07=1)**
1793 +**(2) Torque instruction source is internal torque instruction (P01-07=1)**
1757 1757  
1758 1758  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1759 1759  
1760 1760  (% style="text-align:center" %)
1761 -(((
1762 -(% class="wikigeneratedid" style="display:inline-block" %)
1763 -[[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1764 -)))
1798 +[[image:image-20220608153646-7.png||height="213" width="408"]]
1765 1765  
1800 +Figure 6-40 Analog input circuit
1801 +
1766 1766  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1767 1767  
1768 1768  (% style="text-align:center" %)
1769 -(((
1770 -(% class="wikigeneratedid" style="display:inline-block" %)
1771 -[[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1772 -)))
1805 +[[image:image-20220608172502-36.png]]
1773 1773  
1807 +Figure 6-41 Analog voltage torque instruction setting steps
1808 +
1774 1774  Explanation of related terms:
1775 1775  
1776 1776  * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
... ... @@ -1778,74 +1778,65 @@
1778 1778  * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1779 1779  
1780 1780  (% style="text-align:center" %)
1781 -(((
1782 -(% class="wikigeneratedid" style="display:inline-block" %)
1783 -[[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1784 -)))
1816 +[[image:image-20220608172611-37.png]]
1785 1785  
1786 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1787 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1788 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1789 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1790 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1818 +Figure 6-42 AI_1 diagram before and after bias
1791 1791  
1820 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1821 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1822 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1823 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1824 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1825 +
1792 1792  Table 6-44 AI_1 parameters
1793 1793  
1794 -(% class="box infomessage" %)
1795 -(((
1796 1796  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1797 -)))
1798 1798  
1799 -== Torque instruction filtering ==
1830 +== **Torque instruction filtering** ==
1800 1800  
1801 -In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1832 +In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1802 1802  
1803 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1834 +|**Function code**|**Name**|(((
1804 1804  **Setting method**
1805 -)))|=(((
1836 +)))|(((
1806 1806  **Effective time**
1807 -)))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1808 -|=P04-04|Torque filtering time constant|(((
1838 +)))|**Default value**|**Range**|**Definition**|**Unit**
1839 +|P04-04|Torque filtering time constant|(((
1809 1809  Operation setting
1810 1810  )))|(((
1811 1811  Effective immediately
1812 -)))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1843 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1813 1813  
1814 1814  Table 6-45 Torque filtering time constant parameter details
1815 1815  
1816 -(% class="box infomessage" %)
1817 -(((
1818 1818  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1819 -)))
1820 1820  
1821 1821  (% style="text-align:center" %)
1822 -(((
1823 -(% class="wikigeneratedid" style="display:inline-block" %)
1824 -[[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1825 -)))
1850 +[[image:image-20220608172646-38.png]]
1826 1826  
1827 -== Torque instruction limit ==
1852 +Figure 6-43 Torque instruction-first-order filtering diagram
1828 1828  
1854 +== **Torque instruction limit** ==
1855 +
1829 1829  When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1830 1830  
1831 1831  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1832 1832  
1833 1833  (% style="text-align:center" %)
1834 -(((
1835 -(% class="wikigeneratedid" style="display:inline-block" %)
1836 -[[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1837 -)))
1861 +[[image:image-20220608172806-39.png]]
1838 1838  
1839 -**Set torque limit source**
1863 +Figure 6-44 Torque instruction limit diagram
1840 1840  
1865 +**(1) Set torque limit source**
1866 +
1841 1841  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1842 1842  
1843 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1869 +|**Function code**|**Name**|(((
1844 1844  **Setting method**
1845 -)))|=(((
1871 +)))|(((
1846 1846  **Effective time**
1847 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1848 -|=P01-14|(((
1873 +)))|**Default value**|**Range**|**Definition**|**Unit**
1874 +|P01-14|(((
1849 1849  Torque limit source
1850 1850  )))|(((
1851 1851  Shutdown setting
... ... @@ -1852,46 +1852,49 @@
1852 1852  )))|(((
1853 1853  Effective immediately
1854 1854  )))|0|0 to 1|(((
1855 -* 0: internal value
1856 -* 1: AI_1 analog input (not supported by VD2F)
1881 +0: internal value
1882 +
1883 +1: AI_1 analog input
1884 +
1885 +(not supported by VD2F)
1857 1857  )))|-
1858 1858  
1859 -* Torque limit source is internal torque instruction (P01-14=0)
1888 +1) Torque limit source is internal torque instruction (P01-14=0)
1860 1860  
1861 1861  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1862 1862  
