Changes for page 06 Operation

Last modified by Iris on 2025/08/08 14:40

From version 57.1
edited by Stone Wu
on 2022/09/23 14:31
Change comment: There is no comment for this version
To version 53.4
edited by Stone Wu
on 2022/07/29 10:04
Change comment: Update document after refactoring.

Summary

Details

Page properties
Content
... ... @@ -2,67 +2,57 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
5 +|=(% scope="row" %)**No.**|=**Content**
6 6  |=(% colspan="2" %)Wiring
7 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 -|=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 -|=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|=5|Servo drive and servo motor must be grounded reliably.
12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|=7|The force of all cables is within the specified range.
14 +|=8|The wiring terminals have been insulated.
15 15  |=(% colspan="2" %)Environment and Machinery
16 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
22 -== Power-on ==
22 +== **Power-on** ==
23 23  
24 -**Connect the main circuit power supply**
24 +**(1) Connect the main circuit power supply**
25 25  
26 26  After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27 27  
28 -If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.
29 29  
30 -**Set the servo drive enable (S-ON) to invalid (OFF)**
30 +**(2) Set the servo drive enable (S-ON) to invalid (OFF)**
31 31  
32 -== Jog operation ==
32 +== **Jog operation** ==
33 33  
34 34  Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35 35  
36 -**Panel jog operation**
36 +**(1) Panel jog operation**
37 37  
38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
39 39  
40 -**Jog operation of servo debugging platform**
40 +**(2) Jog operation of servo debugging platform**
41 41  
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 +
45 +
44 44  |=(% scope="row" %)**Function code**|=**Name**|=(((
45 45  **Setting method**
46 46  )))|=(((
47 47  **Effective time**
48 48  )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 -|=(((
50 -P10-01
51 -)))|(((
52 -JOG speed
53 -)))|(((
51 +|=P10-01|JOG speed|(((
54 54  Operation setting
55 55  )))|(((
56 56  Effective immediately
57 -)))|(((
58 -100
59 -)))|(((
60 -0 to 3000
61 -)))|(((
62 -JOG speed
63 -)))|(((
64 -rpm
65 -)))
55 +)))|100|0 to 3000|JOG speed|rpm
66 66  
67 67  Table 6-2 JOG speed parameter
68 68  
... ... @@ -70,24 +70,18 @@
70 70  
71 71  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72 72  
63 +
73 73  |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 -|=(((
75 -P00-04
76 -)))|(((
77 -Rotation direction
78 -)))|(((
65 +|=P00-04|Rotation direction|(((
79 79  Shutdown setting
80 80  )))|(((
81 81  Effective immediately
82 -)))|(((
83 -0
84 -)))|(((
85 -0 to 1
86 -)))|(((
69 +)))|0|0 to 1|(((
87 87  Forward rotation: Face the motor shaft to watch
88 88  
89 -* 0: standard setting (CW is forward rotation)
90 -* 1: reverse mode (CCW is forward rotation)
72 +0: standard setting (CW is forward rotation)
73 +
74 +1: reverse mode (CCW is forward rotation)
91 91  )))|-
92 92  
93 93  Table 6-3 Rotation direction parameters** **
... ... @@ -101,30 +101,33 @@
101 101  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 102  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103 103  
104 -|=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
88 +|=(% scope="row" %)**Function code**|=**Name**|=(((
105 105  **Setting method**
106 -)))|=(% style="width: 126px;" %)(((
90 +)))|=(((
107 107  **Effective time**
108 108  )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 -|=P00-09|Braking resistor setting|(% style="width:118px" %)(((
93 +|=P00-09|Braking resistor setting|(((
110 110  Operation setting
111 -)))|(% style="width:126px" %)(((
95 +)))|(((
112 112  Effective immediately
113 113  )))|0|0 to 3|(((
114 -* 0: use built-in braking resistor
115 -* 1: use external braking resistor and natural cooling
116 -* 2: use external braking resistor and forced air cooling; (cannot be set)
117 -* 3: No braking resistor is used, it is all absorbed by capacitor.
98 +0: use built-in braking resistor
99 +
100 +1: use external braking resistor and natural cooling
101 +
102 +2: use external braking resistor and forced air cooling; (cannot be set)
103 +
104 +3: No braking resistor is used, it is all absorbed by capacitor.
118 118  )))|-
119 -(% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 -|=P00-10|External braking resistor value|(% style="width:118px" %)(((
106 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
107 +|=P00-10|External braking resistor value|(((
121 121  Operation setting
122 -)))|(% style="width:126px" %)(((
109 +)))|(((
123 123  Effective immediately
124 124  )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 -|=P00-11|External braking resistor power|(% style="width:118px" %)(((
112 +|=P00-11|External braking resistor power|(((
126 126  Operation setting
127 -)))|(% style="width:126px" %)(((
114 +)))|(((
128 128  Effective immediately
129 129  )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130 130  
... ... @@ -132,70 +132,73 @@
132 132  
133 133  == **Servo operation** ==
134 134  
135 -**Set the servo enable (S-ON) to valid (ON)**
122 +**(1) Set the servo enable (S-ON) to valid (ON)**
136 136  
137 137  The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138 138  
139 139  S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140 140  
141 -**Input the instruction and the motor rotates**
128 +**(2) Input the instruction and the motor rotates**
142 142  
143 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
130 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
144 144  
145 -**Timing diagram of power on**
132 +**(3) Timing diagram of power on**
146 146  
147 -(% style="text-align:center" %)
148 -(((
149 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 -[[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 -)))
152 152  
153 -== Servo shutdown ==
135 +[[image:image-20220608163014-1.png]]
154 154  
155 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
137 +Figure 6-1 Timing diagram of power on
156 156  
157 -|=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 -|=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 -|=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
139 +== **Servo shutdown** ==
160 160  
141 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.
142 +
143 +
144 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
145 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
146 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
147 +
161 161  Table 6-5 Comparison of two shutdown modes
162 162  
163 -|=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 -|=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165 165  
151 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
152 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
153 +
166 166  Table 6-6 Comparison of two shutdown status
167 167  
168 -**Servo enable (S-ON) OFF shutdown**
156 +**(1) Servo enable (S-ON) OFF shutdown**
169 169  
170 170  The related parameters of the servo OFF shutdown mode are shown in the table below.
171 171  
172 -|=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
160 +
161 +|=(% scope="row" %)**Function code**|=**Name**|=(((
173 173  **Setting method**
174 -)))|=(% style="width: 134px;" %)(((
163 +)))|=(((
175 175  **Effective time**
176 -)))|=(% style="width: 86px;" %)(((
165 +)))|=(((
177 177  **Default value**
178 -)))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 -|=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
167 +)))|=**Range**|=**Definition**|=**Unit**
168 +|=P00-05|Servo OFF shutdown|(((
180 180  Shutdown
181 181  
182 182  setting
183 -)))|(% style="width:134px" %)(((
172 +)))|(((
184 184  Effective
185 185  
186 186  immediately
187 -)))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 -* 0: Free shutdown, and the motor shaft remains free status.
189 -* 1: Zero-speed shutdown, and the motor shaft remains free status.
176 +)))|0|0 to 1|(((
177 +0: Free shutdown, and the motor shaft remains free status.
178 +
179 +1: Zero-speed shutdown, and the motor shaft remains free status.
190 190  )))|-
191 191  
192 -Table 6-7 Servo OFF shutdown mode parameters details
182 +Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
193 193  
194 -**Emergency shutdown**
184 +**(2) Emergency shutdown**
195 195  
196 196  It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
197 197  
198 -**Overtravel shutdown**
188 +**(3) Overtravel shutdown**
199 199  
200 200  Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
201 201  
... ... @@ -203,98 +203,149 @@
203 203  
204 204  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
205 205  
206 -|=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
196 +
197 +|=(% scope="row" %)**Function code**|=**Name**|=(((
207 207  **Setting method**
208 -)))|=(% style="width: 114px;" %)(((
199 +)))|=(((
209 209  **Effective time**
210 -)))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
211 -|=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
212 -* 0: OFF (not used)
213 -* 01: S-ON servo enable
214 -* 02: A-CLR fault and Warning Clear
215 -* 03: POT forward drive prohibition
216 -* 04: NOT Reverse drive prohibition
217 -* 05: ZCLAMP Zero speed
218 -* 06: CL Clear deviation counter
219 -* 07: C-SIGN Inverted instruction
220 -* 08: E-STOP Emergency stop
221 -* 09: GEAR-SEL Electronic Gear Switch 1
222 -* 10: GAIN-SEL gain switch
223 -* 11: INH Instruction pulse prohibited input
224 -* 12: VSSEL Vibration control switch input
225 -* 13: INSPD1 Internal speed instruction selection 1
226 -* 14: INSPD2 Internal speed instruction selection 2
227 -* 15: INSPD3 Internal speedinstruction selection 3
228 -* 16: J-SEL inertia ratio switch (not implemented yet)
229 -* 17: MixModesel mixed mode selection
230 -* 20: Internal multi-segment position enable signal
231 -* 21: Internal multi-segment position selection 1
232 -* 22: Internal multi-segment position selection 2
233 -* 23: Internal multi-segment position selection 3
234 -* 24: Internal multi-segment position selection 4
235 -* Others: reserved
201 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
202 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
203 +0: OFF (not used)
204 +
205 +01: S-ON servo enable
206 +
207 +02: A-CLR fault and Warning Clear
208 +
209 +03: POT forward drive prohibition
210 +
211 +04: NOT Reverse drive prohibition
212 +
213 +05: ZCLAMP Zero speed
214 +
215 +06: CL Clear deviation counter
216 +
217 +07: C-SIGN Inverted instruction
218 +
219 +08: E-STOP Emergency stop
220 +
221 +09: GEAR-SEL Electronic Gear Switch 1
222 +
223 +10: GAIN-SEL gain switch
224 +
225 +11: INH Instruction pulse prohibited input
226 +
227 +12: VSSEL Vibration control switch input
228 +
229 +13: INSPD1 Internal speed instruction selection 1
230 +
231 +14: INSPD2 Internal speed instruction selection 2
232 +
233 +15: INSPD3 Internal speedinstruction selection 3
234 +
235 +16: J-SEL inertia ratio switch (not implemented yet)
236 +
237 +17: MixModesel mixed mode selection
238 +
239 +20: Internal multi-segment position enable signal
240 +
241 +21: Internal multi-segment position selection 1
242 +
243 +22: Internal multi-segment position selection 2
244 +
245 +23: Internal multi-segment position selection 3
246 +
247 +24: Internal multi-segment position selection 4
248 +
249 +Others: reserved
236 236  )))|-
237 -|=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
251 +|=P06-09|DI_3 channel logic selection|Operation setting|(((
238 238  Effective immediately
239 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
253 +)))|0|0 to 1|(((
240 240  DI port input logic validity function selection.
