Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,45 +2,47 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|=(% scope="row" style="width: 58px;"%)**No.**|=(% style="width: 1017px;" %)**Content**5 +|=(% scope="row" %)**No.**|=**Content** 6 6 |=(% colspan="2" %)Wiring 7 -|= (% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -|= (% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -|= (% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -|= (% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -|= (% style="width:58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably.12 -|= (% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.13 -|= (% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range.14 -|= (% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated.7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=5|Servo drive and servo motor must be grounded reliably. 12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=7|The force of all cables is within the specified range. 14 +|=8|The wiring terminals have been insulated. 15 15 |=(% colspan="2" %)Environment and Machinery 16 -|= (% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -|= (% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects.18 -|= (% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 22 -== Power-on == 22 +== **Power-on** == 23 23 24 -**Connect the main circuit power supply** 24 +**(1) Connect the main circuit power supply** 25 25 26 26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal. 27 27 28 -If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02.WebHome]]__” to analyze and eliminate the cause of the fault.28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault. 29 29 30 -**Set the servo drive enable (S-ON) to invalid (OFF)** 30 +**(2) Set the servo drive enable (S-ON) to invalid (OFF)** 31 31 32 -== Jog operation == 32 +== **Jog operation** == 33 33 34 34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform. 35 35 36 -**Panel jog operation** 36 +**(1) Panel jog operation** 37 37 38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/0 2%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__. 39 39 40 -**Jog operation of servo debugging platform** 40 +**(2) Jog operation of servo debugging platform** 41 41 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 + 45 + 44 44 |=(% scope="row" %)**Function code**|=**Name**|=((( 45 45 **Setting method** 46 46 )))|=((( ... ... @@ -58,6 +58,7 @@ 58 58 59 59 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 60 60 63 + 61 61 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 62 62 |=P00-04|Rotation direction|((( 63 63 Shutdown setting ... ... @@ -66,8 +66,9 @@ 66 66 )))|0|0 to 1|((( 67 67 Forward rotation: Face the motor shaft to watch 68 68 69 -* 0: standard setting (CW is forward rotation) 70 -* 1: reverse mode (CCW is forward rotation) 72 +0: standard setting (CW is forward rotation) 73 + 74 +1: reverse mode (CCW is forward rotation) 71 71 )))|- 72 72 73 73 Table 6-3 Rotation direction parameters** ** ... ... @@ -91,10 +91,13 @@ 91 91 )))|((( 92 92 Effective immediately 93 93 )))|0|0 to 3|((( 94 -* 0: use built-in braking resistor 95 -* 1: use external braking resistor and natural cooling 96 -* 2: use external braking resistor and forced air cooling; (cannot be set) 97 -* 3: No braking resistor is used, it is all absorbed by capacitor. 98 +0: use built-in braking resistor 99 + 100 +1: use external braking resistor and natural cooling 101 + 102 +2: use external braking resistor and forced air cooling; (cannot be set) 103 + 104 +3: No braking resistor is used, it is all absorbed by capacitor. 98 98 )))|- 99 99 |=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 100 100 |=P00-10|External braking resistor value|((( ... ... @@ -112,28 +112,28 @@ 112 112 113 113 == **Servo operation** == 114 114 115 -**Set the servo enable (S-ON) to valid (ON)** 122 +**(1) Set the servo enable (S-ON) to valid (ON)** 116 116 117 117 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked. 118 118 119 119 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration". 120 120 121 -**Input the instruction and the motor rotates** 128 +**(2) Input the instruction and the motor rotates** 122 122 123 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc :Servo.Manual.02.WebHome]], the motor could work as expected.130 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected. 124 124 125 -**Timing diagram of power on** 132 +**(3) Timing diagram of power on** 126 126 127 -(% style="text-align:center" %) 128 -((( 129 -(% class="wikigeneratedid" style="display:inline-block" %) 130 -[[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]] 131 -))) 132 132 133 - == Servo shutdown==135 +[[image:image-20220608163014-1.png]] 134 134 135 - Accordingto the different shutdown modes, it could be divided into freeshutdownand zero speed shutdown.The respective characteristics are shownin __Table 6-5__. Accordingto the shutdown status,it could be divided intofreerunning state andposition locked,as shownin __Table 6-6__.137 +Figure 6-1 Timing diagram of power on 136 136 139 +== **Servo shutdown** == 140 + 141 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. 142 + 143 + 137 137 |=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 138 138 |=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 139 139 |=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. ... ... @@ -140,15 +140,17 @@ 140 140 141 141 Table 6-5 Comparison of two shutdown modes 142 142 150 + 143 143 |=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 144 144 |=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 145 145 146 146 Table 6-6 Comparison of two shutdown status 147 147 148 -**Servo enable (S-ON) OFF shutdown** 156 +**(1) Servo enable (S-ON) OFF shutdown** 149 149 150 150 The related parameters of the servo OFF shutdown mode are shown in the table below. 151 151 160 + 152 152 |=(% scope="row" %)**Function code**|=**Name**|=((( 153 153 **Setting method** 154 154 )))|=((( ... ... @@ -165,17 +165,18 @@ 165 165 166 166 immediately 167 167 )))|0|0 to 1|((( 168 -* 0: Free shutdown, and the motor shaft remains free status. 169 -* 1: Zero-speed shutdown, and the motor shaft remains free status. 177 +0: Free shutdown, and the motor shaft remains free status. 178 + 179 +1: Zero-speed shutdown, and the motor shaft remains free status. 170 170 )))|- 171 171 172 -Table 6-7 Servo OFF shutdown mode parameters details 182 +Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 173 173 174 -**Emergency shutdown** 184 +**(2) Emergency shutdown** 175 175 176 176 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". 177 177 178 -**Overtravel shutdown** 188 +**(3) Overtravel shutdown** 179 179 180 180 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel. 181 181 ... ... @@ -183,98 +183,149 @@ 183 183 184 184 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 185 185 186 -|=(% scope="row" %)**Function code**|=(% style="width: 143px;" %)**Name**|=(% style="width: 137px;" %)((( 196 + 197 +|=(% scope="row" %)**Function code**|=**Name**|=((( 187 187 **Setting method** 188 -)))|=( % style="width: 141px;" %)(((199 +)))|=((( 189 189 **Effective time** 190 -)))|=(% style="width: 84px;" %)**Default value**|=(% style="width: 100px;" %)**Range**|=**Definition**|=**Unit** 191 -|=P06-08|(% style="width:143px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|((( 192 -* 0: OFF (not used) 193 -* 01: S-ON servo enable 194 -* 02: A-CLR fault and Warning Clear 195 -* 03: POT forward drive prohibition 196 -* 04: NOT Reverse drive prohibition 197 -* 05: ZCLAMP Zero speed 198 -* 06: CL Clear deviation counter 199 -* 07: C-SIGN Inverted instruction 200 -* 08: E-STOP Emergency stop 201 -* 09: GEAR-SEL Electronic Gear Switch 1 202 -* 10: GAIN-SEL gain switch 203 -* 11: INH Instruction pulse prohibited input 204 -* 12: VSSEL Vibration control switch input 205 -* 13: INSPD1 Internal speed instruction selection 1 206 -* 14: INSPD2 Internal speed instruction selection 2 207 -* 15: INSPD3 Internal speedinstruction selection 3 208 -* 16: J-SEL inertia ratio switch (not implemented yet) 209 -* 17: MixModesel mixed mode selection 210 -* 20: Internal multi-segment position enable signal 211 -* 21: Internal multi-segment position selection 1 212 -* 22: Internal multi-segment position selection 2 213 -* 23: Internal multi-segment position selection 3 214 -* 24: Internal multi-segment position selection 4 215 -* Others: reserved 201 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 202 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 203 +0: OFF (not used) 204 + 205 +01: S-ON servo enable 206 + 207 +02: A-CLR fault and Warning Clear 208 + 209 +03: POT forward drive prohibition 210 + 211 +04: NOT Reverse drive prohibition 212 + 213 +05: ZCLAMP Zero speed 214 + 215 +06: CL Clear deviation counter 216 + 217 +07: C-SIGN Inverted instruction 218 + 219 +08: E-STOP Emergency stop 220 + 221 +09: GEAR-SEL Electronic Gear Switch 1 222 + 223 +10: GAIN-SEL gain switch 224 + 225 +11: INH Instruction pulse prohibited input 226 + 227 +12: VSSEL Vibration control switch input 228 + 229 +13: INSPD1 Internal speed instruction selection 1 230 + 231 +14: INSPD2 Internal speed instruction selection 2 232 + 233 +15: INSPD3 Internal speedinstruction selection 3 234 + 235 +16: J-SEL inertia ratio switch (not implemented yet) 236 + 237 +17: MixModesel mixed mode selection 238 + 239 +20: Internal multi-segment position enable signal 240 + 241 +21: Internal multi-segment position selection 1 242 + 243 +22: Internal multi-segment position selection 2 244 + 245 +23: Internal multi-segment position selection 3 246 + 247 +24: Internal multi-segment position selection 4 248 + 249 +Others: reserved 216 216 )))|- 217 -|=P06-09| (% style="width:143px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((251 +|=P06-09|DI_3 channel logic selection|Operation setting|((( 218 218 Effective immediately 219 -)))| (% style="width:84px" %)0|(% style="width:100px"%)0to 1|(((253 +)))|0|0 to 1|((( 220 220 DI port input logic validity function selection. 