1863 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1892 +|**Function code**|**Name**|(((
1864 1864  **Setting method**
1865 -)))|=(((
1894 +)))|(((
1866 1866  **Effective time**
1867 -)))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1868 -|=P01-15|(((
1896 +)))|**Default value**|**Range**|**Definition**|**Unit**
1897 +|P01-15|(((
1869 1869  Forward torque limit
1870 1870  )))|(((
1871 1871  Operation setting
1872 1872  )))|(((
1873 1873  Effective immediately
1874 -)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1875 -|=P01-16|(((
1903 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1904 +|P01-16|(((
1876 1876  Reverse torque limit
1877 1877  )))|(((
1878 1878  Operation setting
1879 1879  )))|(((
1880 1880  Effective immediately
1881 -)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1882 1882  
1883 1883  Table 6-46 Torque limit parameter details
1884 1884  
1885 -* Torque limit source is external (P01-14=1)
1914 +2) Torque limit source is external (P01-14=1)
1886 1886  
1887 1887  Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1888 1888  
1889 -**Set torque limit DO signal output**
1918 +**(2) Set torque limit DO signal output**
1890 1890  
1891 1891  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1892 1892  
1893 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1894 -|=139|(((
1922 +|**DO function code**|**Function name**|**Function**
1923 +|139|(((
1895 1895  T-LIMIT in torque limit
1896 1896  )))|Output of this signal indicates that the servo motor torque is limited
1897 1897  
... ... @@ -1901,28 +1901,21 @@
1901 1901  
1902 1902  In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1903 1903  
1904 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1933 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.
1905 1905  
1906 1906  |(((
1907 -(% style="text-align:center" %)
1908 -(((
1909 -(% class="wikigeneratedid" style="display:inline-block" %)
1910 -[[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1911 -)))
1936 +[[image:image-20220608172910-40.png]]
1912 1912  )))|(((
1913 -(% style="text-align:center" %)
1914 -(((
1915 -(% class="wikigeneratedid" style="display:inline-block" %)
1916 -[[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1938 +[[image:image-20220608173155-41.png]]
1917 1917  )))
1918 -)))
1940 +|Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1919 1919  
1920 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1942 +|**Function code**|**Name**|(((
1921 1921  **Setting method**
1922 -)))|=(((
1944 +)))|(((
1923 1923  **Effective time**
1924 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1925 -|=P01-17|(((
1946 +)))|**Default value**|**Range**|**Definition**|**Unit**
1947 +|P01-17|(((
1926 1926  Forward torque
1927 1927  
1928 1928  limit in torque mode
... ... @@ -1935,7 +1935,7 @@
1935 1935  
1936 1936  limit in torque mode
1937 1937  )))|0.1%
1938 -|=P01-18|(((
1960 +|P01-18|(((
1939 1939  Reverse torque
1940 1940  
1941 1941  limit in torque mode
... ... @@ -1951,7 +1951,7 @@
1951 1951  
1952 1952  Table 6-48 Speed limit parameters in torque mode
1953 1953  
1954 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1976 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__.
1955 1955  
1956 1956  == **Torque-related DO output functions** ==
1957 1957  
... ... @@ -2104,68 +2104,35 @@
2104 2104  
2105 2105  Figure 6-49 The relationship between encoder feedback position and rotating load position
2106 2106  
2107 -== **Related functions and parameters** ==
2129 +== **Encoder feedback data** ==
2108 2108  
2109 -**Encoder feedback data**
2110 -
2111 2111  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2112 2112  
2113 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2133 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2114 2114  |U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2115 2115  |U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2116 2116  |U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2117 2117  
2118 -Table 6-55 Encoder feedback data
2138 +Table 6-55 Encoder feedback data
2119 2119  
2120 -**Shield multi-turn absolute encoder battery fault**
2140 +== **Absolute value system encoder battery box use precautions** ==
2121 2121  
2122 -The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2142 +Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2123 2123  
2124 -|**Function code**|**Name**|(((
2125 -**Setting**
2126 2126  
2127 -**method**
2128 -)))|(((
2129 -**Effective**
2145 +[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2130 2130  
2131 -**time**
2132 -)))|**Default value**|**Range**|**Definition**|**Unit**
2133 -|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2134 -0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2147 +Figure 6-50 the encoder battery box
2135 2135  
2136 -1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2137 -)))|-
2149 +When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. The specific replacement method is as follows:
2138 2138  
2139 -This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2151 +1. Step1 The servo drive is powered on and is in a non-operational state;
2152 +1. Step2 Replace the battery;
2153 +1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings.
