Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|=(% scope="row" style="width: 58px;" %)**No.**|=(% style="width:1017px;" %)**Content**5 +|=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content** 6 6 |=(% colspan="2" %)Wiring 7 -|=(% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -|=(% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -|=(% style="width: 58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably.12 -|=(% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.13 -|=(% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range.14 -|=(% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated.7 +|=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably. 12 +|=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range. 14 +|=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated. 15 15 |=(% colspan="2" %)Environment and Machinery 16 -|=(% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects.18 -|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.16 +|=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects. 18 +|=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -46,11 +46,23 @@ 46 46 )))|=((( 47 47 **Effective time** 48 48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 49 -|=P10-01|JOG speed|((( 49 +|=((( 50 +P10-01 51 +)))|((( 52 +JOG speed 53 +)))|((( 50 50 Operation setting 51 51 )))|((( 52 52 Effective immediately 53 -)))|100|0 to 3000|JOG speed|rpm 57 +)))|((( 58 +100 59 +)))|((( 60 +0 to 3000 61 +)))|((( 62 +JOG speed 63 +)))|((( 64 +rpm 65 +))) 54 54 55 55 Table 6-2 JOG speed parameter 56 56 ... ... @@ -59,11 +59,19 @@ 59 59 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 60 60 61 61 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 62 -|=P00-04|Rotation direction|((( 74 +|=((( 75 +P00-04 76 +)))|((( 77 +Rotation direction 78 +)))|((( 63 63 Shutdown setting 64 64 )))|((( 65 65 Effective immediately 66 -)))|0|0 to 1|((( 82 +)))|((( 83 +0 84 +)))|((( 85 +0 to 1 86 +)))|((( 67 67 Forward rotation: Face the motor shaft to watch 68 68 69 69 * 0: standard setting (CW is forward rotation) ... ... @@ -81,14 +81,14 @@ 81 81 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 82 82 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 83 83 84 -|=(% scope="row" %)**Function code**|=**Name**|=((( 104 +|=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)((( 85 85 **Setting method** 86 -)))|=((( 106 +)))|=(% style="width: 126px;" %)((( 87 87 **Effective time** 88 88 )))|=**Default**|=**Range**|=**Definition**|=**Unit** 89 -|=P00-09|Braking resistor setting|((( 109 +|=P00-09|Braking resistor setting|(% style="width:118px" %)((( 90 90 Operation setting 91 -)))|((( 111 +)))|(% style="width:126px" %)((( 92 92 Effective immediately 93 93 )))|0|0 to 3|((( 94 94 * 0: use built-in braking resistor ... ... @@ -96,15 +96,15 @@ 96 96 * 2: use external braking resistor and forced air cooling; (cannot be set) 97 97 * 3: No braking resistor is used, it is all absorbed by capacitor. 98 98 )))|- 99 - |=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).100 -|=P00-10|External braking resistor value|((( 119 +(% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 120 +|=P00-10|External braking resistor value|(% style="width:118px" %)((( 101 101 Operation setting 102 -)))|((( 122 +)))|(% style="width:126px" %)((( 103 103 Effective immediately 104 104 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 105 -|=P00-11|External braking resistor power|((( 125 +|=P00-11|External braking resistor power|(% style="width:118px" %)((( 106 106 Operation setting 107 -)))|((( 127 +)))|(% style="width:126px" %)((( 108 108 Effective immediately 109 109 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 110 110 ... ... @@ -126,7 +126,7 @@ 126 126 127 127 (% style="text-align:center" %) 128 128 ((( 129 -(% class="wikigeneratedid" style="display:inline-block" %) 149 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 130 130 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]] 131 131 ))) 132 132 ... ... @@ -134,14 +134,14 @@ 134 134 135 135 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__. 136 136 137 -|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 138 -|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 139 -|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 157 +|=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics 158 +|=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process. 159 +|=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process. 140 140 141 141 Table 6-5 Comparison of two shutdown modes 142 142 143 -|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 144 -|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 163 +|=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked** 164 +|=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely. 145 145 146 146 Table 6-6 Comparison of two shutdown status 147 147 ... ... @@ -149,22 +149,22 @@ 149 149 150 150 The related parameters of the servo OFF shutdown mode are shown in the table below. 151 151 152 -|=(% scope="row" %)**Function code**|=**Name**|=((( 172 +|=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)((( 153 153 **Setting method** 154 -)))|=((( 174 +)))|=(% style="width: 134px;" %)((( 155 155 **Effective time** 156 -)))|=((( 176 +)))|=(% style="width: 86px;" %)((( 157 157 **Default value** 158 -)))|=**Range**|=**Definition**|=**Unit** 159 -|=P00-05|Servo OFF shutdown|((( 178 +)))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit** 179 +|=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)((( 160 160 Shutdown 161 161 162 162 setting 163 -)))|((( 183 +)))|(% style="width:134px" %)((( 164 164 Effective 165 165 166 166 immediately 167 -)))|0|0 to 1|((( 187 +)))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)((( 168 168 * 0: Free shutdown, and the motor shaft remains free status. 169 169 * 1: Zero-speed shutdown, and the motor shaft remains free status. 