221 221 222 -* 0: Normally open input. Active low level (switch on); 223 -* 1: Normally closed input. Active high level (switch off); 256 +0: Normally open input. Active low level (switch on); 257 + 258 +1: Normally closed input. Active high level (switch off); 224 224 )))|- 225 -|=P06-10| (% style="width:143px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((260 +|=P06-10|DI_3 input source selection|Operation setting|((( 226 226 Effective immediately 227 -)))| (% style="width:84px" %)0|(% style="width:100px"%)0to 1|(((262 +)))|0|0 to 1|((( 228 228 Select the DI_3 port type to enable 229 229 230 -* 0: Hardware DI_3 input terminal 231 -* 1: virtual VDI_3 input terminal 265 +0: Hardware DI_3 input terminal 266 + 267 +1: virtual VDI_3 input terminal 232 232 )))|- 233 -|=P06-11| (% style="width:143px" %)DI_4 channel function selection|(% style="width:137px" %)(((269 +|=P06-11|DI_4 channel function selection|((( 234 234 Operation setting 235 -)))|( % style="width:141px" %)(((271 +)))|((( 236 236 again Power-on 237 -)))|(% style="width:84px" %)4|(% style="width:100px" %)0 to 32|((( 238 -* 0: OFF (not used) 239 -* 01: SON Servo enable 240 -* 02: A-CLR Fault and Warning Clear 241 -* 03: POT Forward drive prohibition 242 -* 04: NOT Reverse drive prohibition 243 -* 05: ZCLAMP Zero speed 244 -* 06: CL Clear deviation counter 245 -* 07: C-SIGN Inverted instruction 246 -* 08: E-STOP Emergency shutdown 247 -* 09: GEAR-SEL Electronic Gear Switch 1 248 -* 10: GAIN-SEL gain switch 249 -* 11: INH Instruction pulse prohibited input 250 -* 12: VSSEL Vibration control switch input 251 -* 13: INSPD1 Internal speed instruction selection 1 252 -* 14: INSPD2 Internal speed instruction selection 2 253 -* 15: INSPD3 Internal speed instruction selection 3 254 -* 16: J-SEL inertia ratio switch (not implemented yet) 255 -* 17: MixModesel mixed mode selection 256 -* 20: Internal multi-segment position enable signal 257 -* 21: Internal multi-segment position selection 1 258 -* 22: Internal multi-segment position selection 2 259 -* 23: Internal multi-segment position selection 3 260 -* 24: Internal multi-segment position selection 4 261 -* Others: reserved 273 +)))|4|0 to 32|((( 274 +0 off (not used) 275 + 276 +01: SON Servo enable 277 + 278 +02: A-CLR Fault and Warning Clear 279 + 280 +03: POT Forward drive prohibition 281 + 282 +04: NOT Reverse drive prohibition 283 + 284 +05: ZCLAMP Zero speed 285 + 286 +06: CL Clear deviation counter 287 + 288 +07: C-SIGN Inverted instruction 289 + 290 +08: E-STOP Emergency shutdown 291 + 292 +09: GEAR-SEL Electronic Gear Switch 1 293 + 294 +10: GAIN-SEL gain switch 295 + 296 +11: INH Instruction pulse prohibited input 297 + 298 +12: VSSEL Vibration control switch input 299 + 300 +13: INSPD1 Internal speed instruction selection 1 301 + 302 +14: INSPD2 Internal speed instruction selection 2 303 + 304 +15: INSPD3 Internal speed instruction selection 3 305 + 306 +16: J-SEL inertia ratio switch (not implemented yet) 307 + 308 +17: MixModesel mixed mode selection 309 + 310 +20: Internal multi-segment position enable signal 311 + 312 +21: Internal multi-segment position selection 1 313 + 314 +22: Internal multi-segment position selection 2 315 + 316 +23: Internal multi-segment position selection 3 317 + 318 +24: Internal multi-segment position selection 4 319 + 320 +Others: reserved 262 262 )))|- 263 -|=P06-12| (% style="width:143px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((322 +|=P06-12|DI_4 channel logic selection|Operation setting|((( 264 264 Effective immediately 265 -)))| (% style="width:84px" %)0|(% style="width:100px"%)0to 1|(((324 +)))|0|0 to 1|((( 266 266 DI port input logic validity function selection. 267 267 268 -* 0: Normally open input. Active low level (switch on); 269 -* 1: Normally closed input. Active high level (switch off); 327 +0: Normally open input. Active low level (switch on); 328 + 329 +1: Normally closed input. Active high level (switch off); 270 270 )))|- 271 -|=P06-13| (% style="width:143px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((331 +|=P06-13|DI_4 input source selection|Operation setting|((( 272 272 Effective immediately 273 -)))| (% style="width:84px" %)0|(% style="width:100px"%)0to 1|(((333 +)))|0|0 to 1|((( 274 274 Select the DI_4 port type to enable 275 275 276 -* 0: Hardware DI_4 input terminal 277 -* 1: virtual VDI_4 input terminal 336 +0: Hardware DI_4 input terminal 337 + 338 +1: virtual VDI_4 input terminal 278 278 )))|- 279 279 280 280 Table 6-8 DI3 and DI4 channel parameters ... ... @@ -283,12 +283,12 @@ 283 283 284 284 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state. 285 285 286 -== Brake device == 347 +== **Brake device** == 287 287 288 288 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 289 289 351 + 290 290 |((( 291 -(% style="text-align:center" %) 292 292 [[image:image-20220611151617-1.png]] 293 293 ))) 294 294 |((( ... ... @@ -303,19 +303,17 @@ 303 303 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function. 304 304 ))) 305 305 306 -**Wiring of brake device** 367 +**(1) Wiring of brake device** 307 307 308 308 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 309 309 310 310 311 -(% style="text-align:center" %) 312 -((( 313 -(% class="wikigeneratedid" style="display:inline-block" %) 314 -[[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]] 315 -))) 372 +[[image:image-20220608163136-2.png]] 316 316 374 +Figure 6-2 VD2B servo drive brake wiring 375 + 376 + 317 317 |((( 318 -(% style="text-align:center" %) 319 319 [[image:image-20220611151642-2.png]] 320 320 ))) 321 321 |((( ... ... @@ -326,12 +326,13 @@ 326 326 ✎It is recommended to use cables above 0.5 mm². 327 327 ))) 328 328 329 -**Brake software setting** 388 +**(2) Brake software setting** 330 330 331 331 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined. 332 332 333 333 Related function code is as below. 334 334 394 + 335 335 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=((( 336 336 **Effective time** 337 337 ))) ... ... @@ -341,6 +341,7 @@ 341 341 342 342 Table 6-2 Relevant function codes for brake setting 343 343 404 + 344 344 |=(% scope="row" %)**Function code**|=**Name**|=((( 345 345 **Setting method** 346 346 )))|=((( ... ... @@ -371,14 +371,15 @@ 371 371 372 372 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive. 373 373 374 -**Servo drive brake timing in normal state** 435 +**(3) Servo drive brake timing in normal state** 375 375 376 376 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above). 377 377 378 - *Brake timing when servo motor is stationary439 +1) Brake timing when servo motor is stationary 379 379 380 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__ 441 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__ 381 381 443 + 382 382 |((( 383 383 [[image:image-20220611151705-3.png]] 384 384 ))) ... ... @@ -388,23 +388,18 @@ 388 388 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 389 389 ))) 390 390 391 -(% style="text-align:center" %) 392 -((( 393 -(% class="wikigeneratedid" style="display:inline-block" %) 394 -[[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]] 395 -))) 453 +[[image:image-20220608163304-3.png]] 396 396 397 - (%class="boxinfomessage" %)398 - (((455 +Figure 6-3 Brake Timing of when the motor is stationary 456 + 399 399 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor. 400 -))) 401 401 402 - *The brake timing when servo motor rotates459 +2) The brake timing when servo motor rotates 403 403 404 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__. 461 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__. 