241 241  
242 -* 0: Normally open input. Active low level (switch on);
243 -* 1: Normally closed input. Active high level (switch off);
256 +0: Normally open input. Active low level (switch on);
257 +
258 +1: Normally closed input. Active high level (switch off);
244 244  )))|-
245 -|=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
260 +|=P06-10|DI_3 input source selection|Operation setting|(((
246 246  Effective immediately
247 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
262 +)))|0|0 to 1|(((
248 248  Select the DI_3 port type to enable
249 249  
250 -* 0: Hardware DI_3 input terminal
251 -* 1: virtual VDI_3 input terminal
265 +0: Hardware DI_3 input terminal
266 +
267 +1: virtual VDI_3 input terminal
252 252  )))|-
253 -|=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
269 +|=P06-11|DI_4 channel function selection|(((
254 254  Operation setting
255 -)))|(% style="width:114px" %)(((
271 +)))|(((
256 256  again Power-on
257 -)))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 -* 0: OFF (not used)
259 -* 01: SON Servo enable
260 -* 02: A-CLR Fault and Warning Clear
261 -* 03: POT Forward drive prohibition
262 -* 04: NOT Reverse drive prohibition
263 -* 05: ZCLAMP Zero speed
264 -* 06: CL Clear deviation counter
265 -* 07: C-SIGN Inverted instruction
266 -* 08: E-STOP Emergency shutdown
267 -* 09: GEAR-SEL Electronic Gear Switch 1
268 -* 10: GAIN-SEL gain switch
269 -* 11: INH Instruction pulse prohibited input
270 -* 12: VSSEL Vibration control switch input
271 -* 13: INSPD1 Internal speed instruction selection 1
272 -* 14: INSPD2 Internal speed instruction selection 2
273 -* 15: INSPD3 Internal speed instruction selection 3
274 -* 16: J-SEL inertia ratio switch (not implemented yet)
275 -* 17: MixModesel mixed mode selection
276 -* 20: Internal multi-segment position enable signal
277 -* 21: Internal multi-segment position selection 1
278 -* 22: Internal multi-segment position selection 2
279 -* 23: Internal multi-segment position selection 3
280 -* 24: Internal multi-segment position selection 4
281 -* Others: reserved
273 +)))|4|0 to 32|(((
274 +0 off (not used)
275 +
276 +01: SON Servo enable
277 +
278 +02: A-CLR Fault and Warning Clear
279 +
280 +03: POT Forward drive prohibition
281 +
282 +04: NOT Reverse drive prohibition
283 +
284 +05: ZCLAMP Zero speed
285 +
286 +06: CL Clear deviation counter
287 +
288 +07: C-SIGN Inverted instruction
289 +
290 +08: E-STOP Emergency shutdown
291 +
292 +09: GEAR-SEL Electronic Gear Switch 1
293 +
294 +10: GAIN-SEL gain switch
295 +
296 +11: INH Instruction pulse prohibited input
297 +
298 +12: VSSEL Vibration control switch input
299 +
300 +13: INSPD1 Internal speed instruction selection 1
301 +
302 +14: INSPD2 Internal speed instruction selection 2
303 +
304 +15: INSPD3 Internal speed instruction selection 3
305 +
306 +16: J-SEL inertia ratio switch (not implemented yet)
307 +
308 +17: MixModesel mixed mode selection
309 +
310 +20: Internal multi-segment position enable signal
311 +
312 +21: Internal multi-segment position selection 1
313 +
314 +22: Internal multi-segment position selection 2
315 +
316 +23: Internal multi-segment position selection 3
317 +
318 +24: Internal multi-segment position selection 4
319 +
320 +Others: reserved
282 282  )))|-
283 -|=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
322 +|=P06-12|DI_4 channel logic selection|Operation setting|(((
284 284  Effective immediately
285 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
324 +)))|0|0 to 1|(((
286 286  DI port input logic validity function selection.
287 287  
288 -* 0: Normally open input. Active low level (switch on);
289 -* 1: Normally closed input. Active high level (switch off);
327 +0: Normally open input. Active low level (switch on);
328 +
329 +1: Normally closed input. Active high level (switch off);
290 290  )))|-
291 -|=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
331 +|=P06-13|DI_4 input source selection|Operation setting|(((
292 292  Effective immediately
293 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
333 +)))|0|0 to 1|(((
294 294  Select the DI_4 port type to enable
295 295  
296 -* 0: Hardware DI_4 input terminal
297 -* 1: virtual VDI_4 input terminal
336 +0: Hardware DI_4 input terminal
337 +
338 +1: virtual VDI_4 input terminal
298 298  )))|-
299 299  
300 300  Table 6-8 DI3 and DI4 channel parameters
... ... @@ -303,12 +303,12 @@
303 303  
304 304  When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
305 305  
306 -== Brake device ==
347 +== **Brake device** ==
307 307  
308 308  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
309 309  
310 -(% class="warning" %)|(((
311 -(% style="text-align:center" %)
351 +
352 +|(((
312 312  [[image:image-20220611151617-1.png]]
313 313  )))
314 314  |(((
... ... @@ -323,19 +323,17 @@
323 323  ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
324 324  )))
325 325  
326 -**Wiring of brake device**
367 +**(1) Wiring of brake device**
327 327  
328 328  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
329 329  
330 330  
331 -(% style="text-align:center" %)
332 -(((
333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 -[[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
335 -)))
372 +[[image:image-20220608163136-2.png]]
336 336  
337 -(% class="warning" %)|(((
338 -(% style="text-align:center" %)
374 +Figure 6-2 VD2B servo drive brake wiring
375 +
376 +
377 +|(((
339 339  [[image:image-20220611151642-2.png]]
340 340  )))
341 341  |(((
... ... @@ -346,21 +346,23 @@
346 346  ✎It is recommended to use cables above 0.5 mm².
347 347  )))
348 348  
349 -**Brake software setting**
388 +**(2) Brake software setting**
350 350  
351 351  For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
352 352  
353 353  Related function code is as below.
354 354  
355 -|=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
394 +
395 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
356 356  **Effective time**
357 357  )))
358 -|=144|(% style="width:241px" %)(((
398 +|=144|(((
359 359  BRK-OFF Brake output
360 -)))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
400 +)))|Output the signal indicates the servo motor brake release|Power-on again
361 361  
362 362  Table 6-2 Relevant function codes for brake setting
363 363  
404 +
364 364  |=(% scope="row" %)**Function code**|=**Name**|=(((
365 365  **Setting method**
366 366  )))|=(((
... ... @@ -391,16 +391,16 @@
391 391  
392 392  According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
393 393  
394 -**Servo drive brake timing in normal state**
435 +**(3) Servo drive brake timing in normal state**
395 395  
396 396  The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
397 397  
398 -* Brake timing when servo motor is stationary
439 +1) Brake timing when servo motor is stationary
399 399  
400 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
441 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__
401 401  
402 -(% class="warning" %)|(((
403 -(% style="text-align:center" %)
443 +
444 +|(((
404 404  [[image:image-20220611151705-3.png]]
405 405  )))
406 406  |(((
... ... @@ -409,23 +409,18 @@
409 409  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
410 410  )))
411 411  
412 -(% style="text-align:center" %)
413 -(((
414 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
415 -[[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
416 -)))
453 +[[image:image-20220608163304-3.png]]
417 417  
418 -(% class="box infomessage" %)
419 -(((
455 +Figure 6-3 Brake Timing of when the motor is stationary
456 +
420 420  ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
421 -)))
422 422  
423 -* The brake timing when servo motor rotates
459 +2) The brake timing when servo motor rotates
424 424  
425 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
461 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.
426 426  
427 -(% class="warning" %)|(((
428 -(% style="text-align:center" %)
463 +
464 +|(((
429 429  [[image:image-20220611151719-4.png]]
430 430  )))
431 431  |(((
... ... @@ -440,40 +440,37 @@
440 440  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
441 441  )))
442 442  
443 -(% style="text-align:center" %)
444 -(((
445 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
446 -[[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
447 -)))
479 +[[image:image-20220608163425-4.png]]
448 448  
449 -**Brake timing when the servo drive fails**
481 +Figure 6-4 Brake timing when the motor rotates
450 450  
483 +**(4) Brake timing when the servo drive fails**
484 +
451 451  The brake timing (free shutdown) in the fault status is as follows.
452 452  
453 -(% style="text-align:center" %)
454 -(((
455 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
456 -[[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
457 -)))
458 458  
488 +[[image:image-20220608163541-5.png]]
489 +
490 + Figure 6-5 The brake timing (free shutdown) in the fault state
491 +
459 459  = **Position control mode** =
460 460  
461 461  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
462 462  
463 -(% style="text-align:center" %)
464 -(((
465 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
466 -[[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
467 -)))
468 468  
497 +[[image:image-20220608163643-6.png]]
498 +
499 +Figure 6-6 Position control diagram
500 +
469 469  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
470 470  
471 -|=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
503 +
504 +|=(% scope="row" %)**Function code**|=**Name**|=(((
472 472  **Setting method**
473 473  )))|=(((
474 474  **Effective time**
475 475  )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
476 -|=(% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((
509 +|=P01-01|Control mode|(((
477 477  Operation setting
478 478  )))|(((
479 479  immediately Effective
... ... @@ -493,10 +493,11 @@
493 493  
494 494  Table 6-10 Control mode parameters
495 495  
496 -== Position instruction input setting ==
529 +== **Position instruction input setting** ==
497 497  
498 498  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
499 499  
533 +
500 500  |=(% scope="row" %)**Function code**|=**Name**|=(((
501 501  **Setting method**
502 502  )))|=(((
... ... @@ -514,151 +514,149 @@
514 514  
515 515  Table 6-11 Position instruction source parameter
516 516  
517 -**The source of position instruction is pulse instruction (P01-06=0)**
551 +**(1) The source of position instruction is pulse instruction (P01-06=0)**
518 518  
519 -Low-speed pulse instruction input
553 +1) Low-speed pulse instruction input
520 520  
521 -|(% style="text-align:center" %)
522 -(((
523 -(% class="wikigeneratedid" style="display:inline-block" %)
524 -[[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
525 -)))|(% style="text-align:center" %)
526 -(((
527 -(% class="wikigeneratedid" style="display:inline-block" %)
528 -[[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
529 -)))
555 +|[[image:image-20220707092316-1.png]]|[[image:image-20220707092322-2.png]]
556 +|VD2A and VD2B servo drives|VD2F servo drive
530 530  |(% colspan="2" %)Figure 6-7 Position instruction input setting
531 531  
532 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
559 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.