170 170 )))|- ... ... @@ -183,12 +183,12 @@ 183 183 184 184 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 185 185 186 -|=(% scope="row" %)**Function code**|=(% style="width: 1 43px;" %)**Name**|=(% style="width: 137px;" %)(((206 +|=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)((( 187 187 **Setting method** 188 -)))|=(% style="width: 1 41px;" %)(((208 +)))|=(% style="width: 114px;" %)((( 189 189 **Effective time** 190 -)))|=(% style="width: 84px;" %)**Default value**|=(% style="width:100px;" %)**Range**|=**Definition**|=**Unit**191 -|=P06-08|(% style="width:1 43px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|(((210 +)))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit** 211 +|=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)((( 192 192 * 0: OFF (not used) 193 193 * 01: S-ON servo enable 194 194 * 02: A-CLR fault and Warning Clear ... ... @@ -214,27 +214,27 @@ 214 214 * 24: Internal multi-segment position selection 4 215 215 * Others: reserved 216 216 )))|- 217 -|=P06-09|(% style="width:1 43px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((237 +|=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)((( 218 218 Effective immediately 219 -)))|(% style="width: 84px" %)0|(% style="width:100px" %)0 to 1|(((239 +)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)((( 220 220 DI port input logic validity function selection. 221 221 222 222 * 0: Normally open input. Active low level (switch on); 223 223 * 1: Normally closed input. Active high level (switch off); 224 224 )))|- 225 -|=P06-10|(% style="width:1 43px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((245 +|=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)((( 226 226 Effective immediately 227 -)))|(% style="width: 84px" %)0|(% style="width:100px" %)0 to 1|(((247 +)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)((( 228 228 Select the DI_3 port type to enable 229 229 230 230 * 0: Hardware DI_3 input terminal 231 231 * 1: virtual VDI_3 input terminal 232 232 )))|- 233 -|=P06-11|(% style="width:1 43px" %)DI_4 channel function selection|(% style="width:137px" %)(((253 +|=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)((( 234 234 Operation setting 235 -)))|(% style="width:1 41px" %)(((255 +)))|(% style="width:114px" %)((( 236 236 again Power-on 237 -)))|(% style="width: 84px" %)4|(% style="width:100px" %)0 to 32|(((257 +)))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)((( 238 238 * 0: OFF (not used) 239 239 * 01: SON Servo enable 240 240 * 02: A-CLR Fault and Warning Clear ... ... @@ -260,17 +260,17 @@ 260 260 * 24: Internal multi-segment position selection 4 261 261 * Others: reserved 262 262 )))|- 263 -|=P06-12|(% style="width:1 43px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((283 +|=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)((( 264 264 Effective immediately 265 -)))|(% style="width: 84px" %)0|(% style="width:100px" %)0 to 1|(((285 +)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)((( 266 266 DI port input logic validity function selection. 267 267 268 268 * 0: Normally open input. Active low level (switch on); 269 269 * 1: Normally closed input. Active high level (switch off); 270 270 )))|- 271 -|=P06-13|(% style="width:1 43px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((291 +|=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)((( 272 272 Effective immediately 273 -)))|(% style="width: 84px" %)0|(% style="width:100px" %)0 to 1|(((293 +)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)((( 274 274 Select the DI_4 port type to enable 275 275 276 276 * 0: Hardware DI_4 input terminal ... ... @@ -287,7 +287,7 @@ 287 287 288 288 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 289 289 290 -|((( 310 +(% class="warning" %)|((( 291 291 (% style="text-align:center" %) 292 292 [[image:image-20220611151617-1.png]] 293 293 ))) ... ... @@ -310,11 +310,11 @@ 310 310 311 311 (% style="text-align:center" %) 312 312 ((( 313 -(% class="wikigeneratedid" style="display:inline-block" %) 333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 314 314 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]] 315 315 ))) 316 316 317 -|((( 337 +(% class="warning" %)|((( 318 318 (% style="text-align:center" %) 319 319 [[image:image-20220611151642-2.png]] 320 320 ))) ... ... @@ -332,12 +332,12 @@ 332 332 333 333 Related function code is as below. 334 334 335 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=((( 355 +|=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)((( 336 336 **Effective time** 337 337 ))) 338 -|=144|((( 358 +|=144|(% style="width:241px" %)((( 339 339 BRK-OFF Brake output 340 -)))|Output the signal indicates the servo motor brake release|Power-on again 360 +)))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again 341 341 342 342 Table 6-2 Relevant function codes for brake setting 343 343 ... ... @@ -379,7 +379,8 @@ 379 379 380 380 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__ 381 381 382 -|((( 402 +(% class="warning" %)|((( 403 +(% style="text-align:center" %) 383 383 [[image:image-20220611151705-3.png]] 384 384 ))) 385 385 |((( ... ... @@ -390,7 +390,7 @@ 390 390 391 391 (% style="text-align:center" %) 392 392 ((( 393 -(% class="wikigeneratedid" style="display:inline-block" %) 414 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 394 394 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]] 395 395 ))) 396 396 ... ... @@ -403,7 +403,7 @@ 403 403 404 404 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__. 405 405 406 -|((( 427 +(% class="warning" %)|((( 407 407 (% style="text-align:center" %) 408 408 [[image:image-20220611151719-4.png]] 409 409 ))) ... ... @@ -421,7 +421,7 @@ 421 421 422 422 (% style="text-align:center" %) 423 423 ((( 424 -(% class="wikigeneratedid" style="display:inline-block" %) 445 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 425 425 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]] 426 426 ))) 427 427 ... ... @@ -431,7 +431,7 @@ 431 431 432 432 (% style="text-align:center" %) 433 433 ((( 434 -(% class="wikigeneratedid" style="display:inline-block" %) 455 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 435 435 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]] 436 436 ))) 437 437 ... ... @@ -441,18 +441,18 @@ 441 441 442 442 (% style="text-align:center" %) 443 443 ((( 444 -(% class="wikigeneratedid" style="display:inline-block" %) 465 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 445 445 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]] 446 446 ))) 447 447 448 448 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 449 449 450 -|=(% scope="row" %)**Function code**|=**Name**|=((( 471 +|=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=((( 451 451 **Setting method** 452 452 )))|=((( 453 453 **Effective time** 454 454 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 455 -|=P01-01|Control mode|((( 476 +|=(% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|((( 456 456 Operation setting 457 457 )))|((( 458 458 immediately Effective ... ... @@ -497,8 +497,15 @@ 497 497 498 498 Low-speed pulse instruction input 499 499 500 -|[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]] 501 -|VD2A and VD2B servo drives|VD2F servo