405 405 463 + 406 406 |((( 407 -(% style="text-align:center" %) 408 408 [[image:image-20220611151719-4.png]] 409 409 ))) 410 410 |((( ... ... @@ -419,34 +419,31 @@ 419 419 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 420 420 ))) 421 421 422 -(% style="text-align:center" %) 423 -((( 424 -(% class="wikigeneratedid" style="display:inline-block" %) 425 -[[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]] 426 -))) 479 +[[image:image-20220608163425-4.png]] 427 427 428 - **Brake timing when theservodrivefails**481 +Figure 6-4 Brake timing when the motor rotates 429 429 483 +**(4) Brake timing when the servo drive fails** 484 + 430 430 The brake timing (free shutdown) in the fault status is as follows. 431 431 432 -(% style="text-align:center" %) 433 -((( 434 -(% class="wikigeneratedid" style="display:inline-block" %) 435 -[[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]] 436 -))) 437 437 488 +[[image:image-20220608163541-5.png]] 489 + 490 + Figure 6-5 The brake timing (free shutdown) in the fault state 491 + 438 438 = **Position control mode** = 439 439 440 440 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 441 441 442 -(% style="text-align:center" %) 443 -((( 444 -(% class="wikigeneratedid" style="display:inline-block" %) 445 -[[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]] 446 -))) 447 447 497 +[[image:image-20220608163643-6.png]] 498 + 499 +Figure 6-6 Position control diagram 500 + 448 448 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 449 449 503 + 450 450 |=(% scope="row" %)**Function code**|=**Name**|=((( 451 451 **Setting method** 452 452 )))|=((( ... ... @@ -472,10 +472,11 @@ 472 472 473 473 Table 6-10 Control mode parameters 474 474 475 -== Position instruction input setting == 529 +== **Position instruction input setting** == 476 476 477 477 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 478 478 533 + 479 479 |=(% scope="row" %)**Function code**|=**Name**|=((( 480 480 **Setting method** 481 481 )))|=((( ... ... @@ -493,78 +493,70 @@ 493 493 494 494 Table 6-11 Position instruction source parameter 495 495 496 -**The source of position instruction is pulse instruction (P01-06=0)** 551 +**(1) The source of position instruction is pulse instruction (P01-06=0)** 497 497 498 -Low-speed pulse instruction input 553 +1) Low-speed pulse instruction input 499 499 500 500 |[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]] 501 501 |VD2A and VD2B servo drives|VD2F servo drive 502 502 |(% colspan="2" %)Figure 6-7 Position instruction input setting 503 503 504 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__. 559 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__. 505 505 506 506 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 507 507 508 -|=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage** 509 -|=Open collector input|200K|24V 510 -|=Differential input|500K|5V 511 511 564 +|**Pulse method**|**Maximum frequency**|**Voltage** 565 +|Open collector input|200K|24V 566 +|Differential input|500K|5V 567 + 512 512 Table 6-12 Pulse input specifications 513 513 514 - *Differential input570 +1.Differential input 515 515 516 516 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 517 517 518 518 (% style="text-align:center" %) 519 -((( 520 -(% class="wikigeneratedid" style="display:inline-block" %) 521 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]] 522 -))) 575 +[[image:image-20220707092615-5.jpeg]] 523 523 524 -(% class="box infomessage" %) 525 -((( 526 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__” 527 -))) 577 +Figure 6-8 Differential input connection 528 528 529 -* Open collector input579 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 530 530 581 +2.Open collector input 582 + 531 531 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 532 532 533 533 (% style="text-align:center" %) 534 -((( 535 -(% class="wikigeneratedid" style="display:inline-block" %) 536 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="530" id="Iimage-20220707092401-3.jpeg" width="834"]] 537 -))) 586 +[[image:image-20220707092401-3.jpeg||height="530" width="834"]] 538 538 588 +Figure 6-9 Open collector input connection 539 539 540 -(% class="box infomessage" %) 541 -((( 542 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__” 543 -))) 590 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 544 544 545 - *Position pulse frequency and anti-interference level592 +2) Position pulse frequency and anti-interference level 546 546 547 547 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 548 548 549 549 (% style="text-align:center" %) 550 -((( 551 -(% class="wikigeneratedid" style="display:inline-block" %) 552 -[[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]] 553 -))) 597 +[[image:image-20220608163952-8.png]] 554 554 599 +Figure 6-10 Example of filtered signal waveform 600 + 555 555 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 556 556 557 -|=**Function code**|=**Name**|=((( 603 + 604 +|=(% scope="row" %)**Function code**|=**Name**|=((( 558 558 **Setting method** 559 559 )))|=((( 560 560 **Effective time** 561 561 )))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit** 562 -|P00-13|Maximum position pulse frequency|((( 609 +|=P00-13|Maximum position pulse frequency|((( 563 563 Shutdown setting 564 564 )))|((( 565 565 Effective immediately 566 566 )))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 567 -|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 614 +|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 568 568 Operation setting 569 569 )))|(% rowspan="3" %)((( 570 570 Power-on again ... ... @@ -571,26 +571,34 @@ 571 571 )))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 572 572 Set the anti-interference level of external pulse instruction. 573 573 574 -* 0: no filtering; 575 -* 1: Filtering time 128ns 576 -* 2: Filtering time 256ns 577 -* 3: Filtering time 512ns 578 -* 4: Filtering time 1.024us 579 -* 5: Filtering time 2.048us 580 -* 6: Filtering time 4.096us 581 -* 7: Filtering time 8.192us 582 -* 8: Filtering time 16.384us 583 -* 9: 584 -** VD2: Filtering time 25.5us 585 -** VD2F: Filtering time 25.5us 621 +0: no filtering; 622 + 623 +1: Filtering time 128ns 624 + 625 +2: Filtering time 256ns 626 + 627 +3: Filtering time 512ns 628 + 629 +4: Filtering time 1.024us 630 + 631 +5: Filtering time 2.048us 632 + 633 +6: Filtering time 4.096us 634 + 635 +7: Filtering time 8.192us 636 + 637 +8: Filtering time 16.384us 586 586 )))|(% rowspan="3" %)- 639 +|=(% rowspan="2" %)9|VD2: Filtering time 25.5us 640 +|=VD2F: Filtering time 25.5us 587 587 588 588 Table 6-13 Position pulse frequency and anti-interference level parameters 589 589 590 - *Position pulse type selection644 +3) Position pulse type selection 591 591 592 592 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 593 593 648 + 594 594 |=(% scope="row" %)**Function code**|=**Name**|=((( 595 595 **Setting method** 596 596 )))|=((( ... ... @@ -601,12 +601,17 @@ 601 601 )))|((( 602 602 Power-on again 603 603 )))|0|0 to 5|((( 604 -* 0: direction + pulse (positive logic) 605 -* 1: CW/CCW 606 -* 2: A, B phase quadrature pulse (4 times frequency) 607 -* 3: Direction + pulse (negative logic) 608 -* 4: CW/CCW (negative logic) 609 -* 5: A, B phase quadrature pulse (4 times frequency negative logic) 659 +0: direction + pulse (positive logic) 660 + 661 +1: CW/CCW 662 + 663 +2: A, B phase quadrature pulse (4 times frequency) 664 + 665 +3: Direction + pulse (negative logic) 666 + 667 +4: CW/CCW (negative logic) 668 + 669 +5: A, B phase quadrature pulse (4 times frequency negative logic) 610 610 )))|- 611 611 612 612 Table 6-14 Position pulse type selection parameter ... ... @@ -689,20 +689,18 @@ 689 689 690 690 Table 6-15 Pulse description 691 691 692 -**The source of position instruction is internal position instruction (P01-06=1)** 752 +**(2) The source of position instruction is internal position instruction (P01-06=1)** 693 693 694 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__. 754 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__. 695 695 696 696 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 697 697 698 698 (% style="text-align:center" %) 699 -((( 700 -(% class="wikigeneratedid" style="display:inline-block" %) 701 -[[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]] 702 -))) 759 +[[image:image-20220608164116-9.png]] 703 703 761 +Figure 6-11 The setting process of multi-segment position 704 704 705 - *Set multi-segment position running mode763 +1) Set multi-segment position running mode 706 706 707 707 |=(% scope="row" %)**Function code**|=**Name**|=((( 708 708 **Setting method** ... ... @@ -714,9 +714,11 @@ 714 714 )))|((( 715 715 Effective immediately 716 716 )))|0|0 to 2|((( 717 -* 0: Single running 718 -* 1: Cycle running 719 -* 2: DI switching running 775 +0: Single running 776 + 777 +1: Cycle running 778 + 779 +2: DI switching running 720 720 )))|- 721 721 |=P07-02|Start segment number|((( 722 722 Shutdown setting ... ... @@ -733,8 +733,9 @@ 733 733 )))|((( 734 734 Effective immediately 735 735 )))|0|0 to 1|((( 736 -* 0: Run the remaining segments 737 -* 1: Run again from the start segment 796 +0: Run the remaining segments 797 + 798 +1: Run again from the start segment 738 738 )))|- 739 739 |=P07-05|Displacement instruction type|((( 740 740 Shutdown setting ... ... @@ -741,8 +741,9 @@ 741 741 )))|((( 742 742 Effective immediately 743 743 )))|0|0 to 1|((( 744 -* 0: Relative position instruction 745 -* 1: Absolute position instruction 805 +0: Relative position instruction 806 + 807 +1: Absolute position instruction 746 746 )))|- 747 747 748 748 Table 6-16 multi-segment position running mode parameters ... ... @@ -749,35 +749,30 @@ 749 749 750 750 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements. 