2140 2140  
2141 -**✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2155 +When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2142 2142  
2143 -== **Absolute value system encoder battery box use precautions**. ==
2144 2144  
2145 -**Cautions**
2146 -
2147 -Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2148 -
2149 -(% style="text-align:center" %)
2150 -[[image:image-20220707111333-28.png]]
2151 -
2152 -Figure 6-50 the encoder battery box
2153 -
2154 -When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2155 -
2156 -**Replace the battery**
2157 -
2158 -Please replace the battery while keeping the servo drive and motor well connected and the power on.
2159 -
2160 -The specific replacement method is as follows:
2161 -
2162 -* Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2163 -* Step2 Remove the old battery.
2164 -* Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2165 -* Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2166 -
2167 -When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2168 -
2169 2169  |**Function code**|**Name**|(((
2170 2170  **Setting method**
2171 2171  )))|(((
... ... @@ -2185,36 +2185,12 @@
2185 2185  
2186 2186  Table 6-56 Absolute encoder reset enable parameter
2187 2187  
2188 -**Battery selection**
2177 +**Note: **If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2189 2189  
2190 -|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value**
2191 -|(% rowspan="4" style="width:361px" %)(((
2192 -Nominal Voltage: 3.6V
2193 -
2194 -Nominal capacity: 2700mAh
2195 -)))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2196 -|(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2197 -|(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2198 -|(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2199 -
2200 -Table 6-57 Absolute value encoder battery information
2201 -
2202 -**✎Note: **
2203 -
2204 -If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2205 -
2206 2206  When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2207 2207  
2208 -Correct placement of batteries +, - direction
2181 += **Overview** =
2209 2209  
2210 -1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2211 -1. This battery cannot be charged.
2212 -1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2213 -1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2214 -1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2215 -
2216 -= **Other functions** =
2217 -
2218 2218  == **VDI** ==
2219 2219  
2220 2220  VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
... ... @@ -2224,11 +2224,11 @@
2224 2224  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2225 2225  
2226 2226  
2227 -(% style="text-align:center" %)
2228 2228  [[image:image-20220608173804-46.png]]
2229 2229  
2230 2230  Figure 6-51 VDI_1 setting steps
2231 2231  
2196 +
2232 2232  |**Function code**|**Name**|(((
2233 2233  **Setting method**
2234 2234  )))|(((
... ... @@ -2316,9 +2316,9 @@
2316 2316  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2317 2317  
2318 2318  
2319 -|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration**
2320 -|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2321 -|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2284 +|**Setting value**|**DI channel logic selection**|**Illustration**
2285 +|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2286 +|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2322 2322  
2323 2323  Table 6-58 DI terminal channel logic selection
2324 2324  
... ... @@ -2328,11 +2328,12 @@
2328 2328  
2329 2329  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2330 2330  
2331 -(% style="text-align:center" %)
2296 +
2332 2332  [[image:image-20220608173957-48.png]]
2333 2333  
2334 2334  Figure 6-52 VDO_2 setting steps
2335 2335  
2301 +
2336 2336  |**Function code**|**Name**|(((
2337 2337  **Setting method**
2338 2338  )))|(((
... ... @@ -2369,6 +2369,7 @@
2369 2369  
2370 2370  Table 6-59 Communication control DO function parameters
2371 2371  
2338 +
2372 2372  |**DO function number**|**Function name**|**Function**
2373 2373  |145|COM_VDO1 communication VDO1 output|Use communication VDO
2374 2374  |146|COM_VDO1 communication VDO2 output|Use communication VDO
... ... @@ -2385,6 +2385,7 @@
2385 2385  
2386 2386  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2387 2387  
2355 +
2388 2388  |**Function code**|**Name**|(((
2389 2389  **Setting method**
2390 2390  )))|(((
image-20220707111333-28.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -44.1 KB
Content
image-20220707112813-29.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -5.5 KB
Content
image-20220707112819-30.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220707113050-31.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -19.5 KB
Content
image-20220707113057-32.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -10.4 KB
Content
image-20220707113205-33.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220804160519-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -982.3 KB
Content
image-20220804160624-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -975.3 KB
Content