533 533  
534 534  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
535 535  
536 -|=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
537 -|=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
538 -|=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
539 539  
564 +|**Pulse method**|**Maximum frequency**|**Voltage**
565 +|Open collector input|200K|24V
566 +|Differential input|500K|5V
567 +
540 540  Table 6-12 Pulse input specifications
541 541  
542 -* Differential input
570 +1.Differential input
543 543  
544 544  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
545 545  
546 546  (% style="text-align:center" %)
547 -(((
548 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
549 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
550 -)))
575 +[[image:image-20220707092615-5.jpeg]]
551 551  
552 -(% class="box infomessage" %)
553 -(((
554 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
555 -)))
577 +Figure 6-8 Differential input connection
556 556  
557 -* Open collector input
579 +**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
558 558  
581 +2.Open collector input
582 +
559 559  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
560 560  
561 561  (% style="text-align:center" %)
562 -(((
563 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
564 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
565 -)))
586 +[[image:image-20220707092401-3.jpeg||height="530" width="834"]]
566 566  
588 +Figure 6-9 Open collector input connection
567 567  
568 -(% class="box infomessage" %)
569 -(((
570 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
571 -)))
590 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
572 572  
573 -* Position pulse frequency and anti-interference level
592 +2) Position pulse frequency and anti-interference level
574 574  
575 575  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
576 576  
577 577  (% style="text-align:center" %)
578 -(((
579 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
580 -[[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
581 -)))
597 +[[image:image-20220608163952-8.png]]
582 582  
599 +Figure 6-10 Example of filtered signal waveform
600 +
583 583  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
584 584  
585 -|=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
603 +
604 +|=(% scope="row" %)**Function code**|=**Name**|=(((
586 586  **Setting method**
587 587  )))|=(((
588 588  **Effective time**
589 -)))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
590 -|P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((
608 +)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
609 +|=P00-13|Maximum position pulse frequency|(((
591 591  Shutdown setting
592 592  )))|(((
593 593  Effective immediately
594 -)))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz
595 -|(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
613 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
614 +|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
596 596  Operation setting
597 597  )))|(% rowspan="3" %)(((
598 598  Power-on again
599 -)))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
618 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
600 600  Set the anti-interference level of external pulse instruction.
601 601  
602 -* 0: no filtering;
603 -* 1: Filtering time 128ns
604 -* 2: Filtering time 256ns
605 -* 3: Filtering time 512ns
606 -* 4: Filtering time 1.024us
607 -* 5: Filtering time 2.048us
608 -* 6: Filtering time 4.096us
609 -* 7: Filtering time 8.192us
610 -* 8: Filtering time 16.384us
611 -* 9:
612 -** VD2: Filtering time 25.5us
613 -** VD2F: Filtering time 25.5us
621 +0: no filtering;
622 +
623 +1: Filtering time 128ns
624 +
625 +2: Filtering time 256ns
626 +
627 +3: Filtering time 512ns
628 +
629 +4: Filtering time 1.024us
630 +
631 +5: Filtering time 2.048us
632 +
633 +6: Filtering time 4.096us
634 +
635 +7: Filtering time 8.192us
636 +
637 +8: Filtering time 16.384us
614 614  )))|(% rowspan="3" %)-
639 +|=(% rowspan="2" %)9|VD2: Filtering time 25.5us
640 +|=VD2F: Filtering time 25.5us
615 615  
616 616  Table 6-13 Position pulse frequency and anti-interference level parameters
617 617  
618 -* Position pulse type selection
644 +3) Position pulse type selection
619 619  
620 620  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
621 621  
622 -|=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
648 +
649 +|=(% scope="row" %)**Function code**|=**Name**|=(((
623 623  **Setting method**
624 -)))|=(% style="width: 109px;" %)(((
651 +)))|=(((
625 625  **Effective time**
626 -)))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
627 -|=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
653 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
654 +|=P00-12|Position pulse type selection|(((
628 628  Operation setting
629 -)))|(% style="width:109px" %)(((
656 +)))|(((
630 630  Power-on again
631 -)))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
632 -* 0: direction + pulse (positive logic)
633 -* 1: CW/CCW
634 -* 2: A, B phase quadrature pulse (4 times frequency)
635 -* 3: Direction + pulse (negative logic)
636 -* 4: CW/CCW (negative logic)
637 -* 5: A, B phase quadrature pulse (4 times frequency negative logic)
658 +)))|0|0 to 5|(((
659 +0: direction + pulse (positive logic)
660 +
661 +1: CW/CCW
662 +
663 +2: A, B phase quadrature pulse (4 times frequency)
664 +
665 +3: Direction + pulse (negative logic)
666 +
667 +4: CW/CCW (negative logic)
668 +
669 +5: A, B phase quadrature pulse (4 times frequency negative logic)
638 638  )))|-
639 639  
640 640  Table 6-14 Position pulse type selection parameter
641 641  
642 -|=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
643 -|=0|(% style="width:200px" %)(((
674 +|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
675 +|=0|(((
644 644  Direction + pulse
645 645  
646 646  (Positive logic)
647 -)))|(% style="width:161px" %)(((
679 +)))|(((
648 648  PULSE
649 649  
650 650  SIGN
651 651  )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
652 -|=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
684 +|=1|CW/CCW|(((
653 653  PULSE (CW)
654 654  
655 655  SIGN (CCW)
656 656  )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
657 -|=2|(% style="width:200px" %)(((
689 +|=2|(((
658 658  AB phase orthogonal
659 659  
660 660  pulse (4 times frequency)
661 -)))|(% style="width:161px" %)(((
693 +)))|(((
662 662  PULSE (Phase A)
663 663  
664 664  SIGN (Phase B)
... ... @@ -675,29 +675,29 @@
675 675  
676 676  Phase B is 90° ahead of Phase A
677 677  )))
678 -|=3|(% style="width:200px" %)(((
710 +|=3|(((
679 679  Direction + pulse
680 680  
681 681  (Negative logic)
682 -)))|(% style="width:161px" %)(((
714 +)))|(((
683 683  PULSE
684 684  
685 685  SIGN
686 686  )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
687 -|=4|(% style="width:200px" %)(((
719 +|=4|(((
688 688  CW/CCW
689 689  
690 690  (Negative logic)
691 -)))|(% style="width:161px" %)(((
723 +)))|(((
692 692  PULSE (CW)
693 693  
694 694  SIGN (CCW)
695 695  )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
696 -|=5|(% style="width:200px" %)(((
728 +|=5|(((
697 697  AB phase orthogonal
698 698  
699 699  pulse (4 times frequency negative logic)
700 -)))|(% style="width:161px" %)(((
732 +)))|(((
701 701  PULSE (Phase A)
702 702  
703 703  SIGN (Phase B)
... ... @@ -710,7 +710,7 @@
710 710  )))|(((
711 711  
712 712  
713 -[[image:image-20220707094437-15.jpeg]]
745 +[[image:image-20220707094437-15.jpeg]]
714 714  
715 715  Phase A is ahead of B phase by 90°
716 716  )))
... ... @@ -717,20 +717,18 @@
717 717  
718 718  Table 6-15 Pulse description
719 719  
720 -**The source of position instruction is internal position instruction (P01-06=1)**
752 +**(2) The source of position instruction is internal position instruction (P01-06=1)**
721 721  
722 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
754 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.
723 723  
724 724  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
725 725  
726 726  (% style="text-align:center" %)
727 -(((
728 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
729 -[[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
730 -)))
759 +[[image:image-20220608164116-9.png]]
731 731  
761 +Figure 6-11 The setting process of multi-segment position
732 732  
733 -* Set multi-segment position running mode
763 +1) Set multi-segment position running mode
734 734  
735 735  |=(% scope="row" %)**Function code**|=**Name**|=(((
736 736  **Setting method**
... ... @@ -742,9 +742,11 @@
742 742  )))|(((
743 743  Effective immediately
744 744  )))|0|0 to 2|(((
745 -* 0: Single running
746 -* 1: Cycle running
747 -* 2: DI switching running
775 +0: Single running
776 +
777 +1: Cycle running
778 +
779 +2: DI switching running
748 748  )))|-
749 749  |=P07-02|Start segment number|(((
750 750  Shutdown setting
... ... @@ -761,8 +761,9 @@
761 761  )))|(((
762 762  Effective immediately
763 763  )))|0|0 to 1|(((
764 -* 0: Run the remaining segments
765 -* 1: Run again from the start segment
796 +0: Run the remaining segments
797 +
798 +1: Run again from the start segment
766 766  )))|-
767 767  |=P07-05|Displacement instruction type|(((
768 768  Shutdown setting
... ... @@ -769,8 +769,9 @@
769 769  )))|(((
770 770  Effective immediately
771 771  )))|0|0 to 1|(((
772 -* 0: Relative position instruction
773 -* 1: Absolute position instruction
805 +0: Relative position instruction
806 +
807 +1: Absolute position instruction
774 774  )))|-
775 775  
776 776  Table 6-16 multi-segment position running mode parameters
... ... @@ -777,34 +777,30 @@
777 777  
778 778  VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
779 779  
780 -1. Single running
814 +~1. Single running
781 781  
782 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
816 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
783 783  
818 +
784 784  (% style="text-align:center" %)
785 -(((
786 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
787 -[[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
788 -)))
820 +[[image:image-20220608164226-10.png]]
789 789  
790 -* 2. Cycle running
822 +Figure 6-12 Single running curve (P07-02=1, P07-03=2)
791 791  
824 +2. Cycle running
825 +
792 792  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
793 793  
794 -(% style="text-align:center" %)
795 -(((
796 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
797 -[[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
798 -)))
799 799  
800 -(% class="warning" %)|(((
801 801  (% style="text-align:center" %)
802 -[[image:image-20220611151917-5.png]]
803 -)))
830 +[[image:image-20220608164327-11.png]]
831 +
832 +Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
833 +
834 +|[[image:image-20220611151917-5.png]]
804 804  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
805 805  
806 -(% start="3" %)
807 -1. DI switching running
837 +3. DI switching running
808 808  
809 809  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
810 810  
... ... @@ -827,87 +827,68 @@
827 827  
828 828  Table 6-18 INPOS corresponds to running segment number
829 829  
830 -The operating curve in this running mode is shown in __Figure 6-14__.
860 +The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.
831 831  
832 832  (% style="text-align:center" %)
833 -(((
834 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
835 -[[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
836 -)))
863 +[[image:image-20220608164545-12.png]]
837 837  
865 +Figure 6-14 DI switching running curve
866 +
838 838  VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
839 839  
840 -**Run the remaining segments**
869 +**A. Run the remaining segments**
841 841  
842 842  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
843 843  
844 844  (% style="text-align:center" %)
845 -(((
846 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
847 -[[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
848 -)))
874 +[[image:image-20220608164847-13.png]]
849 849  
876 +Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
877 +
850 850  (% style="text-align:center" %)
851 -(((
852 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
853 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
854 -)))
879 +[[image:image-20220608165032-14.png]]
855 855  
856 -**Run again from the start segment**
881 +Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
857 857  
858 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
883 +**B. Run again from the start segment**
859 859  
885 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.
886 +
860 860  (% style="text-align:center" %)
861 -(((
862 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
863 -[[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
864 -)))
888 +[[image:image-20220608165343-15.png]]
865 865  
890 +Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
891 +
866 866  (% style="text-align:center" %)
867 -(((
868 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
869 -[[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
870 -)))
893 +[[image:image-20220608165558-16.png]]
871 871  
895 +Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
896 +
872 872  VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
873 873  
874 -* Relative position instruction
899 +A. Relative position instruction
875 875  
876 876  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
877 877  
878 878  |(((
879 -(% style="text-align:center" %)
880 -(((
881 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
882 -[[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
883 -)))
904 +[[image:image-20220608165710-17.png]]
884 884  )))|(((
885 -(% style="text-align:center" %)
886 -(((
887 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
888 -[[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
906 +[[image:image-20220608165749-18.png]]
889 889  )))
890 -)))
908 +|Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
891 891  
892 -* Absolute position instruction
910 +B. Absolute position instruction
893 893  
894 894  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
895 895  
896 896  |(((
897 -(% style="text-align:center" %)
898 -(((
899 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
900 -[[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
901 -)))
915 +[[image:image-20220608165848-19.png]]
902 902  )))|(((
903 -(% style="text-align:center" %)
904 -(((
905 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
906 -[[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
917 +[[image:image-20220608170005-20.png]]
907 907  )))
908 -)))
919 +|Figure 6-21 Absolute indication|Figure 6-22 Displacement
909 909  
910 -* Multi-segment position running curve setting
921 +2) Multi-segment position running curve setting
911 911  
912 912  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
913 913  
... ... @@ -946,13 +946,11 @@
946 946  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
947 947  
948 948  (% style="text-align:center" %)
949 -(((
950 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
951 -[[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
952 -)))
960 +[[image:image-20220608170149-21.png]]
953 953  
962 +Figure 6-23 The 1st segment running curve of motor
954 954  
955 -* multi-segment position instruction enable
964 +3) multi-segment position instruction enable
956 956  
957 957  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
958 958  
... ... @@ -963,14 +963,13 @@
963 963  DI port logic valid: Motor runs multi-segment position
964 964  )))
965 965  
966 -(% style="text-align:center" %)
967 -[[image:image-20220611152020-6.png||class="img-thumbnail"]]
975 +[[image:image-20220611152020-6.png]]
968 968  
969 969  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
970 970  
971 -== Electronic gear ratio ==
979 +== **Electronic gear ratio** ==
972 972  
973 -**Definition of electronic gear ratio**
981 +**(1) Definition of electronic gear ratio**
974 974  
975 975  In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
976 976  
... ... @@ -979,22 +979,25 @@
979 979  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
980 980  
981 981  (% style="text-align:center" %)
982 -[[image:image-20220707094901-16.png||class="img-thumbnail"]]
990 +[[image:image-20220707094901-16.png]]
983 983  
992 +
993 +
994 +
984 984  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
985 985  
986 -**Setting steps of electronic gear ratio**
997 +**(2) Setting steps of electronic gear ratio**
987 987  
988 -(% style="text-align:center" %)
989 -(((
990 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
991 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
992 -)))
999 +[[image:image-20220707100850-20.jpeg]]
993 993  
994 -**lectronic gear ratio switch setting**
1001 +Figure 6-24 Setting steps of electronic gear ratio
995 995  
1003 +**(3) lectronic gear ratio switch setting**
1004 +
1005 +
996 996  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
997 997  
1008 +
998 998  |=(% scope="row" %)**Function code**|=**Name**|=(((
999 999  **Setting method**
1000 1000  )))|=(((
... ... @@ -1044,6 +1044,7 @@
1044 1044  
1045 1045  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1046 1046  
1058 +
1047 1047  |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1048 1048  |=09|GEAR-SEL electronic gear switch 1|(((
1049 1049  DI port logic invalid: electronic gear ratio 1
... ... @@ -1053,25 +1053,16 @@
1053 1053  
1054 1054  Table 6-21 Switching conditions of electronic gear ratio group
1055 1055  
1056 -|=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1057 -|(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1058 -(% style="text-align:center" %)
1059 -[[image:image-20220707101328-21.png]]
1060 -)))
1061 -|(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1062 -(% style="text-align:center" %)
1063 -[[image:image-20220707101336-22.png]]
1064 -)))
1065 -|1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1066 -(% style="text-align:center" %)
1067 -[[image:image-20220707101341-23.png]]
1068 -)))
1068 +|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]]
1069 +|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]]
1070 +|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]]
1071 +|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]]
1069 1069  
1070 1070  Table 6-22 Application of electronic gear ratio
1071 1071  
1072 1072  When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1073 1073  
1074 -== Position instruction filtering ==
1077 +== **Position instruction filtering** ==
1075 1075  
1076 1076  Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1077 1077  
... ... @@ -1084,11 +1084,10 @@
1084 1084  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1085 1085  
1086 1086  (% style="text-align:center" %)
1087 -(((
1088 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1089 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1090 -)))
1090 +[[image:image-20220608170455-23.png]]
1091 1091  
1092 +Figure 6-25 Position instruction filtering diagram
1093 +
1092 1092  |=(% scope="row" %)**Function code**|=**Name**|=(((
1093 1093  **Setting method**
1094 1094  )))|=(((
... ... @@ -1099,8 +1099,9 @@
1099 1099  )))|(((
1100 1100  Effective immediately
1101 1101  )))|0|0 to 1|(((
1102 -* 0: 1st-order low-pass filtering
1103 -* 1: average filtering
1104 +0: 1st-order low-pass filtering
1105 +
1106 +1: average filtering
1104 1104  )))|-
1105 1105  |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1106 1106  Effective immediately
... ... @@ -1111,13 +1111,13 @@
1111 1111  
1112 1112  Table 6-23 Position instruction filter function code
1113 1113  
1114 -== Clearance of position deviation ==
1117 +== **Clearance of position deviation** ==
1115 1115  
1116 1116  Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1117 1117  
1118 1118  Position deviation = (position instruction-position feedback) (encoder unit)
1119 1119  
1120 -== Position-related DO output function ==
1123 +== **Position-related DO output function** ==
1121 1121  
1122 1122  The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1123 1123  
... ... @@ -1128,46 +1128,44 @@
1128 1128  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1129 1129  
1130 1130  (% style="text-align:center" %)
1131 -(((
1132 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1133 -[[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1134 -)))
1134 +[[image:image-20220608170550-24.png]]
1135 1135  
1136 +Figure 6-26 Positioning completion signal output diagram
1137 +
1136 1136  When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1137 1137  
1138 1138  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1139 1139  
1140 1140  (% style="text-align:center" %)
1141 -(((
1142 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1143 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1144 -)))
1143 +[[image:image-20220608170650-25.png]]
1145 1145  
1145 +Figure 6-27 Positioning completion signal output with increased window filter time diagram
1146 +
1146 1146  |=(% scope="row" %)**Function code**|=**Name**|=(((
1147 1147  **Setting method**
1148 -)))|=(% style="width: 129px;" %)(((
1149 +)))|=(((
1149 1149  **Effective time**
1150 -)))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1151 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1151 1151  |=P05-12|Positioning completion threshold|(((
1152 1152  Operation setting
1153 -)))|(% style="width:129px" %)(((
1154 +)))|(((
1154 1154  Effective immediately
1155 -)))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1156 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1156 1156  |=P05-13|Positioning approach threshold|(((
1157 1157  Operation setting
1158 -)))|(% style="width:129px" %)(((
1159 +)))|(((
1159 1159  Effective immediately
1160 -)))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1161 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1161 1161  |=P05-14|Position detection window time|(((
1162 1162  Operation setting
1163 -)))|(% style="width:129px" %)(((
1164 +)))|(((
1164 1164  Effective immediately
1165 -)))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1166 +)))|10|0 to 20000|Set positioning completion detection window time|ms
1166 1166  |=P05-15|Positioning signal hold time|(((
1167 1167  Operation setting
1168 -)))|(% style="width:129px" %)(((
1169 +)))|(((
1169 1169  Effective immediately
1170 -)))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1171 +)))|100|0 to 20000|Set positioning completion output hold time|ms
1171 1171  
1172 1172  Table 6-24 Function code parameters of positioning completion
1173 1173  
... ... @@ -1186,46 +1186,47 @@
1186 1186  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1187 1187  
1188 1188  (% style="text-align:center" %)
1189 -(((
1190 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1191 -[[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1192 -)))
1190 +[[image:6.28.jpg||height="260" width="806"]]
1193 1193  
1194 -== Speed instruction input setting ==
1192 +Figure 6-28 Speed control block diagram
1195 1195  
1194 +== **Speed instruction input setting** ==
1195 +
1196 1196  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1197 1197  
1198 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1198 +
1199 +|**Function code**|**Name**|(((
1199 1199  **Setting method**
1200 -)))|=(% style="width: 125px;" %)(((
1201 +)))|(((
1201 1201  **Effective time**
1202 -)))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1203 -|=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1203 +)))|**Default value**|**Range**|**Definition**|**Unit**
1204 +|P01-01|Speed instruction source|(((
1204 1204  Shutdown setting
1205 -)))|(% style="width:125px" %)(((
1206 +)))|(((
1206 1206  Effective immediately
1207 -)))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)(((
1208 -* 0: internal speed instruction
1209 -* 1: AI_1 analog input (not supported by VD2F)
1208 +)))|1|1 to 1|(((
1209 +0: internal speed instruction
1210 +
1211 +1: AI_1 analog input (not supported by VD2F)
1210 1210  )))|-
1211 1211  
1212 1212  Table 6-26 Speed instruction source parameter
1213 1213  
1214 -**Speed instruction source is internal speed instruction (P01-01=0)**
1216 +**(1) Speed instruction source is internal speed instruction (P01-01=0)**
1215 1215  
1216 1216  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1217 1217  
1218 1218  (% style="width:1141px" %)
1219 -|=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1221 +|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)(((
1220 1220  **Setting**
1221 1221  
1222 1222  **method**
1223 -)))|=(% colspan="2" %)(((
1225 +)))|(% colspan="2" %)(((
1224 1224  **Effective**
1225 1225  
1226 1226  **time**
1227 -)))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1228 -|=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1229 +)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit**
1230 +|(% colspan="1" %)P01-02|(% colspan="2" %)(((
1229 1229  Internal speed
1230 1230  
1231 1231  Instruction 0
... ... @@ -1242,13 +1242,15 @@
1242 1242  
1243 1243  When DI input port:
1244 1244  
1245 -* 15-INSPD3: 0
1246 -* 14-INSPD2: 0
1247 -* 13-INSPD1: 0,
1247 +15-INSPD3: 0
1248 1248  
1249 +14-INSPD2: 0
1250 +
1251 +13-INSPD1: 0,
1252 +
1249 1249  select this speed instruction to be effective.
1250 1250  )))|(% colspan="2" %)rpm
1251 -|=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1255 +|(% colspan="1" %)P01-23|(% colspan="2" %)(((
1252 1252  Internal speed
1253 1253  
1254 1254  Instruction 1
... ... @@ -1265,13 +1265,15 @@
1265 1265  
1266 1266  When DI input port:
1267 1267  
1268 -* 15-INSPD3: 0
1269 -* 14-INSPD2: 0
1270 -* 13-INSPD1: 1,
1272 +15-INSPD3: 0
1271 1271  
1274 +14-INSPD2: 0
1275 +
1276 +13-INSPD1: 1,
1277 +
1272 1272  Select this speed instruction to be effective.
1273 1273  )))|(% colspan="2" %)rpm
1274 -|=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1280 +|(% colspan="1" %)P01-24|(% colspan="2" %)(((
1275 1275  Internal speed
1276 1276  
1277 1277  Instruction 2
... ... @@ -1288,13 +1288,15 @@
1288 1288  
1289 1289  When DI input port:
1290 1290  
1291 -* 15-INSPD3: 0
1292 -* 14-INSPD2: 1
1293 -* 13-INSPD1: 0,
1297 +15-INSPD3: 0
1294 1294  
1299 +14-INSPD2: 1
1300 +
1301 +13-INSPD1: 0,
1302 +
1295 1295  Select this speed instruction to be effective.
1296 1296  )))|(% colspan="2" %)rpm
1297 -|=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1305 +|(% colspan="1" %)P01-25|(% colspan="2" %)(((
1298 1298  Internal speed
1299 1299  
1300 1300  Instruction 3
... ... @@ -1311,13 +1311,15 @@
1311 1311  
1312 1312  When DI input port:
1313 1313  
1314 -* 15-INSPD3: 0
1315 -* 14-INSPD2: 1
1316 -* 13-INSPD1: 1,
1322 +15-INSPD3: 0
1317 1317  
1324 +14-INSPD2: 1
1325 +
1326 +13-INSPD1: 1,
1327 +
1318 1318  Select this speed instruction to be effective.
1319 1319  )))|(% colspan="2" %)rpm
1320 -|=P01-26|(% colspan="2" %)(((
1330 +|P01-26|(% colspan="2" %)(((
1321 1321  Internal speed
1322 1322  
1323 1323  Instruction 4
... ... @@ -1334,13 +1334,15 @@
1334 1334  
1335 1335  When DI input port:
1336 1336  
1337 -* 15-INSPD3: 1
1338 -* 14-INSPD2: 0
1339 -* 13-INSPD1: 0,
1347 +15-INSPD3: 1
1340 1340  
1349 +14-INSPD2: 0
1350 +
1351 +13-INSPD1: 0,
1352 +
1341 1341  Select this speed instruction to be effective.
1342 1342  )))|(% colspan="1" %)rpm
1343 -|=P01-27|(% colspan="2" %)(((
1355 +|P01-27|(% colspan="2" %)(((
1344 1344  Internal speed
1345 1345  
1346 1346  Instruction 5
... ... @@ -1357,13 +1357,15 @@
1357 1357  
1358 1358  When DI input port:
1359 1359  
1360 -* 15-INSPD3: 1
1361 -* 14-INSPD2: 0
1362 -* 13-INSPD1: 1,
1372 +15-INSPD3: 1
1363 1363  
1374 +14-INSPD2: 0
1375 +
1376 +13-INSPD1: 1,
1377 +
1364 1364  Select this speed instruction to be effective.
1365 1365  )))|(% colspan="1" %)rpm
1366 -|=P01-28|(% colspan="2" %)(((
1380 +|P01-28|(% colspan="2" %)(((
1367 1367  Internal speed
1368 1368  
1369 1369  Instruction 6
... ... @@ -1380,13 +1380,15 @@
1380 1380  
1381 1381  When DI input port:
1382 1382  
1383 -* 15-INSPD3: 1
1384 -* 14-INSPD2: 1
1385 -* 13-INSPD1: 0,
1397 +15-INSPD3: 1
1386 1386  
1399 +14-INSPD2: 1
1400 +
1401 +13-INSPD1: 0,
1402 +
1387 1387  Select this speed instruction to be effective.
1388 1388  )))|(% colspan="1" %)rpm
1389 -|=P01-29|(% colspan="2" %)(((
1405 +|P01-29|(% colspan="2" %)(((
1390 1390  Internal speed
1391 1391  
1392 1392  Instruction 7
... ... @@ -1403,19 +1403,21 @@
1403 1403  
1404 1404  When DI input port:
1405 1405  
1406 -* 15-INSPD3: 1
1407 -* 14-INSPD2: 1
1408 -* 13-INSPD1: 1,
1422 +15-INSPD3: 1
1409 1409  
1424 +14-INSPD2: 1
1425 +
1426 +13-INSPD1: 1,
1427 +
1410 1410  Select this speed instruction to be effective.
1411 1411  )))|(% colspan="1" %)rpm
1412 1412  
1413 1413  Table 6-27 Internal speed instruction parameters
1414 1414  
1415 -|=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1416 -|=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1417 -|=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1418 -|=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1433 +|**DI function code**|**function name**|**Function**
1434 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1435 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1436 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1419 1419  
1420 1420  Table 6-28 DI multi-speed function code description
1421 1421  
... ... @@ -1422,7 +1422,7 @@
1422 1422  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1423 1423  
1424 1424  
1425 -|=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1443 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1426 1426  |0|0|0|1|0
1427 1427  |0|0|1|2|1
1428 1428  |0|1|0|3|2
... ... @@ -1431,30 +1431,26 @@
1431 1431  
1432 1432  Table 6-29 Correspondence between INSPD bits and segment numbers
1433 1433  
1434 -(% style="text-align:center" %)
1435 -(((
1436 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1437 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1438 -)))
1452 +[[image:image-20220608170845-26.png]]
1439 1439  
1440 -**Speed instruction source is internal speed instruction (P01-01=1)**
1454 +Figure 6-29 Multi-segment speed running curve
1441 1441  
1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)**
1457 +
1442 1442  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1443 1443  
1444 1444  (% style="text-align:center" %)
1445 -(((
1446 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1447 -[[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1448 -)))
1461 +[[image:image-20220608153341-5.png]]
1449 1449  
1463 +Figure 6-30 Analog input circuit
1464 +
1450 1450  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1451 1451  
1452 1452  (% style="text-align:center" %)
1453 -(((
1454 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1455 -[[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1456 -)))
1468 +[[image:image-20220608170955-27.png]]
1457 1457  
1470 +Figure 6-31 Analog voltage speed instruction setting steps
1471 +
1458 1458  Explanation of related terms:
1459 1459  
1460 1460  * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
... ... @@ -1462,25 +1462,21 @@
1462 1462  * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1463 1463  
1464 1464  (% style="text-align:center" %)
1465 -(((
1466 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1467 -[[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1468 -)))
1479 +[[image:image-20220608171124-28.png]]
1469 1469  
1470 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1471 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1472 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1473 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1474 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1481 +Figure 6-32 AI_1 diagram before and after bias
1475 1475  
1483 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1484 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1485 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1486 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1487 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1488 +
1476 1476  Table 6-30 AI_1 parameters
1477 1477  
1478 -(% class="box infomessage" %)
1479 -(((
1480 1480  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1481 -)))
1482 1482  
1483 -== Acceleration and deceleration time setting ==
1493 +== **Acceleration and deceleration time setting** ==
1484 1484  
1485 1485  The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1486 1486  
... ... @@ -1487,25 +1487,24 @@
1487 1487  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1488 1488  
1489 1489  (% style="text-align:center" %)
1490 -(((
1491 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1492 -[[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1493 -)))
1500 +[[image:image-20220608171314-29.png]]
1494 1494  
1502 +Figure 6-33 of acceleration and deceleration time diagram
1503 +
1495 1495  (% style="text-align:center" %)
1496 -[[image:image-20220707103616-27.png||class="img-thumbnail"]]
1505 +[[image:image-20220707103616-27.png]]
1497 1497  
1498 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1507 +|**Function code**|**Name**|(((
1499 1499  **Setting method**
1500 -)))|=(((
1509 +)))|(((
1501 1501  **Effective time**
1502 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1503 -|=P01-03|Acceleration time|(((
1511 +)))|**Default value**|**Range**|**Definition**|**Unit**
1512 +|P01-03|Acceleration time|(((
1504 1504  Operation setting
1505 1505  )))|(((
1506 1506  Effective immediately
1507 1507  )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1508 -|=P01-04|Deceleration time|(((
1517 +|P01-04|Deceleration time|(((
1509 1509  Operation setting
1510 1510  )))|(((
1511 1511  Effective immediately
... ... @@ -1513,7 +1513,7 @@
1513 1513  
1514 1514  Table 6-31 Acceleration and deceleration time parameters
1515 1515  
1516 -== Speed instruction limit ==
1525 +== **Speed instruction limit** ==
1517 1517  
1518 1518  In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1519 1519  
... ... @@ -1528,22 +1528,23 @@
1528 1528  
1529 1529  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1530 1530  
1531 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1540 +
1541 +|**Function code**|**Name**|(((
1532 1532  **Setting method**
1533 -)))|=(((
1543 +)))|(((
1534 1534  **Effective time**
1535 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1536 -|=P01-10|Maximum speed threshold|(((
1545 +)))|**Default value**|**Range**|**Definition**|**Unit**
1546 +|P01-10|Maximum speed threshold|(((
1537 1537  Operation setting
1538 1538  )))|(((
1539 1539  Effective immediately
1540 1540  )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1541 -|=P01-12|Forward speed threshold|(((
1551 +|P01-12|Forward speed threshold|(((
1542 1542  Operation setting
1543 1543  )))|(((
1544 1544  Effective immediately
1545 1545  )))|3000|0 to 5000|Set forward speed limit value|rpm
1546 -|=P01-13|Reverse speed threshold|(((
1556 +|P01-13|Reverse speed threshold|(((
1547 1547  Operation setting
1548 1548  )))|(((
1549 1549  Effective immediately
... ... @@ -1551,18 +1551,19 @@
1551 1551  
1552 1552  Table 6-32 Rotation speed related function codes
1553 1553  
1554 -== Zero-speed clamp function ==
1564 +== **Zero-speed clamp function** ==
1555 1555  
1556 1556  The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1557 1557  
1558 1558  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1559 1559  
1560 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1570 +
1571 +|**Function code**|**Name**|(((
1561 1561  **Setting method**
1562 -)))|=(((
1573 +)))|(((
1563 1563  **Effective time**
1564 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1565 -|=P01-21|(((
1575 +)))|**Default value**|**Range**|**Definition**|**Unit**
1576 +|P01-21|(((
1566 1566  Zero-speed clamp function selection
1567 1567  )))|(((
1568 1568  Operation setting
... ... @@ -1571,12 +1571,15 @@
1571 1571  )))|0|0 to 3|(((
1572 1572  Set the zero-speed clamp function. In speed mode:
1573 1573  
1574 -* 0: Force the speed to 0;
1575 -* 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1576 -* 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1577 -* 3: Invalid, ignore zero-speed clamp input
1585 +0: Force the speed to 0;
1586 +
1587 +1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1588 +
1589 +2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1590 +
1591 +3: Invalid, ignore zero-speed clamp input
1578 1578  )))|-
1579 -|=P01-22|(((
1593 +|P01-22|(((
1580 1580  Zero-speed clamp speed threshold
1581 1581  )))|(((
1582 1582  Operation setting
... ... @@ -1586,34 +1586,33 @@
1586 1586  
1587 1587  Table 6-33 Zero-speed clamp related parameters
1588 1588  
1589 -(% style="text-align:center" %)
1590 -(((
1591 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1592 -[[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1593 -)))
1594 1594  
1595 -== Speed-related DO output function ==
1604 +[[image:image-20220608171549-30.png]]
1596 1596  
1606 +Figure 6-34 Zero-speed clamp diagram
1607 +
1608 +== **Speed-related DO output function** ==
1609 +
1597 1597  The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1598 1598  
1599 -**Rotation detection signal**
1612 +**(1) Rotation detection signal**
1600 1600  
1601 1601  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1602 1602  
1603 -(% style="text-align:center" %)
1604 -(((
1605 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1606 -[[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1607 -)))
1608 1608  
1609 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1617 +[[image:image-20220608171625-31.png]]
1610 1610  
1611 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1619 +Figure 6-35 Rotation detection signal diagram
1620 +
1621 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1622 +
1623 +
1624 +|**Function code**|**Name**|(((
1612 1612  **Setting method**
1613 -)))|=(((
1626 +)))|(((
1614 1614  **Effective time**
1615 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1616 -|=P05-16|(((
1628 +)))|**Default value**|**Range**|**Definition**|**Unit**
1629 +|P05-16|(((
1617 1617  Rotation detection
1618 1618  
1619 1619  speed threshold
... ... @@ -1625,10 +1625,10 @@
1625 1625  
1626 1626  Table 6-34 Rotation detection speed threshold parameters
1627 1627  
1628 -|=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1629 -|=132|(% style="width:247px" %)(((
1641 +|**DO function code**|**Function name**|**Function**
1642 +|132|(((
1630 1630  T-COIN rotation detection
1631 -)))|(% style="width:695px" %)(((
1644 +)))|(((
1632 1632  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1633 1633  
1634 1634  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1636,24 +1636,22 @@
1636 1636  
1637 1637  Table 6-35 DO rotation detection function code
1638 1638  
1639 -**Zero-speed signal**
1652 +**(2) Zero-speed signal**
1640 1640  
1641 1641  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1642 1642  
1643 -(% style="text-align:center" %)
1644 -(((
1645 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1646 -[[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1647 -)))
1656 +[[image:image-20220608171904-32.png]]
1648 1648  
1649 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1658 +Figure 6-36 Zero-speed signal diagram
1650 1650  
1651 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1660 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1661 +
1662 +|**Function code**|**Name**|(((
1652 1652  **Setting method**
1653 -)))|=(((
1664 +)))|(((
1654 1654  **Effective time**
1655 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1656 -|=P05-19|Zero speed output signal threshold|(((
1666 +)))|**Default value**|**Range**|**Definition**|**Unit**
1667 +|P05-19|Zero speed output signal threshold|(((
1657 1657  Operation setting
1658 1658  )))|(((
1659 1659  Effective immediately
... ... @@ -1661,31 +1661,30 @@
1661 1661  
1662 1662  Table 6-36 Zero-speed output signal threshold parameter
1663 1663  
1664 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1665 -|=133|(((
1675 +
1676 +|**DO function code**|**Function name**|**Function**
1677 +|133|(((
1666 1666  ZSP zero speed signal
1667 1667  )))|Output this signal indicates that the servo motor is stopping rotation
1668 1668  
1669 1669  Table 6-37 DO zero-speed signal function code
1670 1670  
1671 -**Speed consistent signal**
1683 +**(3) Speed consistent signal**
1672 1672  
1673 1673  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1674 1674  
1675 -(% style="text-align:center" %)
1676 -(((
1677 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1678 -[[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1679 -)))
1687 +[[image:image-20220608172053-33.png]]
1680 1680  
1681 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1689 +Figure 6-37 Speed consistent signal diagram
1682 1682  
1683 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1691 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1692 +
1693 +|**Function code**|**Name**|(((
1684 1684  **Setting method**
1685 -)))|=(((
1695 +)))|(((
1686 1686  **Effective time**
1687 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1688 -|=P05-17|Speed consistent signal threshold|(((
1697 +)))|**Default value**|**Range**|**Definition**|**Unit**
1698 +|P05-17|Speed consistent signal threshold|(((
1689 1689  Operationsetting
1690 1690  )))|(((
1691 1691  Effective immediately
... ... @@ -1693,31 +1693,30 @@
1693 1693  
1694 1694  Table 6-38 Speed consistent signal threshold parameters
1695 1695  
1696 -|=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1697 -|=136|(% style="width:262px" %)(((
1706 +
1707 +|**DO Function code**|**Function name**|**Function**
1708 +|136|(((
1698 1698  U-COIN consistent speed
1699 -)))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1710 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1700 1700  
1701 1701  Table 6-39 DO speed consistent function code
1702 1702  
1703 -**Speed approach signal**
1714 +**(4) Speed approach signal**
1704 1704  
1705 1705  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1706 1706  
1707 -(% style="text-align:center" %)
1708 -(((
1709 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1710 -[[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1711 -)))
1718 +[[image:image-20220608172207-34.png]]
1712 1712  
1713 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1720 +Figure 6-38 Speed approaching signal diagram
1714 1714  
1715 -|=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1723 +
1724 +|**Function code**|**Name**|(((
1716 1716  **Setting method**
1717 -)))|=(((
1726 +)))|(((
1718 1718  **Effective time**
1719 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1720 -|=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1728 +)))|**Default value**|**Range**|**Definition**|**Unit**
1729 +|P05-18|Speed approach signal threshold|(((
1721 1721  Operation setting
1722 1722  )))|(((
1723 1723  Effective immediately
... ... @@ -1725,8 +1725,8 @@
1725 1725  
1726 1726  Table 6-40 Speed approaching signal threshold parameters
1727 1727  
1728 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1729 -|=137|(((
1737 +|**DO function code**|**Function name**|**Function**
1738 +|137|(((
1730 1730  V-NEAR speed approach
1731 1731  )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1732 1732  
... ... @@ -1736,22 +1736,22 @@
1736 1736  
1737 1737  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1738 1738  
1739 -(% style="text-align:center" %)
1740 -(((
1741 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1742 -[[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1743 -)))
1744 1744  
1745 -== Torque instru**ction input setting** ==
1749 +[[image:image-20220608172405-35.png]]
1746 1746  
1751 +Figure 6-39 Torque mode diagram
1752 +
1753 +== **Torque instruction input setting** ==
1754 +
1747 1747  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1748 1748  
1749 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1757 +
1758 +|**Function code**|**Name**|(((
1750 1750  **Setting method**
1751 -)))|=(((
1760 +)))|(((
1752 1752  **Effective time**
1753 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1754 -|=P01-07|Torque instruction source|(((
1762 +)))|**Default value**|**Range**|**Definition**|**Unit**
1763 +|P01-08|Torque instruction source|(((
1755 1755  Shutdown setting
1756 1756  )))|(((
1757 1757  Effective immediately
... ... @@ -1763,16 +1763,17 @@
1763 1763  
1764 1764  Table 6-42 Torque instruction source parameter
1765 1765  
1766 -**Torque instruction source is internal torque instruction (P01-07=0)**
1775 +**(1) Torque instruction source is internal torque instruction (P01-07=0)**
1767 1767  
1768 1768  Torque instruction source is from inside, the value is set by function code P01-08.
1769 1769  
1770 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1779 +
1780 +|**Function code**|**Name**|(((
1771 1771  **Setting method**
1772 -)))|=(((
1782 +)))|(((
1773 1773  **Effective time**
1774 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1775 -|=P01-08|Torque instruction keyboard set value|(((
1784 +)))|**Default value**|**Range**|**Definition**|**Unit**
1785 +|P01-08|Torque instruction keyboard set value|(((
1776 1776  Operation setting
1777 1777  )))|(((
1778 1778  Effective immediately
... ... @@ -1780,24 +1780,22 @@
1780 1780  
1781 1781  Table 6-43 Torque instruction keyboard set value
1782 1782  
1783 -**Torque instruction source is internal torque instruction (P01-07=1)**
1793 +**(2) Torque instruction source is internal torque instruction (P01-07=1)**
1784 1784  
1785 1785  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1786 1786  
1787 1787  (% style="text-align:center" %)
1788 -(((
1789 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1790 -[[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1791 -)))
1798 +[[image:image-20220608153646-7.png||height="213" width="408"]]
1792 1792  
1800 +Figure 6-40 Analog input circuit
1801 +
1793 1793  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1794 1794  
1795 1795  (% style="text-align:center" %)
1796 -(((
1797 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1798 -[[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1799 -)))
1805 +[[image:image-20220608172502-36.png]]
1800 1800  
1807 +Figure 6-41 Analog voltage torque instruction setting steps
1808 +
1801 1801  Explanation of related terms:
1802 1802  
1803 1803  * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
... ... @@ -1805,74 +1805,65 @@
1805 1805  * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1806 1806  
1807 1807  (% style="text-align:center" %)
1808 -(((
1809 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1810 -[[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1811 -)))
1816 +[[image:image-20220608172611-37.png]]
1812 1812  
1813 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1814 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1815 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1816 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1817 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1818 +Figure 6-42 AI_1 diagram before and after bias
1818 1818  
1820 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1821 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1822 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1823 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1824 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1825 +
1819 1819  Table 6-44 AI_1 parameters
1820 1820  
1821 -(% class="box infomessage" %)
1822 -(((
1823 1823  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1824 -)))
1825 1825  
1826 -== Torque instruction filtering ==
1830 +== **Torque instruction filtering** ==
1827 1827  
1828 -In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1832 +In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1829 1829  
1830 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1834 +|**Function code**|**Name**|(((
1831 1831  **Setting method**
1832 -)))|=(((
1836 +)))|(((
1833 1833  **Effective time**
1834 -)))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1835 -|=P04-04|Torque filtering time constant|(((
1838 +)))|**Default value**|**Range**|**Definition**|**Unit**
1839 +|P04-04|Torque filtering time constant|(((
1836 1836  Operation setting
1837 1837  )))|(((
1838 1838  Effective immediately
1839 -)))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1843 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1840 1840  
1841 1841  Table 6-45 Torque filtering time constant parameter details
1842 1842  
1843 -(% class="box infomessage" %)
1844 -(((
1845 1845  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1846 -)))
1847 1847  
1848 1848  (% style="text-align:center" %)
1849 -(((
1850 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1851 -[[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1852 -)))
1850 +[[image:image-20220608172646-38.png]]
1853 1853  
1854 -== Torque instruction limit ==
1852 +Figure 6-43 Torque instruction-first-order filtering diagram
1855 1855  
1854 +== **Torque instruction limit** ==
1855 +
1856 1856  When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1857 1857  
1858 1858  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1859 1859  
1860 1860  (% style="text-align:center" %)
1861 -(((
1862 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1863 -[[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1864 -)))
1861 +[[image:image-20220608172806-39.png]]
1865 1865  
1866 -**Set torque limit source**
1863 +Figure 6-44 Torque instruction limit diagram
1867 1867  
1865 +**(1) Set torque limit source**
1866 +
1868 1868  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1869 1869  
1870 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1869 +|**Function code**|**Name**|(((
1871 1871  **Setting method**
1872 -)))|=(((
1871 +)))|(((
1873 1873  **Effective time**
1874 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1875 -|=P01-14|(((
1873 +)))|**Default value**|**Range**|**Definition**|**Unit**
1874 +|P01-14|(((
1876 1876  Torque limit source
1877 1877  )))|(((
1878 1878  Shutdown setting
... ... @@ -1879,46 +1879,49 @@
1879 1879  )))|(((
1880 1880  Effective immediately
1881 1881  )))|0|0 to 1|(((
1882 -* 0: internal value
1883 -* 1: AI_1 analog input (not supported by VD2F)
1881 +0: internal value
1882 +
1883 +1: AI_1 analog input
1884 +
1885 +(not supported by VD2F)
1884 1884  )))|-
1885 1885  
1886 -* Torque limit source is internal torque instruction (P01-14=0)
1888 +1) Torque limit source is internal torque instruction (P01-14=0)
1887 1887  
1888 1888  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1889 1889  
1890 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1892 +|**Function code**|**Name**|(((
1891 1891  **Setting method**
1892 -)))|=(((
1894 +)))|(((
1893 1893  **Effective time**
1894 -)))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1895 -|=P01-15|(((
1896 +)))|**Default value**|**Range**|**Definition**|**Unit**
1897 +|P01-15|(((
1896 1896  Forward torque limit
1897 1897  )))|(((
1898 1898  Operation setting
1899 1899  )))|(((
1900 1900  Effective immediately
1901 -)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1902 -|=P01-16|(((
1903 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1904 +|P01-16|(((
1903 1903  Reverse torque limit
1904 1904  )))|(((
1905 1905  Operation setting
1906 1906  )))|(((
1907 1907  Effective immediately
1908 -)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1909 1909  
1910 1910  Table 6-46 Torque limit parameter details
1911 1911  
1912 -* Torque limit source is external (P01-14=1)
1914 +2) Torque limit source is external (P01-14=1)
1913 1913  
1914 1914  Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1915 1915  
1916 -**Set torque limit DO signal output**
1918 +**(2) Set torque limit DO signal output**
1917 1917  
1918 1918  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1919 1919  
1920 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1921 -|=139|(((
1922 +|**DO function code**|**Function name**|**Function**
1923 +|139|(((
1922 1922  T-LIMIT in torque limit
1923 1923  )))|Output of this signal indicates that the servo motor torque is limited
1924 1924  
... ... @@ -1928,28 +1928,21 @@
1928 1928  
1929 1929  In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1930 1930  
1931 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1933 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.
1932 1932  
1933 1933  |(((
1934 -(% style="text-align:center" %)
1935 -(((
1936 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1937 -[[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1938 -)))
1936 +[[image:image-20220608172910-40.png]]
1939 1939  )))|(((
1940 -(% style="text-align:center" %)
1941 -(((
1942 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1943 -[[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1938 +[[image:image-20220608173155-41.png]]
1944 1944  )))
1945 -)))
1940 +|Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1946 1946  
1947 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1942 +|**Function code**|**Name**|(((
1948 1948  **Setting method**
1949 -)))|=(((
1944 +)))|(((
1950 1950  **Effective time**
1951 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1952 -|=P01-17|(((
1946 +)))|**Default value**|**Range**|**Definition**|**Unit**
1947 +|P01-17|(((
1953 1953  Forward torque
1954 1954  
1955 1955  limit in torque mode
... ... @@ -1962,7 +1962,7 @@
1962 1962  
1963 1963  limit in torque mode
1964 1964  )))|0.1%
1965 -|=P01-18|(((
1960 +|P01-18|(((
1966 1966  Reverse torque
1967 1967  
1968 1968  limit in torque mode
... ... @@ -1978,9 +1978,9 @@
1978 1978  
1979 1979  Table 6-48 Speed limit parameters in torque mode
1980 1980  
1981 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1976 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__.
1982 1982  
1983 -== Torque-related DO output functions ==
1978 +== **Torque-related DO output functions** ==
1984 1984  
1985 1985  The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1986 1986  
... ... @@ -1989,27 +1989,26 @@
1989 1989  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1990 1990  
1991 1991  (% style="text-align:center" %)
1992 -(((
1993 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1994 -[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
1995 -)))
1987 +[[image:image-20220608173541-42.png]]
1996 1996  
1997 -To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
1989 +Figure 6-47 Torque arrival output diagram
1998 1998  
1999 -|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
1991 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1992 +
1993 +|**Function code**|**Name**|(((
2000 2000  **Setting method**
2001 -)))|=(% style="width: 124px;" %)(((
1995 +)))|(((
2002 2002  **Effective time**
2003 -)))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2004 -|=P05-20|(% style="width:113px" %)(((
1997 +)))|**Default value**|**Range**|**Definition**|**Unit**
1998 +|P05-20|(((
2005 2005  Torque arrival
2006 2006  
2007 2007  threshold
2008 -)))|(% style="width:100px" %)(((
2002 +)))|(((
2009 2009  Operation setting
2010 -)))|(% style="width:124px" %)(((
2004 +)))|(((
2011 2011  Effective immediately
2012 -)))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2006 +)))|100|0 to 300|(((
2013 2013  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2014 2014  
2015 2015  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
... ... @@ -2016,20 +2016,21 @@
2016 2016  
2017 2017  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2018 2018  )))|%
2019 -|=P05-21|(% style="width:113px" %)(((
2013 +|P05-21|(((
2020 2020  Torque arrival
2021 2021  
2022 2022  hysteresis
2023 -)))|(% style="width:100px" %)(((
2017 +)))|(((
2024 2024  Operation setting
2025 -)))|(% style="width:124px" %)(((
2019 +)))|(((
2026 2026  Effective immediately
2027 -)))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2021 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2028 2028  
2029 2029  Table 6-49 Torque arrival parameters
2030 2030  
2031 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2032 -|=138|(((
2025 +
2026 +|**DO function code**|**Function name**|**Function**
2027 +|138|(((
2033 2033  T-COIN torque arrival
2034 2034  )))|Used to determine whether the actual torque instruction has reached the set range
2035 2035  
... ... @@ -2039,28 +2039,35 @@
2039 2039  
2040 2040  Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2041 2041  
2042 -* Position mode⇔ Speed mode
2043 -* Position mode ⇔Torque mode
2044 -* Speed mode ⇔Torque mode
2037 +Position mode⇔ Speed mode
2045 2045  
2039 +Position mode ⇔Torque mode
2040 +
2041 +Speed mode ⇔Torque mode
2042 +
2046 2046  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2047 2047  
2048 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2045 +|**Function code**|**Name**|(((
2049 2049  **Setting method**
2050 -)))|=(((
2047 +)))|(((
2051 2051  **Effective time**
2052 -)))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2053 -|=P00-01|Control mode|(((
2049 +)))|**Default value**|**Range**|**Definition**|**Unit**
2050 +|P00-01|Control mode|(((
2054 2054  Shutdown setting
2055 2055  )))|(((
2056 2056  Shutdown setting
2057 -)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2058 -* 1: Position control
2059 -* 2: Speed control
2060 -* 3: Torque control
2061 -* 4: Position/speed mixed control
2062 -* 5: Position/torque mixed control
2063 -* 6: Speed/torque mixed control
2054 +)))|1|1 to 6|(((
2055 +1: Position control
2056 +
2057 +2: Speed control
2058 +
2059 +3: Torque control
2060 +
2061 +4: Position/speed mixed control
2062 +
2063 +5: Position/torque mixed control
2064 +
2065 +6: Speed/torque mixed control
2064 2064  )))|-
2065 2065  
2066 2066  Table 6-51 Mixed control mode parameters
... ... @@ -2067,38 +2067,35 @@
2067 2067  
2068 2068  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2069 2069  
2070 -|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2071 -|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2072 -(% style="margin-left:auto; margin-right:auto; width:585px" %)
2073 -|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2074 -|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2075 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2076 -|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2077 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2078 -|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2079 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2072 +|**DI function code**|**Name**|**Function name**|**Function**
2073 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2074 +|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2075 +|(% rowspan="2" %)4|Valid|Speed mode
2076 +|invalid|Position mode
2077 +|(% rowspan="2" %)5|Valid|Torque mode
2078 +|invalid|Position mode
2079 +|(% rowspan="2" %)6|Valid|Torque mode
2080 +|invalid|Speed mode
2080 2080  )))
2081 2081  
2082 2082  Table 6-52 Description of DI function codes in control mode
2083 2083  
2084 -(% class="box infomessage" %)
2085 -(((
2086 2086  ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2087 -)))
2088 2088  
2089 2089  = **Absolute system** =
2090 2090  
2091 -== Overview ==
2089 +== **Overview** ==
2092 2092  
2093 2093  Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2094 2094  
2095 2095  The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2096 2096  
2097 -== Single-turn absolute value system ==
2095 +== **Single-turn absolute value system** ==
2098 2098  
2099 2099  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2100 2100  
2101 -|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2099 +
2100 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2102 2102  |A1 (single-turn magnetic encoder)|17|0 to 131071
2103 2103  
2104 2104  Table 6-53 Single-turn absolute encoder information
... ... @@ -2106,18 +2106,17 @@
2106 2106  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2107 2107  
2108 2108  (% style="text-align:center" %)
2109 -(((
2110 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2111 -[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2112 -)))
2108 +[[image:image-20220608173618-43.png]]
2113 2113  
2114 -== Multi-turn absolute value system ==
2110 +Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2115 2115  
2112 +== **Multi-turn absolute value system** ==
2113 +
2116 2116  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2117 2117  
2118 -|=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2119 -|=C1 (multi-turn magnetic encoder)|17|0 to 131071
2120 -|=D2 (multi-turn Optical encoder)|23|0 to 8388607
2116 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2117 +|C1 (multi-turn magnetic encoder)|17|0 to 131071
2118 +|D2 (multi-turn Optical encoder)|23|0 to 8388607
2121 2121  
2122 2122  Table 6-54 Multi-turn absolute encoder information
2123 2123  
... ... @@ -2124,21 +2124,20 @@
2124 2124  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2125 2125  
2126 2126  (% style="text-align:center" %)
2127 -(((
2128 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2129 -[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2130 -)))
2125 +[[image:image-20220608173701-44.png]]
2131 2131  
2132 -== Related functions and parameters ==
2127 +Figure 6-49 The relationship between encoder feedback position and rotating load position
2133 2133  
2129 +== **Related functions and parameters** ==
2130 +
2134 2134  **Encoder feedback data**
2135 2135  
2136 2136  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2137 2137  
2138 -|=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2139 -|=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2140 -|=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2141 -|=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2135 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2136 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2137 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2138 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2142 2142  
2143 2143  Table 6-55 Encoder feedback data
2144 2144  
... ... @@ -2146,28 +2146,26 @@
2146 2146  
2147 2147  The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2148 2148  
2149 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2146 +|**Function code**|**Name**|(((
2150 2150  **Setting**
2151 2151  
2152 2152  **method**
2153 -)))|=(((
2150 +)))|(((
2154 2154  **Effective**
2155 2155  
2156 2156  **time**
2157 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2158 -|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2159 -* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2160 -* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2154 +)))|**Default value**|**Range**|**Definition**|**Unit**
2155 +|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2156 +0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2157 +
2158 +1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2161 2161  )))|-
2162 2162  
2163 2163  This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2164 2164  
2165 -(% class="box infomessage" %)
2166 -(((
2167 2167  **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2168 -)))
2169 2169  
2170 -== Absolute value system encoder battery box use precautions. ==
2165 +== **Absolute value system encoder battery box use precautions**. ==
2171 2171  
2172 2172  **Cautions**
2173 2173  
... ... @@ -2174,11 +2174,10 @@
2174 2174  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2175 2175  
2176 2176  (% style="text-align:center" %)
2177 -(((
2178 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2179 -[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2180 -)))
2172 +[[image:image-20220707111333-28.png]]
2181 2181  
2174 +Figure 6-50 the encoder battery box
2175 +
2182 2182  When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2183 2183  
2184 2184  **Replace the battery**
... ... @@ -2194,19 +2194,20 @@
2194 2194  
2195 2195  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2196 2196  
2197 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2191 +|**Function code**|**Name**|(((
2198 2198  **Setting method**
2199 -)))|=(((
2193 +)))|(((
2200 2200  **Effective time**
2201 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2202 -|=P10-06|Multi-turn absolute encoder reset|(((
2195 +)))|**Default value**|**Range**|**Definition**|**Unit**
2196 +|P10-06|Multi-turn absolute encoder reset|(((
2203 2203  Shutdown setting
2204 2204  )))|(((
2205 2205  Effective immediately
2206 2206  )))|0|0 to 1|(((
2207 -* 0: No operation
2208 -* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2201 +0: No operation
2209 2209  
2203 +1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2204 +
2210 2210  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2211 2211  )))|-
2212 2212  
... ... @@ -2214,7 +2214,7 @@
2214 2214  
2215 2215  **Battery selection**
2216 2216  
2217 -|=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2212 +|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value**
2218 2218  |(% rowspan="4" style="width:361px" %)(((
2219 2219  Nominal Voltage: 3.6V
2220 2220  
... ... @@ -2242,108 +2242,111 @@
2242 2242  
2243 2243  = **Other functions** =
2244 2244  
2245 -== VDI ==
2240 +== **VDI** ==
2246 2246  
2247 2247  VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2248 2248  
2249 -(% class="box infomessage" %)
2250 -(((
2251 2251  ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2252 -)))
2253 2253  
2254 2254  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2255 2255  
2248 +
2256 2256  (% style="text-align:center" %)
2257 -(((
2258 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2259 -[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2260 -)))
2250 +[[image:image-20220608173804-46.png]]
2261 2261  
2262 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2252 +Figure 6-51 VDI_1 setting steps
2253 +
2254 +|**Function code**|**Name**|(((
2263 2263  **Setting method**
2264 -)))|=(((
2256 +)))|(((
2265 2265  **Effective time**
2266 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2267 -|=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2258 +)))|**Default value**|**Range**|**Definition**|**Unit**
2259 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2268 2268  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2269 2269  
2270 2270  VDI_1 input level:
2271 2271  
2272 -* 0: low level
2273 -* 1: high level
2264 +0: low level
2265 +
2266 +1: high level
2274 2274  )))|-
2275 -|=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2268 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2276 2276  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2277 2277  
2278 2278  VDI_2 input level:
2279 2279  
2280 -* 0: low level
2281 -* 1: high level
2273 +0: low level
2274 +
2275 +1: high level
2282 2282  )))|-
2283 -|=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2277 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2284 2284  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2285 2285  
2286 2286  VDI_3 input level:
2287 2287  
2288 -* 0: low level
2289 -* 1: high level
2282 +0: low level
2283 +
2284 +1: high level
2290 2290  )))|-
2291 -|=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2286 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2292 2292  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2293 2293  
2294 2294  VDI_4 input level:
2295 2295  
2296 -* 0: low level
2297 -* 1: high level
2291 +0: low level
2292 +
2293 +1: high level
2298 2298  )))|-
2299 -|=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2295 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2300 2300  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2301 2301  
2302 2302  VDI_5 input level:
2303 2303  
2304 -* 0: low level
2305 -* 1: high level
2300 +0: low level
2301 +
2302 +1: high level
2306 2306  )))|-
2307 -|=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2304 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2308 2308  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2309 2309  
2310 2310  VDI_6 input level:
2311 2311  
2312 -* 0: low level
2313 -* 1: high level
2309 +0: low level
2310 +
2311 +1: high level
2314 2314  )))|-
2315 -|=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2313 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2316 2316  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2317 2317  
2318 2318  VDI_7 input level:
2319 2319  
2320 -* 0: low level
2321 -* 1: high level
2318 +0: low level
2319 +
2320 +1: high level
2322 2322  )))|-
2323 -|=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2322 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2324 2324  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2325 2325  
2326 2326  VDI_8 input level:
2327 2327  
2328 -* 0: low level
2329 -* 1: high level
2327 +0: low level
2328 +
2329 +1: high level
2330 2330  )))|-
2331 2331  
2332 2332  Table 6-57 Virtual VDI parameters
2333 2333  
2334 -(% class="box infomessage" %)
2335 -(((
2336 2336  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2337 -)))
2338 2338  
2339 -== Port filtering time ==
2336 +== **Port filtering time** ==
2340 2340  
2341 2341  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2342 2342  
2343 -|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2344 -|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2345 -|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2346 2346  
2341 +|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration**
2342 +|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2343 +|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2344 +
2347 2347  Table 6-58 DI terminal channel logic selection
2348 2348  
2349 2349  == **VDO** ==
... ... @@ -2353,49 +2353,51 @@
2353 2353  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2354 2354  
2355 2355  (% style="text-align:center" %)
2356 -(((
2357 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2358 -[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2359 -)))
2354 +[[image:image-20220608173957-48.png]]
2360 2360  
2356 +Figure 6-52 VDO_2 setting steps
2361 2361  
2362 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2358 +|**Function code**|**Name**|(((
2363 2363  **Setting method**
2364 -)))|=(((
2360 +)))|(((
2365 2365  **Effective time**
2366 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2367 -|=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2362 +)))|**Default value**|**Range**|**Definition**|**Unit**
2363 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2368 2368  VDO_1 output level:
2369 2369  
2370 -* 0: low level
2371 -* 1: high level
2366 +0: low level
2367 +
2368 +1: high level
2372 2372  )))|-
2373 -|=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2370 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2374 2374  VDO_2 output level:
2375 2375  
2376 -* 0: low level
2377 -* 1: high level
2373 +0: low level
2374 +
2375 +1: high level
2378 2378  )))|-
2379 -|=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2377 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2380 2380  VDO_3 output level:
2381 2381  
2382 -* 0: low level
2383 -* 1: high level
2380 +0: low level
2381 +
2382 +1: high level
2384 2384  )))|-
2385 -|=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2384 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2386 2386  VDO_4 output level:
2387 2387  
2388 -* 0: low level
2389 -* 1: high level
2387 +0: low level
2388 +
2389 +1: high level
2390 2390  )))|-
2391 2391  
2392 2392  Table 6-59 Communication control DO function parameters
2393 2393  
2394 -|=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2395 -|=145|COM_VDO1 communication VDO1 output|Use communication VDO
2396 -|=146|COM_VDO1 communication VDO2 output|Use communication VDO
2397 -|=147|COM_VDO1 communication VDO3 output|Use communication VDO
2398 -|=148|COM_VDO1 communication VDO4output|Use communication VDO
2394 +|**DO function number**|**Function name**|**Function**
2395 +|145|COM_VDO1 communication VDO1 output|Use communication VDO
2396 +|146|COM_VDO1 communication VDO2 output|Use communication VDO
2397 +|147|COM_VDO1 communication VDO3 output|Use communication VDO
2398 +|148|COM_VDO1 communication VDO4output|Use communication VDO
2399 2399  
2400 2400  Table 6-60 VDO function number
2401 2401  
... ... @@ -2403,16 +2403,16 @@
2403 2403  
2404 2404  If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2405 2405  
2406 -== Motor overload protection ==
2406 +== **Motor overload protection** ==
2407 2407  
2408 2408  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2409 2409  
2410 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2410 +|**Function code**|**Name**|(((
2411 2411  **Setting method**
2412 -)))|=(((
2412 +)))|(((
2413 2413  **Effective time**
2414 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2415 -|=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2414 +)))|**Default value**|**Range**|**Definition**|**Unit**
2415 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2416 2416  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2417 2417  
2418 2418  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
image-20220804160519-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -982.3 KB
Content
image-20220804160624-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -975.3 KB
Content