751 751 752 -1. Single running 814 +~1. Single running 753 753 754 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 816 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 755 755 756 756 757 757 (% style="text-align:center" %) 758 -((( 759 -(% class="wikigeneratedid" style="display:inline-block" %) 760 -[[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]] 761 -))) 820 +[[image:image-20220608164226-10.png]] 762 762 763 - *2.Cycle running822 +Figure 6-12 Single running curve (P07-02=1, P07-03=2) 764 764 824 +2. Cycle running 825 + 765 765 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 766 766 767 -(% style="text-align:center" %) 768 -((( 769 -(% class="wikigeneratedid" style="display:inline-block" %) 770 -[[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]] 771 -))) 772 772 773 -|((( 774 774 (% style="text-align:center" %) 775 -[[image:image-20220611151917-5.png]] 776 -))) 830 +[[image:image-20220608164327-11.png]] 831 + 832 +Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 833 + 834 +|[[image:image-20220611151917-5.png]] 777 777 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 778 778 779 -(% start="3" %) 780 -1. DI switching running 837 +3. DI switching running 781 781 782 782 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 783 783 ... ... @@ -800,87 +800,68 @@ 800 800 801 801 Table 6-18 INPOS corresponds to running segment number 802 802 803 -The operating curve in this running mode is shown in __Figure 6-14__. 860 +The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__. 804 804 805 805 (% style="text-align:center" %) 806 -((( 807 -(% class="wikigeneratedid" style="display:inline-block" %) 808 -[[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]] 809 -))) 863 +[[image:image-20220608164545-12.png]] 810 810 865 +Figure 6-14 DI switching running curve 866 + 811 811 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04. 812 812 813 -**Run the remaining segments** 869 +**A. Run the remaining segments** 814 814 815 815 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively. 816 816 817 817 (% style="text-align:center" %) 818 -((( 819 -(% class="wikigeneratedid" style="display:inline-block" %) 820 -[[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]] 821 -))) 874 +[[image:image-20220608164847-13.png]] 822 822 876 +Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 877 + 823 823 (% style="text-align:center" %) 824 -((( 825 -(% class="wikigeneratedid" style="display:inline-block" %) 826 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]] 827 -))) 879 +[[image:image-20220608165032-14.png]] 828 828 829 - **Runagainfromthestartsegment**881 +Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) 830 830 883 +**B. Run again from the start segment** 884 + 831 831 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively. 832 832 833 833 (% style="text-align:center" %) 834 -((( 835 -(% class="wikigeneratedid" style="display:inline-block" %) 836 -[[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]] 837 -))) 888 +[[image:image-20220608165343-15.png]] 838 838 890 +Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 891 + 839 839 (% style="text-align:center" %) 840 -((( 841 -(% class="wikigeneratedid" style="display:inline-block" %) 842 -[[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]] 843 -))) 893 +[[image:image-20220608165558-16.png]] 844 844 895 +Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) 896 + 845 845 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05. 846 846 847 - *Relative position instruction899 +A. Relative position instruction 848 848 849 849 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 850 850 851 851 |((( 852 -(% style="text-align:center" %) 853 -((( 854 -(% class="wikigeneratedid" style="display:inline-block" %) 855 -[[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]] 856 -))) 904 +[[image:image-20220608165710-17.png]] 857 857 )))|((( 858 -(% style="text-align:center" %) 859 -((( 860 -(% class="wikigeneratedid" style="display:inline-block" %) 861 -[[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]] 906 +[[image:image-20220608165749-18.png]] 862 862 ))) 863 - )))908 +|Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram 864 864 865 - *Absolute position instruction910 +B. Absolute position instruction 866 866 867 867 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 868 868 869 869 |((( 870 -(% style="text-align:center" %) 871 -((( 872 -(% class="wikigeneratedid" style="display:inline-block" %) 873 -[[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]] 874 -))) 915 +[[image:image-20220608165848-19.png]] 875 875 )))|((( 876 -(% style="text-align:center" %) 877 -((( 878 -(% class="wikigeneratedid" style="display:inline-block" %) 879 -[[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]] 917 +[[image:image-20220608170005-20.png]] 880 880 ))) 881 - )))919 +|Figure 6-21 Absolute indication|Figure 6-22 Displacement 882 882 883 - *Multi-segment position running curve setting921 +2) Multi-segment position running curve setting 884 884 885 885 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 886 886 ... ... @@ -919,13 +919,11 @@ 919 919 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 920 920 921 921 (% style="text-align:center" %) 922 -((( 923 -(% class="wikigeneratedid" style="display:inline-block" %) 924 -[[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]] 925 -))) 960 +[[image:image-20220608170149-21.png]] 926 926 962 +Figure 6-23 The 1st segment running curve of motor 927 927 928 - *multi-segment position instruction enable964 +3) multi-segment position instruction enable 929 929 930 930 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 931 931 ... ... @@ -936,14 +936,13 @@ 936 936 DI port logic valid: Motor runs multi-segment position 937 937 ))) 938 938 939 -(% style="text-align:center" %) 940 940 [[image:image-20220611152020-6.png]] 941 941 942 942 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 943 943 944 -== Electronic gear ratio == 979 +== **Electronic gear ratio** == 945 945 946 -**Definition of electronic gear ratio** 981 +**(1) Definition of electronic gear ratio** 947 947 948 948 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio. 949 949 ... ... @@ -954,20 +954,23 @@ 954 954 (% style="text-align:center" %) 955 955 [[image:image-20220707094901-16.png]] 956 956 992 + 993 + 994 + 957 957 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! 958 958 959 -**Setting steps of electronic gear ratio** 997 +**(2) Setting steps of electronic gear ratio** 960 960 961 -(% style="text-align:center" %) 962 -((( 963 -(% class="wikigeneratedid" style="display:inline-block" %) 964 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]] 965 -))) 999 +[[image:image-20220707100850-20.jpeg]] 966 966 967 - **lectronic gear ratioswitch setting**1001 +Figure 6-24 Setting steps of electronic gear ratio 968 968 1003 +**(3) lectronic gear ratio switch setting** 1004 + 1005 + 969 969 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 970 970 1008 + 971 971 |=(% scope="row" %)**Function code**|=**Name**|=((( 972 972 **Setting method** 973 973 )))|=((( ... ... @@ -1017,6 +1017,7 @@ 1017 1017 1018 1018 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1019 1019 1058 + 1020 1020 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 1021 1021 |=09|GEAR-SEL electronic gear switch 1|((( 1022 1022 DI port logic invalid: electronic gear ratio 1 ... ... @@ -1026,25 +1026,16 @@ 1026 1026 1027 1027 Table 6-21 Switching conditions of electronic gear ratio group 1028 1028 1029 -|=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** 1030 -|(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)((( 1031 -(% style="text-align:center" %) 1032 -[[image:image-20220707101328-21.png]] 1033 -))) 1034 -|(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)((( 1035 -(% style="text-align:center" %) 1036 -[[image:image-20220707101336-22.png]] 1037 -))) 1038 -|1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)((( 1039 -(% style="text-align:center" %) 1040 -[[image:image-20220707101341-23.png]] 1041 -))) 1068 +|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]] 1069 +|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]] 1070 +|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]] 1071 +|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]] 1042 1042 1043 1043 Table 6-22 Application of electronic gear ratio 1044 1044 1045 1045 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid. 1046 1046 1047 -== Position instruction filtering == 1077 +== **Position instruction filtering** == 1048 1048 1049 1049 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation. 