Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width:996px;" %)**Content**5 +|=(% scope="row" style="width: 58px;" %)**No.**|=(% style="width: 1017px;" %)**Content** 6 6 |=(% colspan="2" %)Wiring 7 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -|=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -|=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.12 -|=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.13 -|=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.14 -|=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.7 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=(% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=(% style="width: 58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably. 12 +|=(% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=(% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range. 14 +|=(% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated. 15 15 |=(% colspan="2" %)Environment and Machinery 16 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.18 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.16 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects. 18 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -46,23 +46,11 @@ 46 46 )))|=((( 47 47 **Effective time** 48 48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 49 -|=((( 50 -P10-01 51 -)))|((( 52 -JOG speed 53 -)))|((( 49 +|=P10-01|JOG speed|((( 54 54 Operation setting 55 55 )))|((( 56 56 Effective immediately 57 -)))|((( 58 -100 59 -)))|((( 60 -0 to 3000 61 -)))|((( 62 -JOG speed 63 -)))|((( 64 -rpm 65 -))) 53 +)))|100|0 to 3000|JOG speed|rpm 66 66 67 67 Table 6-2 JOG speed parameter 68 68 ... ... @@ -71,19 +71,11 @@ 71 71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 72 72 73 73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 74 -|=((( 75 -P00-04 76 -)))|((( 77 -Rotation direction 78 -)))|((( 62 +|=P00-04|Rotation direction|((( 79 79 Shutdown setting 80 80 )))|((( 81 81 Effective immediately 82 -)))|((( 83 -0 84 -)))|((( 85 -0 to 1 86 -)))|((( 66 +)))|0|0 to 1|((( 87 87 Forward rotation: Face the motor shaft to watch 88 88 89 89 * 0: standard setting (CW is forward rotation) ... ... @@ -101,14 +101,14 @@ 101 101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 102 102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 103 103 104 -|=(% scope="row" %)**Function code**|=**Name**|=( % style="width: 118px;" %)(((84 +|=(% scope="row" %)**Function code**|=**Name**|=((( 105 105 **Setting method** 106 -)))|=( % style="width: 126px;" %)(((86 +)))|=((( 107 107 **Effective time** 108 108 )))|=**Default**|=**Range**|=**Definition**|=**Unit** 109 -|=P00-09|Braking resistor setting|( % style="width:118px" %)(((89 +|=P00-09|Braking resistor setting|((( 110 110 Operation setting 111 -)))|( % style="width:126px" %)(((91 +)))|((( 112 112 Effective immediately 113 113 )))|0|0 to 3|((( 114 114 * 0: use built-in braking resistor ... ... @@ -116,15 +116,15 @@ 116 116 * 2: use external braking resistor and forced air cooling; (cannot be set) 117 117 * 3: No braking resistor is used, it is all absorbed by capacitor. 118 118 )))|- 119 - (% class="info" %)|(% colspan="8"scope="row"%)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).120 -|=P00-10|External braking resistor value|( % style="width:118px" %)(((99 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 100 +|=P00-10|External braking resistor value|((( 121 121 Operation setting 122 -)))|( % style="width:126px" %)(((102 +)))|((( 123 123 Effective immediately 124 124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 125 -|=P00-11|External braking resistor power|( % style="width:118px" %)(((105 +|=P00-11|External braking resistor power|((( 126 126 Operation setting 127 -)))|( % style="width:126px" %)(((107 +)))|((( 128 128 Effective immediately 129 129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 130 130 ... ... @@ -146,7 +146,7 @@ 146 146 147 147 (% style="text-align:center" %) 148 148 ((( 149 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)129 +(% class="wikigeneratedid" style="display:inline-block" %) 150 150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]] 151 151 ))) 152 152 ... ... @@ -154,14 +154,14 @@ 154 154 155 155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__. 156 156 157 -|=(% scope="row" style="width: 150px;"%)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics158 -|= (% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.159 -|= (% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.137 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 138 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 139 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 160 160 161 161 Table 6-5 Comparison of two shutdown modes 162 162 163 -|=(% scope="row" style="width: 151px;"%)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**164 -|= (% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.143 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 144 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 165 165 166 166 Table 6-6 Comparison of two shutdown status 167 167 ... ... @@ -169,22 +169,22 @@ 169 169 170 170 The related parameters of the servo OFF shutdown mode are shown in the table below. 171 171 172 -|=(% scope="row" style="width: 94px;"%)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((152 +|=(% scope="row" %)**Function code**|=**Name**|=((( 173 173 **Setting method** 174 -)))|=( % style="width: 134px;" %)(((154 +)))|=((( 175 175 **Effective time** 176 -)))|=( % style="width: 86px;" %)(((156 +)))|=((( 177 177 **Default value** 178 -)))|= (% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**179 -|= (% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((158 +)))|=**Range**|=**Definition**|=**Unit** 159 +|=P00-05|Servo OFF shutdown|((( 180 180 Shutdown 181 181 182 182 setting 183 -)))|( % style="width:134px" %)(((163 +)))|((( 184 184 Effective 185 185 186 186 immediately 187 -)))| (% style="width:86px" %)0|(% style="width:70px"%)0to 1|(% style="width:347px" %)(((167 +)))|0|0 to 1|((( 188 188 * 0: Free shutdown, and the motor shaft remains free status. 189 189 * 1: Zero-speed shutdown, and the motor shaft remains free status. 190 190 )))|- ... ... @@ -203,12 +203,12 @@ 203 203 204 204 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 205 205 206 -|=(% scope="row" style="width: 89px;"%)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((186 +|=(% scope="row" %)**Function code**|=(% style="width: 143px;" %)**Name**|=(% style="width: 137px;" %)((( 207 207 **Setting method** 208 -)))|=(% style="width: 1 14px;" %)(((188 +)))|=(% style="width: 141px;" %)((( 209 209 **Effective time** 210 -)))|=(% style="width: 106px;" %)**Default value**|=(% style="width:84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**211 -|= (% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((190 +)))|=(% style="width: 84px;" %)**Default value**|=(% style="width: 100px;" %)**Range**|=**Definition**|=**Unit** 191 +|=P06-08|(% style="width:143px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|((( 212 212 * 0: OFF (not used) 213 213 * 01: S-ON servo enable 214 214 * 02: A-CLR fault and Warning Clear ... ... @@ -234,27 +234,27 @@ 234 234 * 24: Internal multi-segment position selection 4 235 235 * Others: reserved 236 236 )))|- 237 -|= (% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((217 +|=P06-09|(% style="width:143px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 238 238 Effective immediately 239 -)))|(% style="width: 106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((219 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 240 240 DI port input logic validity function selection. 241 241 242 242 * 0: Normally open input. Active low level (switch on); 243 243 * 1: Normally closed input. Active high level (switch off); 244 244 )))|- 245 -|= (% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((225 +|=P06-10|(% style="width:143px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 246 246 Effective immediately 247 -)))|(% style="width: 106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((227 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 248 248 Select the DI_3 port type to enable 249 249 250 250 * 0: Hardware DI_3 input terminal 251 251 * 1: virtual VDI_3 input terminal 252 252 )))|- 253 -|= (% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((233 +|=P06-11|(% style="width:143px" %)DI_4 channel function selection|(% style="width:137px" %)((( 254 254 Operation setting 255 -)))|(% style="width:1 14px" %)(((235 +)))|(% style="width:141px" %)((( 256 256 again Power-on 257 -)))|(% style="width: 106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((237 +)))|(% style="width:84px" %)4|(% style="width:100px" %)0 to 32|((( 258 258 * 0: OFF (not used) 259 259 * 01: SON Servo enable 260 260 * 02: A-CLR Fault and Warning Clear ... ... @@ -280,17 +280,17 @@ 280 280 * 24: Internal multi-segment position selection 4 281 281 * Others: reserved 282 282 )))|- 283 -|= (% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((263 +|=P06-12|(% style="width:143px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 284 284 Effective immediately 285 -)))|(% style="width: 106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((265 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 286 286 DI port input logic validity function selection. 287 287 288 288 * 0: Normally open input. Active low level (switch on); 289 289 * 1: Normally closed input. Active high level (switch off); 290 290 )))|- 291 -|= (% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((271 +|=P06-13|(% style="width:143px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 292 292 Effective immediately 293 -)))|(% style="width: 106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((273 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 294 294 Select the DI_4 port type to enable 295 295 296 296 * 0: Hardware DI_4 input terminal ... ... @@ -307,7 +307,7 @@ 307 307 308 308 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 309 309 310 - (% class="warning" %)|(((290 +|((( 311 311 (% style="text-align:center" %) 312 312 [[image:image-20220611151617-1.png]] 313 313 ))) ... ... @@ -330,11 +330,11 @@ 330 330 331 331 (% style="text-align:center" %) 332 332 ((( 333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)313 +(% class="wikigeneratedid" style="display:inline-block" %) 334 334 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]] 335 335 ))) 336 336 337 - (% class="warning" %)|(((317 +|((( 338 338 (% style="text-align:center" %) 339 339 [[image:image-20220611151642-2.png]] 340 340 ))) ... ... @@ -352,12 +352,12 @@ 352 352 353 353 Related function code is as below. 354 354 355 -|=(% scope="row" %)**DO function code**|= (% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((335 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=((( 356 356 **Effective time** 357 357 ))) 358 -|=144|( % style="width:241px" %)(((338 +|=144|((( 359 359 BRK-OFF Brake output 360 -)))| (% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again340 +)))|Output the signal indicates the servo motor brake release|Power-on again 361 361 362 362 Table 6-2 Relevant function codes for brake setting 363 363 ... ... @@ -399,8 +399,7 @@ 399 399 400 400 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__ 401 401 402 -(% class="warning" %)|((( 403 -(% style="text-align:center" %) 382 +|((( 404 404 [[image:image-20220611151705-3.png]] 405 405 ))) 406 406 |((( ... ... @@ -411,7 +411,7 @@ 411 411 412 412 (% style="text-align:center" %) 413 413 ((( 414 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)393 +(% class="wikigeneratedid" style="display:inline-block" %) 415 415 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]] 416 416 ))) 417 417 ... ... @@ -424,7 +424,7 @@ 424 424 425 425 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__. 426 426 427 - (% class="warning" %)|(((406 +|((( 428 428 (% style="text-align:center" %) 429 429 [[image:image-20220611151719-4.png]] 430 430 ))) ... ... @@ -442,7 +442,7 @@ 442 442 443 443 (% style="text-align:center" %) 444 444 ((( 445 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)424 +(% class="wikigeneratedid" style="display:inline-block" %) 446 446 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]] 447 447 ))) 448 448 ... ... @@ -452,7 +452,7 @@ 452 452 453 453 (% style="text-align:center" %) 454 454 ((( 455 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)434 +(% class="wikigeneratedid" style="display:inline-block" %) 456 456 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]] 457 457 ))) 458 458 ... ... @@ -462,18 +462,18 @@ 462 462 463 463 (% style="text-align:center" %) 464 464 ((( 465 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)444 +(% class="wikigeneratedid" style="display:inline-block" %) 466 466 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]] 467 467 ))) 468 468 469 469 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 470 470 471 -|=(% scope="row" style="width: 123px;"%)**Function code**|=(% style="width: 134px;" %)**Name**|=(((450 +|=(% scope="row" %)**Function code**|=**Name**|=((( 472 472 **Setting method** 473 473 )))|=((( 474 474 **Effective time** 475 475 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 476 -|= (% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((455 +|=P01-01|Control mode|((( 477 477 Operation setting 478 478 )))|((( 479 479 immediately Effective ... ... @@ -518,15 +518,8 @@ 518 518 519 519 Low-speed pulse instruction input 520 520 521 -|(% style="text-align:center" %) 522 -((( 523 -(% class="wikigeneratedid" style="display:inline-block" %) 524 -[[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]] 525 -)))|(% style="text-align:center" %) 526 -((( 527 -(% class="wikigeneratedid" style="display:inline-block" %) 528 -[[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]] 529 -))) 500 +|[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]] 501 +|VD2A and VD2B servo drives|VD2F servo drive 530 530 |(% colspan="2" %)Figure 6-7 Position instruction input setting 531 531 532 532 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__. ... ... @@ -533,9 +533,9 @@ 533 533 534 534 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 535 535 536 -|=(% scope="row" %)**Pulse method**|= (% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**537 -|=Open collector input| (% style="width:372px" %)200K|(% style="width:260px" %)24V538 -|=Differential input| (% style="width:372px" %)500K|(% style="width:260px" %)5V508 +|=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage** 509 +|=Open collector input|200K|24V 510 +|=Differential input|500K|5V 539 539 540 540 Table 6-12 Pulse input specifications 541 541 ... ... @@ -545,8 +545,8 @@ 545 545 546 546 (% style="text-align:center" %) 547 547 ((( 548 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)549 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg|| height="306" id="Iimage-20220707092615-5.jpeg"width="583"]]520 +(% class="wikigeneratedid" style="display:inline-block" %) 521 +[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]] 550 550 ))) 551 551 552 552 (% class="box infomessage" %) ... ... @@ -560,8 +560,8 @@ 560 560 561 561 (% style="text-align:center" %) 562 562 ((( 563 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)564 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height=" 432" id="Iimage-20220707092401-3.jpeg" width="679"]]535 +(% class="wikigeneratedid" style="display:inline-block" %) 536 +[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="530" id="Iimage-20220707092401-3.jpeg" width="834"]] 565 565 ))) 566 566 567 567 ... ... @@ -576,27 +576,27 @@ 576 576 577 577 (% style="text-align:center" %) 578 578 ((( 579 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)551 +(% class="wikigeneratedid" style="display:inline-block" %) 580 580 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]] 581 581 ))) 582 582 583 583 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 584 584 585 -|=**Function code**|= (% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((557 +|=**Function code**|=**Name**|=((( 586 586 **Setting method** 587 587 )))|=((( 588 588 **Effective time** 589 -)))|=**Default value**|= (% style="width: 87px;" %)**Range**|=(% colspan="2"style="width: 296px;"%)**Definition**|=**Unit**590 -|P00-13| (% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((561 +)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit** 562 +|P00-13|Maximum position pulse frequency|((( 591 591 Shutdown setting 592 592 )))|((( 593 593 Effective immediately 594 -)))|300| (% style="width:87px" %)1 to 500|(% colspan="2"style="width:296px"%)Set the maximum frequency of external pulse instruction|KHz595 -|(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px"%)Position pulse anti-interference level|(% rowspan="3"style="width:146px"%)(((566 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 567 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 596 596 Operation setting 597 597 )))|(% rowspan="3" %)((( 598 598 Power-on again 599 -)))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px"%)0 to 9|(% colspan="2"style="width:296px"%)(((571 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 600 600 Set the anti-interference level of external pulse instruction. 601 601 602 602 * 0: no filtering; ... ... @@ -619,16 +619,16 @@ 619 619 620 620 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 621 621 622 -|=(% scope="row" %)**Function code**|= (% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((594 +|=(% scope="row" %)**Function code**|=**Name**|=((( 623 623 **Setting method** 624 -)))|=( % style="width: 109px;" %)(((596 +)))|=((( 625 625 **Effective time** 626 -)))|= (% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**627 -|=P00-12| (% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((598 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 599 +|=P00-12|Position pulse type selection|((( 628 628 Operation setting 629 -)))|( % style="width:109px" %)(((601 +)))|((( 630 630 Power-on again 631 -)))| (% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((603 +)))|0|0 to 5|((( 632 632 * 0: direction + pulse (positive logic) 633 633 * 1: CW/CCW 634 634 * 2: A, B phase quadrature pulse (4 times frequency) ... ... @@ -639,26 +639,26 @@ 639 639 640 640 Table 6-14 Position pulse type selection parameter 641 641 642 -|=(% scope="row" %)**Pulse type selection**|= (% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**643 -|=0|( % style="width:200px" %)(((614 +|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse** 615 +|=0|((( 644 644 Direction + pulse 645 645 646 646 (Positive logic) 647 -)))|( % style="width:161px" %)(((619 +)))|((( 648 648 PULSE 649 649 650 650 SIGN 651 651 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]] 652 -|=1| (% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((624 +|=1|CW/CCW|((( 653 653 PULSE (CW) 654 654 655 655 SIGN (CCW) 656 656 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]] 657 -|=2|( % style="width:200px" %)(((629 +|=2|((( 658 658 AB phase orthogonal 659 659 660 660 pulse (4 times frequency) 661 -)))|( % style="width:161px" %)(((633 +)))|((( 662 662 PULSE (Phase A) 663 663 664 664 SIGN (Phase B) ... ... @@ -675,29 +675,29 @@ 675 675 676 676 Phase B is 90° ahead of Phase A 677 677 ))) 678 -|=3|( % style="width:200px" %)(((650 +|=3|((( 679 679 Direction + pulse 680 680 681 681 (Negative logic) 682 -)))|( % style="width:161px" %)(((654 +)))|((( 683 683 PULSE 684 684 685 685 SIGN 686 686 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]] 687 -|=4|( % style="width:200px" %)(((659 +|=4|((( 688 688 CW/CCW 689 689 690 690 (Negative logic) 691 -)))|( % style="width:161px" %)(((663 +)))|((( 692 692 PULSE (CW) 693 693 694 694 SIGN (CCW) 695 695 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]] 696 -|=5|( % style="width:200px" %)(((668 +|=5|((( 697 697 AB phase orthogonal 698 698 699 699 pulse (4 times frequency negative logic) 700 -)))|( % style="width:161px" %)(((672 +)))|((( 701 701 PULSE (Phase A) 702 702 703 703 SIGN (Phase B) ... ... @@ -725,7 +725,7 @@ 725 725 726 726 (% style="text-align:center" %) 727 727 ((( 728 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)700 +(% class="wikigeneratedid" style="display:inline-block" %) 729 729 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]] 730 730 ))) 731 731 ... ... @@ -781,9 +781,10 @@ 781 781 782 782 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 783 783 756 + 784 784 (% style="text-align:center" %) 785 785 ((( 786 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)759 +(% class="wikigeneratedid" style="display:inline-block" %) 787 787 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]] 788 788 ))) 789 789 ... ... @@ -793,11 +793,11 @@ 793 793 794 794 (% style="text-align:center" %) 795 795 ((( 796 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)769 +(% class="wikigeneratedid" style="display:inline-block" %) 797 797 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]] 798 798 ))) 799 799 800 - (% class="warning" %)|(((773 +|((( 801 801 (% style="text-align:center" %) 802 802 [[image:image-20220611151917-5.png]] 803 803 ))) ... ... @@ -831,7 +831,7 @@ 831 831 832 832 (% style="text-align:center" %) 833 833 ((( 834 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)807 +(% class="wikigeneratedid" style="display:inline-block" %) 835 835 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]] 836 836 ))) 837 837 ... ... @@ -843,29 +843,29 @@ 843 843 844 844 (% style="text-align:center" %) 845 845 ((( 846 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)819 +(% class="wikigeneratedid" style="display:inline-block" %) 847 847 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]] 848 848 ))) 849 849 850 850 (% style="text-align:center" %) 851 851 ((( 852 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)853 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png|| height="285" id="Iimage-20220608165032-14.png"width="734"]]825 +(% class="wikigeneratedid" style="display:inline-block" %) 826 +[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]] 854 854 ))) 855 855 856 856 **Run again from the start segment** 857 857 858 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively. 831 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively. 859 859 860 860 (% style="text-align:center" %) 861 861 ((( 862 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)835 +(% class="wikigeneratedid" style="display:inline-block" %) 863 863 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]] 864 864 ))) 865 865 866 866 (% style="text-align:center" %) 867 867 ((( 868 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)841 +(% class="wikigeneratedid" style="display:inline-block" %) 869 869 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]] 870 870 ))) 871 871 ... ... @@ -878,13 +878,13 @@ 878 878 |((( 879 879 (% style="text-align:center" %) 880 880 ((( 881 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)854 +(% class="wikigeneratedid" style="display:inline-block" %) 882 882 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]] 883 883 ))) 884 884 )))|((( 885 885 (% style="text-align:center" %) 886 886 ((( 887 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)860 +(% class="wikigeneratedid" style="display:inline-block" %) 888 888 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]] 889 889 ))) 890 890 ))) ... ... @@ -896,13 +896,13 @@ 896 896 |((( 897 897 (% style="text-align:center" %) 898 898 ((( 899 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)872 +(% class="wikigeneratedid" style="display:inline-block" %) 900 900 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]] 901 901 ))) 902 902 )))|((( 903 903 (% style="text-align:center" %) 904 904 ((( 905 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)878 +(% class="wikigeneratedid" style="display:inline-block" %) 906 906 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]] 907 907 ))) 908 908 ))) ... ... @@ -947,7 +947,7 @@ 947 947 948 948 (% style="text-align:center" %) 949 949 ((( 950 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)923 +(% class="wikigeneratedid" style="display:inline-block" %) 951 951 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]] 952 952 ))) 953 953 ... ... @@ -964,7 +964,7 @@ 964 964 ))) 965 965 966 966 (% style="text-align:center" %) 967 -[[image:image-20220611152020-6.png ||class="img-thumbnail"]]940 +[[image:image-20220611152020-6.png]] 968 968 969 969 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 970 970 ... ... @@ -979,7 +979,7 @@ 979 979 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 980 980 981 981 (% style="text-align:center" %) 982 -[[image:image-20220707094901-16.png ||class="img-thumbnail"]]955 +[[image:image-20220707094901-16.png]] 983 983 984 984 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! 985 985 ... ... @@ -987,8 +987,8 @@ 987 987 988 988 (% style="text-align:center" %) 989 989 ((( 990 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)991 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg|| height="458" id="Iimage-20220707100850-20.jpeg"width="1021"]]963 +(% class="wikigeneratedid" style="display:inline-block" %) 964 +[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]] 992 992 ))) 993 993 994 994 **lectronic gear ratio switch setting** ... ... @@ -1085,8 +1085,8 @@ 1085 1085 1086 1086 (% style="text-align:center" %) 1087 1087 ((( 1088 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1089 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png|| height="230" id="Iimage-20220608170455-23.png"width="514"]]1061 +(% class="wikigeneratedid" style="display:inline-block" %) 1062 +[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]] 1090 1090 ))) 1091 1091 1092 1092 |=(% scope="row" %)**Function code**|=**Name**|=((( ... ... @@ -1129,7 +1129,7 @@ 1129 1129 1130 1130 (% style="text-align:center" %) 1131 1131 ((( 1132 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1105 +(% class="wikigeneratedid" style="display:inline-block" %) 1133 1133 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]] 1134 1134 ))) 1135 1135 ... ... @@ -1139,8 +1139,8 @@ 1139 1139 1140 1140 (% style="text-align:center" %) 1141 1141 ((( 1142 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1143 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png|| height="331" id="Iimage-20220608170650-25.png"width="709"]]1115 +(% class="wikigeneratedid" style="display:inline-block" %) 1116 +[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]] 1144 1144 ))) 1145 1145 1146 1146 |=(% scope="row" %)**Function code**|=**Name**|=((( ... ... @@ -1187,7 +1187,7 @@ 1187 1187 1188 1188 (% style="text-align:center" %) 1189 1189 ((( 1190 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1163 +(% class="wikigeneratedid" style="display:inline-block" %) 1191 1191 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]] 1192 1192 ))) 1193 1193 ... ... @@ -1195,12 +1195,12 @@ 1195 1195 1196 1196 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1197 1197 1198 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 18 6px;" %)**Name**|=(% style="width: 128px;" %)(((1171 +|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 189px;" %)**Name**|=(% style="width: 125px;" %)((( 1199 1199 **Setting method** 1200 1200 )))|=(% style="width: 125px;" %)((( 1201 1201 **Effective time** 1202 1202 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit** 1203 -|=(% style="width: 121px;" %)P01-01|(% style="width:18 6px" %)Speed instruction source|(% style="width:128px" %)(((1176 +|=(% style="width: 121px;" %)P01-01|(% style="width:189px" %)Speed instruction source|(% style="width:125px" %)((( 1204 1204 Shutdown setting 1205 1205 )))|(% style="width:125px" %)((( 1206 1206 Effective immediately ... ... @@ -1433,8 +1433,8 @@ 1433 1433 1434 1434 (% style="text-align:center" %) 1435 1435 ((( 1436 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1437 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png|| height="524" id="Iimage-20220608170845-26.png"width="814"]]1409 +(% class="wikigeneratedid" style="display:inline-block" %) 1410 +[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]] 1438 1438 ))) 1439 1439 1440 1440 **Speed instruction source is internal speed instruction (P01-01=1)** ... ... @@ -1443,7 +1443,7 @@ 1443 1443 1444 1444 (% style="text-align:center" %) 1445 1445 ((( 1446 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1419 +(% class="wikigeneratedid" style="display:inline-block" %) 1447 1447 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]] 1448 1448 ))) 1449 1449 ... ... @@ -1451,7 +1451,7 @@ 1451 1451 1452 1452 (% style="text-align:center" %) 1453 1453 ((( 1454 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1427 +(% class="wikigeneratedid" style="display:inline-block" %) 1455 1455 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]] 1456 1456 ))) 1457 1457 ... ... @@ -1463,7 +1463,7 @@ 1463 1463 1464 1464 (% style="text-align:center" %) 1465 1465 ((( 1466 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1439 +(% class="wikigeneratedid" style="display:inline-block" %) 1467 1467 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]] 1468 1468 ))) 1469 1469 ... ... @@ -1488,12 +1488,12 @@ 1488 1488 1489 1489 (% style="text-align:center" %) 1490 1490 ((( 1491 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1464 +(% class="wikigeneratedid" style="display:inline-block" %) 1492 1492 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]] 1493 1493 ))) 1494 1494 1495 1495 (% style="text-align:center" %) 1496 -[[image:image-20220707103616-27.png ||class="img-thumbnail"]]1469 +[[image:image-20220707103616-27.png]] 1497 1497 1498 1498 |=(% scope="row" %)**Function code**|=**Name**|=((( 1499 1499 **Setting method** ... ... @@ -1588,7 +1588,7 @@ 1588 1588 1589 1589 (% style="text-align:center" %) 1590 1590 ((( 1591 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1564 +(% class="wikigeneratedid" style="display:inline-block" %) 1592 1592 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]] 1593 1593 ))) 1594 1594 ... ... @@ -1602,7 +1602,7 @@ 1602 1602 1603 1603 (% style="text-align:center" %) 1604 1604 ((( 1605 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1578 +(% class="wikigeneratedid" style="display:inline-block" %) 1606 1606 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]] 1607 1607 ))) 1608 1608 ... ... @@ -1642,7 +1642,7 @@ 1642 1642 1643 1643 (% style="text-align:center" %) 1644 1644 ((( 1645 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1618 +(% class="wikigeneratedid" style="display:inline-block" %) 1646 1646 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]] 1647 1647 ))) 1648 1648 ... ... @@ -1674,7 +1674,7 @@ 1674 1674 1675 1675 (% style="text-align:center" %) 1676 1676 ((( 1677 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1650 +(% class="wikigeneratedid" style="display:inline-block" %) 1678 1678 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]] 1679 1679 ))) 1680 1680 ... ... @@ -1706,18 +1706,18 @@ 1706 1706 1707 1707 (% style="text-align:center" %) 1708 1708 ((( 1709 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1682 +(% class="wikigeneratedid" style="display:inline-block" %) 1710 1710 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]] 1711 1711 ))) 1712 1712 1713 1713 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__. 1714 1714 1715 -|=(% scope="row" style="width: 147px;"%)**Function code**|=(% style="width: 184px;" %)**Name**|=(((1688 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1716 1716 **Setting method** 1717 1717 )))|=((( 1718 1718 **Effective time** 1719 1719 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1720 -|= (% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((1693 +|=P05-18|Speed approach signal threshold|((( 1721 1721 Operation setting 1722 1722 )))|((( 1723 1723 Effective immediately ... ... @@ -1738,7 +1738,7 @@ 1738 1738 1739 1739 (% style="text-align:center" %) 1740 1740 ((( 1741 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1714 +(% class="wikigeneratedid" style="display:inline-block" %) 1742 1742 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]] 1743 1743 ))) 1744 1744 ... ... @@ -1751,7 +1751,7 @@ 1751 1751 )))|=((( 1752 1752 **Effective time** 1753 1753 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1754 -|=P01-0 7|Torque instruction source|(((1727 +|=P01-08|Torque instruction source|((( 1755 1755 Shutdown setting 1756 1756 )))|((( 1757 1757 Effective immediately ... ... @@ -1786,7 +1786,7 @@ 1786 1786 1787 1787 (% style="text-align:center" %) 1788 1788 ((( 1789 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1762 +(% class="wikigeneratedid" style="display:inline-block" %) 1790 1790 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]] 1791 1791 ))) 1792 1792 ... ... @@ -1794,7 +1794,7 @@ 1794 1794 1795 1795 (% style="text-align:center" %) 1796 1796 ((( 1797 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1770 +(% class="wikigeneratedid" style="display:inline-block" %) 1798 1798 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]] 1799 1799 ))) 1800 1800 ... ... @@ -1806,7 +1806,7 @@ 1806 1806 1807 1807 (% style="text-align:center" %) 1808 1808 ((( 1809 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1782 +(% class="wikigeneratedid" style="display:inline-block" %) 1810 1810 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]] 1811 1811 ))) 1812 1812 ... ... @@ -1847,7 +1847,7 @@ 1847 1847 1848 1848 (% style="text-align:center" %) 1849 1849 ((( 1850 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1823 +(% class="wikigeneratedid" style="display:inline-block" %) 1851 1851 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]] 1852 1852 ))) 1853 1853 ... ... @@ -1859,7 +1859,7 @@ 1859 1859 1860 1860 (% style="text-align:center" %) 1861 1861 ((( 1862 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1835 +(% class="wikigeneratedid" style="display:inline-block" %) 1863 1863 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]] 1864 1864 ))) 1865 1865 ... ... @@ -1933,13 +1933,13 @@ 1933 1933 |((( 1934 1934 (% style="text-align:center" %) 1935 1935 ((( 1936 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1909 +(% class="wikigeneratedid" style="display:inline-block" %) 1937 1937 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]] 1938 1938 ))) 1939 1939 )))|((( 1940 1940 (% style="text-align:center" %) 1941 1941 ((( 1942 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1915 +(% class="wikigeneratedid" style="display:inline-block" %) 1943 1943 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]] 1944 1944 ))) 1945 1945 ))) ... ... @@ -1980,7 +1980,7 @@ 1980 1980 1981 1981 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__. 1982 1982 1983 -== Torque-related DO output functions == 1956 +== **Torque-related DO output functions** == 1984 1984 1985 1985 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid. 1986 1986 ... ... @@ -1989,27 +1989,26 @@ 1989 1989 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1990 1990 1991 1991 (% style="text-align:center" %) 1992 -((( 1993 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1994 -[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]] 1995 -))) 1965 +[[image:image-20220608173541-42.png]] 1996 1996 1997 - To use the torque arrival function, a DO terminal of theservo drive should be assigned to function 138 (T-COIN,torque arrival).The function codeparameters and related DO functioncodesare shown in __Table 6-49__ and __Table 6-50__.1967 +Figure 6-47 Torque arrival output diagram 1998 1998 1999 -|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)((( 1969 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1970 + 1971 +|**Function code**|**Name**|((( 2000 2000 **Setting method** 2001 -)))| =(% style="width: 124px;" %)(((1973 +)))|((( 2002 2002 **Effective time** 2003 -)))| =(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**2004 -| =P05-20|(% style="width:113px" %)(((1975 +)))|**Default value**|**Range**|**Definition**|**Unit** 1976 +|P05-20|((( 2005 2005 Torque arrival 2006 2006 2007 2007 threshold 2008 -)))|( % style="width:100px" %)(((1980 +)))|((( 2009 2009 Operation setting 2010 -)))|( % style="width:124px" %)(((1982 +)))|((( 2011 2011 Effective immediately 2012 -)))| (% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((1984 +)))|100|0 to 300|((( 2013 2013 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2014 2014 2015 2015 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; ... ... @@ -2016,20 +2016,21 @@ 2016 2016 2017 2017 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2018 2018 )))|% 2019 -| =P05-21|(% style="width:113px" %)(((1991 +|P05-21|((( 2020 2020 Torque arrival 2021 2021 2022 2022 hysteresis 2023 -)))|( % style="width:100px" %)(((1995 +)))|((( 2024 2024 Operation setting 2025 -)))|( % style="width:124px" %)(((1997 +)))|((( 2026 2026 Effective immediately 2027 -)))| (% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%1999 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2028 2028 2029 2029 Table 6-49 Torque arrival parameters 2030 2030 2031 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 2032 -|=138|((( 2003 + 2004 +|**DO function code**|**Function name**|**Function** 2005 +|138|((( 2033 2033 T-COIN torque arrival 2034 2034 )))|Used to determine whether the actual torque instruction has reached the set range 2035 2035 ... ... @@ -2039,28 +2039,35 @@ 2039 2039 2040 2040 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2041 2041 2042 -* Position mode⇔ Speed mode 2043 -* Position mode ⇔Torque mode 2044 -* Speed mode ⇔Torque mode 2015 +Position mode⇔ Speed mode 2045 2045 2017 +Position mode ⇔Torque mode 2018 + 2019 +Speed mode ⇔Torque mode 2020 + 2046 2046 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2047 2047 2048 -| =(% scope="row" %)**Function code**|=**Name**|=(((2023 +|**Function code**|**Name**|((( 2049 2049 **Setting method** 2050 -)))| =(((2025 +)))|((( 2051 2051 **Effective time** 2052 -)))| =**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**2053 -| =P00-01|Control mode|(((2027 +)))|**Default value**|**Range**|**Definition**|**Unit** 2028 +|P00-01|Control mode|((( 2054 2054 Shutdown setting 2055 2055 )))|((( 2056 2056 Shutdown setting 2057 -)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)((( 2058 -* 1: Position control 2059 -* 2: Speed control 2060 -* 3: Torque control 2061 -* 4: Position/speed mixed control 2062 -* 5: Position/torque mixed control 2063 -* 6: Speed/torque mixed control 2032 +)))|1|1 to 6|((( 2033 +1: Position control 2034 + 2035 +2: Speed control 2036 + 2037 +3: Torque control 2038 + 2039 +4: Position/speed mixed control 2040 + 2041 +5: Position/torque mixed control 2042 + 2043 +6: Speed/torque mixed control 2064 2064 )))|- 2065 2065 2066 2066 Table 6-51 Mixed control mode parameters ... ... @@ -2067,38 +2067,35 @@ 2067 2067 2068 2068 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2069 2069 2070 -|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function** 2071 -|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2072 -(% style="margin-left:auto; margin-right:auto; width:585px" %) 2073 -|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode** 2074 -|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode 2075 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2076 -|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2077 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2078 -|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2079 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode 2050 +|**DI function code**|**Name**|**Function name**|**Function** 2051 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2052 +|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2053 +|(% rowspan="2" %)4|Valid|Speed mode 2054 +|invalid|Position mode 2055 +|(% rowspan="2" %)5|Valid|Torque mode 2056 +|invalid|Position mode 2057 +|(% rowspan="2" %)6|Valid|Torque mode 2058 +|invalid|Speed mode 2080 2080 ))) 2081 2081 2082 2082 Table 6-52 Description of DI function codes in control mode 2083 2083 2084 -(% class="box infomessage" %) 2085 -((( 2086 2086 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother. 2087 -))) 2088 2088 2089 2089 = **Absolute system** = 2090 2090 2091 -== Overview == 2067 +== **Overview** == 2092 2092 2093 2093 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations. 2094 2094 2095 2095 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position. 2096 2096 2097 -== Single-turn absolute value system == 2073 +== **Single-turn absolute value system** == 2098 2098 2099 2099 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2100 2100 2101 -|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range** 2077 + 2078 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2102 2102 |A1 (single-turn magnetic encoder)|17|0 to 131071 2103 2103 2104 2104 Table 6-53 Single-turn absolute encoder information ... ... @@ -2106,18 +2106,17 @@ 2106 2106 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2107 2107 2108 2108 (% style="text-align:center" %) 2109 -((( 2110 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2111 -[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]] 2112 -))) 2086 +[[image:image-20220608173618-43.png]] 2113 2113 2114 - == Multi-turnabsolutevaluesystem ==2088 +Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position 2115 2115 2090 +== **Multi-turn absolute value system** == 2091 + 2116 2116 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2117 2117 2118 -| =(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**2119 -| =C1 (multi-turn magnetic encoder)|17|0 to 1310712120 -| =D2 (multi-turn Optical encoder)|23|0 to 83886072094 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2095 +|C1 (multi-turn magnetic encoder)|17|0 to 131071 2096 +|D2 (multi-turn Optical encoder)|23|0 to 8388607 2121 2121 2122 2122 Table 6-54 Multi-turn absolute encoder information 2123 2123 ... ... @@ -2124,21 +2124,20 @@ 2124 2124 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2125 2125 2126 2126 (% style="text-align:center" %) 2127 -((( 2128 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2129 -[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]] 2130 -))) 2103 +[[image:image-20220608173701-44.png]] 2131 2131 2132 - ==Related functionsandparameters==2105 +Figure 6-49 The relationship between encoder feedback position and rotating load position 2133 2133 2107 +== **Related functions and parameters** == 2108 + 2134 2134 **Encoder feedback data** 2135 2135 2136 2136 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2137 2137 2138 -| =(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**2139 -| =U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit2140 -| =U0-55|Universal|Rotations number of absolute encoder|circle|16-bit2141 -| =U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit2113 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2114 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2115 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2116 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2142 2142 2143 2143 Table 6-55 Encoder feedback data 2144 2144 ... ... @@ -2146,28 +2146,26 @@ 2146 2146 2147 2147 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30. 2148 2148 2149 -| =(% scope="row" %)**Function code**|=**Name**|=(((2124 +|**Function code**|**Name**|((( 2150 2150 **Setting** 2151 2151 2152 2152 **method** 2153 -)))| =(((2128 +)))|((( 2154 2154 **Effective** 2155 2155 2156 2156 **time** 2157 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2158 -|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2159 -* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2160 -* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2132 +)))|**Default value**|**Range**|**Definition**|**Unit** 2133 +|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2134 +0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2135 + 2136 +1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2161 2161 )))|- 2162 2162 2163 2163 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur. 2164 2164 2165 -(% class="box infomessage" %) 2166 -((( 2167 2167 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death. 2168 -))) 2169 2169 2170 -== Absolute value system encoder battery box use precautions. == 2143 +== **Absolute value system encoder battery box use precautions**. == 2171 2171 2172 2172 **Cautions** 2173 2173 ... ... @@ -2174,11 +2174,10 @@ 2174 2174 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2175 2175 2176 2176 (% style="text-align:center" %) 2177 -((( 2178 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2179 -[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]] 2180 -))) 2150 +[[image:image-20220707111333-28.png]] 2181 2181 2152 +Figure 6-50 the encoder battery box 2153 + 2182 2182 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. 2183 2183 2184 2184 **Replace the battery** ... ... @@ -2194,19 +2194,20 @@ 2194 2194 2195 2195 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2196 2196 2197 -| =(% scope="row" %)**Function code**|=**Name**|=(((2169 +|**Function code**|**Name**|((( 2198 2198 **Setting method** 2199 -)))| =(((2171 +)))|((( 2200 2200 **Effective time** 2201 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2202 -| =P10-06|Multi-turn absolute encoder reset|(((2173 +)))|**Default value**|**Range**|**Definition**|**Unit** 2174 +|P10-06|Multi-turn absolute encoder reset|((( 2203 2203 Shutdown setting 2204 2204 )))|((( 2205 2205 Effective immediately 2206 2206 )))|0|0 to 1|((( 2207 -* 0: No operation 2208 -* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2179 +0: No operation 2209 2209 2181 +1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2182 + 2210 2210 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2211 2211 )))|- 2212 2212 ... ... @@ -2214,7 +2214,7 @@ 2214 2214 2215 2215 **Battery selection** 2216 2216 2217 -| =(% scope="row" style="width:;" %)**Battery selection specification**|=(% style="width:;" %)**Item**|=(% style="width:;" %)**Value**2190 +|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value** 2218 2218 |(% rowspan="4" style="width:361px" %)((( 2219 2219 Nominal Voltage: 3.6V 2220 2220 ... ... @@ -2242,108 +2242,111 @@ 2242 2242 2243 2243 = **Other functions** = 2244 2244 2245 -== VDI == 2218 +== **VDI** == 2246 2246 2247 2247 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use. 2248 2248 2249 -(% class="box infomessage" %) 2250 -((( 2251 2251 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate). 2252 -))) 2253 2253 2254 2254 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2255 2255 2226 + 2256 2256 (% style="text-align:center" %) 2257 -((( 2258 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2259 -[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]] 2260 -))) 2228 +[[image:image-20220608173804-46.png]] 2261 2261 2262 -|=(% scope="row" %)**Function code**|=**Name**|=((( 2230 +Figure 6-51 VDI_1 setting steps 2231 + 2232 +|**Function code**|**Name**|((( 2263 2263 **Setting method** 2264 -)))| =(((2234 +)))|((( 2265 2265 **Effective time** 2266 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2267 -| =P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((2236 +)))|**Default value**|**Range**|**Definition**|**Unit** 2237 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2268 2268 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2269 2269 2270 2270 VDI_1 input level: 2271 2271 2272 -* 0: low level 2273 -* 1: high level 2242 +0: low level 2243 + 2244 +1: high level 2274 2274 )))|- 2275 -| =P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((2246 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2276 2276 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2277 2277 2278 2278 VDI_2 input level: 2279 2279 2280 -* 0: low level 2281 -* 1: high level 2251 +0: low level 2252 + 2253 +1: high level 2282 2282 )))|- 2283 -| =P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((2255 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2284 2284 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2285 2285 2286 2286 VDI_3 input level: 2287 2287 2288 -* 0: low level 2289 -* 1: high level 2260 +0: low level 2261 + 2262 +1: high level 2290 2290 )))|- 2291 -| =P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((2264 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2292 2292 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2293 2293 2294 2294 VDI_4 input level: 2295 2295 2296 -* 0: low level 2297 -* 1: high level 2269 +0: low level 2270 + 2271 +1: high level 2298 2298 )))|- 2299 -| =P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((2273 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2300 2300 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2301 2301 2302 2302 VDI_5 input level: 2303 2303 2304 -* 0: low level 2305 -* 1: high level 2278 +0: low level 2279 + 2280 +1: high level 2306 2306 )))|- 2307 -| =P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((2282 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2308 2308 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2309 2309 2310 2310 VDI_6 input level: 2311 2311 2312 -* 0: low level 2313 -* 1: high level 2287 +0: low level 2288 + 2289 +1: high level 2314 2314 )))|- 2315 -| =P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((2291 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2316 2316 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2317 2317 2318 2318 VDI_7 input level: 2319 2319 2320 -* 0: low level 2321 -* 1: high level 2296 +0: low level 2297 + 2298 +1: high level 2322 2322 )))|- 2323 -| =P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((2300 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2324 2324 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2325 2325 2326 2326 VDI_8 input level: 2327 2327 2328 -* 0: low level 2329 -* 1: high level 2305 +0: low level 2306 + 2307 +1: high level 2330 2330 )))|- 2331 2331 2332 2332 Table 6-57 Virtual VDI parameters 2333 2333 2334 -(% class="box infomessage" %) 2335 -((( 2336 2336 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 2337 -))) 2338 2338 2339 -== Port filtering time == 2314 +== **Port filtering time** == 2340 2340 2341 2341 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2342 2342 2343 -|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration** 2344 -|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2345 -|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2346 2346 2319 +|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration** 2320 +|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2321 +|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2322 + 2347 2347 Table 6-58 DI terminal channel logic selection 2348 2348 2349 2349 == **VDO** == ... ... @@ -2353,49 +2353,51 @@ 2353 2353 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2354 2354 2355 2355 (% style="text-align:center" %) 2356 -((( 2357 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2358 -[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]] 2359 -))) 2332 +[[image:image-20220608173957-48.png]] 2360 2360 2334 +Figure 6-52 VDO_2 setting steps 2361 2361 2362 -| =(% scope="row" %)**Function code**|=**Name**|=(((2336 +|**Function code**|**Name**|((( 2363 2363 **Setting method** 2364 -)))| =(((2338 +)))|((( 2365 2365 **Effective time** 2366 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2367 -| =P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((2340 +)))|**Default value**|**Range**|**Definition**|**Unit** 2341 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2368 2368 VDO_1 output level: 2369 2369 2370 -* 0: low level 2371 -* 1: high level 2344 +0: low level 2345 + 2346 +1: high level 2372 2372 )))|- 2373 -| =P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((2348 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2374 2374 VDO_2 output level: 2375 2375 2376 -* 0: low level 2377 -* 1: high level 2351 +0: low level 2352 + 2353 +1: high level 2378 2378 )))|- 2379 -| =P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((2355 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2380 2380 VDO_3 output level: 2381 2381 2382 -* 0: low level 2383 -* 1: high level 2358 +0: low level 2359 + 2360 +1: high level 2384 2384 )))|- 2385 -| =P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((2362 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2386 2386 VDO_4 output level: 2387 2387 2388 -* 0: low level 2389 -* 1: high level 2365 +0: low level 2366 + 2367 +1: high level 2390 2390 )))|- 2391 2391 2392 2392 Table 6-59 Communication control DO function parameters 2393 2393 2394 -| =(% scope="row" %)**DO function number**|=**Function name**|=**Function**2395 -| =145|COM_VDO1 communication VDO1 output|Use communication VDO2396 -| =146|COM_VDO1 communication VDO2 output|Use communication VDO2397 -| =147|COM_VDO1 communication VDO3 output|Use communication VDO2398 -| =148|COM_VDO1 communication VDO4output|Use communication VDO2372 +|**DO function number**|**Function name**|**Function** 2373 +|145|COM_VDO1 communication VDO1 output|Use communication VDO 2374 +|146|COM_VDO1 communication VDO2 output|Use communication VDO 2375 +|147|COM_VDO1 communication VDO3 output|Use communication VDO 2376 +|148|COM_VDO1 communication VDO4output|Use communication VDO 2399 2399 2400 2400 Table 6-60 VDO function number 2401 2401 ... ... @@ -2403,16 +2403,16 @@ 2403 2403 2404 2404 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate). 2405 2405 2406 -== Motor overload protection == 2384 +== **Motor overload protection** == 2407 2407 2408 2408 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2409 2409 2410 -| =(% scope="row" %)**Function code**|=**Name**|=(((2388 +|**Function code**|**Name**|((( 2411 2411 **Setting method** 2412 -)))| =(((2390 +)))|((( 2413 2413 **Effective time** 2414 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2415 -| =P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((2392 +)))|**Default value**|**Range**|**Definition**|**Unit** 2393 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2416 2416 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2417 2417 2418 2418 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled