Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,67 +2,57 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|=(% scope="row" style="width: 79px;"%)**No.**|=(% style="width: 996px;" %)**Content**5 +|=(% scope="row" %)**No.**|=**Content** 6 6 |=(% colspan="2" %)Wiring 7 -|= (% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -|= (% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -|= (% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -|= (% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -|= (% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.12 -|= (% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.13 -|= (% style="width:79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.14 -|= (% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=5|Servo drive and servo motor must be grounded reliably. 12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=7|The force of all cables is within the specified range. 14 +|=8|The wiring terminals have been insulated. 15 15 |=(% colspan="2" %)Environment and Machinery 16 -|= (% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -|= (% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.18 -|= (% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 22 -== Power-on == 22 +== **Power-on** == 23 23 24 -**Connect the main circuit power supply** 24 +**(1) Connect the main circuit power supply** 25 25 26 26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal. 27 27 28 -If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02.WebHome]]__” to analyze and eliminate the cause of the fault.28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault. 29 29 30 -**Set the servo drive enable (S-ON) to invalid (OFF)** 30 +**(2) Set the servo drive enable (S-ON) to invalid (OFF)** 31 31 32 -== Jog operation == 32 +== **Jog operation** == 33 33 34 34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform. 35 35 36 -**Panel jog operation** 36 +**(1) Panel jog operation** 37 37 38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/0 2%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__. 39 39 40 -**Jog operation of servo debugging platform** 40 +**(2) Jog operation of servo debugging platform** 41 41 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 + 45 + 44 44 |=(% scope="row" %)**Function code**|=**Name**|=((( 45 45 **Setting method** 46 46 )))|=((( 47 47 **Effective time** 48 48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 49 -|=((( 50 -P10-01 51 -)))|((( 52 -JOG speed 53 -)))|((( 51 +|=P10-01|JOG speed|((( 54 54 Operation setting 55 55 )))|((( 56 56 Effective immediately 57 -)))|((( 58 -100 59 -)))|((( 60 -0 to 3000 61 -)))|((( 62 -JOG speed 63 -)))|((( 64 -rpm 65 -))) 55 +)))|100|0 to 3000|JOG speed|rpm 66 66 67 67 Table 6-2 JOG speed parameter 68 68 ... ... @@ -70,24 +70,18 @@ 70 70 71 71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 72 72 63 + 73 73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 74 -|=((( 75 -P00-04 76 -)))|((( 77 -Rotation direction 78 -)))|((( 65 +|=P00-04|Rotation direction|((( 79 79 Shutdown setting 80 80 )))|((( 81 81 Effective immediately 82 -)))|((( 83 -0 84 -)))|((( 85 -0 to 1 86 -)))|((( 69 +)))|0|0 to 1|((( 87 87 Forward rotation: Face the motor shaft to watch 88 88 89 -* 0: standard setting (CW is forward rotation) 90 -* 1: reverse mode (CCW is forward rotation) 72 +0: standard setting (CW is forward rotation) 73 + 74 +1: reverse mode (CCW is forward rotation) 91 91 )))|- 92 92 93 93 Table 6-3 Rotation direction parameters** ** ... ... @@ -101,30 +101,33 @@ 101 101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 102 102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 103 103 104 -|=(% scope="row" %)**Function code**|=**Name**|=( % style="width: 118px;" %)(((88 +|=(% scope="row" %)**Function code**|=**Name**|=((( 105 105 **Setting method** 106 -)))|=( % style="width: 126px;" %)(((90 +)))|=((( 107 107 **Effective time** 108 108 )))|=**Default**|=**Range**|=**Definition**|=**Unit** 109 -|=P00-09|Braking resistor setting|( % style="width:118px" %)(((93 +|=P00-09|Braking resistor setting|((( 110 110 Operation setting 111 -)))|( % style="width:126px" %)(((95 +)))|((( 112 112 Effective immediately 113 113 )))|0|0 to 3|((( 114 -* 0: use built-in braking resistor 115 -* 1: use external braking resistor and natural cooling 116 -* 2: use external braking resistor and forced air cooling; (cannot be set) 117 -* 3: No braking resistor is used, it is all absorbed by capacitor. 98 +0: use built-in braking resistor 99 + 100 +1: use external braking resistor and natural cooling 101 + 102 +2: use external braking resistor and forced air cooling; (cannot be set) 103 + 104 +3: No braking resistor is used, it is all absorbed by capacitor. 118 118 )))|- 119 - (% class="info" %)|(% colspan="8"scope="row"%)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).120 -|=P00-10|External braking resistor value|( % style="width:118px" %)(((106 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 107 +|=P00-10|External braking resistor value|((( 121 121 Operation setting 122 -)))|( % style="width:126px" %)(((109 +)))|((( 123 123 Effective immediately 124 124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 125 -|=P00-11|External braking resistor power|( % style="width:118px" %)(((112 +|=P00-11|External braking resistor power|((( 126 126 Operation setting 127 -)))|( % style="width:126px" %)(((114 +)))|((( 128 128 Effective immediately 129 129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 130 130 ... ... @@ -132,70 +132,73 @@ 132 132 133 133 == **Servo operation** == 134 134 135 -**Set the servo enable (S-ON) to valid (ON)** 122 +**(1) Set the servo enable (S-ON) to valid (ON)** 136 136 137 137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked. 138 138 139 139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration". 140 140 141 -**Input the instruction and the motor rotates** 128 +**(2) Input the instruction and the motor rotates** 142 142 143 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc :Servo.Manual.02.WebHome]], the motor could work as expected.130 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected. 144 144 145 -**Timing diagram of power on** 132 +**(3) Timing diagram of power on** 146 146 147 -(% style="text-align:center" %) 148 -((( 149 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 150 -[[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]] 151 -))) 152 152 153 - == Servo shutdown==135 +[[image:image-20220608163014-1.png]] 154 154 155 - Accordingto the different shutdown modes, it could be divided into freeshutdownand zero speed shutdown.The respective characteristics are shownin __Table 6-5__. Accordingto the shutdown status,it could be divided intofreerunning state andposition locked,as shownin __Table 6-6__.137 +Figure 6-1 Timing diagram of power on 156 156 157 -|=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics 158 -|=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process. 159 -|=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process. 139 +== **Servo shutdown** == 160 160 141 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. 142 + 143 + 144 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 145 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 146 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 147 + 161 161 Table 6-5 Comparison of two shutdown modes 162 162 163 -|=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked** 164 -|=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely. 165 165 151 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 152 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 153 + 166 166 Table 6-6 Comparison of two shutdown status 167 167 168 -**Servo enable (S-ON) OFF shutdown** 156 +**(1) Servo enable (S-ON) OFF shutdown** 169 169 170 170 The related parameters of the servo OFF shutdown mode are shown in the table below. 171 171 172 -|=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)((( 160 + 161 +|=(% scope="row" %)**Function code**|=**Name**|=((( 173 173 **Setting method** 174 -)))|=( % style="width: 134px;" %)(((163 +)))|=((( 175 175 **Effective time** 176 -)))|=( % style="width: 86px;" %)(((165 +)))|=((( 177 177 **Default value** 178 -)))|= (% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**179 -|= (% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((167 +)))|=**Range**|=**Definition**|=**Unit** 168 +|=P00-05|Servo OFF shutdown|((( 180 180 Shutdown 181 181 182 182 setting 183 -)))|( % style="width:134px" %)(((172 +)))|((( 184 184 Effective 185 185 186 186 immediately 187 -)))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)((( 188 -* 0: Free shutdown, and the motor shaft remains free status. 189 -* 1: Zero-speed shutdown, and the motor shaft remains free status. 176 +)))|0|0 to 1|((( 177 +0: Free shutdown, and the motor shaft remains free status. 178 + 179 +1: Zero-speed shutdown, and the motor shaft remains free status. 190 190 )))|- 191 191 192 -Table 6-7 Servo OFF shutdown mode parameters details 182 +Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 193 193 194 -**Emergency shutdown** 184 +**(2) Emergency shutdown** 195 195 196 196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". 197 197 198 -**Overtravel shutdown** 188 +**(3) Overtravel shutdown** 199 199 200 200 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel. 201 201 ... ... @@ -203,98 +203,149 @@ 203 203 204 204 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 205 205 206 -|=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)((( 196 + 197 +|=(% scope="row" %)**Function code**|=**Name**|=((( 207 207 **Setting method** 208 -)))|=( % style="width: 114px;" %)(((199 +)))|=((( 209 209 **Effective time** 210 -)))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit** 211 -|=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)((( 212 -* 0: OFF (not used) 213 -* 01: S-ON servo enable 214 -* 02: A-CLR fault and Warning Clear 215 -* 03: POT forward drive prohibition 216 -* 04: NOT Reverse drive prohibition 217 -* 05: ZCLAMP Zero speed 218 -* 06: CL Clear deviation counter 219 -* 07: C-SIGN Inverted instruction 220 -* 08: E-STOP Emergency stop 221 -* 09: GEAR-SEL Electronic Gear Switch 1 222 -* 10: GAIN-SEL gain switch 223 -* 11: INH Instruction pulse prohibited input 224 -* 12: VSSEL Vibration control switch input 225 -* 13: INSPD1 Internal speed instruction selection 1 226 -* 14: INSPD2 Internal speed instruction selection 2 227 -* 15: INSPD3 Internal speedinstruction selection 3 228 -* 16: J-SEL inertia ratio switch (not implemented yet) 229 -* 17: MixModesel mixed mode selection 230 -* 20: Internal multi-segment position enable signal 231 -* 21: Internal multi-segment position selection 1 232 -* 22: Internal multi-segment position selection 2 233 -* 23: Internal multi-segment position selection 3 234 -* 24: Internal multi-segment position selection 4 235 -* Others: reserved 201 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 202 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 203 +0: OFF (not used) 204 + 205 +01: S-ON servo enable 206 + 207 +02: A-CLR fault and Warning Clear 208 + 209 +03: POT forward drive prohibition 210 + 211 +04: NOT Reverse drive prohibition 212 + 213 +05: ZCLAMP Zero speed 214 + 215 +06: CL Clear deviation counter 216 + 217 +07: C-SIGN Inverted instruction 218 + 219 +08: E-STOP Emergency stop 220 + 221 +09: GEAR-SEL Electronic Gear Switch 1 222 + 223 +10: GAIN-SEL gain switch 224 + 225 +11: INH Instruction pulse prohibited input 226 + 227 +12: VSSEL Vibration control switch input 228 + 229 +13: INSPD1 Internal speed instruction selection 1 230 + 231 +14: INSPD2 Internal speed instruction selection 2 232 + 233 +15: INSPD3 Internal speedinstruction selection 3 234 + 235 +16: J-SEL inertia ratio switch (not implemented yet) 236 + 237 +17: MixModesel mixed mode selection 238 + 239 +20: Internal multi-segment position enable signal 240 + 241 +21: Internal multi-segment position selection 1 242 + 243 +22: Internal multi-segment position selection 2 244 + 245 +23: Internal multi-segment position selection 3 246 + 247 +24: Internal multi-segment position selection 4 248 + 249 +Others: reserved 236 236 )))|- 237 -|= (% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((251 +|=P06-09|DI_3 channel logic selection|Operation setting|((( 238 238 Effective immediately 239 -)))| (% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((253 +)))|0|0 to 1|((( 240 240 DI port input logic validity function selection. 241 241 242 -* 0: Normally open input. Active low level (switch on); 243 -* 1: Normally closed input. Active high level (switch off); 256 +0: Normally open input. Active low level (switch on); 257 + 258 +1: Normally closed input. Active high level (switch off); 244 244 )))|- 245 -|= (% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((260 +|=P06-10|DI_3 input source selection|Operation setting|((( 246 246 Effective immediately 247 -)))| (% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((262 +)))|0|0 to 1|((( 248 248 Select the DI_3 port type to enable 249 249 250 -* 0: Hardware DI_3 input terminal 251 -* 1: virtual VDI_3 input terminal 265 +0: Hardware DI_3 input terminal 266 + 267 +1: virtual VDI_3 input terminal 252 252 )))|- 253 -|= (% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((269 +|=P06-11|DI_4 channel function selection|((( 254 254 Operation setting 255 -)))|( % style="width:114px" %)(((271 +)))|((( 256 256 again Power-on 257 -)))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)((( 258 -* 0: OFF (not used) 259 -* 01: SON Servo enable 260 -* 02: A-CLR Fault and Warning Clear 261 -* 03: POT Forward drive prohibition 262 -* 04: NOT Reverse drive prohibition 263 -* 05: ZCLAMP Zero speed 264 -* 06: CL Clear deviation counter 265 -* 07: C-SIGN Inverted instruction 266 -* 08: E-STOP Emergency shutdown 267 -* 09: GEAR-SEL Electronic Gear Switch 1 268 -* 10: GAIN-SEL gain switch 269 -* 11: INH Instruction pulse prohibited input 270 -* 12: VSSEL Vibration control switch input 271 -* 13: INSPD1 Internal speed instruction selection 1 272 -* 14: INSPD2 Internal speed instruction selection 2 273 -* 15: INSPD3 Internal speed instruction selection 3 274 -* 16: J-SEL inertia ratio switch (not implemented yet) 275 -* 17: MixModesel mixed mode selection 276 -* 20: Internal multi-segment position enable signal 277 -* 21: Internal multi-segment position selection 1 278 -* 22: Internal multi-segment position selection 2 279 -* 23: Internal multi-segment position selection 3 280 -* 24: Internal multi-segment position selection 4 281 -* Others: reserved 273 +)))|4|0 to 32|((( 274 +0 off (not used) 275 + 276 +01: SON Servo enable 277 + 278 +02: A-CLR Fault and Warning Clear 279 + 280 +03: POT Forward drive prohibition 281 + 282 +04: NOT Reverse drive prohibition 283 + 284 +05: ZCLAMP Zero speed 285 + 286 +06: CL Clear deviation counter 287 + 288 +07: C-SIGN Inverted instruction 289 + 290 +08: E-STOP Emergency shutdown 291 + 292 +09: GEAR-SEL Electronic Gear Switch 1 293 + 294 +10: GAIN-SEL gain switch 295 + 296 +11: INH Instruction pulse prohibited input 297 + 298 +12: VSSEL Vibration control switch input 299 + 300 +13: INSPD1 Internal speed instruction selection 1 301 + 302 +14: INSPD2 Internal speed instruction selection 2 303 + 304 +15: INSPD3 Internal speed instruction selection 3 305 + 306 +16: J-SEL inertia ratio switch (not implemented yet) 307 + 308 +17: MixModesel mixed mode selection 309 + 310 +20: Internal multi-segment position enable signal 311 + 312 +21: Internal multi-segment position selection 1 313 + 314 +22: Internal multi-segment position selection 2 315 + 316 +23: Internal multi-segment position selection 3 317 + 318 +24: Internal multi-segment position selection 4 319 + 320 +Others: reserved 282 282 )))|- 283 -|= (% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((322 +|=P06-12|DI_4 channel logic selection|Operation setting|((( 284 284 Effective immediately 285 -)))| (% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((324 +)))|0|0 to 1|((( 286 286 DI port input logic validity function selection. 287 287 288 -* 0: Normally open input. Active low level (switch on); 289 -* 1: Normally closed input. Active high level (switch off); 327 +0: Normally open input. Active low level (switch on); 328 + 329 +1: Normally closed input. Active high level (switch off); 290 290 )))|- 291 -|= (% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((331 +|=P06-13|DI_4 input source selection|Operation setting|((( 292 292 Effective immediately 293 -)))| (% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((333 +)))|0|0 to 1|((( 294 294 Select the DI_4 port type to enable 295 295 296 -* 0: Hardware DI_4 input terminal 297 -* 1: virtual VDI_4 input terminal 336 +0: Hardware DI_4 input terminal 337 + 338 +1: virtual VDI_4 input terminal 298 298 )))|- 299 299 300 300 Table 6-8 DI3 and DI4 channel parameters ... ... @@ -303,12 +303,12 @@ 303 303 304 304 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state. 305 305 306 -== Brake device == 347 +== **Brake device** == 307 307 308 308 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 309 309 310 - (% class="warning" %)|(((311 -( % style="text-align:center" %)351 + 352 +|((( 312 312 [[image:image-20220611151617-1.png]] 313 313 ))) 314 314 |((( ... ... @@ -323,19 +323,17 @@ 323 323 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function. 324 324 ))) 325 325 326 -**Wiring of brake device** 367 +**(1) Wiring of brake device** 327 327 328 328 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 329 329 330 330 331 -(% style="text-align:center" %) 332 -((( 333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 334 -[[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]] 335 -))) 372 +[[image:image-20220608163136-2.png]] 336 336 337 -(% class="warning" %)|((( 338 -(% style="text-align:center" %) 374 +Figure 6-2 VD2B servo drive brake wiring 375 + 376 + 377 +|((( 339 339 [[image:image-20220611151642-2.png]] 340 340 ))) 341 341 |((( ... ... @@ -346,21 +346,23 @@ 346 346 ✎It is recommended to use cables above 0.5 mm². 347 347 ))) 348 348 349 -**Brake software setting** 388 +**(2) Brake software setting** 350 350 351 351 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined. 352 352 353 353 Related function code is as below. 354 354 355 -|=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)((( 394 + 395 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=((( 356 356 **Effective time** 357 357 ))) 358 -|=144|( % style="width:241px" %)(((398 +|=144|((( 359 359 BRK-OFF Brake output 360 -)))| (% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again400 +)))|Output the signal indicates the servo motor brake release|Power-on again 361 361 362 362 Table 6-2 Relevant function codes for brake setting 363 363 404 + 364 364 |=(% scope="row" %)**Function code**|=**Name**|=((( 365 365 **Setting method** 366 366 )))|=((( ... ... @@ -391,16 +391,16 @@ 391 391 392 392 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive. 393 393 394 -**Servo drive brake timing in normal state** 435 +**(3) Servo drive brake timing in normal state** 395 395 396 396 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above). 397 397 398 - *Brake timing when servo motor is stationary439 +1) Brake timing when servo motor is stationary 399 399 400 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__ 441 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__ 401 401 402 - (% class="warning" %)|(((403 -( % style="text-align:center" %)443 + 444 +|((( 404 404 [[image:image-20220611151705-3.png]] 405 405 ))) 406 406 |((( ... ... @@ -409,23 +409,18 @@ 409 409 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 410 410 ))) 411 411 412 -(% style="text-align:center" %) 413 -((( 414 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 415 -[[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]] 416 -))) 453 +[[image:image-20220608163304-3.png]] 417 417 418 - (%class="boxinfomessage" %)419 - (((455 +Figure 6-3 Brake Timing of when the motor is stationary 456 + 420 420 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor. 421 -))) 422 422 423 - *The brake timing when servo motor rotates459 +2) The brake timing when servo motor rotates 424 424 425 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__. 461 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__. 426 426 427 - (% class="warning" %)|(((428 -( % style="text-align:center" %)463 + 464 +|((( 429 429 [[image:image-20220611151719-4.png]] 430 430 ))) 431 431 |((( ... ... @@ -440,40 +440,37 @@ 440 440 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 441 441 ))) 442 442 443 -(% style="text-align:center" %) 444 -((( 445 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 446 -[[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]] 447 -))) 479 +[[image:image-20220608163425-4.png]] 448 448 449 - **Brake timing when theservodrivefails**481 +Figure 6-4 Brake timing when the motor rotates 450 450 483 +**(4) Brake timing when the servo drive fails** 484 + 451 451 The brake timing (free shutdown) in the fault status is as follows. 452 452 453 -(% style="text-align:center" %) 454 -((( 455 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 456 -[[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]] 457 -))) 458 458 488 +[[image:image-20220608163541-5.png]] 489 + 490 + Figure 6-5 The brake timing (free shutdown) in the fault state 491 + 459 459 = **Position control mode** = 460 460 461 461 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 462 462 463 -(% style="text-align:center" %) 464 -((( 465 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 466 -[[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]] 467 -))) 468 468 497 +[[image:image-20220608163643-6.png]] 498 + 499 +Figure 6-6 Position control diagram 500 + 469 469 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 470 470 471 -|=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=((( 503 + 504 +|=(% scope="row" %)**Function code**|=**Name**|=((( 472 472 **Setting method** 473 473 )))|=((( 474 474 **Effective time** 475 475 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 476 -|= (% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((509 +|=P01-01|Control mode|((( 477 477 Operation setting 478 478 )))|((( 479 479 immediately Effective ... ... @@ -493,10 +493,11 @@ 493 493 494 494 Table 6-10 Control mode parameters 495 495 496 -== Position instruction input setting == 529 +== **Position instruction input setting** == 497 497 498 498 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 499 499 533 + 500 500 |=(% scope="row" %)**Function code**|=**Name**|=((( 501 501 **Setting method** 502 502 )))|=((( ... ... @@ -514,151 +514,149 @@ 514 514 515 515 Table 6-11 Position instruction source parameter 516 516 517 -**The source of position instruction is pulse instruction (P01-06=0)** 551 +**(1) The source of position instruction is pulse instruction (P01-06=0)** 518 518 519 -Low-speed pulse instruction input 553 +1) Low-speed pulse instruction input 520 520 521 -|(% style="text-align:center" %) 522 -((( 523 -(% class="wikigeneratedid" style="display:inline-block" %) 524 -[[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]] 525 -)))|(% style="text-align:center" %) 526 -((( 527 -(% class="wikigeneratedid" style="display:inline-block" %) 528 -[[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]] 529 -))) 555 +|[[image:image-20220707092316-1.png]]|[[image:image-20220707092322-2.png]] 556 +|VD2A and VD2B servo drives|VD2F servo drive 530 530 |(% colspan="2" %)Figure 6-7 Position instruction input setting 531 531 532 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__. 559 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__. 533 533 534 534 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 535 535 536 -|=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage** 537 -|=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V 538 -|=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V 539 539 564 +|**Pulse method**|**Maximum frequency**|**Voltage** 565 +|Open collector input|200K|24V 566 +|Differential input|500K|5V 567 + 540 540 Table 6-12 Pulse input specifications 541 541 542 - *Differential input570 +1.Differential input 543 543 544 544 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 545 545 546 546 (% style="text-align:center" %) 547 -((( 548 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 549 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]] 550 -))) 575 +[[image:image-20220707092615-5.jpeg]] 551 551 552 -(% class="box infomessage" %) 553 -((( 554 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__” 555 -))) 577 +Figure 6-8 Differential input connection 556 556 557 -* Open collector input579 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 558 558 581 +2.Open collector input 582 + 559 559 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 560 560 561 561 (% style="text-align:center" %) 562 -((( 563 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 564 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]] 565 -))) 586 +[[image:image-20220707092401-3.jpeg||height="530" width="834"]] 566 566 588 +Figure 6-9 Open collector input connection 567 567 568 -(% class="box infomessage" %) 569 -((( 570 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__” 571 -))) 590 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 572 572 573 - *Position pulse frequency and anti-interference level592 +2) Position pulse frequency and anti-interference level 574 574 575 575 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 576 576 577 577 (% style="text-align:center" %) 578 -((( 579 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 580 -[[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]] 581 -))) 597 +[[image:image-20220608163952-8.png]] 582 582 599 +Figure 6-10 Example of filtered signal waveform 600 + 583 583 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 584 584 585 -|=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)((( 603 + 604 +|=(% scope="row" %)**Function code**|=**Name**|=((( 586 586 **Setting method** 587 587 )))|=((( 588 588 **Effective time** 589 -)))|=**Default value**|= (% style="width: 87px;" %)**Range**|=(% colspan="2"style="width: 296px;"%)**Definition**|=**Unit**590 -|P00-13| (% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((608 +)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit** 609 +|=P00-13|Maximum position pulse frequency|((( 591 591 Shutdown setting 592 592 )))|((( 593 593 Effective immediately 594 -)))|300| (% style="width:87px" %)1 to 500|(% colspan="2"style="width:296px"%)Set the maximum frequency of external pulse instruction|KHz595 -|(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px"%)Position pulse anti-interference level|(% rowspan="3"style="width:146px"%)(((613 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 614 +|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 596 596 Operation setting 597 597 )))|(% rowspan="3" %)((( 598 598 Power-on again 599 -)))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px"%)0 to 9|(% colspan="2"style="width:296px"%)(((618 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 600 600 Set the anti-interference level of external pulse instruction. 601 601 602 -* 0: no filtering; 603 -* 1: Filtering time 128ns 604 -* 2: Filtering time 256ns 605 -* 3: Filtering time 512ns 606 -* 4: Filtering time 1.024us 607 -* 5: Filtering time 2.048us 608 -* 6: Filtering time 4.096us 609 -* 7: Filtering time 8.192us 610 -* 8: Filtering time 16.384us 611 -* 9: 612 -** VD2: Filtering time 25.5us 613 -** VD2F: Filtering time 25.5us 621 +0: no filtering; 622 + 623 +1: Filtering time 128ns 624 + 625 +2: Filtering time 256ns 626 + 627 +3: Filtering time 512ns 628 + 629 +4: Filtering time 1.024us 630 + 631 +5: Filtering time 2.048us 632 + 633 +6: Filtering time 4.096us 634 + 635 +7: Filtering time 8.192us 636 + 637 +8: Filtering time 16.384us 614 614 )))|(% rowspan="3" %)- 639 +|=(% rowspan="2" %)9|VD2: Filtering time 25.5us 640 +|=VD2F: Filtering time 25.5us 615 615 616 616 Table 6-13 Position pulse frequency and anti-interference level parameters 617 617 618 - *Position pulse type selection644 +3) Position pulse type selection 619 619 620 620 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 621 621 622 -|=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)((( 648 + 649 +|=(% scope="row" %)**Function code**|=**Name**|=((( 623 623 **Setting method** 624 -)))|=( % style="width: 109px;" %)(((651 +)))|=((( 625 625 **Effective time** 626 -)))|= (% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**627 -|=P00-12| (% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((653 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 654 +|=P00-12|Position pulse type selection|((( 628 628 Operation setting 629 -)))|( % style="width:109px" %)(((656 +)))|((( 630 630 Power-on again 631 -)))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)((( 632 -* 0: direction + pulse (positive logic) 633 -* 1: CW/CCW 634 -* 2: A, B phase quadrature pulse (4 times frequency) 635 -* 3: Direction + pulse (negative logic) 636 -* 4: CW/CCW (negative logic) 637 -* 5: A, B phase quadrature pulse (4 times frequency negative logic) 658 +)))|0|0 to 5|((( 659 +0: direction + pulse (positive logic) 660 + 661 +1: CW/CCW 662 + 663 +2: A, B phase quadrature pulse (4 times frequency) 664 + 665 +3: Direction + pulse (negative logic) 666 + 667 +4: CW/CCW (negative logic) 668 + 669 +5: A, B phase quadrature pulse (4 times frequency negative logic) 638 638 )))|- 639 639 640 640 Table 6-14 Position pulse type selection parameter 641 641 642 -|=(% scope="row" %)**Pulse type selection**|= (% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**643 -|=0|( % style="width:200px" %)(((674 +|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse** 675 +|=0|((( 644 644 Direction + pulse 645 645 646 646 (Positive logic) 647 -)))|( % style="width:161px" %)(((679 +)))|((( 648 648 PULSE 649 649 650 650 SIGN 651 651 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]] 652 -|=1| (% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((684 +|=1|CW/CCW|((( 653 653 PULSE (CW) 654 654 655 655 SIGN (CCW) 656 656 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]] 657 -|=2|( % style="width:200px" %)(((689 +|=2|((( 658 658 AB phase orthogonal 659 659 660 660 pulse (4 times frequency) 661 -)))|( % style="width:161px" %)(((693 +)))|((( 662 662 PULSE (Phase A) 663 663 664 664 SIGN (Phase B) ... ... @@ -675,29 +675,29 @@ 675 675 676 676 Phase B is 90° ahead of Phase A 677 677 ))) 678 -|=3|( % style="width:200px" %)(((710 +|=3|((( 679 679 Direction + pulse 680 680 681 681 (Negative logic) 682 -)))|( % style="width:161px" %)(((714 +)))|((( 683 683 PULSE 684 684 685 685 SIGN 686 686 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]] 687 -|=4|( % style="width:200px" %)(((719 +|=4|((( 688 688 CW/CCW 689 689 690 690 (Negative logic) 691 -)))|( % style="width:161px" %)(((723 +)))|((( 692 692 PULSE (CW) 693 693 694 694 SIGN (CCW) 695 695 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]] 696 -|=5|( % style="width:200px" %)(((728 +|=5|((( 697 697 AB phase orthogonal 698 698 699 699 pulse (4 times frequency negative logic) 700 -)))|( % style="width:161px" %)(((732 +)))|((( 701 701 PULSE (Phase A) 702 702 703 703 SIGN (Phase B) ... ... @@ -710,7 +710,7 @@ 710 710 )))|((( 711 711 712 712 713 -[[image:image-20220707094437-15.jpeg]] 745 +[[image:image-20220707094437-15.jpeg]] 714 714 715 715 Phase A is ahead of B phase by 90° 716 716 ))) ... ... @@ -717,20 +717,18 @@ 717 717 718 718 Table 6-15 Pulse description 719 719 720 -**The source of position instruction is internal position instruction (P01-06=1)** 752 +**(2) The source of position instruction is internal position instruction (P01-06=1)** 721 721 722 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__. 754 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__. 723 723 724 724 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 725 725 726 726 (% style="text-align:center" %) 727 -((( 728 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 729 -[[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]] 730 -))) 759 +[[image:image-20220608164116-9.png]] 731 731 761 +Figure 6-11 The setting process of multi-segment position 732 732 733 - *Set multi-segment position running mode763 +1) Set multi-segment position running mode 734 734 735 735 |=(% scope="row" %)**Function code**|=**Name**|=((( 736 736 **Setting method** ... ... @@ -742,9 +742,11 @@ 742 742 )))|((( 743 743 Effective immediately 744 744 )))|0|0 to 2|((( 745 -* 0: Single running 746 -* 1: Cycle running 747 -* 2: DI switching running 775 +0: Single running 776 + 777 +1: Cycle running 778 + 779 +2: DI switching running 748 748 )))|- 749 749 |=P07-02|Start segment number|((( 750 750 Shutdown setting ... ... @@ -761,8 +761,9 @@ 761 761 )))|((( 762 762 Effective immediately 763 763 )))|0|0 to 1|((( 764 -* 0: Run the remaining segments 765 -* 1: Run again from the start segment 796 +0: Run the remaining segments 797 + 798 +1: Run again from the start segment 766 766 )))|- 767 767 |=P07-05|Displacement instruction type|((( 768 768 Shutdown setting ... ... @@ -769,8 +769,9 @@ 769 769 )))|((( 770 770 Effective immediately 771 771 )))|0|0 to 1|((( 772 -* 0: Relative position instruction 773 -* 1: Absolute position instruction 805 +0: Relative position instruction 806 + 807 +1: Absolute position instruction 774 774 )))|- 775 775 776 776 Table 6-16 multi-segment position running mode parameters ... ... @@ -777,34 +777,30 @@ 777 777 778 778 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements. 779 779 780 -1. Single running 814 +~1. Single running 781 781 782 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 816 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 783 783 818 + 784 784 (% style="text-align:center" %) 785 -((( 786 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 787 -[[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]] 788 -))) 820 +[[image:image-20220608164226-10.png]] 789 789 790 - *2.Cycle running822 +Figure 6-12 Single running curve (P07-02=1, P07-03=2) 791 791 824 +2. Cycle running 825 + 792 792 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 793 793 794 -(% style="text-align:center" %) 795 -((( 796 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 797 -[[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]] 798 -))) 799 799 800 -(% class="warning" %)|((( 801 801 (% style="text-align:center" %) 802 -[[image:image-20220611151917-5.png]] 803 -))) 830 +[[image:image-20220608164327-11.png]] 831 + 832 +Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 833 + 834 +|[[image:image-20220611151917-5.png]] 804 804 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 805 805 806 -(% start="3" %) 807 -1. DI switching running 837 +3. DI switching running 808 808 809 809 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 810 810 ... ... @@ -827,87 +827,68 @@ 827 827 828 828 Table 6-18 INPOS corresponds to running segment number 829 829 830 -The operating curve in this running mode is shown in __Figure 6-14__. 860 +The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__. 831 831 832 832 (% style="text-align:center" %) 833 -((( 834 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 835 -[[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]] 836 -))) 863 +[[image:image-20220608164545-12.png]] 837 837 865 +Figure 6-14 DI switching running curve 866 + 838 838 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04. 839 839 840 -**Run the remaining segments** 869 +**A. Run the remaining segments** 841 841 842 842 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively. 843 843 844 844 (% style="text-align:center" %) 845 -((( 846 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 847 -[[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]] 848 -))) 874 +[[image:image-20220608164847-13.png]] 849 849 876 +Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 877 + 850 850 (% style="text-align:center" %) 851 -((( 852 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 853 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]] 854 -))) 879 +[[image:image-20220608165032-14.png]] 855 855 856 - **Runagainfromthestartsegment**881 +Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) 857 857 858 - Inthis processing mode, when the multi-segmentposition instruction enable is OFF duringrunning, the servo drive willabandon the uncompleted displacementpart and shutdown. Afterthe shutdown is completed,thepositioning completion signal is valid. Whenthemulti-segmentposition enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.883 +**B. Run again from the start segment** 859 859 885 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively. 886 + 860 860 (% style="text-align:center" %) 861 -((( 862 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 863 -[[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]] 864 -))) 888 +[[image:image-20220608165343-15.png]] 865 865 890 +Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 891 + 866 866 (% style="text-align:center" %) 867 -((( 868 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 869 -[[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]] 870 -))) 893 +[[image:image-20220608165558-16.png]] 871 871 895 +Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) 896 + 872 872 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05. 873 873 874 - *Relative position instruction899 +A. Relative position instruction 875 875 876 876 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 877 877 878 878 |((( 879 -(% style="text-align:center" %) 880 -((( 881 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 882 -[[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]] 883 -))) 904 +[[image:image-20220608165710-17.png]] 884 884 )))|((( 885 -(% style="text-align:center" %) 886 -((( 887 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 888 -[[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]] 906 +[[image:image-20220608165749-18.png]] 889 889 ))) 890 - )))908 +|Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram 891 891 892 - *Absolute position instruction910 +B. Absolute position instruction 893 893 894 894 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 895 895 896 896 |((( 897 -(% style="text-align:center" %) 898 -((( 899 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 900 -[[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]] 901 -))) 915 +[[image:image-20220608165848-19.png]] 902 902 )))|((( 903 -(% style="text-align:center" %) 904 -((( 905 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 906 -[[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]] 917 +[[image:image-20220608170005-20.png]] 907 907 ))) 908 - )))919 +|Figure 6-21 Absolute indication|Figure 6-22 Displacement 909 909 910 - *Multi-segment position running curve setting921 +2) Multi-segment position running curve setting 911 911 912 912 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 913 913 ... ... @@ -946,13 +946,11 @@ 946 946 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 947 947 948 948 (% style="text-align:center" %) 949 -((( 950 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 951 -[[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]] 952 -))) 960 +[[image:image-20220608170149-21.png]] 953 953 962 +Figure 6-23 The 1st segment running curve of motor 954 954 955 - *multi-segment position instruction enable964 +3) multi-segment position instruction enable 956 956 957 957 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 958 958 ... ... @@ -963,14 +963,13 @@ 963 963 DI port logic valid: Motor runs multi-segment position 964 964 ))) 965 965 966 -(% style="text-align:center" %) 967 -[[image:image-20220611152020-6.png||class="img-thumbnail"]] 975 +[[image:image-20220611152020-6.png]] 968 968 969 969 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 970 970 971 -== Electronic gear ratio == 979 +== **Electronic gear ratio** == 972 972 973 -**Definition of electronic gear ratio** 981 +**(1) Definition of electronic gear ratio** 974 974 975 975 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio. 976 976 ... ... @@ -979,22 +979,25 @@ 979 979 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 980 980 981 981 (% style="text-align:center" %) 982 -[[image:image-20220707094901-16.png ||class="img-thumbnail"]]990 +[[image:image-20220707094901-16.png]] 983 983 992 + 993 + 994 + 984 984 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! 985 985 986 -**Setting steps of electronic gear ratio** 997 +**(2) Setting steps of electronic gear ratio** 987 987 988 -(% style="text-align:center" %) 989 -((( 990 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 991 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]] 992 -))) 999 +[[image:image-20220707100850-20.jpeg]] 993 993 994 - **lectronic gear ratioswitch setting**1001 +Figure 6-24 Setting steps of electronic gear ratio 995 995 1003 +**(3) lectronic gear ratio switch setting** 1004 + 1005 + 996 996 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 997 997 1008 + 998 998 |=(% scope="row" %)**Function code**|=**Name**|=((( 999 999 **Setting method** 1000 1000 )))|=((( ... ... @@ -1044,6 +1044,7 @@ 1044 1044 1045 1045 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1046 1046 1058 + 1047 1047 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 1048 1048 |=09|GEAR-SEL electronic gear switch 1|((( 1049 1049 DI port logic invalid: electronic gear ratio 1 ... ... @@ -1053,25 +1053,16 @@ 1053 1053 1054 1054 Table 6-21 Switching conditions of electronic gear ratio group 1055 1055 1056 -|=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** 1057 -|(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)((( 1058 -(% style="text-align:center" %) 1059 -[[image:image-20220707101328-21.png]] 1060 -))) 1061 -|(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)((( 1062 -(% style="text-align:center" %) 1063 -[[image:image-20220707101336-22.png]] 1064 -))) 1065 -|1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)((( 1066 -(% style="text-align:center" %) 1067 -[[image:image-20220707101341-23.png]] 1068 -))) 1068 +|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]] 1069 +|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]] 1070 +|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]] 1071 +|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]] 1069 1069 1070 1070 Table 6-22 Application of electronic gear ratio 1071 1071 1072 1072 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid. 1073 1073 1074 -== Position instruction filtering == 1077 +== **Position instruction filtering** == 1075 1075 1076 1076 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation. 1077 1077 ... ... @@ -1084,11 +1084,10 @@ 1084 1084 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1085 1085 1086 1086 (% style="text-align:center" %) 1087 -((( 1088 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1089 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]] 1090 -))) 1090 +[[image:image-20220608170455-23.png]] 1091 1091 1092 +Figure 6-25 Position instruction filtering diagram 1093 + 1092 1092 |=(% scope="row" %)**Function code**|=**Name**|=((( 1093 1093 **Setting method** 1094 1094 )))|=((( ... ... @@ -1099,8 +1099,9 @@ 1099 1099 )))|((( 1100 1100 Effective immediately 1101 1101 )))|0|0 to 1|((( 1102 -* 0: 1st-order low-pass filtering 1103 -* 1: average filtering 1104 +0: 1st-order low-pass filtering 1105 + 1106 +1: average filtering 1104 1104 )))|- 1105 1105 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1106 1106 Effective immediately ... ... @@ -1111,13 +1111,13 @@ 1111 1111 1112 1112 Table 6-23 Position instruction filter function code 1113 1113 1114 -== Clearance of position deviation == 1117 +== **Clearance of position deviation** == 1115 1115 1116 1116 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal; 1117 1117 1118 1118 Position deviation = (position instruction-position feedback) (encoder unit) 1119 1119 1120 -== Position-related DO output function == 1123 +== **Position-related DO output function** == 1121 1121 1122 1122 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use. 1123 1123 ... ... @@ -1128,46 +1128,44 @@ 1128 1128 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1129 1129 1130 1130 (% style="text-align:center" %) 1131 -((( 1132 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1133 -[[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]] 1134 -))) 1134 +[[image:image-20220608170550-24.png]] 1135 1135 1136 +Figure 6-26 Positioning completion signal output diagram 1137 + 1136 1136 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27. 1137 1137 1138 1138 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1139 1139 1140 1140 (% style="text-align:center" %) 1141 -((( 1142 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1143 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]] 1144 -))) 1143 +[[image:image-20220608170650-25.png]] 1145 1145 1145 +Figure 6-27 Positioning completion signal output with increased window filter time diagram 1146 + 1146 1146 |=(% scope="row" %)**Function code**|=**Name**|=((( 1147 1147 **Setting method** 1148 -)))|=( % style="width: 129px;" %)(((1149 +)))|=((( 1149 1149 **Effective time** 1150 -)))|= (% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**1151 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1151 1151 |=P05-12|Positioning completion threshold|((( 1152 1152 Operation setting 1153 -)))|( % style="width:129px" %)(((1154 +)))|((( 1154 1154 Effective immediately 1155 -)))| (% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit1156 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1156 1156 |=P05-13|Positioning approach threshold|((( 1157 1157 Operation setting 1158 -)))|( % style="width:129px" %)(((1159 +)))|((( 1159 1159 Effective immediately 1160 -)))| (% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit1161 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1161 1161 |=P05-14|Position detection window time|((( 1162 1162 Operation setting 1163 -)))|( % style="width:129px" %)(((1164 +)))|((( 1164 1164 Effective immediately 1165 -)))| (% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms1166 +)))|10|0 to 20000|Set positioning completion detection window time|ms 1166 1166 |=P05-15|Positioning signal hold time|((( 1167 1167 Operation setting 1168 -)))|( % style="width:129px" %)(((1169 +)))|((( 1169 1169 Effective immediately 1170 -)))| (% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms1171 +)))|100|0 to 20000|Set positioning completion output hold time|ms 1171 1171 1172 1172 Table 6-24 Function code parameters of positioning completion 1173 1173 ... ... @@ -1186,46 +1186,47 @@ 1186 1186 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1187 1187 1188 1188 (% style="text-align:center" %) 1189 -((( 1190 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1191 -[[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]] 1192 -))) 1190 +[[image:6.28.jpg||height="260" width="806"]] 1193 1193 1194 - ==Speedinstructioninputsetting==1192 +Figure 6-28 Speed control block diagram 1195 1195 1194 +== **Speed instruction input setting** == 1195 + 1196 1196 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1197 1197 1198 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)((( 1198 + 1199 +|**Function code**|**Name**|((( 1199 1199 **Setting method** 1200 -)))| =(% style="width: 125px;" %)(((1201 +)))|((( 1201 1201 **Effective time** 1202 -)))| =(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**1203 -| =(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((1203 +)))|**Default value**|**Range**|**Definition**|**Unit** 1204 +|P01-01|Speed instruction source|((( 1204 1204 Shutdown setting 1205 -)))|( % style="width:125px" %)(((1206 +)))|((( 1206 1206 Effective immediately 1207 -)))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)((( 1208 -* 0: internal speed instruction 1209 -* 1: AI_1 analog input (not supported by VD2F) 1208 +)))|1|1 to 1|((( 1209 +0: internal speed instruction 1210 + 1211 +1: AI_1 analog input (not supported by VD2F) 1210 1210 )))|- 1211 1211 1212 1212 Table 6-26 Speed instruction source parameter 1213 1213 1214 -**Speed instruction source is internal speed instruction (P01-01=0)** 1216 +**(1) Speed instruction source is internal speed instruction (P01-01=0)** 1215 1215 1216 1216 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo 1217 1217 1218 1218 (% style="width:1141px" %) 1219 -| =(% colspan="1"scope="row"%)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((1221 +|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)((( 1220 1220 **Setting** 1221 1221 1222 1222 **method** 1223 -)))| =(% colspan="2" %)(((1225 +)))|(% colspan="2" %)((( 1224 1224 **Effective** 1225 1225 1226 1226 **time** 1227 -)))| =(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**1228 -| =(% colspan="1" %)P01-02|(% colspan="2" %)(((1229 +)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit** 1230 +|(% colspan="1" %)P01-02|(% colspan="2" %)((( 1229 1229 Internal speed 1230 1230 1231 1231 Instruction 0 ... ... @@ -1242,13 +1242,15 @@ 1242 1242 1243 1243 When DI input port: 1244 1244 1245 -* 15-INSPD3: 0 1246 -* 14-INSPD2: 0 1247 -* 13-INSPD1: 0, 1247 +15-INSPD3: 0 1248 1248 1249 +14-INSPD2: 0 1250 + 1251 +13-INSPD1: 0, 1252 + 1249 1249 select this speed instruction to be effective. 1250 1250 )))|(% colspan="2" %)rpm 1251 -| =(% colspan="1" %)P01-23|(% colspan="2" %)(((1255 +|(% colspan="1" %)P01-23|(% colspan="2" %)((( 1252 1252 Internal speed 1253 1253 1254 1254 Instruction 1 ... ... @@ -1265,13 +1265,15 @@ 1265 1265 1266 1266 When DI input port: 1267 1267 1268 -* 15-INSPD3: 0 1269 -* 14-INSPD2: 0 1270 -* 13-INSPD1: 1, 1272 +15-INSPD3: 0 1271 1271 1274 +14-INSPD2: 0 1275 + 1276 +13-INSPD1: 1, 1277 + 1272 1272 Select this speed instruction to be effective. 1273 1273 )))|(% colspan="2" %)rpm 1274 -| =(% colspan="1" %)P01-24|(% colspan="2" %)(((1280 +|(% colspan="1" %)P01-24|(% colspan="2" %)((( 1275 1275 Internal speed 1276 1276 1277 1277 Instruction 2 ... ... @@ -1288,13 +1288,15 @@ 1288 1288 1289 1289 When DI input port: 1290 1290 1291 -* 15-INSPD3: 0 1292 -* 14-INSPD2: 1 1293 -* 13-INSPD1: 0, 1297 +15-INSPD3: 0 1294 1294 1299 +14-INSPD2: 1 1300 + 1301 +13-INSPD1: 0, 1302 + 1295 1295 Select this speed instruction to be effective. 1296 1296 )))|(% colspan="2" %)rpm 1297 -| =(% colspan="1" %)P01-25|(% colspan="2" %)(((1305 +|(% colspan="1" %)P01-25|(% colspan="2" %)((( 1298 1298 Internal speed 1299 1299 1300 1300 Instruction 3 ... ... @@ -1311,13 +1311,15 @@ 1311 1311 1312 1312 When DI input port: 1313 1313 1314 -* 15-INSPD3: 0 1315 -* 14-INSPD2: 1 1316 -* 13-INSPD1: 1, 1322 +15-INSPD3: 0 1317 1317 1324 +14-INSPD2: 1 1325 + 1326 +13-INSPD1: 1, 1327 + 1318 1318 Select this speed instruction to be effective. 1319 1319 )))|(% colspan="2" %)rpm 1320 -| =P01-26|(% colspan="2" %)(((1330 +|P01-26|(% colspan="2" %)((( 1321 1321 Internal speed 1322 1322 1323 1323 Instruction 4 ... ... @@ -1334,13 +1334,15 @@ 1334 1334 1335 1335 When DI input port: 1336 1336 1337 -* 15-INSPD3: 1 1338 -* 14-INSPD2: 0 1339 -* 13-INSPD1: 0, 1347 +15-INSPD3: 1 1340 1340 1349 +14-INSPD2: 0 1350 + 1351 +13-INSPD1: 0, 1352 + 1341 1341 Select this speed instruction to be effective. 1342 1342 )))|(% colspan="1" %)rpm 1343 -| =P01-27|(% colspan="2" %)(((1355 +|P01-27|(% colspan="2" %)((( 1344 1344 Internal speed 1345 1345 1346 1346 Instruction 5 ... ... @@ -1357,13 +1357,15 @@ 1357 1357 1358 1358 When DI input port: 1359 1359 1360 -* 15-INSPD3: 1 1361 -* 14-INSPD2: 0 1362 -* 13-INSPD1: 1, 1372 +15-INSPD3: 1 1363 1363 1374 +14-INSPD2: 0 1375 + 1376 +13-INSPD1: 1, 1377 + 1364 1364 Select this speed instruction to be effective. 1365 1365 )))|(% colspan="1" %)rpm 1366 -| =P01-28|(% colspan="2" %)(((1380 +|P01-28|(% colspan="2" %)((( 1367 1367 Internal speed 1368 1368 1369 1369 Instruction 6 ... ... @@ -1380,13 +1380,15 @@ 1380 1380 1381 1381 When DI input port: 1382 1382 1383 -* 15-INSPD3: 1 1384 -* 14-INSPD2: 1 1385 -* 13-INSPD1: 0, 1397 +15-INSPD3: 1 1386 1386 1399 +14-INSPD2: 1 1400 + 1401 +13-INSPD1: 0, 1402 + 1387 1387 Select this speed instruction to be effective. 1388 1388 )))|(% colspan="1" %)rpm 1389 -| =P01-29|(% colspan="2" %)(((1405 +|P01-29|(% colspan="2" %)((( 1390 1390 Internal speed 1391 1391 1392 1392 Instruction 7 ... ... @@ -1403,19 +1403,21 @@ 1403 1403 1404 1404 When DI input port: 1405 1405 1406 -* 15-INSPD3: 1 1407 -* 14-INSPD2: 1 1408 -* 13-INSPD1: 1, 1422 +15-INSPD3: 1 1409 1409 1424 +14-INSPD2: 1 1425 + 1426 +13-INSPD1: 1, 1427 + 1410 1410 Select this speed instruction to be effective. 1411 1411 )))|(% colspan="1" %)rpm 1412 1412 1413 1413 Table 6-27 Internal speed instruction parameters 1414 1414 1415 -| =(% scope="row" %)**DI function code**|=**function name**|=**Function**1416 -| =13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number1417 -| =14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number1418 -| =15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number1433 +|**DI function code**|**function name**|**Function** 1434 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1435 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1436 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1419 1419 1420 1420 Table 6-28 DI multi-speed function code description 1421 1421 ... ... @@ -1422,7 +1422,7 @@ 1422 1422 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1423 1423 1424 1424 1425 -| =**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**1443 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1426 1426 |0|0|0|1|0 1427 1427 |0|0|1|2|1 1428 1428 |0|1|0|3|2 ... ... @@ -1431,30 +1431,26 @@ 1431 1431 1432 1432 Table 6-29 Correspondence between INSPD bits and segment numbers 1433 1433 1434 -(% style="text-align:center" %) 1435 -((( 1436 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1437 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]] 1438 -))) 1452 +[[image:image-20220608170845-26.png]] 1439 1439 1440 - **Speedinstruction sourceisinternalspeedinstruction(P01-01=1)**1454 +Figure 6-29 Multi-segment speed running curve 1441 1441 1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)** 1457 + 1442 1442 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1443 1443 1444 1444 (% style="text-align:center" %) 1445 -((( 1446 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1447 -[[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]] 1448 -))) 1461 +[[image:image-20220608153341-5.png]] 1449 1449 1463 +Figure 6-30 Analog input circuit 1464 + 1450 1450 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1451 1451 1452 1452 (% style="text-align:center" %) 1453 -((( 1454 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1455 -[[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]] 1456 -))) 1468 +[[image:image-20220608170955-27.png]] 1457 1457 1470 +Figure 6-31 Analog voltage speed instruction setting steps 1471 + 1458 1458 Explanation of related terms: 1459 1459 1460 1460 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. ... ... @@ -1462,25 +1462,21 @@ 1462 1462 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1463 1463 1464 1464 (% style="text-align:center" %) 1465 -((( 1466 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1467 -[[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]] 1468 -))) 1479 +[[image:image-20220608171124-28.png]] 1469 1469 1470 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 1471 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1472 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1473 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1474 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1481 +Figure 6-32 AI_1 diagram before and after bias 1475 1475 1483 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1484 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1485 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1486 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1487 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1488 + 1476 1476 Table 6-30 AI_1 parameters 1477 1477 1478 -(% class="box infomessage" %) 1479 -((( 1480 1480 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 1481 -))) 1482 1482 1483 -== Acceleration and deceleration time setting == 1493 +== **Acceleration and deceleration time setting** == 1484 1484 1485 1485 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration. 1486 1486 ... ... @@ -1487,25 +1487,24 @@ 1487 1487 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1488 1488 1489 1489 (% style="text-align:center" %) 1490 -((( 1491 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1492 -[[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]] 1493 -))) 1500 +[[image:image-20220608171314-29.png]] 1494 1494 1502 +Figure 6-33 of acceleration and deceleration time diagram 1503 + 1495 1495 (% style="text-align:center" %) 1496 -[[image:image-20220707103616-27.png ||class="img-thumbnail"]]1505 +[[image:image-20220707103616-27.png]] 1497 1497 1498 -| =(% scope="row" %)**Function code**|=**Name**|=(((1507 +|**Function code**|**Name**|((( 1499 1499 **Setting method** 1500 -)))| =(((1509 +)))|((( 1501 1501 **Effective time** 1502 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1503 -| =P01-03|Acceleration time|(((1511 +)))|**Default value**|**Range**|**Definition**|**Unit** 1512 +|P01-03|Acceleration time|((( 1504 1504 Operation setting 1505 1505 )))|((( 1506 1506 Effective immediately 1507 1507 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1508 -| =P01-04|Deceleration time|(((1517 +|P01-04|Deceleration time|((( 1509 1509 Operation setting 1510 1510 )))|((( 1511 1511 Effective immediately ... ... @@ -1513,7 +1513,7 @@ 1513 1513 1514 1514 Table 6-31 Acceleration and deceleration time parameters 1515 1515 1516 -== Speed instruction limit == 1525 +== **Speed instruction limit** == 1517 1517 1518 1518 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include: 1519 1519 ... ... @@ -1528,22 +1528,23 @@ 1528 1528 1529 1529 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1530 1530 1531 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1540 + 1541 +|**Function code**|**Name**|((( 1532 1532 **Setting method** 1533 -)))| =(((1543 +)))|((( 1534 1534 **Effective time** 1535 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1536 -| =P01-10|Maximum speed threshold|(((1545 +)))|**Default value**|**Range**|**Definition**|**Unit** 1546 +|P01-10|Maximum speed threshold|((( 1537 1537 Operation setting 1538 1538 )))|((( 1539 1539 Effective immediately 1540 1540 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1541 -| =P01-12|Forward speed threshold|(((1551 +|P01-12|Forward speed threshold|((( 1542 1542 Operation setting 1543 1543 )))|((( 1544 1544 Effective immediately 1545 1545 )))|3000|0 to 5000|Set forward speed limit value|rpm 1546 -| =P01-13|Reverse speed threshold|(((1556 +|P01-13|Reverse speed threshold|((( 1547 1547 Operation setting 1548 1548 )))|((( 1549 1549 Effective immediately ... ... @@ -1551,18 +1551,19 @@ 1551 1551 1552 1552 Table 6-32 Rotation speed related function codes 1553 1553 1554 -== Zero-speed clamp function == 1564 +== **Zero-speed clamp function** == 1555 1555 1556 1556 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid. 1557 1557 1558 1558 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1559 1559 1560 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1570 + 1571 +|**Function code**|**Name**|((( 1561 1561 **Setting method** 1562 -)))| =(((1573 +)))|((( 1563 1563 **Effective time** 1564 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1565 -| =P01-21|(((1575 +)))|**Default value**|**Range**|**Definition**|**Unit** 1576 +|P01-21|((( 1566 1566 Zero-speed clamp function selection 1567 1567 )))|((( 1568 1568 Operation setting ... ... @@ -1571,12 +1571,15 @@ 1571 1571 )))|0|0 to 3|((( 1572 1572 Set the zero-speed clamp function. In speed mode: 1573 1573 1574 -* 0: Force the speed to 0; 1575 -* 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 1576 -* 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1577 -* 3: Invalid, ignore zero-speed clamp input 1585 +0: Force the speed to 0; 1586 + 1587 +1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 1588 + 1589 +2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1590 + 1591 +3: Invalid, ignore zero-speed clamp input 1578 1578 )))|- 1579 -| =P01-22|(((1593 +|P01-22|((( 1580 1580 Zero-speed clamp speed threshold 1581 1581 )))|((( 1582 1582 Operation setting ... ... @@ -1586,34 +1586,33 @@ 1586 1586 1587 1587 Table 6-33 Zero-speed clamp related parameters 1588 1588 1589 -(% style="text-align:center" %) 1590 -((( 1591 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1592 -[[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]] 1593 -))) 1594 1594 1595 - == Speed-related DO output function ==1604 +[[image:image-20220608171549-30.png]] 1596 1596 1606 +Figure 6-34 Zero-speed clamp diagram 1607 + 1608 +== **Speed-related DO output function** == 1609 + 1597 1597 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use. 1598 1598 1599 -**Rotation detection signal** 1612 +**(1) Rotation detection signal** 1600 1600 1601 1601 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1602 1602 1603 -(% style="text-align:center" %) 1604 -((( 1605 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1606 -[[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]] 1607 -))) 1608 1608 1609 - To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parametersand related DO function codes are shown in __Table 6-34__ and __Table6-35__.1617 +[[image:image-20220608171625-31.png]] 1610 1610 1611 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1619 +Figure 6-35 Rotation detection signal diagram 1620 + 1621 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1622 + 1623 + 1624 +|**Function code**|**Name**|((( 1612 1612 **Setting method** 1613 -)))| =(((1626 +)))|((( 1614 1614 **Effective time** 1615 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1616 -| =P05-16|(((1628 +)))|**Default value**|**Range**|**Definition**|**Unit** 1629 +|P05-16|((( 1617 1617 Rotation detection 1618 1618 1619 1619 speed threshold ... ... @@ -1625,10 +1625,10 @@ 1625 1625 1626 1626 Table 6-34 Rotation detection speed threshold parameters 1627 1627 1628 -| =(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**1629 -| =132|(% style="width:247px" %)(((1641 +|**DO function code**|**Function name**|**Function** 1642 +|132|((( 1630 1630 T-COIN rotation detection 1631 -)))|( % style="width:695px" %)(((1644 +)))|((( 1632 1632 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1633 1633 1634 1634 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1636,24 +1636,22 @@ 1636 1636 1637 1637 Table 6-35 DO rotation detection function code 1638 1638 1639 -**Zero-speed signal** 1652 +**(2) Zero-speed signal** 1640 1640 1641 1641 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1642 1642 1643 -(% style="text-align:center" %) 1644 -((( 1645 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1646 -[[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]] 1647 -))) 1656 +[[image:image-20220608171904-32.png]] 1648 1648 1649 - To use the motor zero-speed signal output function, a DO terminal of servodrive should be assigned to function 133(ZSP, zero-speed signal).The function code parameters and related DO function codesare shown in __Table 6-36__ and __Table 6-37__.1658 +Figure 6-36 Zero-speed signal diagram 1650 1650 1651 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1660 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1661 + 1662 +|**Function code**|**Name**|((( 1652 1652 **Setting method** 1653 -)))| =(((1664 +)))|((( 1654 1654 **Effective time** 1655 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1656 -| =P05-19|Zero speed output signal threshold|(((1666 +)))|**Default value**|**Range**|**Definition**|**Unit** 1667 +|P05-19|Zero speed output signal threshold|((( 1657 1657 Operation setting 1658 1658 )))|((( 1659 1659 Effective immediately ... ... @@ -1661,31 +1661,30 @@ 1661 1661 1662 1662 Table 6-36 Zero-speed output signal threshold parameter 1663 1663 1664 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 1665 -|=133|((( 1675 + 1676 +|**DO function code**|**Function name**|**Function** 1677 +|133|((( 1666 1666 ZSP zero speed signal 1667 1667 )))|Output this signal indicates that the servo motor is stopping rotation 1668 1668 1669 1669 Table 6-37 DO zero-speed signal function code 1670 1670 1671 -**Speed consistent signal** 1683 +**(3) Speed consistent signal** 1672 1672 1673 1673 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1674 1674 1675 -(% style="text-align:center" %) 1676 -((( 1677 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1678 -[[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]] 1679 -))) 1687 +[[image:image-20220608172053-33.png]] 1680 1680 1681 - Tousethemotor speed consistentfunction,aDO terminalof the servodrive should beassigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.1689 +Figure 6-37 Speed consistent signal diagram 1682 1682 1683 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1691 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1692 + 1693 +|**Function code**|**Name**|((( 1684 1684 **Setting method** 1685 -)))| =(((1695 +)))|((( 1686 1686 **Effective time** 1687 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1688 -| =P05-17|Speed consistent signal threshold|(((1697 +)))|**Default value**|**Range**|**Definition**|**Unit** 1698 +|P05-17|Speed consistent signal threshold|((( 1689 1689 Operationsetting 1690 1690 )))|((( 1691 1691 Effective immediately ... ... @@ -1693,31 +1693,30 @@ 1693 1693 1694 1694 Table 6-38 Speed consistent signal threshold parameters 1695 1695 1696 -|=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function** 1697 -|=136|(% style="width:262px" %)((( 1706 + 1707 +|**DO Function code**|**Function name**|**Function** 1708 +|136|((( 1698 1698 U-COIN consistent speed 1699 -)))| (% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value1710 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1700 1700 1701 1701 Table 6-39 DO speed consistent function code 1702 1702 1703 -**Speed approach signal** 1714 +**(4) Speed approach signal** 1704 1704 1705 1705 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1706 1706 1707 -(% style="text-align:center" %) 1708 -((( 1709 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1710 -[[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]] 1711 -))) 1718 +[[image:image-20220608172207-34.png]] 1712 1712 1713 - Tousethemotor speed approachfunction,a DO terminalof the servodrive should beassigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.1720 +Figure 6-38 Speed approaching signal diagram 1714 1714 1715 -|=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=((( 1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1723 + 1724 +|**Function code**|**Name**|((( 1716 1716 **Setting method** 1717 -)))| =(((1726 +)))|((( 1718 1718 **Effective time** 1719 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1720 -| =(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((1728 +)))|**Default value**|**Range**|**Definition**|**Unit** 1729 +|P05-18|Speed approach signal threshold|((( 1721 1721 Operation setting 1722 1722 )))|((( 1723 1723 Effective immediately ... ... @@ -1725,8 +1725,8 @@ 1725 1725 1726 1726 Table 6-40 Speed approaching signal threshold parameters 1727 1727 1728 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1729 -| =137|(((1737 +|**DO function code**|**Function name**|**Function** 1738 +|137|((( 1730 1730 V-NEAR speed approach 1731 1731 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1732 1732 ... ... @@ -1736,22 +1736,22 @@ 1736 1736 1737 1737 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1738 1738 1739 -(% style="text-align:center" %) 1740 -((( 1741 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1742 -[[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]] 1743 -))) 1744 1744 1745 - == Torqueinstru**ction input setting** ==1749 +[[image:image-20220608172405-35.png]] 1746 1746 1751 +Figure 6-39 Torque mode diagram 1752 + 1753 +== **Torque instruction input setting** == 1754 + 1747 1747 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1748 1748 1749 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1757 + 1758 +|**Function code**|**Name**|((( 1750 1750 **Setting method** 1751 -)))| =(((1760 +)))|((( 1752 1752 **Effective time** 1753 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1754 -| =P01-07|Torque instruction source|(((1762 +)))|**Default value**|**Range**|**Definition**|**Unit** 1763 +|P01-08|Torque instruction source|((( 1755 1755 Shutdown setting 1756 1756 )))|((( 1757 1757 Effective immediately ... ... @@ -1763,16 +1763,17 @@ 1763 1763 1764 1764 Table 6-42 Torque instruction source parameter 1765 1765 1766 -**Torque instruction source is internal torque instruction (P01-07=0)** 1775 +**(1) Torque instruction source is internal torque instruction (P01-07=0)** 1767 1767 1768 1768 Torque instruction source is from inside, the value is set by function code P01-08. 1769 1769 1770 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1779 + 1780 +|**Function code**|**Name**|((( 1771 1771 **Setting method** 1772 -)))| =(((1782 +)))|((( 1773 1773 **Effective time** 1774 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1775 -| =P01-08|Torque instruction keyboard set value|(((1784 +)))|**Default value**|**Range**|**Definition**|**Unit** 1785 +|P01-08|Torque instruction keyboard set value|((( 1776 1776 Operation setting 1777 1777 )))|((( 1778 1778 Effective immediately ... ... @@ -1780,24 +1780,22 @@ 1780 1780 1781 1781 Table 6-43 Torque instruction keyboard set value 1782 1782 1783 -**Torque instruction source is internal torque instruction (P01-07=1)** 1793 +**(2) Torque instruction source is internal torque instruction (P01-07=1)** 1784 1784 1785 1785 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1786 1786 1787 1787 (% style="text-align:center" %) 1788 -((( 1789 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1790 -[[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]] 1791 -))) 1798 +[[image:image-20220608153646-7.png||height="213" width="408"]] 1792 1792 1800 +Figure 6-40 Analog input circuit 1801 + 1793 1793 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1794 1794 1795 1795 (% style="text-align:center" %) 1796 -((( 1797 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1798 -[[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]] 1799 -))) 1805 +[[image:image-20220608172502-36.png]] 1800 1800 1807 +Figure 6-41 Analog voltage torque instruction setting steps 1808 + 1801 1801 Explanation of related terms: 1802 1802 1803 1803 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. ... ... @@ -1805,74 +1805,65 @@ 1805 1805 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1806 1806 1807 1807 (% style="text-align:center" %) 1808 -((( 1809 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1810 -[[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]] 1811 -))) 1816 +[[image:image-20220608172611-37.png]] 1812 1812 1813 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 1814 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1815 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1816 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1817 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1818 +Figure 6-42 AI_1 diagram before and after bias 1818 1818 1820 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1821 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1822 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1823 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1824 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1825 + 1819 1819 Table 6-44 AI_1 parameters 1820 1820 1821 -(% class="box infomessage" %) 1822 -((( 1823 1823 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 1824 -))) 1825 1825 1826 -== Torque instruction filtering == 1830 +== **Torque instruction filtering** == 1827 1827 1828 -In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__. 1832 +In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1829 1829 1830 -| =(% scope="row" %)**Function code**|=**Name**|=(((1834 +|**Function code**|**Name**|((( 1831 1831 **Setting method** 1832 -)))| =(((1836 +)))|((( 1833 1833 **Effective time** 1834 -)))| =**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**1835 -| =P04-04|Torque filtering time constant|(((1838 +)))|**Default value**|**Range**|**Definition**|**Unit** 1839 +|P04-04|Torque filtering time constant|((( 1836 1836 Operation setting 1837 1837 )))|((( 1838 1838 Effective immediately 1839 -)))|50| (% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms1843 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1840 1840 1841 1841 Table 6-45 Torque filtering time constant parameter details 1842 1842 1843 -(% class="box infomessage" %) 1844 -((( 1845 1845 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1846 -))) 1847 1847 1848 1848 (% style="text-align:center" %) 1849 -((( 1850 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1851 -[[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]] 1852 -))) 1850 +[[image:image-20220608172646-38.png]] 1853 1853 1854 - ==Torque instructionlimit==1852 +Figure 6-43 Torque instruction-first-order filtering diagram 1855 1855 1854 +== **Torque instruction limit** == 1855 + 1856 1856 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer. 1857 1857 1858 1858 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1859 1859 1860 1860 (% style="text-align:center" %) 1861 -((( 1862 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1863 -[[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]] 1864 -))) 1861 +[[image:image-20220608172806-39.png]] 1865 1865 1866 - **Settorque limitsource**1863 +Figure 6-44 Torque instruction limit diagram 1867 1867 1865 +**(1) Set torque limit source** 1866 + 1868 1868 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1869 1869 1870 -| =(% scope="row" %)**Function code**|=**Name**|=(((1869 +|**Function code**|**Name**|((( 1871 1871 **Setting method** 1872 -)))| =(((1871 +)))|((( 1873 1873 **Effective time** 1874 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1875 -| =P01-14|(((1873 +)))|**Default value**|**Range**|**Definition**|**Unit** 1874 +|P01-14|((( 1876 1876 Torque limit source 1877 1877 )))|((( 1878 1878 Shutdown setting ... ... @@ -1879,46 +1879,49 @@ 1879 1879 )))|((( 1880 1880 Effective immediately 1881 1881 )))|0|0 to 1|((( 1882 -* 0: internal value 1883 -* 1: AI_1 analog input (not supported by VD2F) 1881 +0: internal value 1882 + 1883 +1: AI_1 analog input 1884 + 1885 +(not supported by VD2F) 1884 1884 )))|- 1885 1885 1886 - *Torque limit source is internal torque instruction (P01-14=0)1888 +1) Torque limit source is internal torque instruction (P01-14=0) 1887 1887 1888 1888 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1889 1889 1890 -| =(% scope="row" %)**Function code**|=**Name**|=(((1892 +|**Function code**|**Name**|((( 1891 1891 **Setting method** 1892 -)))| =(((1894 +)))|((( 1893 1893 **Effective time** 1894 -)))| =**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**1895 -| =P01-15|(((1896 +)))|**Default value**|**Range**|**Definition**|**Unit** 1897 +|P01-15|((( 1896 1896 Forward torque limit 1897 1897 )))|((( 1898 1898 Operation setting 1899 1899 )))|((( 1900 1900 Effective immediately 1901 -)))|3000| (% style="width:106px"%)0to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%1902 -| =P01-16|(((1903 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1904 +|P01-16|((( 1903 1903 Reverse torque limit 1904 1904 )))|((( 1905 1905 Operation setting 1906 1906 )))|((( 1907 1907 Effective immediately 1908 -)))|3000| (% style="width:106px"%)0to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1909 1909 1910 1910 Table 6-46 Torque limit parameter details 1911 1911 1912 - *Torque limit source is external (P01-14=1)1914 +2) Torque limit source is external (P01-14=1) 1913 1913 1914 1914 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal. 1915 1915 1916 -**Set torque limit DO signal output** 1918 +**(2) Set torque limit DO signal output** 1917 1917 1918 1918 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1919 1919 1920 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1921 -| =139|(((1922 +|**DO function code**|**Function name**|**Function** 1923 +|139|((( 1922 1922 T-LIMIT in torque limit 1923 1923 )))|Output of this signal indicates that the servo motor torque is limited 1924 1924 ... ... @@ -1928,28 +1928,21 @@ 1928 1928 1929 1929 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited. 1930 1930 1931 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__. 1933 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__. 1932 1932 1933 1933 |((( 1934 -(% style="text-align:center" %) 1935 -((( 1936 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1937 -[[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]] 1938 -))) 1936 +[[image:image-20220608172910-40.png]] 1939 1939 )))|((( 1940 -(% style="text-align:center" %) 1941 -((( 1942 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1943 -[[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]] 1938 +[[image:image-20220608173155-41.png]] 1944 1944 ))) 1945 - )))1940 +|Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1946 1946 1947 -| =(% scope="row" %)**Function code**|=**Name**|=(((1942 +|**Function code**|**Name**|((( 1948 1948 **Setting method** 1949 -)))| =(((1944 +)))|((( 1950 1950 **Effective time** 1951 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1952 -| =P01-17|(((1946 +)))|**Default value**|**Range**|**Definition**|**Unit** 1947 +|P01-17|((( 1953 1953 Forward torque 1954 1954 1955 1955 limit in torque mode ... ... @@ -1962,7 +1962,7 @@ 1962 1962 1963 1963 limit in torque mode 1964 1964 )))|0.1% 1965 -| =P01-18|(((1960 +|P01-18|((( 1966 1966 Reverse torque 1967 1967 1968 1968 limit in torque mode ... ... @@ -1978,9 +1978,9 @@ 1978 1978 1979 1979 Table 6-48 Speed limit parameters in torque mode 1980 1980 1981 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/0 2%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.1976 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__. 1982 1982 1983 -== Torque-related DO output functions == 1978 +== **Torque-related DO output functions** == 1984 1984 1985 1985 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid. 1986 1986 ... ... @@ -1989,27 +1989,26 @@ 1989 1989 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1990 1990 1991 1991 (% style="text-align:center" %) 1992 -((( 1993 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1994 -[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]] 1995 -))) 1987 +[[image:image-20220608173541-42.png]] 1996 1996 1997 - To use the torque arrival function, a DO terminal of theservo drive should be assigned to function 138 (T-COIN,torque arrival).The function codeparameters and related DO functioncodesare shown in __Table 6-49__ and __Table 6-50__.1989 +Figure 6-47 Torque arrival output diagram 1998 1998 1999 -|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)((( 1991 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1992 + 1993 +|**Function code**|**Name**|((( 2000 2000 **Setting method** 2001 -)))| =(% style="width: 124px;" %)(((1995 +)))|((( 2002 2002 **Effective time** 2003 -)))| =(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**2004 -| =P05-20|(% style="width:113px" %)(((1997 +)))|**Default value**|**Range**|**Definition**|**Unit** 1998 +|P05-20|((( 2005 2005 Torque arrival 2006 2006 2007 2007 threshold 2008 -)))|( % style="width:100px" %)(((2002 +)))|((( 2009 2009 Operation setting 2010 -)))|( % style="width:124px" %)(((2004 +)))|((( 2011 2011 Effective immediately 2012 -)))| (% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((2006 +)))|100|0 to 300|((( 2013 2013 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2014 2014 2015 2015 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; ... ... @@ -2016,20 +2016,21 @@ 2016 2016 2017 2017 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2018 2018 )))|% 2019 -| =P05-21|(% style="width:113px" %)(((2013 +|P05-21|((( 2020 2020 Torque arrival 2021 2021 2022 2022 hysteresis 2023 -)))|( % style="width:100px" %)(((2017 +)))|((( 2024 2024 Operation setting 2025 -)))|( % style="width:124px" %)(((2019 +)))|((( 2026 2026 Effective immediately 2027 -)))| (% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%2021 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2028 2028 2029 2029 Table 6-49 Torque arrival parameters 2030 2030 2031 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 2032 -|=138|((( 2025 + 2026 +|**DO function code**|**Function name**|**Function** 2027 +|138|((( 2033 2033 T-COIN torque arrival 2034 2034 )))|Used to determine whether the actual torque instruction has reached the set range 2035 2035 ... ... @@ -2039,28 +2039,35 @@ 2039 2039 2040 2040 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2041 2041 2042 -* Position mode⇔ Speed mode 2043 -* Position mode ⇔Torque mode 2044 -* Speed mode ⇔Torque mode 2037 +Position mode⇔ Speed mode 2045 2045 2039 +Position mode ⇔Torque mode 2040 + 2041 +Speed mode ⇔Torque mode 2042 + 2046 2046 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2047 2047 2048 -| =(% scope="row" %)**Function code**|=**Name**|=(((2045 +|**Function code**|**Name**|((( 2049 2049 **Setting method** 2050 -)))| =(((2047 +)))|((( 2051 2051 **Effective time** 2052 -)))| =**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**2053 -| =P00-01|Control mode|(((2049 +)))|**Default value**|**Range**|**Definition**|**Unit** 2050 +|P00-01|Control mode|((( 2054 2054 Shutdown setting 2055 2055 )))|((( 2056 2056 Shutdown setting 2057 -)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)((( 2058 -* 1: Position control 2059 -* 2: Speed control 2060 -* 3: Torque control 2061 -* 4: Position/speed mixed control 2062 -* 5: Position/torque mixed control 2063 -* 6: Speed/torque mixed control 2054 +)))|1|1 to 6|((( 2055 +1: Position control 2056 + 2057 +2: Speed control 2058 + 2059 +3: Torque control 2060 + 2061 +4: Position/speed mixed control 2062 + 2063 +5: Position/torque mixed control 2064 + 2065 +6: Speed/torque mixed control 2064 2064 )))|- 2065 2065 2066 2066 Table 6-51 Mixed control mode parameters ... ... @@ -2067,38 +2067,35 @@ 2067 2067 2068 2068 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2069 2069 2070 -|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function** 2071 -|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2072 -(% style="margin-left:auto; margin-right:auto; width:585px" %) 2073 -|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode** 2074 -|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode 2075 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2076 -|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2077 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2078 -|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2079 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode 2072 +|**DI function code**|**Name**|**Function name**|**Function** 2073 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2074 +|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2075 +|(% rowspan="2" %)4|Valid|Speed mode 2076 +|invalid|Position mode 2077 +|(% rowspan="2" %)5|Valid|Torque mode 2078 +|invalid|Position mode 2079 +|(% rowspan="2" %)6|Valid|Torque mode 2080 +|invalid|Speed mode 2080 2080 ))) 2081 2081 2082 2082 Table 6-52 Description of DI function codes in control mode 2083 2083 2084 -(% class="box infomessage" %) 2085 -((( 2086 2086 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother. 2087 -))) 2088 2088 2089 2089 = **Absolute system** = 2090 2090 2091 -== Overview == 2089 +== **Overview** == 2092 2092 2093 2093 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations. 2094 2094 2095 2095 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position. 2096 2096 2097 -== Single-turn absolute value system == 2095 +== **Single-turn absolute value system** == 2098 2098 2099 2099 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2100 2100 2101 -|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range** 2099 + 2100 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2102 2102 |A1 (single-turn magnetic encoder)|17|0 to 131071 2103 2103 2104 2104 Table 6-53 Single-turn absolute encoder information ... ... @@ -2106,18 +2106,17 @@ 2106 2106 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2107 2107 2108 2108 (% style="text-align:center" %) 2109 -((( 2110 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2111 -[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]] 2112 -))) 2108 +[[image:image-20220608173618-43.png]] 2113 2113 2114 - == Multi-turnabsolutevaluesystem ==2110 +Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position 2115 2115 2112 +== **Multi-turn absolute value system** == 2113 + 2116 2116 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2117 2117 2118 -| =(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**2119 -| =C1 (multi-turn magnetic encoder)|17|0 to 1310712120 -| =D2 (multi-turn Optical encoder)|23|0 to 83886072116 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2117 +|C1 (multi-turn magnetic encoder)|17|0 to 131071 2118 +|D2 (multi-turn Optical encoder)|23|0 to 8388607 2121 2121 2122 2122 Table 6-54 Multi-turn absolute encoder information 2123 2123 ... ... @@ -2124,21 +2124,20 @@ 2124 2124 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2125 2125 2126 2126 (% style="text-align:center" %) 2127 -((( 2128 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2129 -[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]] 2130 -))) 2125 +[[image:image-20220608173701-44.png]] 2131 2131 2132 - ==Related functionsandparameters==2127 +Figure 6-49 The relationship between encoder feedback position and rotating load position 2133 2133 2129 +== **Related functions and parameters** == 2130 + 2134 2134 **Encoder feedback data** 2135 2135 2136 2136 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2137 2137 2138 -| =(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**2139 -| =U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit2140 -| =U0-55|Universal|Rotations number of absolute encoder|circle|16-bit2141 -| =U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit2135 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2136 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2137 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2138 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2142 2142 2143 2143 Table 6-55 Encoder feedback data 2144 2144 ... ... @@ -2146,28 +2146,26 @@ 2146 2146 2147 2147 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30. 2148 2148 2149 -| =(% scope="row" %)**Function code**|=**Name**|=(((2146 +|**Function code**|**Name**|((( 2150 2150 **Setting** 2151 2151 2152 2152 **method** 2153 -)))| =(((2150 +)))|((( 2154 2154 **Effective** 2155 2155 2156 2156 **time** 2157 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2158 -|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2159 -* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2160 -* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2154 +)))|**Default value**|**Range**|**Definition**|**Unit** 2155 +|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2156 +0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2157 + 2158 +1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2161 2161 )))|- 2162 2162 2163 2163 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur. 2164 2164 2165 -(% class="box infomessage" %) 2166 -((( 2167 2167 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death. 2168 -))) 2169 2169 2170 -== Absolute value system encoder battery box use precautions. == 2165 +== **Absolute value system encoder battery box use precautions**. == 2171 2171 2172 2172 **Cautions** 2173 2173 ... ... @@ -2174,11 +2174,10 @@ 2174 2174 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2175 2175 2176 2176 (% style="text-align:center" %) 2177 -((( 2178 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2179 -[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]] 2180 -))) 2172 +[[image:image-20220707111333-28.png]] 2181 2181 2174 +Figure 6-50 the encoder battery box 2175 + 2182 2182 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. 2183 2183 2184 2184 **Replace the battery** ... ... @@ -2194,19 +2194,20 @@ 2194 2194 2195 2195 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2196 2196 2197 -| =(% scope="row" %)**Function code**|=**Name**|=(((2191 +|**Function code**|**Name**|((( 2198 2198 **Setting method** 2199 -)))| =(((2193 +)))|((( 2200 2200 **Effective time** 2201 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2202 -| =P10-06|Multi-turn absolute encoder reset|(((2195 +)))|**Default value**|**Range**|**Definition**|**Unit** 2196 +|P10-06|Multi-turn absolute encoder reset|((( 2203 2203 Shutdown setting 2204 2204 )))|((( 2205 2205 Effective immediately 2206 2206 )))|0|0 to 1|((( 2207 -* 0: No operation 2208 -* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2201 +0: No operation 2209 2209 2203 +1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2204 + 2210 2210 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2211 2211 )))|- 2212 2212 ... ... @@ -2214,7 +2214,7 @@ 2214 2214 2215 2215 **Battery selection** 2216 2216 2217 -| =(% scope="row" style="width:;" %)**Battery selection specification**|=(% style="width:;" %)**Item**|=(% style="width:;" %)**Value**2212 +|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value** 2218 2218 |(% rowspan="4" style="width:361px" %)((( 2219 2219 Nominal Voltage: 3.6V 2220 2220 ... ... @@ -2242,108 +2242,111 @@ 2242 2242 2243 2243 = **Other functions** = 2244 2244 2245 -== VDI == 2240 +== **VDI** == 2246 2246 2247 2247 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use. 2248 2248 2249 -(% class="box infomessage" %) 2250 -((( 2251 2251 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate). 2252 -))) 2253 2253 2254 2254 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2255 2255 2248 + 2256 2256 (% style="text-align:center" %) 2257 -((( 2258 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2259 -[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]] 2260 -))) 2250 +[[image:image-20220608173804-46.png]] 2261 2261 2262 -|=(% scope="row" %)**Function code**|=**Name**|=((( 2252 +Figure 6-51 VDI_1 setting steps 2253 + 2254 +|**Function code**|**Name**|((( 2263 2263 **Setting method** 2264 -)))| =(((2256 +)))|((( 2265 2265 **Effective time** 2266 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2267 -| =P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((2258 +)))|**Default value**|**Range**|**Definition**|**Unit** 2259 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2268 2268 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2269 2269 2270 2270 VDI_1 input level: 2271 2271 2272 -* 0: low level 2273 -* 1: high level 2264 +0: low level 2265 + 2266 +1: high level 2274 2274 )))|- 2275 -| =P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((2268 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2276 2276 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2277 2277 2278 2278 VDI_2 input level: 2279 2279 2280 -* 0: low level 2281 -* 1: high level 2273 +0: low level 2274 + 2275 +1: high level 2282 2282 )))|- 2283 -| =P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((2277 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2284 2284 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2285 2285 2286 2286 VDI_3 input level: 2287 2287 2288 -* 0: low level 2289 -* 1: high level 2282 +0: low level 2283 + 2284 +1: high level 2290 2290 )))|- 2291 -| =P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((2286 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2292 2292 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2293 2293 2294 2294 VDI_4 input level: 2295 2295 2296 -* 0: low level 2297 -* 1: high level 2291 +0: low level 2292 + 2293 +1: high level 2298 2298 )))|- 2299 -| =P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((2295 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2300 2300 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2301 2301 2302 2302 VDI_5 input level: 2303 2303 2304 -* 0: low level 2305 -* 1: high level 2300 +0: low level 2301 + 2302 +1: high level 2306 2306 )))|- 2307 -| =P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((2304 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2308 2308 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2309 2309 2310 2310 VDI_6 input level: 2311 2311 2312 -* 0: low level 2313 -* 1: high level 2309 +0: low level 2310 + 2311 +1: high level 2314 2314 )))|- 2315 -| =P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((2313 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2316 2316 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2317 2317 2318 2318 VDI_7 input level: 2319 2319 2320 -* 0: low level 2321 -* 1: high level 2318 +0: low level 2319 + 2320 +1: high level 2322 2322 )))|- 2323 -| =P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((2322 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2324 2324 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2325 2325 2326 2326 VDI_8 input level: 2327 2327 2328 -* 0: low level 2329 -* 1: high level 2327 +0: low level 2328 + 2329 +1: high level 2330 2330 )))|- 2331 2331 2332 2332 Table 6-57 Virtual VDI parameters 2333 2333 2334 -(% class="box infomessage" %) 2335 -((( 2336 2336 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 2337 -))) 2338 2338 2339 -== Port filtering time == 2336 +== **Port filtering time** == 2340 2340 2341 2341 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2342 2342 2343 -|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration** 2344 -|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2345 -|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2346 2346 2341 +|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration** 2342 +|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2343 +|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2344 + 2347 2347 Table 6-58 DI terminal channel logic selection 2348 2348 2349 2349 == **VDO** == ... ... @@ -2353,49 +2353,51 @@ 2353 2353 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2354 2354 2355 2355 (% style="text-align:center" %) 2356 -((( 2357 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2358 -[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]] 2359 -))) 2354 +[[image:image-20220608173957-48.png]] 2360 2360 2356 +Figure 6-52 VDO_2 setting steps 2361 2361 2362 -| =(% scope="row" %)**Function code**|=**Name**|=(((2358 +|**Function code**|**Name**|((( 2363 2363 **Setting method** 2364 -)))| =(((2360 +)))|((( 2365 2365 **Effective time** 2366 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2367 -| =P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((2362 +)))|**Default value**|**Range**|**Definition**|**Unit** 2363 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2368 2368 VDO_1 output level: 2369 2369 2370 -* 0: low level 2371 -* 1: high level 2366 +0: low level 2367 + 2368 +1: high level 2372 2372 )))|- 2373 -| =P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((2370 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2374 2374 VDO_2 output level: 2375 2375 2376 -* 0: low level 2377 -* 1: high level 2373 +0: low level 2374 + 2375 +1: high level 2378 2378 )))|- 2379 -| =P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((2377 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2380 2380 VDO_3 output level: 2381 2381 2382 -* 0: low level 2383 -* 1: high level 2380 +0: low level 2381 + 2382 +1: high level 2384 2384 )))|- 2385 -| =P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((2384 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2386 2386 VDO_4 output level: 2387 2387 2388 -* 0: low level 2389 -* 1: high level 2387 +0: low level 2388 + 2389 +1: high level 2390 2390 )))|- 2391 2391 2392 2392 Table 6-59 Communication control DO function parameters 2393 2393 2394 -| =(% scope="row" %)**DO function number**|=**Function name**|=**Function**2395 -| =145|COM_VDO1 communication VDO1 output|Use communication VDO2396 -| =146|COM_VDO1 communication VDO2 output|Use communication VDO2397 -| =147|COM_VDO1 communication VDO3 output|Use communication VDO2398 -| =148|COM_VDO1 communication VDO4output|Use communication VDO2394 +|**DO function number**|**Function name**|**Function** 2395 +|145|COM_VDO1 communication VDO1 output|Use communication VDO 2396 +|146|COM_VDO1 communication VDO2 output|Use communication VDO 2397 +|147|COM_VDO1 communication VDO3 output|Use communication VDO 2398 +|148|COM_VDO1 communication VDO4output|Use communication VDO 2399 2399 2400 2400 Table 6-60 VDO function number 2401 2401 ... ... @@ -2403,16 +2403,16 @@ 2403 2403 2404 2404 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate). 2405 2405 2406 -== Motor overload protection == 2406 +== **Motor overload protection** == 2407 2407 2408 2408 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2409 2409 2410 -| =(% scope="row" %)**Function code**|=**Name**|=(((2410 +|**Function code**|**Name**|((( 2411 2411 **Setting method** 2412 -)))| =(((2412 +)))|((( 2413 2413 **Effective time** 2414 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2415 -| =P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((2414 +)))|**Default value**|**Range**|**Definition**|**Unit** 2415 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2416 2416 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2417 2417 2418 2418 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
- image-20220804160519-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -982.3 KB - Content
- image-20220804160624-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -975.3 KB - Content