1050 1050 ... ... @@ -1057,11 +1057,10 @@ 1057 1057 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1058 1058 1059 1059 (% style="text-align:center" %) 1060 -((( 1061 -(% class="wikigeneratedid" style="display:inline-block" %) 1062 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]] 1063 -))) 1090 +[[image:image-20220608170455-23.png]] 1064 1064 1092 +Figure 6-25 Position instruction filtering diagram 1093 + 1065 1065 |=(% scope="row" %)**Function code**|=**Name**|=((( 1066 1066 **Setting method** 1067 1067 )))|=((( ... ... @@ -1072,8 +1072,9 @@ 1072 1072 )))|((( 1073 1073 Effective immediately 1074 1074 )))|0|0 to 1|((( 1075 -* 0: 1st-order low-pass filtering 1076 -* 1: average filtering 1104 +0: 1st-order low-pass filtering 1105 + 1106 +1: average filtering 1077 1077 )))|- 1078 1078 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1079 1079 Effective immediately ... ... @@ -1084,13 +1084,13 @@ 1084 1084 1085 1085 Table 6-23 Position instruction filter function code 1086 1086 1087 -== Clearance of position deviation == 1117 +== **Clearance of position deviation** == 1088 1088 1089 1089 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal; 1090 1090 1091 1091 Position deviation = (position instruction-position feedback) (encoder unit) 1092 1092 1093 -== Position-related DO output function == 1123 +== **Position-related DO output function** == 1094 1094 1095 1095 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use. 1096 1096 ... ... @@ -1101,46 +1101,44 @@ 1101 1101 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1102 1102 1103 1103 (% style="text-align:center" %) 1104 -((( 1105 -(% class="wikigeneratedid" style="display:inline-block" %) 1106 -[[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]] 1107 -))) 1134 +[[image:image-20220608170550-24.png]] 1108 1108 1136 +Figure 6-26 Positioning completion signal output diagram 1137 + 1109 1109 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27. 1110 1110 1111 1111 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1112 1112 1113 1113 (% style="text-align:center" %) 1114 -((( 1115 -(% class="wikigeneratedid" style="display:inline-block" %) 1116 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]] 1117 -))) 1143 +[[image:image-20220608170650-25.png]] 1118 1118 1145 +Figure 6-27 Positioning completion signal output with increased window filter time diagram 1146 + 1119 1119 |=(% scope="row" %)**Function code**|=**Name**|=((( 1120 1120 **Setting method** 1121 -)))|=( % style="width: 129px;" %)(((1149 +)))|=((( 1122 1122 **Effective time** 1123 -)))|= (% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**1151 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1124 1124 |=P05-12|Positioning completion threshold|((( 1125 1125 Operation setting 1126 -)))|( % style="width:129px" %)(((1154 +)))|((( 1127 1127 Effective immediately 1128 -)))| (% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit1156 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1129 1129 |=P05-13|Positioning approach threshold|((( 1130 1130 Operation setting 1131 -)))|( % style="width:129px" %)(((1159 +)))|((( 1132 1132 Effective immediately 1133 -)))| (% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit1161 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1134 1134 |=P05-14|Position detection window time|((( 1135 1135 Operation setting 1136 -)))|( % style="width:129px" %)(((1164 +)))|((( 1137 1137 Effective immediately 1138 -)))| (% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms1166 +)))|10|0 to 20000|Set positioning completion detection window time|ms 1139 1139 |=P05-15|Positioning signal hold time|((( 1140 1140 Operation setting 1141 -)))|( % style="width:129px" %)(((1169 +)))|((( 1142 1142 Effective immediately 1143 -)))| (% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms1171 +)))|100|0 to 20000|Set positioning completion output hold time|ms 1144 1144 1145 1145 Table 6-24 Function code parameters of positioning completion 1146 1146 ... ... @@ -1159,46 +1159,47 @@ 1159 1159 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1160 1160 1161 1161 (% style="text-align:center" %) 1162 -((( 1163 -(% class="wikigeneratedid" style="display:inline-block" %) 1164 -[[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]] 1165 -))) 1190 +[[image:6.28.jpg||height="260" width="806"]] 1166 1166 1167 - ==Speedinstructioninputsetting==1192 +Figure 6-28 Speed control block diagram 1168 1168 1194 +== **Speed instruction input setting** == 1195 + 1169 1169 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1170 1170 1171 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 189px;" %)**Name**|=(% style="width: 125px;" %)((( 1198 + 1199 +|**Function code**|**Name**|((( 1172 1172 **Setting method** 1173 -)))| =(% style="width: 125px;" %)(((1201 +)))|((( 1174 1174 **Effective time** 1175 -)))| =(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**1176 -| =(% style="width: 121px;" %)P01-01|(% style="width:189px" %)Speed instruction source|(% style="width:125px" %)(((1203 +)))|**Default value**|**Range**|**Definition**|**Unit** 1204 +|P01-01|Speed instruction source|((( 1177 1177 Shutdown setting 1178 -)))|( % style="width:125px" %)(((1206 +)))|((( 1179 1179 Effective immediately 1180 -)))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)((( 1181 -* 0: internal speed instruction 1182 -* 1: AI_1 analog input (not supported by VD2F) 1208 +)))|1|1 to 1|((( 1209 +0: internal speed instruction 1210 + 1211 +1: AI_1 analog input (not supported by VD2F) 1183 1183 )))|- 1184 1184 1185 1185 Table 6-26 Speed instruction source parameter 1186 1186 1187 -**Speed instruction source is internal speed instruction (P01-01=0)** 1216 +**(1) Speed instruction source is internal speed instruction (P01-01=0)** 1188 1188 1189 1189 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo 1190 1190 1191 1191 (% style="width:1141px" %) 1192 -| =(% colspan="1"scope="row"%)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((1221 +|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)((( 1193 1193 **Setting** 1194 1194 1195 1195 **method** 1196 -)))| =(% colspan="2" %)(((1225 +)))|(% colspan="2" %)((( 1197 1197 **Effective** 1198 1198 1199 1199 **time** 1200 -)))| =(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**1201 -| =(% colspan="1" %)P01-02|(% colspan="2" %)(((1229 +)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit** 1230 +|(% colspan="1" %)P01-02|(% colspan="2" %)((( 1202 1202 Internal speed 1203 1203 1204 1204 Instruction 0 ... ... @@ -1215,13 +1215,15 @@ 1215 1215 1216 1216 When DI input port: 1217 1217 1218 -* 15-INSPD3: 0 1219 -* 14-INSPD2: 0 1220 -* 13-INSPD1: 0, 1247 +15-INSPD3: 0 1221 1221 1249 +14-INSPD2: 0 1250 + 1251 +13-INSPD1: 0, 1252 + 1222 1222 select this speed instruction to be effective. 1223 1223 )))|(% colspan="2" %)rpm 1224 -| =(% colspan="1" %)P01-23|(% colspan="2" %)(((1255 +|(% colspan="1" %)P01-23|(% colspan="2" %)((( 1225 1225 Internal speed 1226 1226 1227 1227 Instruction 1 ... ... @@ -1238,13 +1238,15 @@ 1238 1238 1239 1239 When DI input port: 1240 1240 1241 -* 15-INSPD3: 0 1242 -* 14-INSPD2: 0 1243 -* 13-INSPD1: 1, 1272 +15-INSPD3: 0 1244 1244 1274 +14-INSPD2: 0 1275 + 1276 +13-INSPD1: 1, 1277 + 1245 1245 Select this speed instruction to be effective. 1246 1246 )))|(% colspan="2" %)rpm 1247 -| =(% colspan="1" %)P01-24|(% colspan="2" %)(((1280 +|(% colspan="1" %)P01-24|(% colspan="2" %)((( 1248 1248 Internal speed 1249 1249 1250 1250 Instruction 2 ... ... @@ -1261,13 +1261,15 @@ 1261 1261 1262 1262 When DI input port: 1263 1263 1264 -* 15-INSPD3: 0 1265 -* 14-INSPD2: 1 1266 -* 13-INSPD1: 0, 1297 +15-INSPD3: 0 1267 1267 1299 +14-INSPD2: 1 1300 + 1301 +13-INSPD1: 0, 1302 + 1268 1268 Select this speed instruction to be effective. 1269 1269 )))|(% colspan="2" %)rpm 1270 -| =(% colspan="1" %)P01-25|(% colspan="2" %)(((1305 +|(% colspan="1" %)P01-25|(% colspan="2" %)((( 1271 1271 Internal speed 1272 1272 1273 1273 Instruction 3 ... ... @@ -1284,13 +1284,15 @@ 1284 1284 1285 1285 When DI input port: 1286 1286 1287 -* 15-INSPD3: 0 1288 -* 14-INSPD2: 1 1289 -* 13-INSPD1: 1, 1322 +15-INSPD3: 0 1290 1290 1324 +14-INSPD2: 1 1325 + 1326 +13-INSPD1: 1, 1327 + 1291 1291 Select this speed instruction to be effective. 1292 1292 )))|(% colspan="2" %)rpm 1293 -| =P01-26|(% colspan="2" %)(((1330 +|P01-26|(% colspan="2" %)((( 1294 1294 Internal speed 1295 1295 1296 1296 Instruction 4 ... ... @@ -1307,13 +1307,15 @@ 1307 1307 1308 1308 When DI input port: 1309 1309 1310 -* 15-INSPD3: 1 1311 -* 14-INSPD2: 0 1312 -* 13-INSPD1: 0, 1347 +15-INSPD3: 1 1313 1313 1349 +14-INSPD2: 0 1350 + 1351 +13-INSPD1: 0, 1352 + 1314 1314 Select this speed instruction to be effective. 1315 1315 )))|(% colspan="1" %)rpm 1316 -| =P01-27|(% colspan="2" %)(((1355 +|P01-27|(% colspan="2" %)((( 1317 1317 Internal speed 1318 1318 1319 1319 Instruction 5 ... ... @@ -1330,13 +1330,15 @@ 1330 1330 1331 1331 When DI input port: 1332 1332 1333 -* 15-INSPD3: 1 1334 -* 14-INSPD2: 0 1335 -* 13-INSPD1: 1, 1372 +15-INSPD3: 1 1336 1336 1374 +14-INSPD2: 0 1375 + 1376 +13-INSPD1: 1, 1377 + 1337 1337 Select this speed instruction to be effective. 1338 1338 )))|(% colspan="1" %)rpm 1339 -| =P01-28|(% colspan="2" %)(((1380 +|P01-28|(% colspan="2" %)((( 1340 1340 Internal speed 1341 1341 1342 1342 Instruction 6 ... ... @@ -1353,13 +1353,15 @@ 1353 1353 1354 1354 When DI input port: 1355 1355 1356 -* 15-INSPD3: 1 1357 -* 14-INSPD2: 1 1358 -* 13-INSPD1: 0, 1397 +15-INSPD3: 1 1359 1359 1399 +14-INSPD2: 1 1400 + 1401 +13-INSPD1: 0, 1402 + 1360 1360 Select this speed instruction to be effective. 1361 1361 )))|(% colspan="1" %)rpm 1362 -| =P01-29|(% colspan="2" %)(((1405 +|P01-29|(% colspan="2" %)((( 1363 1363 Internal speed 1364 1364 1365 1365 Instruction 7 ... ... @@ -1376,19 +1376,21 @@ 1376 1376 1377 1377 When DI input port: 1378 1378 1379 -* 15-INSPD3: 1 1380 -* 14-INSPD2: 1 1381 -* 13-INSPD1: 1, 1422 +15-INSPD3: 1 1382 1382 1424 +14-INSPD2: 1 1425 + 1426 +13-INSPD1: 1, 1427 + 1383 1383 Select this speed instruction to be effective. 1384 1384 )))|(% colspan="1" %)rpm 1385 1385 1386 1386 Table 6-27 Internal speed instruction parameters 1387 1387 1388 -| =(% scope="row" %)**DI function code**|=**function name**|=**Function**1389 -| =13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number1390 -| =14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number1391 -| =15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number1433 +|**DI function code**|**function name**|**Function** 1434 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1435 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1436 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1392 1392 1393 1393 Table 6-28 DI multi-speed function code description 1394 1394 ... ... @@ -1395,7 +1395,7 @@ 1395 1395 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1396 1396 1397 1397 1398 -| =**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**1443 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1399 1399 |0|0|0|1|0 1400 1400 |0|0|1|2|1 1401 1401 |0|1|0|3|2 ... ... @@ -1404,30 +1404,26 @@ 1404 1404 1405 1405 Table 6-29 Correspondence between INSPD bits and segment numbers 1406 1406 1407 -(% style="text-align:center" %) 1408 -((( 1409 -(% class="wikigeneratedid" style="display:inline-block" %) 1410 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]] 1411 -))) 1452 +[[image:image-20220608170845-26.png]] 1412 1412 1413 - **Speedinstruction sourceisinternalspeedinstruction(P01-01=1)**1454 +Figure 6-29 Multi-segment speed running curve 1414 1414 1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)** 1457 + 1415 1415 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1416 1416 1417 1417 (% style="text-align:center" %) 1418 -((( 1419 -(% class="wikigeneratedid" style="display:inline-block" %) 1420 -[[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]] 1421 -))) 1461 +[[image:image-20220608153341-5.png]] 1422 1422 1463 +Figure 6-30 Analog input circuit 1464 + 1423 1423 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1424 1424 1425 1425 (% style="text-align:center" %) 1426 -((( 1427 -(% class="wikigeneratedid" style="display:inline-block" %) 1428 -[[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]] 1429 -))) 1468 +[[image:image-20220608170955-27.png]] 1430 1430 1470 +Figure 6-31 Analog voltage speed instruction setting steps 1471 + 1431 1431 Explanation of related terms: 1432 1432 1433 1433 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. ... ... @@ -1435,25 +1435,21 @@ 1435 1435 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1436 1436 1437 1437 (% style="text-align:center" %) 1438 -((( 1439 -(% class="wikigeneratedid" style="display:inline-block" %) 1440 -[[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]] 1441 -))) 1479 +[[image:image-20220608171124-28.png]] 1442 1442 1443 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 1444 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1445 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1446 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1447 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1481 +Figure 6-32 AI_1 diagram before and after bias 1448 1448 1483 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1484 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1485 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1486 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1487 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1488 + 1449 1449 Table 6-30 AI_1 parameters 1450 1450 1451 -(% class="box infomessage" %) 1452 -((( 1453 1453 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 1454 -))) 1455 1455 1456 -== Acceleration and deceleration time setting == 1493 +== **Acceleration and deceleration time setting** == 1457 1457 1458 1458 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration. 1459 1459 ... ... @@ -1460,25 +1460,24 @@ 1460 1460 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1461 1461 1462 1462 (% style="text-align:center" %) 1463 -((( 1464 -(% class="wikigeneratedid" style="display:inline-block" %) 1465 -[[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]] 1466 -))) 1500 +[[image:image-20220608171314-29.png]] 1467 1467 1502 +Figure 6-33 of acceleration and deceleration time diagram 1503 + 1468 1468 (% style="text-align:center" %) 1469 1469 [[image:image-20220707103616-27.png]] 1470 1470 1471 -| =(% scope="row" %)**Function code**|=**Name**|=(((1507 +|**Function code**|**Name**|((( 1472 1472 **Setting method** 1473 -)))| =(((1509 +)))|((( 1474 1474 **Effective time** 1475 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1476 -| =P01-03|Acceleration time|(((1511 +)))|**Default value**|**Range**|**Definition**|**Unit** 1512 +|P01-03|Acceleration time|((( 1477 1477 Operation setting 1478 1478 )))|((( 1479 1479 Effective immediately 1480 1480 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1481 -| =P01-04|Deceleration time|(((1517 +|P01-04|Deceleration time|((( 1482 1482 Operation setting 1483 1483 )))|((( 1484 1484 Effective immediately ... ... @@ -1486,7 +1486,7 @@ 1486 1486 1487 1487 Table 6-31 Acceleration and deceleration time parameters 1488 1488 1489 -== Speed instruction limit == 1525 +== **Speed instruction limit** == 1490 1490 1491 1491 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include: 1492 1492 ... ... @@ -1501,22 +1501,23 @@ 1501 1501 1502 1502 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1503 1503 1504 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1540 + 1541 +|**Function code**|**Name**|((( 1505 1505 **Setting method** 1506 -)))| =(((1543 +)))|((( 1507 1507 **Effective time** 1508 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1509 -| =P01-10|Maximum speed threshold|(((1545 +)))|**Default value**|**Range**|**Definition**|**Unit** 1546 +|P01-10|Maximum speed threshold|((( 1510 1510 Operation setting 1511 1511 )))|((( 1512 1512 Effective immediately 1513 1513 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1514 -| =P01-12|Forward speed threshold|(((1551 +|P01-12|Forward speed threshold|((( 1515 1515 Operation setting 1516 1516 )))|((( 1517 1517 Effective immediately 1518 1518 )))|3000|0 to 5000|Set forward speed limit value|rpm 1519 -| =P01-13|Reverse speed threshold|(((1556 +|P01-13|Reverse speed threshold|((( 1520 1520 Operation setting 1521 1521 )))|((( 1522 1522 Effective immediately ... ... @@ -1524,18 +1524,19 @@ 1524 1524 1525 1525 Table 6-32 Rotation speed related function codes 1526 1526 1527 -== Zero-speed clamp function == 1564 +== **Zero-speed clamp function** == 1528 1528 1529 1529 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid. 1530 1530 1531 1531 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1532 1532 1533 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1570 + 1571 +|**Function code**|**Name**|((( 1534 1534 **Setting method** 1535 -)))| =(((1573 +)))|((( 1536 1536 **Effective time** 1537 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1538 -| =P01-21|(((1575 +)))|**Default value**|**Range**|**Definition**|**Unit** 1576 +|P01-21|((( 1539 1539 Zero-speed clamp function selection 1540 1540 )))|((( 1541 1541 Operation setting ... ... @@ -1544,12 +1544,15 @@ 1544 1544 )))|0|0 to 3|((( 1545 1545 Set the zero-speed clamp function. In speed mode: 1546 1546 1547 -* 0: Force the speed to 0; 1548 -* 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 1549 -* 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1550 -* 3: Invalid, ignore zero-speed clamp input 1585 +0: Force the speed to 0; 1586 + 1587 +1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 1588 + 1589 +2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1590 + 1591 +3: Invalid, ignore zero-speed clamp input 1551 1551 )))|- 1552 -| =P01-22|(((1593 +|P01-22|((( 1553 1553 Zero-speed clamp speed threshold 1554 1554 )))|((( 1555 1555 Operation setting ... ... @@ -1559,34 +1559,33 @@ 1559 1559 1560 1560 Table 6-33 Zero-speed clamp related parameters 1561 1561 1562 -(% style="text-align:center" %) 1563 -((( 1564 -(% class="wikigeneratedid" style="display:inline-block" %) 1565 -[[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]] 1566 -))) 1567 1567 1568 - == Speed-related DO output function ==1604 +[[image:image-20220608171549-30.png]] 1569 1569 1606 +Figure 6-34 Zero-speed clamp diagram 1607 + 1608 +== **Speed-related DO output function** == 1609 + 1570 1570 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use. 1571 1571 1572 -**Rotation detection signal** 1612 +**(1) Rotation detection signal** 1573 1573 1574 1574 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1575 1575 1576 -(% style="text-align:center" %) 1577 -((( 1578 -(% class="wikigeneratedid" style="display:inline-block" %) 1579 -[[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]] 1580 -))) 1581 1581 1582 - To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parametersand related DO function codes are shown in __Table 6-34__ and __Table6-35__.1617 +[[image:image-20220608171625-31.png]] 1583 1583 1584 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1619 +Figure 6-35 Rotation detection signal diagram 1620 + 1621 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1622 + 1623 + 1624 +|**Function code**|**Name**|((( 1585 1585 **Setting method** 1586 -)))| =(((1626 +)))|((( 1587 1587 **Effective time** 1588 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1589 -| =P05-16|(((1628 +)))|**Default value**|**Range**|**Definition**|**Unit** 1629 +|P05-16|((( 1590 1590 Rotation detection 1591 1591 1592 1592 speed threshold ... ... @@ -1598,10 +1598,10 @@ 1598 1598 1599 1599 Table 6-34 Rotation detection speed threshold parameters 1600 1600 1601 -| =(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**1602 -| =132|(% style="width:247px" %)(((1641 +|**DO function code**|**Function name**|**Function** 1642 +|132|((( 1603 1603 T-COIN rotation detection 1604 -)))|( % style="width:695px" %)(((1644 +)))|((( 1605 1605 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1606 1606 1607 1607 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1609,24 +1609,22 @@ 1609 1609 1610 1610 Table 6-35 DO rotation detection function code 1611 1611 1612 -**Zero-speed signal** 1652 +**(2) Zero-speed signal** 1613 1613 1614 1614 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1615 1615 1616 -(% style="text-align:center" %) 1617 -((( 1618 -(% class="wikigeneratedid" style="display:inline-block" %) 1619 -[[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]] 1620 -))) 1656 +[[image:image-20220608171904-32.png]] 1621 1621 1622 - To use the motor zero-speed signal output function, a DO terminal of servodrive should be assigned to function 133(ZSP, zero-speed signal).The function code parameters and related DO function codesare shown in __Table 6-36__ and __Table 6-37__.1658 +Figure 6-36 Zero-speed signal diagram 1623 1623 1624 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1660 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1661 + 1662 +|**Function code**|**Name**|((( 1625 1625 **Setting method** 1626 -)))| =(((1664 +)))|((( 1627 1627 **Effective time** 1628 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1629 -| =P05-19|Zero speed output signal threshold|(((1666 +)))|**Default value**|**Range**|**Definition**|**Unit** 1667 +|P05-19|Zero speed output signal threshold|((( 1630 1630 Operation setting 1631 1631 )))|((( 1632 1632 Effective immediately ... ... @@ -1634,31 +1634,30 @@ 1634 1634 1635 1635 Table 6-36 Zero-speed output signal threshold parameter 1636 1636 1637 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 1638 -|=133|((( 1675 + 1676 +|**DO function code**|**Function name**|**Function** 1677 +|133|((( 1639 1639 ZSP zero speed signal 1640 1640 )))|Output this signal indicates that the servo motor is stopping rotation 1641 1641 1642 1642 Table 6-37 DO zero-speed signal function code 1643 1643 1644 -**Speed consistent signal** 1683 +**(3) Speed consistent signal** 1645 1645 1646 1646 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1647 1647 1648 -(% style="text-align:center" %) 1649 -((( 1650 -(% class="wikigeneratedid" style="display:inline-block" %) 1651 -[[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]] 1652 -))) 1687 +[[image:image-20220608172053-33.png]] 1653 1653 1654 - Tousethemotor speed consistentfunction,aDO terminalof the servodrive should beassigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.1689 +Figure 6-37 Speed consistent signal diagram 1655 1655 1656 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1691 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1692 + 1693 +|**Function code**|**Name**|((( 1657 1657 **Setting method** 1658 -)))| =(((1695 +)))|((( 1659 1659 **Effective time** 1660 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1661 -| =P05-17|Speed consistent signal threshold|(((1697 +)))|**Default value**|**Range**|**Definition**|**Unit** 1698 +|P05-17|Speed consistent signal threshold|((( 1662 1662 Operationsetting 1663 1663 )))|((( 1664 1664 Effective immediately ... ... @@ -1666,31 +1666,30 @@ 1666 1666 1667 1667 Table 6-38 Speed consistent signal threshold parameters 1668 1668 1669 -|=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function** 1670 -|=136|(% style="width:262px" %)((( 1706 + 1707 +|**DO Function code**|**Function name**|**Function** 1708 +|136|((( 1671 1671 U-COIN consistent speed 1672 -)))| (% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value1710 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1673 1673 1674 1674 Table 6-39 DO speed consistent function code 1675 1675 1676 -**Speed approach signal** 1714 +**(4) Speed approach signal** 1677 1677 1678 1678 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1679 1679 1680 -(% style="text-align:center" %) 1681 -((( 1682 -(% class="wikigeneratedid" style="display:inline-block" %) 1683 -[[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]] 1684 -))) 1718 +[[image:image-20220608172207-34.png]] 1685 1685 1686 - Tousethemotor speed approachfunction,a DO terminalof the servodrive should beassigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.1720 +Figure 6-38 Speed approaching signal diagram 1687 1687 1688 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1723 + 1724 +|**Function code**|**Name**|((( 1689 1689 **Setting method** 1690 -)))| =(((1726 +)))|((( 1691 1691 **Effective time** 1692 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1693 -| =P05-18|Speed approach signal threshold|(((1728 +)))|**Default value**|**Range**|**Definition**|**Unit** 1729 +|P05-18|Speed approach signal threshold|((( 1694 1694 Operation setting 1695 1695 )))|((( 1696 1696 Effective immediately ... ... @@ -1698,8 +1698,8 @@ 1698 1698 1699 1699 Table 6-40 Speed approaching signal threshold parameters 1700 1700 1701 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1702 -| =137|(((1737 +|**DO function code**|**Function name**|**Function** 1738 +|137|((( 1703 1703 V-NEAR speed approach 1704 1704 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1705 1705 ... ... @@ -1709,22 +1709,22 @@ 1709 1709 1710 1710 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1711 1711 1712 -(% style="text-align:center" %) 1713 -((( 1714 -(% class="wikigeneratedid" style="display:inline-block" %) 1715 -[[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]] 1716 -))) 1717 1717 1718 - == Torqueinstru**ction input setting** ==1749 +[[image:image-20220608172405-35.png]] 1719 1719 1751 +Figure 6-39 Torque mode diagram 1752 + 1753 +== **Torque instruction input setting** == 1754 + 1720 1720 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1721 1721 1722 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1757 + 1758 +|**Function code**|**Name**|((( 1723 1723 **Setting method** 1724 -)))| =(((1760 +)))|((( 1725 1725 **Effective time** 1726 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1727 -| =P01-08|Torque instruction source|(((1762 +)))|**Default value**|**Range**|**Definition**|**Unit** 1763 +|P01-08|Torque instruction source|((( 1728 1728 Shutdown setting 1729 1729 )))|((( 1730 1730 Effective immediately ... ... @@ -1736,16 +1736,17 @@ 1736 1736 1737 1737 Table 6-42 Torque instruction source parameter 1738 1738 1739 -**Torque instruction source is internal torque instruction (P01-07=0)** 1775 +**(1) Torque instruction source is internal torque instruction (P01-07=0)** 1740 1740 1741 1741 Torque instruction source is from inside, the value is set by function code P01-08. 1742 1742 1743 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1779 + 1780 +|**Function code**|**Name**|((( 1744 1744 **Setting method** 1745 -)))| =(((1782 +)))|((( 1746 1746 **Effective time** 1747 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1748 -| =P01-08|Torque instruction keyboard set value|(((1784 +)))|**Default value**|**Range**|**Definition**|**Unit** 1785 +|P01-08|Torque instruction keyboard set value|((( 1749 1749 Operation setting 1750 1750 )))|((( 1751 1751 Effective immediately ... ... @@ -1753,24 +1753,22 @@ 1753 1753 1754 1754 Table 6-43 Torque instruction keyboard set value 1755 1755 1756 -**Torque instruction source is internal torque instruction (P01-07=1)** 1793 +**(2) Torque instruction source is internal torque instruction (P01-07=1)** 1757 1757 1758 1758 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1759 1759 1760 1760 (% style="text-align:center" %) 1761 -((( 1762 -(% class="wikigeneratedid" style="display:inline-block" %) 1763 -[[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]] 1764 -))) 1798 +[[image:image-20220608153646-7.png||height="213" width="408"]] 1765 1765 1800 +Figure 6-40 Analog input circuit 1801 + 1766 1766 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1767 1767 1768 1768 (% style="text-align:center" %) 1769 -((( 1770 -(% class="wikigeneratedid" style="display:inline-block" %) 1771 -[[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]] 1772 -))) 1805 +[[image:image-20220608172502-36.png]] 1773 1773 1807 +Figure 6-41 Analog voltage torque instruction setting steps 1808 + 1774 1774 Explanation of related terms: 1775 1775 1776 1776 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. ... ... @@ -1778,74 +1778,65 @@ 1778 1778 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1779 1779 1780 1780 (% style="text-align:center" %) 1781 -((( 1782 -(% class="wikigeneratedid" style="display:inline-block" %) 1783 -[[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]] 1784 -))) 1816 +[[image:image-20220608172611-37.png]] 1785 1785 1786 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 1787 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1788 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1789 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1790 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1818 +Figure 6-42 AI_1 diagram before and after bias 1791 1791 1820 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1821 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1822 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1823 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1824 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1825 + 1792 1792 Table 6-44 AI_1 parameters 1793 1793 1794 -(% class="box infomessage" %) 1795 -((( 1796 1796 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 1797 -))) 1798 1798 1799 -== Torque instruction filtering == 1830 +== **Torque instruction filtering** == 1800 1800 1801 -In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__. 1832 +In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1802 1802 1803 -| =(% scope="row" %)**Function code**|=**Name**|=(((1834 +|**Function code**|**Name**|((( 1804 1804 **Setting method** 1805 -)))| =(((1836 +)))|((( 1806 1806 **Effective time** 1807 -)))| =**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**1808 -| =P04-04|Torque filtering time constant|(((1838 +)))|**Default value**|**Range**|**Definition**|**Unit** 1839 +|P04-04|Torque filtering time constant|((( 1809 1809 Operation setting 1810 1810 )))|((( 1811 1811 Effective immediately 1812 -)))|50| (% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms1843 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1813 1813 1814 1814 Table 6-45 Torque filtering time constant parameter details 1815 1815 1816 -(% class="box infomessage" %) 1817 -((( 1818 1818 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1819 -))) 1820 1820 1821 1821 (% style="text-align:center" %) 1822 -((( 1823 -(% class="wikigeneratedid" style="display:inline-block" %) 1824 -[[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]] 1825 -))) 1850 +[[image:image-20220608172646-38.png]] 1826 1826 1827 - ==Torque instructionlimit==1852 +Figure 6-43 Torque instruction-first-order filtering diagram 1828 1828 1854 +== **Torque instruction limit** == 1855 + 1829 1829 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer. 1830 1830 1831 1831 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1832 1832 1833 1833 (% style="text-align:center" %) 1834 -((( 1835 -(% class="wikigeneratedid" style="display:inline-block" %) 1836 -[[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]] 1837 -))) 1861 +[[image:image-20220608172806-39.png]] 1838 1838 1839 - **Settorque limitsource**1863 +Figure 6-44 Torque instruction limit diagram 1840 1840 1865 +**(1) Set torque limit source** 1866 + 1841 1841 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1842 1842 1843 -| =(% scope="row" %)**Function code**|=**Name**|=(((1869 +|**Function code**|**Name**|((( 1844 1844 **Setting method** 1845 -)))| =(((1871 +)))|((( 1846 1846 **Effective time** 1847 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1848 -| =P01-14|(((1873 +)))|**Default value**|**Range**|**Definition**|**Unit** 1874 +|P01-14|((( 1849 1849 Torque limit source 1850 1850 )))|((( 1851 1851 Shutdown setting ... ... @@ -1852,46 +1852,49 @@ 1852 1852 )))|((( 1853 1853 Effective immediately 1854 1854 )))|0|0 to 1|((( 1855 -* 0: internal value 1856 -* 1: AI_1 analog input (not supported by VD2F) 1881 +0: internal value 1882 + 1883 +1: AI_1 analog input 1884 + 1885 +(not supported by VD2F) 1857 1857 )))|- 1858 1858 1859 - *Torque limit source is internal torque instruction (P01-14=0)1888 +1) Torque limit source is internal torque instruction (P01-14=0) 1860 1860 1861 1861 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1862 1862 1863 -| =(% scope="row" %)**Function code**|=**Name**|=(((1892 +|**Function code**|**Name**|((( 1864 1864 **Setting method** 1865 -)))| =(((1894 +)))|((( 1866 1866 **Effective time** 1867 -)))| =**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**1868 -| =P01-15|(((1896 +)))|**Default value**|**Range**|**Definition**|**Unit** 1897 +|P01-15|((( 1869 1869 Forward torque limit 1870 1870 )))|((( 1871 1871 Operation setting 1872 1872 )))|((( 1873 1873 Effective immediately 1874 -)))|3000| (% style="width:106px"%)0to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%1875 -| =P01-16|(((1903 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1904 +|P01-16|((( 1876 1876 Reverse torque limit 1877 1877 )))|((( 1878 1878 Operation setting 1879 1879 )))|((( 1880 1880 Effective immediately 1881 -)))|3000| (% style="width:106px"%)0to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1882 1882 1883 1883 Table 6-46 Torque limit parameter details 1884 1884 1885 - *Torque limit source is external (P01-14=1)1914 +2) Torque limit source is external (P01-14=1) 1886 1886 1887 1887 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal. 1888 1888 1889 -**Set torque limit DO signal output** 1918 +**(2) Set torque limit DO signal output** 1890 1890 1891 1891 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1892 1892 1893 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1894 -| =139|(((1922 +|**DO function code**|**Function name**|**Function** 1923 +|139|((( 1895 1895 T-LIMIT in torque limit 1896 1896 )))|Output of this signal indicates that the servo motor torque is limited 1897 1897 ... ... @@ -1901,28 +1901,21 @@ 1901 1901 1902 1902 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited. 1903 1903 1904 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__. 1933 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__. 1905 1905 1906 1906 |((( 1907 -(% style="text-align:center" %) 1908 -((( 1909 -(% class="wikigeneratedid" style="display:inline-block" %) 1910 -[[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]] 1911 -))) 1936 +[[image:image-20220608172910-40.png]] 1912 1912 )))|((( 1913 -(% style="text-align:center" %) 1914 -((( 1915 -(% class="wikigeneratedid" style="display:inline-block" %) 1916 -[[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]] 1938 +[[image:image-20220608173155-41.png]] 1917 1917 ))) 1918 - )))1940 +|Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1919 1919 1920 -| =(% scope="row" %)**Function code**|=**Name**|=(((1942 +|**Function code**|**Name**|((( 1921 1921 **Setting method** 1922 -)))| =(((1944 +)))|((( 1923 1923 **Effective time** 1924 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1925 -| =P01-17|(((1946 +)))|**Default value**|**Range**|**Definition**|**Unit** 1947 +|P01-17|((( 1926 1926 Forward torque 1927 1927 1928 1928 limit in torque mode ... ... @@ -1935,7 +1935,7 @@ 1935 1935 1936 1936 limit in torque mode 1937 1937 )))|0.1% 1938 -| =P01-18|(((1960 +|P01-18|((( 1939 1939 Reverse torque 1940 1940 1941 1941 limit in torque mode ... ... @@ -1951,7 +1951,7 @@ 1951 1951 1952 1952 Table 6-48 Speed limit parameters in torque mode 1953 1953 1954 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/0 2%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.1976 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__. 1955 1955 1956 1956 == **Torque-related DO output functions** == 1957 1957