drive 521 +|(% style="text-align:center" %) 522 +((( 523 +(% class="wikigeneratedid" style="display:inline-block" %) 524 +[[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]] 525 +)))|(% style="text-align:center" %) 526 +((( 527 +(% class="wikigeneratedid" style="display:inline-block" %) 528 +[[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]] 529 +))) 502 502 |(% colspan="2" %)Figure 6-7 Position instruction input setting 503 503 504 504 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__. ... ... @@ -505,9 +505,9 @@ 505 505 506 506 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 507 507 508 -|=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage** 509 -|=Open collector input|200K|24V 510 -|=Differential input|500K|5V 536 +|=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage** 537 +|=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V 538 +|=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V 511 511 512 512 Table 6-12 Pulse input specifications 513 513 ... ... @@ -517,8 +517,8 @@ 517 517 518 518 (% style="text-align:center" %) 519 519 ((( 520 -(% class="wikigeneratedid" style="display:inline-block" %) 521 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]] 548 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 549 +[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]] 522 522 ))) 523 523 524 524 (% class="box infomessage" %) ... ... @@ -532,8 +532,8 @@ 532 532 533 533 (% style="text-align:center" %) 534 534 ((( 535 -(% class="wikigeneratedid" style="display:inline-block" %) 536 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height=" 530" id="Iimage-20220707092401-3.jpeg" width="834"]]563 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 564 +[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]] 537 537 ))) 538 538 539 539 ... ... @@ -548,27 +548,27 @@ 548 548 549 549 (% style="text-align:center" %) 550 550 ((( 551 -(% class="wikigeneratedid" style="display:inline-block" %) 579 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 552 552 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]] 553 553 ))) 554 554 555 555 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 556 556 557 -|=**Function code**|=**Name**|=((( 585 +|=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)((( 558 558 **Setting method** 559 559 )))|=((( 560 560 **Effective time** 561 -)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit** 562 -|P00-13|Maximum position pulse frequency|((( 589 +)))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit** 590 +|P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)((( 563 563 Shutdown setting 564 564 )))|((( 565 565 Effective immediately 566 -)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 567 -|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 594 +)))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz 595 +|(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)((( 568 568 Operation setting 569 569 )))|(% rowspan="3" %)((( 570 570 Power-on again 571 -)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 599 +)))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)((( 572 572 Set the anti-interference level of external pulse instruction. 573 573 574 574 * 0: no filtering; ... ... @@ -591,16 +591,16 @@ 591 591 592 592 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 593 593 594 -|=(% scope="row" %)**Function code**|=**Name**|=((( 622 +|=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)((( 595 595 **Setting method** 596 -)))|=((( 624 +)))|=(% style="width: 109px;" %)((( 597 597 **Effective time** 598 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 599 -|=P00-12|Position pulse type selection|((( 626 +)))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit** 627 +|=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)((( 600 600 Operation setting 601 -)))|((( 629 +)))|(% style="width:109px" %)((( 602 602 Power-on again 603 -)))|0|0 to 5|((( 631 +)))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)((( 604 604 * 0: direction + pulse (positive logic) 605 605 * 1: CW/CCW 606 606 * 2: A, B phase quadrature pulse (4 times frequency) ... ... @@ -611,26 +611,26 @@ 611 611 612 612 Table 6-14 Position pulse type selection parameter 613 613 614 -|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse** 615 -|=0|((( 642 +|=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse** 643 +|=0|(% style="width:200px" %)((( 616 616 Direction + pulse 617 617 618 618 (Positive logic) 619 -)))|((( 647 +)))|(% style="width:161px" %)((( 620 620 PULSE 621 621 622 622 SIGN 623 623 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]] 624 -|=1|CW/CCW|((( 652 +|=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)((( 625 625 PULSE (CW) 626 626 627 627 SIGN (CCW) 628 628 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]] 629 -|=2|((( 657 +|=2|(% style="width:200px" %)((( 630 630 AB phase orthogonal 631 631 632 632 pulse (4 times frequency) 633 -)))|((( 661 +)))|(% style="width:161px" %)((( 634 634 PULSE (Phase A) 635 635 636 636 SIGN (Phase B) ... ... @@ -647,29 +647,29 @@ 647 647 648 648 Phase B is 90° ahead of Phase A 649 649 ))) 650 -|=3|((( 678 +|=3|(% style="width:200px" %)((( 651 651 Direction + pulse 652 652 653 653 (Negative logic) 654 -)))|((( 682 +)))|(% style="width:161px" %)((( 655 655 PULSE 656 656 657 657 SIGN 658 658 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]] 659 -|=4|((( 687 +|=4|(% style="width:200px" %)((( 660 660 CW/CCW 661 661 662 662 (Negative logic) 663 -)))|((( 691 +)))|(% style="width:161px" %)((( 664 664 PULSE (CW) 665 665 666 666 SIGN (CCW) 667 667 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]] 668 -|=5|((( 696 +|=5|(% style="width:200px" %)((( 669 669 AB phase orthogonal 670 670 671 671 pulse (4 times frequency negative logic) 672 -)))|((( 700 +)))|(% style="width:161px" %)((( 673 673 PULSE (Phase A) 674 674 675 675 SIGN (Phase B) ... ... @@ -697,7 +697,7 @@ 697 697 698 698 (% style="text-align:center" %) 699 699 ((( 700 -(% class="wikigeneratedid" style="display:inline-block" %) 728 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 701 701 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]] 702 702 ))) 703 703 ... ... @@ -753,10 +753,9 @@ 753 753 754 754 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 755 755 756 - 757 757 (% style="text-align:center" %) 758 758 ((( 759 -(% class="wikigeneratedid" style="display:inline-block" %) 786 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 760 760 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]] 761 761 ))) 762 762 ... ... @@ -766,11 +766,11 @@ 766 766 767 767 (% style="text-align:center" %) 768 768 ((( 769 -(% class="wikigeneratedid" style="display:inline-block" %) 796 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 770 770 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]] 771 771 ))) 772 772 773 -|((( 800 +(% class="warning" %)|((( 774 774 (% style="text-align:center" %) 775 775 [[image:image-20220611151917-5.png]] 776 776 ))) ... ... @@ -804,7 +804,7 @@ 804 804 805 805 (% style="text-align:center" %) 806 806 ((( 807 -(% class="wikigeneratedid" style="display:inline-block" %) 834 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 808 808 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]] 809 809 ))) 810 810 ... ... @@ -816,29 +816,29 @@ 816 816 817 817 (% style="text-align:center" %) 818 818 ((( 819 -(% class="wikigeneratedid" style="display:inline-block" %) 846 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 820 820 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]] 821 821 ))) 822 822 823 823 (% style="text-align:center" %) 824 824 ((( 825 -(% class="wikigeneratedid" style="display:inline-block" %) 826 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]] 852 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 853 +[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]] 827 827 ))) 828 828 829 829 **Run again from the start segment** 830 830 831 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __ [[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.858 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively. 832 832 833 833 (% style="text-align:center" %) 834 834 ((( 835 -(% class="wikigeneratedid" style="display:inline-block" %) 862 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 836 836 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]] 837 837 ))) 838 838 839 839 (% style="text-align:center" %) 840 840 ((( 841 -(% class="wikigeneratedid" style="display:inline-block" %) 868 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 842 842 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]] 843 843 ))) 844 844 ... ... @@ -851,13 +851,13 @@ 851 851 |((( 852 852 (% style="text-align:center" %) 853 853 ((( 854 -(% class="wikigeneratedid" style="display:inline-block" %) 881 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 855 855 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]] 856 856 ))) 857 857 )))|((( 858 858 (% style="text-align:center" %) 859 859 ((( 860 -(% class="wikigeneratedid" style="display:inline-block" %) 887 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 861 861 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]] 862 862 ))) 863 863 ))) ... ... @@ -869,13 +869,13 @@ 869 869 |((( 870 870 (% style="text-align:center" %) 871 871 ((( 872 -(% class="wikigeneratedid" style="display:inline-block" %) 899 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 873 873 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]] 874 874 ))) 875 875 )))|((( 876 876 (% style="text-align:center" %) 877 877 ((( 878 -(% class="wikigeneratedid" style="display:inline-block" %) 905 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 879 879 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]] 880 880 ))) 881 881 ))) ... ... @@ -920,7 +920,7 @@ 920 920 921 921 (% style="text-align:center" %) 922 922 ((( 923 -(% class="wikigeneratedid" style="display:inline-block" %) 950 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 924 924 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]] 925 925 ))) 926 926 ... ... @@ -937,7 +937,7 @@ 937 937 ))) 938 938 939 939 (% style="text-align:center" %) 940 -[[image:image-20220611152020-6.png]] 967 +[[image:image-20220611152020-6.png||class="img-thumbnail"]] 941 941 942 942 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 943 943 ... ... @@ -952,7 +952,7 @@ 952 952 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 953 953 954 954 (% style="text-align:center" %) 955 -[[image:image-20220707094901-16.png]] 982 +[[image:image-20220707094901-16.png||class="img-thumbnail"]] 956 956 957 957 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! 958 958 ... ... @@ -960,8 +960,8 @@ 960 960 961 961 (% style="text-align:center" %) 962 962 ((( 963 -(% class="wikigeneratedid" style="display:inline-block" %) 964 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]] 990 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 991 +[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]] 965 965 ))) 966 966 967 967 **lectronic gear ratio switch setting** ... ... @@ -1058,8 +1058,8 @@ 1058 1058 1059 1059 (% style="text-align:center" %) 1060 1060 ((( 1061 -(% class="wikigeneratedid" style="display:inline-block" %) 1062 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]] 1088 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1089 +[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]] 1063 1063 ))) 1064 1064 1065 1065 |=(% scope="row" %)**Function code**|=**Name**|=((( ... ... @@ -1102,7 +1102,7 @@ 1102 1102 1103 1103 (% style="text-align:center" %) 1104 1104 ((( 1105 -(% class="wikigeneratedid" style="display:inline-block" %) 1132 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1106 1106 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]] 1107 1107 ))) 1108 1108 ... ... @@ -1112,8 +1112,8 @@ 1112 1112 1113 1113 (% style="text-align:center" %) 1114 1114 ((( 1115 -(% class="wikigeneratedid" style="display:inline-block" %) 1116 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]] 1142 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1143 +[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]] 1117 1117 ))) 1118 1118 1119 1119 |=(% scope="row" %)**Function code**|=**Name**|=((( ... ... @@ -1160,7 +1160,7 @@ 1160 1160 1161 1161 (% style="text-align:center" %) 1162 1162 ((( 1163 -(% class="wikigeneratedid" style="display:inline-block" %) 1190 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1164 1164 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]] 1165 1165 ))) 1166 1166 ... ... @@ -1168,12 +1168,12 @@ 1168 1168 1169 1169 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1170 1170 1171 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 18 9px;" %)**Name**|=(% style="width: 125px;" %)(((1198 +|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)((( 1172 1172 **Setting method** 1173 1173 )))|=(% style="width: 125px;" %)((( 1174 1174 **Effective time** 1175 1175 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit** 1176 -|=(% style="width: 121px;" %)P01-01|(% style="width:18 9px" %)Speed instruction source|(% style="width:125px" %)(((1203 +|=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)((( 1177 1177 Shutdown setting 1178 1178 )))|(% style="width:125px" %)((( 1179 1179 Effective immediately ... ... @@ -1406,8 +1406,8 @@ 1406 1406 1407 1407 (% style="text-align:center" %) 1408 1408 ((( 1409 -(% class="wikigeneratedid" style="display:inline-block" %) 1410 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]] 1436 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1437 +[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]] 1411 1411 ))) 1412 1412 1413 1413 **Speed instruction source is internal speed instruction (P01-01=1)** ... ... @@ -1416,7 +1416,7 @@ 1416 1416 1417 1417 (% style="text-align:center" %) 1418 1418 ((( 1419 -(% class="wikigeneratedid" style="display:inline-block" %) 1446 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1420 1420 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]] 1421 1421 ))) 1422 1422 ... ... @@ -1424,7 +1424,7 @@ 1424 1424 1425 1425 (% style="text-align:center" %) 1426 1426 ((( 1427 -(% class="wikigeneratedid" style="display:inline-block" %) 1454 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1428 1428 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]] 1429 1429 ))) 1430 1430 ... ... @@ -1436,7 +1436,7 @@ 1436 1436 1437 1437 (% style="text-align:center" %) 1438 1438 ((( 1439 -(% class="wikigeneratedid" style="display:inline-block" %) 1466 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1440 1440 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]] 1441 1441 ))) 1442 1442 ... ... @@ -1461,12 +1461,12 @@ 1461 1461 1462 1462 (% style="text-align:center" %) 1463 1463 ((( 1464 -(% class="wikigeneratedid" style="display:inline-block" %) 1491 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1465 1465 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]] 1466 1466 ))) 1467 1467 1468 1468 (% style="text-align:center" %) 1469 -[[image:image-20220707103616-27.png]] 1496 +[[image:image-20220707103616-27.png||class="img-thumbnail"]] 1470 1470 1471 1471 |=(% scope="row" %)**Function code**|=**Name**|=((( 1472 1472 **Setting method** ... ... @@ -1561,7 +1561,7 @@ 1561 1561 1562 1562 (% style="text-align:center" %) 1563 1563 ((( 1564 -(% class="wikigeneratedid" style="display:inline-block" %) 1591 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1565 1565 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]] 1566 1566 ))) 1567 1567 ... ... @@ -1575,7 +1575,7 @@ 1575 1575 1576 1576 (% style="text-align:center" %) 1577 1577 ((( 1578 -(% class="wikigeneratedid" style="display:inline-block" %) 1605 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1579 1579 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]] 1580 1580 ))) 1581 1581 ... ... @@ -1615,7 +1615,7 @@ 1615 1615 1616 1616 (% style="text-align:center" %) 1617 1617 ((( 1618 -(% class="wikigeneratedid" style="display:inline-block" %) 1645 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1619 1619 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]] 1620 1620 ))) 1621 1621 ... ... @@ -1647,7 +1647,7 @@ 1647 1647 1648 1648 (% style="text-align:center" %) 1649 1649 ((( 1650 -(% class="wikigeneratedid" style="display:inline-block" %) 1677 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1651 1651 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]] 1652 1652 ))) 1653 1653 ... ... @@ -1679,18 +1679,18 @@ 1679 1679 1680 1680 (% style="text-align:center" %) 1681 1681 ((( 1682 -(% class="wikigeneratedid" style="display:inline-block" %) 1709 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1683 1683 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]] 1684 1684 ))) 1685 1685 1686 1686 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__. 1687 1687 1688 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1715 +|=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=((( 1689 1689 **Setting method** 1690 1690 )))|=((( 1691 1691 **Effective time** 1692 1692 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1693 -|=P05-18|Speed approach signal threshold|((( 1720 +|=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|((( 1694 1694 Operation setting 1695 1695 )))|((( 1696 1696 Effective immediately ... ... @@ -1711,7 +1711,7 @@ 1711 1711 1712 1712 (% style="text-align:center" %) 1713 1713 ((( 1714 -(% class="wikigeneratedid" style="display:inline-block" %) 1741 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1715 1715 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]] 1716 1716 ))) 1717 1717 ... ... @@ -1724,7 +1724,7 @@ 1724 1724 )))|=((( 1725 1725 **Effective time** 1726 1726 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1727 -|=P01-0 8|Torque instruction source|(((1754 +|=P01-07|Torque instruction source|((( 1728 1728 Shutdown setting 1729 1729 )))|((( 1730 1730 Effective immediately ... ... @@ -1759,7 +1759,7 @@ 1759 1759 1760 1760 (% style="text-align:center" %) 1761 1761 ((( 1762 -(% class="wikigeneratedid" style="display:inline-block" %) 1789 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1763 1763 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]] 1764 1764 ))) 1765 1765 ... ... @@ -1767,7 +1767,7 @@ 1767 1767 1768 1768 (% style="text-align:center" %) 1769 1769 ((( 1770 -(% class="wikigeneratedid" style="display:inline-block" %) 1797 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1771 1771 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]] 1772 1772 ))) 1773 1773 ... ... @@ -1779,7 +1779,7 @@ 1779 1779 1780 1780 (% style="text-align:center" %) 1781 1781 ((( 1782 -(% class="wikigeneratedid" style="display:inline-block" %) 1809 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1783 1783 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]] 1784 1784 ))) 1785 1785 ... ... @@ -1820,7 +1820,7 @@ 1820 1820 1821 1821 (% style="text-align:center" %) 1822 1822 ((( 1823 -(% class="wikigeneratedid" style="display:inline-block" %) 1850 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1824 1824 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]] 1825 1825 ))) 1826 1826 ... ... @@ -1832,7 +1832,7 @@ 1832 1832 1833 1833 (% style="text-align:center" %) 1834 1834 ((( 1835 -(% class="wikigeneratedid" style="display:inline-block" %) 1862 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1836 1836 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]] 1837 1837 ))) 1838 1838 ... ... @@ -1906,13 +1906,13 @@ 1906 1906 |((( 1907 1907 (% style="text-align:center" %) 1908 1908 ((( 1909 -(% class="wikigeneratedid" style="display:inline-block" %) 1936 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1910 1910 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]] 1911 1911 ))) 1912 1912 )))|((( 1913 1913 (% style="text-align:center" %) 1914 1914 ((( 1915 -(% class="wikigeneratedid" style="display:inline-block" %) 1942 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1916 1916 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]] 1917 1917 ))) 1918 1918 ))) ... ... @@ -1953,7 +1953,7 @@ 1953 1953 1954 1954 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__. 1955 1955 1956 -== **Torque-related DO output functions**==1983 +== Torque-related DO output functions == 1957 1957 1958 1958 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid. 1959 1959 ... ... @@ -1962,26 +1962,27 @@ 1962 1962 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1963 1963 1964 1964 (% style="text-align:center" %) 1965 -[[image:image-20220608173541-42.png]] 1992 +((( 1993 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1994 +[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]] 1995 +))) 1966 1966 1967 - Figure6-47Torque arrivaloutput diagram1997 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__. 1968 1968 1969 -To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1970 - 1971 -|**Function code**|**Name**|((( 1999 +|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)((( 1972 1972 **Setting method** 1973 -)))|((( 2001 +)))|=(% style="width: 124px;" %)((( 1974 1974 **Effective time** 1975 -)))|**Default value**|**Range**|**Definition**|**Unit** 1976 -|P05-20|((( 2003 +)))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit** 2004 +|=P05-20|(% style="width:113px" %)((( 1977 1977 Torque arrival 1978 1978 1979 1979 threshold 1980 -)))|((( 2008 +)))|(% style="width:100px" %)((( 1981 1981 Operation setting 1982 -)))|((( 2010 +)))|(% style="width:124px" %)((( 1983 1983 Effective immediately 1984 -)))|100|0 to 300|((( 2012 +)))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)((( 1985 1985 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 1986 1986 1987 1987 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; ... ... @@ -1988,21 +1988,20 @@ 1988 1988 1989 1989 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 1990 1990 )))|% 1991 -|P05-21|((( 2019 +|=P05-21|(% style="width:113px" %)((( 1992 1992 Torque arrival 1993 1993 1994 1994 hysteresis 1995 -)))|((( 2023 +)))|(% style="width:100px" %)((( 1996 1996 Operation setting 1997 -)))|((( 2025 +)))|(% style="width:124px" %)((( 1998 1998 Effective immediately 1999 -)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2027 +)))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2000 2000 2001 2001 Table 6-49 Torque arrival parameters 2002 2002 2003 - 2004 -|**DO function code**|**Function name**|**Function** 2005 -|138|((( 2031 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 2032 +|=138|((( 2006 2006 T-COIN torque arrival 2007 2007 )))|Used to determine whether the actual torque instruction has reached the set range 2008 2008 ... ... @@ -2012,35 +2012,28 @@ 2012 2012 2013 2013 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2014 2014 2015 -Position mode⇔ Speed mode 2042 +* Position mode⇔ Speed mode 2043 +* Position mode ⇔Torque mode 2044 +* Speed mode ⇔Torque mode 2016 2016 2017 -Position mode ⇔Torque mode 2018 - 2019 -Speed mode ⇔Torque mode 2020 - 2021 2021 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2022 2022 2023 -|**Function code**|**Name**|((( 2048 +|=(% scope="row" %)**Function code**|=**Name**|=((( 2024 2024 **Setting method** 2025 -)))|((( 2050 +)))|=((( 2026 2026 **Effective time** 2027 -)))|**Default value**|**Range**|**Definition**|**Unit** 2028 -|P00-01|Control mode|((( 2052 +)))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit** 2053 +|=P00-01|Control mode|((( 2029 2029 Shutdown setting 2030 2030 )))|((( 2031 2031 Shutdown setting 2032 -)))|1|1 to 6|((( 2033 -1: Position control 2034 - 2035 -2: Speed control 2036 - 2037 -3: Torque control 2038 - 2039 -4: Position/speed mixed control 2040 - 2041 -5: Position/torque mixed control 2042 - 2043 -6: Speed/torque mixed control 2057 +)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)((( 2058 +* 1: Position control 2059 +* 2: Speed control 2060 +* 3: Torque control 2061 +* 4: Position/speed mixed control 2062 +* 5: Position/torque mixed control 2063 +* 6: Speed/torque mixed control 2044 2044 )))|- 2045 2045 2046 2046 Table 6-51 Mixed control mode parameters ... ... @@ -2047,35 +2047,38 @@ 2047 2047 2048 2048 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2049 2049 2050 -|**DI function code**|**Name**|**Function name**|**Function** 2051 -|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2052 -|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2053 -|(% rowspan="2" %)4|Valid|Speed mode 2054 -|invalid|Position mode 2055 -|(% rowspan="2" %)5|Valid|Torque mode 2056 -|invalid|Position mode 2057 -|(% rowspan="2" %)6|Valid|Torque mode 2058 -|invalid|Speed mode 2070 +|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function** 2071 +|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2072 +(% style="margin-left:auto; margin-right:auto; width:585px" %) 2073 +|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode** 2074 +|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode 2075 +|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2076 +|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2077 +|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2078 +|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2079 +|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode 2059 2059 ))) 2060 2060 2061 2061 Table 6-52 Description of DI function codes in control mode 2062 2062 2084 +(% class="box infomessage" %) 2085 +((( 2063 2063 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother. 2087 +))) 2064 2064 2065 2065 = **Absolute system** = 2066 2066 2067 -== **Overview**==2091 +== Overview == 2068 2068 2069 2069 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations. 2070 2070 2071 2071 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position. 2072 2072 2073 -== **Single-turn absolute value system**==2097 +== Single-turn absolute value system == 2074 2074 2075 2075 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2076 2076 2077 - 2078 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2101 +|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range** 2079 2079 |A1 (single-turn magnetic encoder)|17|0 to 131071 2080 2080 2081 2081 Table 6-53 Single-turn absolute encoder information ... ... @@ -2083,17 +2083,18 @@ 2083 2083 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2084 2084 2085 2085 (% style="text-align:center" %) 2086 -[[image:image-20220608173618-43.png]] 2109 +((( 2110 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2111 +[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]] 2112 +))) 2087 2087 2088 - Figure6-48 Diagram of relationship betweenencoder feedback position and rotatingloadposition2114 +== Multi-turn absolute value system == 2089 2089 2090 -== **Multi-turn absolute value system** == 2091 - 2092 2092 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2093 2093 2094 -|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2095 -|C1 (multi-turn magnetic encoder)|17|0 to 131071 2096 -|D2 (multi-turn Optical encoder)|23|0 to 8388607 2118 +|=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range** 2119 +|=C1 (multi-turn magnetic encoder)|17|0 to 131071 2120 +|=D2 (multi-turn Optical encoder)|23|0 to 8388607 2097 2097 2098 2098 Table 6-54 Multi-turn absolute encoder information 2099 2099 ... ... @@ -2100,20 +2100,21 @@ 2100 2100 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2101 2101 2102 2102 (% style="text-align:center" %) 2103 -[[image:image-20220608173701-44.png]] 2127 +((( 2128 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2129 +[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]] 2130 +))) 2104 2104 2105 - Figure6-49 Therelationship between encoderfeedback position and rotating load position2132 +== Related functions and parameters == 2106 2106 2107 -== **Related functions and parameters** == 2108 - 2109 2109 **Encoder feedback data** 2110 2110 2111 2111 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2112 2112 2113 -|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2114 -|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2115 -|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2116 -|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2138 +|=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type** 2139 +|=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2140 +|=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2141 +|=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2117 2117 2118 2118 Table 6-55 Encoder feedback data 2119 2119 ... ... @@ -2121,26 +2121,28 @@ 2121 2121 2122 2122 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30. 2123 2123 2124 -|**Function code**|**Name**|((( 2149 +|=(% scope="row" %)**Function code**|=**Name**|=((( 2125 2125 **Setting** 2126 2126 2127 2127 **method** 2128 -)))|((( 2153 +)))|=((( 2129 2129 **Effective** 2130 2130 2131 2131 **time** 2132 -)))|**Default value**|**Range**|**Definition**|**Unit** 2133 -|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2134 -0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2135 - 2136 -1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2157 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2158 +|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2159 +* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2160 +* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2137 2137 )))|- 2138 2138 2139 2139 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur. 2140 2140 2165 +(% class="box infomessage" %) 2166 +((( 2141 2141 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death. 2168 +))) 2142 2142 2143 -== **Absolute value system encoder battery box use precautions**. ==2170 +== Absolute value system encoder battery box use precautions. == 2144 2144 2145 2145 **Cautions** 2146 2146 ... ... @@ -2147,10 +2147,11 @@ 2147 2147 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2148 2148 2149 2149 (% style="text-align:center" %) 2150 -[[image:image-20220707111333-28.png]] 2177 +((( 2178 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2179 +[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]] 2180 +))) 2151 2151 2152 -Figure 6-50 the encoder battery box 2153 - 2154 2154 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. 2155 2155 2156 2156 **Replace the battery** ... ... @@ -2166,20 +2166,19 @@ 2166 2166 2167 2167 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2168 2168 2169 -|**Function code**|**Name**|((( 2197 +|=(% scope="row" %)**Function code**|=**Name**|=((( 2170 2170 **Setting method** 2171 -)))|((( 2199 +)))|=((( 2172 2172 **Effective time** 2173 -)))|**Default value**|**Range**|**Definition**|**Unit** 2174 -|P10-06|Multi-turn absolute encoder reset|((( 2201 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2202 +|=P10-06|Multi-turn absolute encoder reset|((( 2175 2175 Shutdown setting 2176 2176 )))|((( 2177 2177 Effective immediately 2178 2178 )))|0|0 to 1|((( 2179 -0: No operation 2207 +* 0: No operation 2208 +* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2180 2180 2181 -1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2182 - 2183 2183 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2184 2184 )))|- 2185 2185 ... ... @@ -2187,7 +2187,7 @@ 2187 2187 2188 2188 **Battery selection** 2189 2189 2190 -|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value** 2217 +|=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value** 2191 2191 |(% rowspan="4" style="width:361px" %)((( 2192 2192 Nominal Voltage: 3.6V 2193 2193 ... ... @@ -2215,111 +2215,108 @@ 2215 2215 2216 2216 = **Other functions** = 2217 2217 2218 -== **VDI**==2245 +== VDI == 2219 2219 2220 2220 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use. 2221 2221 2249 +(% class="box infomessage" %) 2250 +((( 2222 2222 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate). 2252 +))) 2223 2223 2224 2224 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2225 2225 2226 - 2227 2227 (% style="text-align:center" %) 2228 -[[image:image-20220608173804-46.png]] 2257 +((( 2258 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2259 +[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]] 2260 +))) 2229 2229 2230 -Figure 6-51 VDI_1 setting steps 2231 - 2232 -|**Function code**|**Name**|((( 2262 +|=(% scope="row" %)**Function code**|=**Name**|=((( 2233 2233 **Setting method** 2234 -)))|((( 2264 +)))|=((( 2235 2235 **Effective time** 2236 -)))|**Default value**|**Range**|**Definition**|**Unit** 2237 -|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2266 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2267 +|=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2238 2238 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2239 2239 2240 2240 VDI_1 input level: 2241 2241 2242 -0: low level 2243 - 2244 -1: high level 2272 +* 0: low level 2273 +* 1: high level 2245 2245 )))|- 2246 -|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2275 +|=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2247 2247 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2248 2248 2249 2249 VDI_2 input level: 2250 2250 2251 -0: low level 2252 - 2253 -1: high level 2280 +* 0: low level 2281 +* 1: high level 2254 2254 )))|- 2255 -|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2283 +|=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2256 2256 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2257 2257 2258 2258 VDI_3 input level: 2259 2259 2260 -0: low level 2261 - 2262 -1: high level 2288 +* 0: low level 2289 +* 1: high level 2263 2263 )))|- 2264 -|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2291 +|=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2265 2265 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2266 2266 2267 2267 VDI_4 input level: 2268 2268 2269 -0: low level 2270 - 2271 -1: high level 2296 +* 0: low level 2297 +* 1: high level 2272 2272 )))|- 2273 -|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2299 +|=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2274 2274 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2275 2275 2276 2276 VDI_5 input level: 2277 2277 2278 -0: low level 2279 - 2280 -1: high level 2304 +* 0: low level 2305 +* 1: high level 2281 2281 )))|- 2282 -|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2307 +|=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2283 2283 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2284 2284 2285 2285 VDI_6 input level: 2286 2286 2287 -0: low level 2288 - 2289 -1: high level 2312 +* 0: low level 2313 +* 1: high level 2290 2290 )))|- 2291 -|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2315 +|=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2292 2292 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2293 2293 2294 2294 VDI_7 input level: 2295 2295 2296 -0: low level 2297 - 2298 -1: high level 2320 +* 0: low level 2321 +* 1: high level 2299 2299 )))|- 2300 -|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2323 +|=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2301 2301 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2302 2302 2303 2303 VDI_8 input level: 2304 2304 2305 -0: low level 2306 - 2307 -1: high level 2328 +* 0: low level 2329 +* 1: high level 2308 2308 )))|- 2309 2309 2310 2310 Table 6-57 Virtual VDI parameters 2311 2311 2334 +(% class="box infomessage" %) 2335 +((( 2312 2312 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 2337 +))) 2313 2313 2314 -== **Port filtering time**==2339 +== Port filtering time == 2315 2315 2316 2316 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2317 2317 2343 +|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration** 2344 +|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2345 +|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2318 2318 2319 -|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration** 2320 -|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2321 -|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2322 - 2323 2323 Table 6-58 DI terminal channel logic selection 2324 2324 2325 2325 == **VDO** == ... ... @@ -2329,51 +2329,49 @@ 2329 2329 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2330 2330 2331 2331 (% style="text-align:center" %) 2332 -[[image:image-20220608173957-48.png]] 2356 +((( 2357 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2358 +[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]] 2359 +))) 2333 2333 2334 -Figure 6-52 VDO_2 setting steps 2335 2335 2336 -|**Function code**|**Name**|((( 2362 +|=(% scope="row" %)**Function code**|=**Name**|=((( 2337 2337 **Setting method** 2338 -)))|((( 2364 +)))|=((( 2339 2339 **Effective time** 2340 -)))|**Default value**|**Range**|**Definition**|**Unit** 2341 -|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2366 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2367 +|=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2342 2342 VDO_1 output level: 2343 2343 2344 -0: low level 2345 - 2346 -1: high level 2370 +* 0: low level 2371 +* 1: high level 2347 2347 )))|- 2348 -|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2373 +|=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2349 2349 VDO_2 output level: 2350 2350 2351 -0: low level 2352 - 2353 -1: high level 2376 +* 0: low level 2377 +* 1: high level 2354 2354 )))|- 2355 -|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2379 +|=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2356 2356 VDO_3 output level: 2357 2357 2358 -0: low level 2359 - 2360 -1: high level 2382 +* 0: low level 2383 +* 1: high level 2361 2361 )))|- 2362 -|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2385 +|=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2363 2363 VDO_4 output level: 2364 2364 2365 -0: low level 2366 - 2367 -1: high level 2388 +* 0: low level 2389 +* 1: high level 2368 2368 )))|- 2369 2369 2370 2370 Table 6-59 Communication control DO function parameters 2371 2371 2372 -|**DO function number**|**Function name**|**Function** 2373 -|145|COM_VDO1 communication VDO1 output|Use communication VDO 2374 -|146|COM_VDO1 communication VDO2 output|Use communication VDO 2375 -|147|COM_VDO1 communication VDO3 output|Use communication VDO 2376 -|148|COM_VDO1 communication VDO4output|Use communication VDO 2394 +|=(% scope="row" %)**DO function number**|=**Function name**|=**Function** 2395 +|=145|COM_VDO1 communication VDO1 output|Use communication VDO 2396 +|=146|COM_VDO1 communication VDO2 output|Use communication VDO 2397 +|=147|COM_VDO1 communication VDO3 output|Use communication VDO 2398 +|=148|COM_VDO1 communication VDO4output|Use communication VDO 2377 2377 2378 2378 Table 6-60 VDO function number 2379 2379 ... ... @@ -2381,16 +2381,16 @@ 2381 2381 2382 2382 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate). 2383 2383 2384 -== **Motor overload protection**==2406 +== Motor overload protection == 2385 2385 2386 2386 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2387 2387 2388 -|**Function code**|**Name**|((( 2410 +|=(% scope="row" %)**Function code**|=**Name**|=((( 2389 2389 **Setting method** 2390 -)))|((( 2412 +)))|=((( 2391 2391 **Effective time** 2392 -)))|**Default value**|**Range**|**Definition**|**Unit** 2393 -|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2414 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2415 +|=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2394 2394 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2395 2395 2396 2396 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled