Changes for page 06 Operation

Last modified by Iris on 2025/08/08 14:40

From version 58.1
edited by Jim(Forgotten)
on 2023/02/06 11:22
Change comment: There is no comment for this version
To version 53.4
edited by Stone Wu
on 2022/07/29 10:04
Change comment: Update document after refactoring.

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Jim
1 +XWiki.Stone
Content
... ... @@ -2,67 +2,57 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
5 +|=(% scope="row" %)**No.**|=**Content**
6 6  |=(% colspan="2" %)Wiring
7 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 -|=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 -|=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|=5|Servo drive and servo motor must be grounded reliably.
12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|=7|The force of all cables is within the specified range.
14 +|=8|The wiring terminals have been insulated.
15 15  |=(% colspan="2" %)Environment and Machinery
16 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
22 -== Power-on ==
22 +== **Power-on** ==
23 23  
24 -**Connect the main circuit power supply**
24 +**(1) Connect the main circuit power supply**
25 25  
26 26  After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27 27  
28 -If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault.
29 29  
30 -**Set the servo drive enable (S-ON) to invalid (OFF)**
30 +**(2) Set the servo drive enable (S-ON) to invalid (OFF)**
31 31  
32 -== Jog operation ==
32 +== **Jog operation** ==
33 33  
34 34  Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35 35  
36 -**Panel jog operation**
36 +**(1) Panel jog operation**
37 37  
38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
39 39  
40 -**Jog operation of servo debugging platform**
40 +**(2) Jog operation of servo debugging platform**
41 41  
42 42  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43 43  
44 +
45 +
44 44  |=(% scope="row" %)**Function code**|=**Name**|=(((
45 45  **Setting method**
46 46  )))|=(((
47 47  **Effective time**
48 48  )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 -|=(((
50 -P10-01
51 -)))|(((
52 -JOG speed
53 -)))|(((
51 +|=P10-01|JOG speed|(((
54 54  Operation setting
55 55  )))|(((
56 56  Effective immediately
57 -)))|(((
58 -100
59 -)))|(((
60 -0 to 3000
61 -)))|(((
62 -JOG speed
63 -)))|(((
64 -rpm
65 -)))
55 +)))|100|0 to 3000|JOG speed|rpm
66 66  
67 67  Table 6-2 JOG speed parameter
68 68  
... ... @@ -70,24 +70,18 @@
70 70  
71 71  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72 72  
63 +
73 73  |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 -|=(((
75 -P00-04
76 -)))|(((
77 -Rotation direction
78 -)))|(((
65 +|=P00-04|Rotation direction|(((
79 79  Shutdown setting
80 80  )))|(((
81 81  Effective immediately
82 -)))|(((
83 -0
84 -)))|(((
85 -0 to 1
86 -)))|(((
69 +)))|0|0 to 1|(((
87 87  Forward rotation: Face the motor shaft to watch
88 88  
89 -* 0: standard setting (CW is forward rotation)
90 -* 1: reverse mode (CCW is forward rotation)
72 +0: standard setting (CW is forward rotation)
73 +
74 +1: reverse mode (CCW is forward rotation)
91 91  )))|-
92 92  
93 93  Table 6-3 Rotation direction parameters** **
... ... @@ -101,30 +101,33 @@
101 101  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 102  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103 103  
104 -|=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
88 +|=(% scope="row" %)**Function code**|=**Name**|=(((
105 105  **Setting method**
106 -)))|=(% style="width: 126px;" %)(((
90 +)))|=(((
107 107  **Effective time**
108 108  )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 -|=P00-09|Braking resistor setting|(% style="width:118px" %)(((
93 +|=P00-09|Braking resistor setting|(((
110 110  Operation setting
111 -)))|(% style="width:126px" %)(((
95 +)))|(((
112 112  Effective immediately
113 113  )))|0|0 to 3|(((
114 -* 0: use built-in braking resistor
115 -* 1: use external braking resistor and natural cooling
116 -* 2: use external braking resistor and forced air cooling; (cannot be set)
117 -* 3: No braking resistor is used, it is all absorbed by capacitor.
98 +0: use built-in braking resistor
99 +
100 +1: use external braking resistor and natural cooling
101 +
102 +2: use external braking resistor and forced air cooling; (cannot be set)
103 +
104 +3: No braking resistor is used, it is all absorbed by capacitor.
118 118  )))|-
119 -(% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 -|=P00-10|External braking resistor value|(% style="width:118px" %)(((
106 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
107 +|=P00-10|External braking resistor value|(((
121 121  Operation setting
122 -)))|(% style="width:126px" %)(((
109 +)))|(((
123 123  Effective immediately
124 124  )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 -|=P00-11|External braking resistor power|(% style="width:118px" %)(((
112 +|=P00-11|External braking resistor power|(((
126 126  Operation setting
127 -)))|(% style="width:126px" %)(((
114 +)))|(((
128 128  Effective immediately
129 129  )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130 130  
... ... @@ -132,70 +132,73 @@
132 132  
133 133  == **Servo operation** ==
134 134  
135 -**Set the servo enable (S-ON) to valid (ON)**
122 +**(1) Set the servo enable (S-ON) to valid (ON)**
136 136  
137 137  The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138 138  
139 139  S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140 140  
141 -**Input the instruction and the motor rotates**
128 +**(2) Input the instruction and the motor rotates**
142 142  
143 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
130 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
144 144  
145 -**Timing diagram of power on**
132 +**(3) Timing diagram of power on**
146 146  
147 -(% style="text-align:center" %)
148 -(((
149 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 -[[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 -)))
152 152  
153 -== Servo shutdown ==
135 +[[image:image-20220608163014-1.png]]
154 154  
155 -According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
137 +Figure 6-1 Timing diagram of power on
156 156  
157 -|=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 -|=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 -|=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
139 +== **Servo shutdown** ==
160 160  
141 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__.
142 +
143 +
144 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
145 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
146 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
147 +
161 161  Table 6-5 Comparison of two shutdown modes
162 162  
163 -|=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 -|=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165 165  
151 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
152 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
153 +
166 166  Table 6-6 Comparison of two shutdown status
167 167  
168 -**Servo enable (S-ON) OFF shutdown**
156 +**(1) Servo enable (S-ON) OFF shutdown**
169 169  
170 170  The related parameters of the servo OFF shutdown mode are shown in the table below.
171 171  
172 -|=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
160 +
161 +|=(% scope="row" %)**Function code**|=**Name**|=(((
173 173  **Setting method**
174 -)))|=(% style="width: 134px;" %)(((
163 +)))|=(((
175 175  **Effective time**
176 -)))|=(% style="width: 86px;" %)(((
165 +)))|=(((
177 177  **Default value**
178 -)))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 -|=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
167 +)))|=**Range**|=**Definition**|=**Unit**
168 +|=P00-05|Servo OFF shutdown|(((
180 180  Shutdown
181 181  
182 182  setting
183 -)))|(% style="width:134px" %)(((
172 +)))|(((
184 184  Effective
185 185  
186 186  immediately
187 -)))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 -* 0: Free shutdown, and the motor shaft remains free status.
189 -* 1: Zero-speed shutdown, and the motor shaft remains free status.
176 +)))|0|0 to 1|(((
177 +0: Free shutdown, and the motor shaft remains free status.
178 +
179 +1: Zero-speed shutdown, and the motor shaft remains free status.
190 190  )))|-
191 191  
192 -Table 6-7 Servo OFF shutdown mode parameters details
182 +Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
193 193  
194 -**Emergency shutdown**
184 +**(2) Emergency shutdown**
195 195  
196 196  It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
197 197  
198 -**Overtravel shutdown**
188 +**(3) Overtravel shutdown**
199 199  
200 200  Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
201 201  
... ... @@ -203,98 +203,149 @@
203 203  
204 204  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
205 205  
206 -|=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
196 +
197 +|=(% scope="row" %)**Function code**|=**Name**|=(((
207 207  **Setting method**
208 -)))|=(% style="width: 114px;" %)(((
199 +)))|=(((
209 209  **Effective time**
210 -)))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
211 -|=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
212 -* 0: OFF (not used)
213 -* 01: S-ON servo enable
214 -* 02: A-CLR fault and Warning Clear
215 -* 03: POT forward drive prohibition
216 -* 04: NOT Reverse drive prohibition
217 -* 05: ZCLAMP Zero speed
218 -* 06: CL Clear deviation counter
219 -* 07: C-SIGN Inverted instruction
220 -* 08: E-STOP Emergency stop
221 -* 09: GEAR-SEL Electronic Gear Switch 1
222 -* 10: GAIN-SEL gain switch
223 -* 11: INH Instruction pulse prohibited input
224 -* 12: VSSEL Vibration control switch input
225 -* 13: INSPD1 Internal speed instruction selection 1
226 -* 14: INSPD2 Internal speed instruction selection 2
227 -* 15: INSPD3 Internal speedinstruction selection 3
228 -* 16: J-SEL inertia ratio switch (not implemented yet)
229 -* 17: MixModesel mixed mode selection
230 -* 20: Internal multi-segment position enable signal
231 -* 21: Internal multi-segment position selection 1
232 -* 22: Internal multi-segment position selection 2
233 -* 23: Internal multi-segment position selection 3
234 -* 24: Internal multi-segment position selection 4
235 -* Others: reserved
201 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
202 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
203 +0: OFF (not used)
204 +
205 +01: S-ON servo enable
206 +
207 +02: A-CLR fault and Warning Clear
208 +
209 +03: POT forward drive prohibition
210 +
211 +04: NOT Reverse drive prohibition
212 +
213 +05: ZCLAMP Zero speed
214 +
215 +06: CL Clear deviation counter
216 +
217 +07: C-SIGN Inverted instruction
218 +
219 +08: E-STOP Emergency stop
220 +
221 +09: GEAR-SEL Electronic Gear Switch 1
222 +
223 +10: GAIN-SEL gain switch
224 +
225 +11: INH Instruction pulse prohibited input
226 +
227 +12: VSSEL Vibration control switch input
228 +
229 +13: INSPD1 Internal speed instruction selection 1
230 +
231 +14: INSPD2 Internal speed instruction selection 2
232 +
233 +15: INSPD3 Internal speedinstruction selection 3
234 +
235 +16: J-SEL inertia ratio switch (not implemented yet)
236 +
237 +17: MixModesel mixed mode selection
238 +
239 +20: Internal multi-segment position enable signal
240 +
241 +21: Internal multi-segment position selection 1
242 +
243 +22: Internal multi-segment position selection 2
244 +
245 +23: Internal multi-segment position selection 3
246 +
247 +24: Internal multi-segment position selection 4
248 +
249 +Others: reserved
236 236  )))|-
237 -|=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
251 +|=P06-09|DI_3 channel logic selection|Operation setting|(((
238 238  Effective immediately
239 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
253 +)))|0|0 to 1|(((
240 240  DI port input logic validity function selection.
241 241  
242 -* 0: Normally open input. Active low level (switch on);
243 -* 1: Normally closed input. Active high level (switch off);
256 +0: Normally open input. Active low level (switch on);
257 +
258 +1: Normally closed input. Active high level (switch off);
244 244  )))|-
245 -|=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
260 +|=P06-10|DI_3 input source selection|Operation setting|(((
246 246  Effective immediately
247 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
262 +)))|0|0 to 1|(((
248 248  Select the DI_3 port type to enable
249 249  
250 -* 0: Hardware DI_3 input terminal
251 -* 1: virtual VDI_3 input terminal
265 +0: Hardware DI_3 input terminal
266 +
267 +1: virtual VDI_3 input terminal
252 252  )))|-
253 -|=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
269 +|=P06-11|DI_4 channel function selection|(((
254 254  Operation setting
255 -)))|(% style="width:114px" %)(((
271 +)))|(((
256 256  again Power-on
257 -)))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 -* 0: OFF (not used)
259 -* 01: SON Servo enable
260 -* 02: A-CLR Fault and Warning Clear
261 -* 03: POT Forward drive prohibition
262 -* 04: NOT Reverse drive prohibition
263 -* 05: ZCLAMP Zero speed
264 -* 06: CL Clear deviation counter
265 -* 07: C-SIGN Inverted instruction
266 -* 08: E-STOP Emergency shutdown
267 -* 09: GEAR-SEL Electronic Gear Switch 1
268 -* 10: GAIN-SEL gain switch
269 -* 11: INH Instruction pulse prohibited input
270 -* 12: VSSEL Vibration control switch input
271 -* 13: INSPD1 Internal speed instruction selection 1
272 -* 14: INSPD2 Internal speed instruction selection 2
273 -* 15: INSPD3 Internal speed instruction selection 3
274 -* 16: J-SEL inertia ratio switch (not implemented yet)
275 -* 17: MixModesel mixed mode selection
276 -* 20: Internal multi-segment position enable signal
277 -* 21: Internal multi-segment position selection 1
278 -* 22: Internal multi-segment position selection 2
279 -* 23: Internal multi-segment position selection 3
280 -* 24: Internal multi-segment position selection 4
281 -* Others: reserved
273 +)))|4|0 to 32|(((
274 +0 off (not used)
275 +
276 +01: SON Servo enable
277 +
278 +02: A-CLR Fault and Warning Clear
279 +
280 +03: POT Forward drive prohibition
281 +
282 +04: NOT Reverse drive prohibition
283 +
284 +05: ZCLAMP Zero speed
285 +
286 +06: CL Clear deviation counter
287 +
288 +07: C-SIGN Inverted instruction
289 +
290 +08: E-STOP Emergency shutdown
291 +
292 +09: GEAR-SEL Electronic Gear Switch 1
293 +
294 +10: GAIN-SEL gain switch
295 +
296 +11: INH Instruction pulse prohibited input
297 +
298 +12: VSSEL Vibration control switch input
299 +
300 +13: INSPD1 Internal speed instruction selection 1
301 +
302 +14: INSPD2 Internal speed instruction selection 2
303 +
304 +15: INSPD3 Internal speed instruction selection 3
305 +
306 +16: J-SEL inertia ratio switch (not implemented yet)
307 +
308 +17: MixModesel mixed mode selection
309 +
310 +20: Internal multi-segment position enable signal
311 +
312 +21: Internal multi-segment position selection 1
313 +
314 +22: Internal multi-segment position selection 2
315 +
316 +23: Internal multi-segment position selection 3
317 +
318 +24: Internal multi-segment position selection 4
319 +
320 +Others: reserved
282 282  )))|-
283 -|=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
322 +|=P06-12|DI_4 channel logic selection|Operation setting|(((
284 284  Effective immediately
285 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
324 +)))|0|0 to 1|(((
286 286  DI port input logic validity function selection.
287 287  
288 -* 0: Normally open input. Active low level (switch on);
289 -* 1: Normally closed input. Active high level (switch off);
327 +0: Normally open input. Active low level (switch on);
328 +
329 +1: Normally closed input. Active high level (switch off);
290 290  )))|-
291 -|=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
331 +|=P06-13|DI_4 input source selection|Operation setting|(((
292 292  Effective immediately
293 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
333 +)))|0|0 to 1|(((
294 294  Select the DI_4 port type to enable
295 295  
296 -* 0: Hardware DI_4 input terminal
297 -* 1: virtual VDI_4 input terminal
336 +0: Hardware DI_4 input terminal
337 +
338 +1: virtual VDI_4 input terminal
298 298  )))|-
299 299  
300 300  Table 6-8 DI3 and DI4 channel parameters
... ... @@ -303,12 +303,12 @@
303 303  
304 304  When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
305 305  
306 -== Brake device ==
347 +== **Brake device** ==
307 307  
308 308  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
309 309  
310 -(% class="warning" %)|(((
311 -(% style="text-align:center" %)
351 +
352 +|(((
312 312  [[image:image-20220611151617-1.png]]
313 313  )))
314 314  |(((
... ... @@ -323,19 +323,17 @@
323 323  ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
324 324  )))
325 325  
326 -**Wiring of brake device**
367 +**(1) Wiring of brake device**
327 327  
328 -The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
369 +The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
329 329  
330 330  
331 -(% style="text-align:center" %)
332 -(((
333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 -[[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
335 -)))
372 +[[image:image-20220608163136-2.png]]
336 336  
337 -(% class="warning" %)|(((
338 -(% style="text-align:center" %)
374 +Figure 6-2 VD2B servo drive brake wiring
375 +
376 +
377 +|(((
339 339  [[image:image-20220611151642-2.png]]
340 340  )))
341 341  |(((
... ... @@ -346,21 +346,23 @@
346 346  ✎It is recommended to use cables above 0.5 mm².
347 347  )))
348 348  
349 -**Brake software setting**
388 +**(2) Brake software setting**
350 350  
351 351  For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
352 352  
353 353  Related function code is as below.
354 354  
355 -|=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
394 +
395 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
356 356  **Effective time**
357 357  )))
358 -|=144|(% style="width:241px" %)(((
398 +|=144|(((
359 359  BRK-OFF Brake output
360 -)))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
400 +)))|Output the signal indicates the servo motor brake release|Power-on again
361 361  
362 362  Table 6-2 Relevant function codes for brake setting
363 363  
404 +
364 364  |=(% scope="row" %)**Function code**|=**Name**|=(((
365 365  **Setting method**
366 366  )))|=(((
... ... @@ -391,16 +391,16 @@
391 391  
392 392  According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
393 393  
394 -**Servo drive brake timing in normal state**
435 +**(3) Servo drive brake timing in normal state**
395 395  
396 396  The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
397 397  
398 -* Brake timing when servo motor is stationary
439 +1) Brake timing when servo motor is stationary
399 399  
400 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
441 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__
401 401  
402 -(% class="warning" %)|(((
403 -(% style="text-align:center" %)
443 +
444 +|(((
404 404  [[image:image-20220611151705-3.png]]
405 405  )))
406 406  |(((
... ... @@ -409,23 +409,18 @@
409 409  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
410 410  )))
411 411  
412 -(% style="text-align:center" %)
413 -(((
414 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
415 -[[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
416 -)))
453 +[[image:image-20220608163304-3.png]]
417 417  
418 -(% class="box infomessage" %)
419 -(((
455 +Figure 6-3 Brake Timing of when the motor is stationary
456 +
420 420  ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
421 -)))
422 422  
423 -* The brake timing when servo motor rotates
459 +2) The brake timing when servo motor rotates
424 424  
425 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
461 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__.
426 426  
427 -(% class="warning" %)|(((
428 -(% style="text-align:center" %)
463 +
464 +|(((
429 429  [[image:image-20220611151719-4.png]]
430 430  )))
431 431  |(((
... ... @@ -440,40 +440,37 @@
440 440  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
441 441  )))
442 442  
443 -(% style="text-align:center" %)
444 -(((
445 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
446 -[[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
447 -)))
479 +[[image:image-20220608163425-4.png]]
448 448  
449 -**Brake timing when the servo drive fails**
481 +Figure 6-4 Brake timing when the motor rotates
450 450  
483 +**(4) Brake timing when the servo drive fails**
484 +
451 451  The brake timing (free shutdown) in the fault status is as follows.
452 452  
453 -(% style="text-align:center" %)
454 -(((
455 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
456 -[[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
457 -)))
458 458  
488 +[[image:image-20220608163541-5.png]]
489 +
490 + Figure 6-5 The brake timing (free shutdown) in the fault state
491 +
459 459  = **Position control mode** =
460 460  
461 461  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
462 462  
463 -(% style="text-align:center" %)
464 -(((
465 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
466 -[[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
467 -)))
468 468  
497 +[[image:image-20220608163643-6.png]]
498 +
499 +Figure 6-6 Position control diagram
500 +
469 469  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
470 470  
471 -|=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
503 +
504 +|=(% scope="row" %)**Function code**|=**Name**|=(((
472 472  **Setting method**
473 473  )))|=(((
474 474  **Effective time**
475 475  )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
476 -|=(% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((
509 +|=P01-01|Control mode|(((
477 477  Operation setting
478 478  )))|(((
479 479  immediately Effective
... ... @@ -493,10 +493,11 @@
493 493  
494 494  Table 6-10 Control mode parameters
495 495  
496 -== Position instruction input setting ==
529 +== **Position instruction input setting** ==
497 497  
498 498  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
499 499  
533 +
500 500  |=(% scope="row" %)**Function code**|=**Name**|=(((
501 501  **Setting method**
502 502  )))|=(((
... ... @@ -514,149 +514,149 @@
514 514  
515 515  Table 6-11 Position instruction source parameter
516 516  
517 -**The source of position instruction is pulse instruction (P01-06=0)**
551 +**(1) The source of position instruction is pulse instruction (P01-06=0)**
518 518  
519 -Low-speed pulse instruction input
553 +1) Low-speed pulse instruction input
520 520  
521 -|(% style="text-align:center" %)(((
522 -(% class="wikigeneratedid" style="display:inline-block" %)
523 -[[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
524 -)))|(% style="text-align:center" %)(((
525 -(% class="wikigeneratedid" style="display:inline-block" %)
526 -[[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
527 -)))
555 +|[[image:image-20220707092316-1.png]]|[[image:image-20220707092322-2.png]]
556 +|VD2A and VD2B servo drives|VD2F servo drive
528 528  |(% colspan="2" %)Figure 6-7 Position instruction input setting
529 529  
530 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
559 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__.
531 531  
532 532  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
533 533  
534 -|=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
535 -|=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
536 -|=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
537 537  
564 +|**Pulse method**|**Maximum frequency**|**Voltage**
565 +|Open collector input|200K|24V
566 +|Differential input|500K|5V
567 +
538 538  Table 6-12 Pulse input specifications
539 539  
540 -* Differential input
570 +1.Differential input
541 541  
542 542  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
543 543  
544 544  (% style="text-align:center" %)
545 -(((
546 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
547 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
548 -)))
575 +[[image:image-20220707092615-5.jpeg]]
549 549  
550 -(% class="box infomessage" %)
551 -(((
552 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
553 -)))
577 +Figure 6-8 Differential input connection
554 554  
555 -* Open collector input
579 +**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
556 556  
581 +2.Open collector input
582 +
557 557  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
558 558  
559 559  (% style="text-align:center" %)
560 -(((
561 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
562 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
563 -)))
586 +[[image:image-20220707092401-3.jpeg||height="530" width="834"]]
564 564  
588 +Figure 6-9 Open collector input connection
565 565  
566 -(% class="box infomessage" %)
567 -(((
568 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
569 -)))
590 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
570 570  
571 -* Position pulse frequency and anti-interference level
592 +2) Position pulse frequency and anti-interference level
572 572  
573 573  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
574 574  
575 575  (% style="text-align:center" %)
576 -(((
577 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
578 -[[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
579 -)))
597 +[[image:image-20220608163952-8.png]]
580 580  
599 +Figure 6-10 Example of filtered signal waveform
600 +
581 581  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
582 582  
583 -|=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
603 +
604 +|=(% scope="row" %)**Function code**|=**Name**|=(((
584 584  **Setting method**
585 585  )))|=(((
586 586  **Effective time**
587 -)))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
588 -|P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((
608 +)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
609 +|=P00-13|Maximum position pulse frequency|(((
589 589  Shutdown setting
590 590  )))|(((
591 591  Effective immediately
592 -)))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz
593 -|(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
613 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
614 +|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
594 594  Operation setting
595 595  )))|(% rowspan="3" %)(((
596 596  Power-on again
597 -)))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
618 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
598 598  Set the anti-interference level of external pulse instruction.
599 599  
600 -* 0: no filtering;
601 -* 1: Filtering time 128ns
602 -* 2: Filtering time 256ns
603 -* 3: Filtering time 512ns
604 -* 4: Filtering time 1.024us
605 -* 5: Filtering time 2.048us
606 -* 6: Filtering time 4.096us
607 -* 7: Filtering time 8.192us
608 -* 8: Filtering time 16.384us
609 -* 9:
610 -** VD2: Filtering time 25.5us
611 -** VD2F: Filtering time 25.5us
621 +0: no filtering;
622 +
623 +1: Filtering time 128ns
624 +
625 +2: Filtering time 256ns
626 +
627 +3: Filtering time 512ns
628 +
629 +4: Filtering time 1.024us
630 +
631 +5: Filtering time 2.048us
632 +
633 +6: Filtering time 4.096us
634 +
635 +7: Filtering time 8.192us
636 +
637 +8: Filtering time 16.384us
612 612  )))|(% rowspan="3" %)-
639 +|=(% rowspan="2" %)9|VD2: Filtering time 25.5us
640 +|=VD2F: Filtering time 25.5us
613 613  
614 614  Table 6-13 Position pulse frequency and anti-interference level parameters
615 615  
616 -* Position pulse type selection
644 +3) Position pulse type selection
617 617  
618 618  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
619 619  
620 -|=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
648 +
649 +|=(% scope="row" %)**Function code**|=**Name**|=(((
621 621  **Setting method**
622 -)))|=(% style="width: 109px;" %)(((
651 +)))|=(((
623 623  **Effective time**
624 -)))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
625 -|=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
653 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
654 +|=P00-12|Position pulse type selection|(((
626 626  Operation setting
627 -)))|(% style="width:109px" %)(((
656 +)))|(((
628 628  Power-on again
629 -)))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
630 -* 0: direction + pulse (positive logic)
631 -* 1: CW/CCW
632 -* 2: A, B phase quadrature pulse (4 times frequency)
633 -* 3: Direction + pulse (negative logic)
634 -* 4: CW/CCW (negative logic)
635 -* 5: A, B phase quadrature pulse (4 times frequency negative logic)
658 +)))|0|0 to 5|(((
659 +0: direction + pulse (positive logic)
660 +
661 +1: CW/CCW
662 +
663 +2: A, B phase quadrature pulse (4 times frequency)
664 +
665 +3: Direction + pulse (negative logic)
666 +
667 +4: CW/CCW (negative logic)
668 +
669 +5: A, B phase quadrature pulse (4 times frequency negative logic)
636 636  )))|-
637 637  
638 638  Table 6-14 Position pulse type selection parameter
639 639  
640 -|=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
641 -|=0|(% style="width:200px" %)(((
674 +|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
675 +|=0|(((
642 642  Direction + pulse
643 643  
644 644  (Positive logic)
645 -)))|(% style="width:161px" %)(((
679 +)))|(((
646 646  PULSE
647 647  
648 648  SIGN
649 649  )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
650 -|=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
684 +|=1|CW/CCW|(((
651 651  PULSE (CW)
652 652  
653 653  SIGN (CCW)
654 654  )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
655 -|=2|(% style="width:200px" %)(((
689 +|=2|(((
656 656  AB phase orthogonal
657 657  
658 658  pulse (4 times frequency)
659 -)))|(% style="width:161px" %)(((
693 +)))|(((
660 660  PULSE (Phase A)
661 661  
662 662  SIGN (Phase B)
... ... @@ -673,29 +673,29 @@
673 673  
674 674  Phase B is 90° ahead of Phase A
675 675  )))
676 -|=3|(% style="width:200px" %)(((
710 +|=3|(((
677 677  Direction + pulse
678 678  
679 679  (Negative logic)
680 -)))|(% style="width:161px" %)(((
714 +)))|(((
681 681  PULSE
682 682  
683 683  SIGN
684 684  )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
685 -|=4|(% style="width:200px" %)(((
719 +|=4|(((
686 686  CW/CCW
687 687  
688 688  (Negative logic)
689 -)))|(% style="width:161px" %)(((
723 +)))|(((
690 690  PULSE (CW)
691 691  
692 692  SIGN (CCW)
693 693  )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
694 -|=5|(% style="width:200px" %)(((
728 +|=5|(((
695 695  AB phase orthogonal
696 696  
697 697  pulse (4 times frequency negative logic)
698 -)))|(% style="width:161px" %)(((
732 +)))|(((
699 699  PULSE (Phase A)
700 700  
701 701  SIGN (Phase B)
... ... @@ -708,7 +708,7 @@
708 708  )))|(((
709 709  
710 710  
711 -[[image:image-20220707094437-15.jpeg]]
745 +[[image:image-20220707094437-15.jpeg]]
712 712  
713 713  Phase A is ahead of B phase by 90°
714 714  )))
... ... @@ -715,20 +715,18 @@
715 715  
716 716  Table 6-15 Pulse description
717 717  
718 -**The source of position instruction is internal position instruction (P01-06=1)**
752 +**(2) The source of position instruction is internal position instruction (P01-06=1)**
719 719  
720 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
754 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__.
721 721  
722 722  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
723 723  
724 724  (% style="text-align:center" %)
725 -(((
726 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
727 -[[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
728 -)))
759 +[[image:image-20220608164116-9.png]]
729 729  
761 +Figure 6-11 The setting process of multi-segment position
730 730  
731 -* Set multi-segment position running mode
763 +1) Set multi-segment position running mode
732 732  
733 733  |=(% scope="row" %)**Function code**|=**Name**|=(((
734 734  **Setting method**
... ... @@ -740,9 +740,11 @@
740 740  )))|(((
741 741  Effective immediately
742 742  )))|0|0 to 2|(((
743 -* 0: Single running
744 -* 1: Cycle running
745 -* 2: DI switching running
775 +0: Single running
776 +
777 +1: Cycle running
778 +
779 +2: DI switching running
746 746  )))|-
747 747  |=P07-02|Start segment number|(((
748 748  Shutdown setting
... ... @@ -759,8 +759,9 @@
759 759  )))|(((
760 760  Effective immediately
761 761  )))|0|0 to 1|(((
762 -* 0: Run the remaining segments
763 -* 1: Run again from the start segment
796 +0: Run the remaining segments
797 +
798 +1: Run again from the start segment
764 764  )))|-
765 765  |=P07-05|Displacement instruction type|(((
766 766  Shutdown setting
... ... @@ -767,8 +767,9 @@
767 767  )))|(((
768 768  Effective immediately
769 769  )))|0|0 to 1|(((
770 -* 0: Relative position instruction
771 -* 1: Absolute position instruction
805 +0: Relative position instruction
806 +
807 +1: Absolute position instruction
772 772  )))|-
773 773  
774 774  Table 6-16 multi-segment position running mode parameters
... ... @@ -775,34 +775,30 @@
775 775  
776 776  VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
777 777  
778 -1. Single running
814 +~1. Single running
779 779  
780 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
816 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
781 781  
818 +
782 782  (% style="text-align:center" %)
783 -(((
784 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
785 -[[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
786 -)))
820 +[[image:image-20220608164226-10.png]]
787 787  
788 -* 2. Cycle running
822 +Figure 6-12 Single running curve (P07-02=1, P07-03=2)
789 789  
824 +2. Cycle running
825 +
790 790  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
791 791  
792 -(% style="text-align:center" %)
793 -(((
794 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
795 -[[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
796 -)))
797 797  
798 -(% class="warning" %)|(((
799 799  (% style="text-align:center" %)
800 -[[image:image-20220611151917-5.png]]
801 -)))
830 +[[image:image-20220608164327-11.png]]
831 +
832 +Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
833 +
834 +|[[image:image-20220611151917-5.png]]
802 802  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
803 803  
804 -(% start="3" %)
805 -1. DI switching running
837 +3. DI switching running
806 806  
807 807  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
808 808  
... ... @@ -825,87 +825,68 @@
825 825  
826 826  Table 6-18 INPOS corresponds to running segment number
827 827  
828 -The operating curve in this running mode is shown in __Figure 6-14__.
860 +The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__.
829 829  
830 830  (% style="text-align:center" %)
831 -(((
832 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
833 -[[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
834 -)))
863 +[[image:image-20220608164545-12.png]]
835 835  
865 +Figure 6-14 DI switching running curve
866 +
836 836  VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
837 837  
838 -**Run the remaining segments**
869 +**A. Run the remaining segments**
839 839  
840 840  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
841 841  
842 842  (% style="text-align:center" %)
843 -(((
844 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
845 -[[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
846 -)))
874 +[[image:image-20220608164847-13.png]]
847 847  
876 +Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
877 +
848 848  (% style="text-align:center" %)
849 -(((
850 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
851 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
852 -)))
879 +[[image:image-20220608165032-14.png]]
853 853  
854 -**Run again from the start segment**
881 +Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
855 855  
856 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
883 +**B. Run again from the start segment**
857 857  
885 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.
886 +
858 858  (% style="text-align:center" %)
859 -(((
860 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
861 -[[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
862 -)))
888 +[[image:image-20220608165343-15.png]]
863 863  
890 +Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
891 +
864 864  (% style="text-align:center" %)
865 -(((
866 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
867 -[[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
868 -)))
893 +[[image:image-20220608165558-16.png]]
869 869  
895 +Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
896 +
870 870  VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
871 871  
872 -* Relative position instruction
899 +A. Relative position instruction
873 873  
874 874  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
875 875  
876 876  |(((
877 -(% style="text-align:center" %)
878 -(((
879 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
880 -[[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
881 -)))
904 +[[image:image-20220608165710-17.png]]
882 882  )))|(((
883 -(% style="text-align:center" %)
884 -(((
885 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
886 -[[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
906 +[[image:image-20220608165749-18.png]]
887 887  )))
888 -)))
908 +|Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
889 889  
890 -* Absolute position instruction
910 +B. Absolute position instruction
891 891  
892 892  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
893 893  
894 894  |(((
895 -(% style="text-align:center" %)
896 -(((
897 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
898 -[[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
899 -)))
915 +[[image:image-20220608165848-19.png]]
900 900  )))|(((
901 -(% style="text-align:center" %)
902 -(((
903 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
904 -[[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
917 +[[image:image-20220608170005-20.png]]
905 905  )))
906 -)))
919 +|Figure 6-21 Absolute indication|Figure 6-22 Displacement
907 907  
908 -* Multi-segment position running curve setting
921 +2) Multi-segment position running curve setting
909 909  
910 910  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
911 911  
... ... @@ -944,13 +944,11 @@
944 944  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
945 945  
946 946  (% style="text-align:center" %)
947 -(((
948 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
949 -[[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
950 -)))
960 +[[image:image-20220608170149-21.png]]
951 951  
962 +Figure 6-23 The 1st segment running curve of motor
952 952  
953 -* multi-segment position instruction enable
964 +3) multi-segment position instruction enable
954 954  
955 955  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
956 956  
... ... @@ -961,14 +961,13 @@
961 961  DI port logic valid: Motor runs multi-segment position
962 962  )))
963 963  
964 -(% style="text-align:center" %)
965 -[[image:image-20220611152020-6.png||class="img-thumbnail"]]
975 +[[image:image-20220611152020-6.png]]
966 966  
967 967  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
968 968  
969 -== Electronic gear ratio ==
979 +== **Electronic gear ratio** ==
970 970  
971 -**Definition of electronic gear ratio**
981 +**(1) Definition of electronic gear ratio**
972 972  
973 973  In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
974 974  
... ... @@ -977,22 +977,25 @@
977 977  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
978 978  
979 979  (% style="text-align:center" %)
980 -[[image:image-20220707094901-16.png||class="img-thumbnail"]]
990 +[[image:image-20220707094901-16.png]]
981 981  
992 +
993 +
994 +
982 982  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
983 983  
984 -**Setting steps of electronic gear ratio**
997 +**(2) Setting steps of electronic gear ratio**
985 985  
986 -(% style="text-align:center" %)
987 -(((
988 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
989 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
990 -)))
999 +[[image:image-20220707100850-20.jpeg]]
991 991  
992 -**lectronic gear ratio switch setting**
1001 +Figure 6-24 Setting steps of electronic gear ratio
993 993  
1003 +**(3) lectronic gear ratio switch setting**
1004 +
1005 +
994 994  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
995 995  
1008 +
996 996  |=(% scope="row" %)**Function code**|=**Name**|=(((
997 997  **Setting method**
998 998  )))|=(((
... ... @@ -1042,6 +1042,7 @@
1042 1042  
1043 1043  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1044 1044  
1058 +
1045 1045  |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1046 1046  |=09|GEAR-SEL electronic gear switch 1|(((
1047 1047  DI port logic invalid: electronic gear ratio 1
... ... @@ -1051,25 +1051,16 @@
1051 1051  
1052 1052  Table 6-21 Switching conditions of electronic gear ratio group
1053 1053  
1054 -|=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1055 -|(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1056 -(% style="text-align:center" %)
1057 -[[image:image-20220707101328-21.png]]
1058 -)))
1059 -|(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1060 -(% style="text-align:center" %)
1061 -[[image:image-20220707101336-22.png]]
1062 -)))
1063 -|1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1064 -(% style="text-align:center" %)
1065 -[[image:image-20220707101341-23.png]]
1066 -)))
1068 +|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]]
1069 +|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]]
1070 +|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]]
1071 +|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]]
1067 1067  
1068 1068  Table 6-22 Application of electronic gear ratio
1069 1069  
1070 1070  When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1071 1071  
1072 -== Position instruction filtering ==
1077 +== **Position instruction filtering** ==
1073 1073  
1074 1074  Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1075 1075  
... ... @@ -1082,11 +1082,10 @@
1082 1082  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1083 1083  
1084 1084  (% style="text-align:center" %)
1085 -(((
1086 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1087 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1088 -)))
1090 +[[image:image-20220608170455-23.png]]
1089 1089  
1092 +Figure 6-25 Position instruction filtering diagram
1093 +
1090 1090  |=(% scope="row" %)**Function code**|=**Name**|=(((
1091 1091  **Setting method**
1092 1092  )))|=(((
... ... @@ -1097,8 +1097,9 @@
1097 1097  )))|(((
1098 1098  Effective immediately
1099 1099  )))|0|0 to 1|(((
1100 -* 0: 1st-order low-pass filtering
1101 -* 1: average filtering
1104 +0: 1st-order low-pass filtering
1105 +
1106 +1: average filtering
1102 1102  )))|-
1103 1103  |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1104 1104  Effective immediately
... ... @@ -1109,13 +1109,13 @@
1109 1109  
1110 1110  Table 6-23 Position instruction filter function code
1111 1111  
1112 -== Clearance of position deviation ==
1117 +== **Clearance of position deviation** ==
1113 1113  
1114 1114  Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1115 1115  
1116 1116  Position deviation = (position instruction-position feedback) (encoder unit)
1117 1117  
1118 -== Position-related DO output function ==
1123 +== **Position-related DO output function** ==
1119 1119  
1120 1120  The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1121 1121  
... ... @@ -1126,46 +1126,44 @@
1126 1126  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1127 1127  
1128 1128  (% style="text-align:center" %)
1129 -(((
1130 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1131 -[[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1132 -)))
1134 +[[image:image-20220608170550-24.png]]
1133 1133  
1136 +Figure 6-26 Positioning completion signal output diagram
1137 +
1134 1134  When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1135 1135  
1136 1136  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1137 1137  
1138 1138  (% style="text-align:center" %)
1139 -(((
1140 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1141 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1142 -)))
1143 +[[image:image-20220608170650-25.png]]
1143 1143  
1145 +Figure 6-27 Positioning completion signal output with increased window filter time diagram
1146 +
1144 1144  |=(% scope="row" %)**Function code**|=**Name**|=(((
1145 1145  **Setting method**
1146 -)))|=(% style="width: 129px;" %)(((
1149 +)))|=(((
1147 1147  **Effective time**
1148 -)))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1151 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1149 1149  |=P05-12|Positioning completion threshold|(((
1150 1150  Operation setting
1151 -)))|(% style="width:129px" %)(((
1154 +)))|(((
1152 1152  Effective immediately
1153 -)))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1156 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1154 1154  |=P05-13|Positioning approach threshold|(((
1155 1155  Operation setting
1156 -)))|(% style="width:129px" %)(((
1159 +)))|(((
1157 1157  Effective immediately
1158 -)))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1161 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1159 1159  |=P05-14|Position detection window time|(((
1160 1160  Operation setting
1161 -)))|(% style="width:129px" %)(((
1164 +)))|(((
1162 1162  Effective immediately
1163 -)))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1166 +)))|10|0 to 20000|Set positioning completion detection window time|ms
1164 1164  |=P05-15|Positioning signal hold time|(((
1165 1165  Operation setting
1166 -)))|(% style="width:129px" %)(((
1169 +)))|(((
1167 1167  Effective immediately
1168 -)))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1171 +)))|100|0 to 20000|Set positioning completion output hold time|ms
1169 1169  
1170 1170  Table 6-24 Function code parameters of positioning completion
1171 1171  
... ... @@ -1184,46 +1184,47 @@
1184 1184  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1185 1185  
1186 1186  (% style="text-align:center" %)
1187 -(((
1188 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1189 -[[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1190 -)))
1190 +[[image:6.28.jpg||height="260" width="806"]]
1191 1191  
1192 -== Speed instruction input setting ==
1192 +Figure 6-28 Speed control block diagram
1193 1193  
1194 +== **Speed instruction input setting** ==
1195 +
1194 1194  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1195 1195  
1196 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1198 +
1199 +|**Function code**|**Name**|(((
1197 1197  **Setting method**
1198 -)))|=(% style="width: 125px;" %)(((
1201 +)))|(((
1199 1199  **Effective time**
1200 -)))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1201 -|=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1203 +)))|**Default value**|**Range**|**Definition**|**Unit**
1204 +|P01-01|Speed instruction source|(((
1202 1202  Shutdown setting
1203 -)))|(% style="width:125px" %)(((
1206 +)))|(((
1204 1204  Effective immediately
1205 -)))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)(((
1206 -* 0: internal speed instruction
1207 -* 1: AI_1 analog input (not supported by VD2F)
1208 +)))|1|1 to 1|(((
1209 +0: internal speed instruction
1210 +
1211 +1: AI_1 analog input (not supported by VD2F)
1208 1208  )))|-
1209 1209  
1210 1210  Table 6-26 Speed instruction source parameter
1211 1211  
1212 -**Speed instruction source is internal speed instruction (P01-01=0)**
1216 +**(1) Speed instruction source is internal speed instruction (P01-01=0)**
1213 1213  
1214 1214  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1215 1215  
1216 1216  (% style="width:1141px" %)
1217 -|=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1221 +|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)(((
1218 1218  **Setting**
1219 1219  
1220 1220  **method**
1221 -)))|=(% colspan="2" %)(((
1225 +)))|(% colspan="2" %)(((
1222 1222  **Effective**
1223 1223  
1224 1224  **time**
1225 -)))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1226 -|=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1229 +)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit**
1230 +|(% colspan="1" %)P01-02|(% colspan="2" %)(((
1227 1227  Internal speed
1228 1228  
1229 1229  Instruction 0
... ... @@ -1240,13 +1240,15 @@
1240 1240  
1241 1241  When DI input port:
1242 1242  
1243 -* 15-INSPD3: 0
1244 -* 14-INSPD2: 0
1245 -* 13-INSPD1: 0,
1247 +15-INSPD3: 0
1246 1246  
1249 +14-INSPD2: 0
1250 +
1251 +13-INSPD1: 0,
1252 +
1247 1247  select this speed instruction to be effective.
1248 1248  )))|(% colspan="2" %)rpm
1249 -|=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1255 +|(% colspan="1" %)P01-23|(% colspan="2" %)(((
1250 1250  Internal speed
1251 1251  
1252 1252  Instruction 1
... ... @@ -1263,13 +1263,15 @@
1263 1263  
1264 1264  When DI input port:
1265 1265  
1266 -* 15-INSPD3: 0
1267 -* 14-INSPD2: 0
1268 -* 13-INSPD1: 1,
1272 +15-INSPD3: 0
1269 1269  
1274 +14-INSPD2: 0
1275 +
1276 +13-INSPD1: 1,
1277 +
1270 1270  Select this speed instruction to be effective.
1271 1271  )))|(% colspan="2" %)rpm
1272 -|=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1280 +|(% colspan="1" %)P01-24|(% colspan="2" %)(((
1273 1273  Internal speed
1274 1274  
1275 1275  Instruction 2
... ... @@ -1286,13 +1286,15 @@
1286 1286  
1287 1287  When DI input port:
1288 1288  
1289 -* 15-INSPD3: 0
1290 -* 14-INSPD2: 1
1291 -* 13-INSPD1: 0,
1297 +15-INSPD3: 0
1292 1292  
1299 +14-INSPD2: 1
1300 +
1301 +13-INSPD1: 0,
1302 +
1293 1293  Select this speed instruction to be effective.
1294 1294  )))|(% colspan="2" %)rpm
1295 -|=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1305 +|(% colspan="1" %)P01-25|(% colspan="2" %)(((
1296 1296  Internal speed
1297 1297  
1298 1298  Instruction 3
... ... @@ -1309,13 +1309,15 @@
1309 1309  
1310 1310  When DI input port:
1311 1311  
1312 -* 15-INSPD3: 0
1313 -* 14-INSPD2: 1
1314 -* 13-INSPD1: 1,
1322 +15-INSPD3: 0
1315 1315  
1324 +14-INSPD2: 1
1325 +
1326 +13-INSPD1: 1,
1327 +
1316 1316  Select this speed instruction to be effective.
1317 1317  )))|(% colspan="2" %)rpm
1318 -|=P01-26|(% colspan="2" %)(((
1330 +|P01-26|(% colspan="2" %)(((
1319 1319  Internal speed
1320 1320  
1321 1321  Instruction 4
... ... @@ -1332,13 +1332,15 @@
1332 1332  
1333 1333  When DI input port:
1334 1334  
1335 -* 15-INSPD3: 1
1336 -* 14-INSPD2: 0
1337 -* 13-INSPD1: 0,
1347 +15-INSPD3: 1
1338 1338  
1349 +14-INSPD2: 0
1350 +
1351 +13-INSPD1: 0,
1352 +
1339 1339  Select this speed instruction to be effective.
1340 1340  )))|(% colspan="1" %)rpm
1341 -|=P01-27|(% colspan="2" %)(((
1355 +|P01-27|(% colspan="2" %)(((
1342 1342  Internal speed
1343 1343  
1344 1344  Instruction 5
... ... @@ -1355,13 +1355,15 @@
1355 1355  
1356 1356  When DI input port:
1357 1357  
1358 -* 15-INSPD3: 1
1359 -* 14-INSPD2: 0
1360 -* 13-INSPD1: 1,
1372 +15-INSPD3: 1
1361 1361  
1374 +14-INSPD2: 0
1375 +
1376 +13-INSPD1: 1,
1377 +
1362 1362  Select this speed instruction to be effective.
1363 1363  )))|(% colspan="1" %)rpm
1364 -|=P01-28|(% colspan="2" %)(((
1380 +|P01-28|(% colspan="2" %)(((
1365 1365  Internal speed
1366 1366  
1367 1367  Instruction 6
... ... @@ -1378,13 +1378,15 @@
1378 1378  
1379 1379  When DI input port:
1380 1380  
1381 -* 15-INSPD3: 1
1382 -* 14-INSPD2: 1
1383 -* 13-INSPD1: 0,
1397 +15-INSPD3: 1
1384 1384  
1399 +14-INSPD2: 1
1400 +
1401 +13-INSPD1: 0,
1402 +
1385 1385  Select this speed instruction to be effective.
1386 1386  )))|(% colspan="1" %)rpm
1387 -|=P01-29|(% colspan="2" %)(((
1405 +|P01-29|(% colspan="2" %)(((
1388 1388  Internal speed
1389 1389  
1390 1390  Instruction 7
... ... @@ -1401,19 +1401,21 @@
1401 1401  
1402 1402  When DI input port:
1403 1403  
1404 -* 15-INSPD3: 1
1405 -* 14-INSPD2: 1
1406 -* 13-INSPD1: 1,
1422 +15-INSPD3: 1
1407 1407  
1424 +14-INSPD2: 1
1425 +
1426 +13-INSPD1: 1,
1427 +
1408 1408  Select this speed instruction to be effective.
1409 1409  )))|(% colspan="1" %)rpm
1410 1410  
1411 1411  Table 6-27 Internal speed instruction parameters
1412 1412  
1413 -|=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1414 -|=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1415 -|=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1416 -|=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1433 +|**DI function code**|**function name**|**Function**
1434 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1435 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1436 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1417 1417  
1418 1418  Table 6-28 DI multi-speed function code description
1419 1419  
... ... @@ -1420,7 +1420,7 @@
1420 1420  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1421 1421  
1422 1422  
1423 -|=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1443 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1424 1424  |0|0|0|1|0
1425 1425  |0|0|1|2|1
1426 1426  |0|1|0|3|2
... ... @@ -1429,30 +1429,26 @@
1429 1429  
1430 1430  Table 6-29 Correspondence between INSPD bits and segment numbers
1431 1431  
1432 -(% style="text-align:center" %)
1433 -(((
1434 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1435 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1436 -)))
1452 +[[image:image-20220608170845-26.png]]
1437 1437  
1438 -**Speed instruction source is internal speed instruction (P01-01=1)**
1454 +Figure 6-29 Multi-segment speed running curve
1439 1439  
1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)**
1457 +
1440 1440  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1441 1441  
1442 1442  (% style="text-align:center" %)
1443 -(((
1444 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1445 -[[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1446 -)))
1461 +[[image:image-20220608153341-5.png]]
1447 1447  
1463 +Figure 6-30 Analog input circuit
1464 +
1448 1448  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1449 1449  
1450 1450  (% style="text-align:center" %)
1451 -(((
1452 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1453 -[[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1454 -)))
1468 +[[image:image-20220608170955-27.png]]
1455 1455  
1470 +Figure 6-31 Analog voltage speed instruction setting steps
1471 +
1456 1456  Explanation of related terms:
1457 1457  
1458 1458  * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
... ... @@ -1460,25 +1460,21 @@
1460 1460  * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1461 1461  
1462 1462  (% style="text-align:center" %)
1463 -(((
1464 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1465 -[[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1466 -)))
1479 +[[image:image-20220608171124-28.png]]
1467 1467  
1468 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1469 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1470 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1471 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1472 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1481 +Figure 6-32 AI_1 diagram before and after bias
1473 1473  
1483 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1484 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1485 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1486 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1487 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1488 +
1474 1474  Table 6-30 AI_1 parameters
1475 1475  
1476 -(% class="box infomessage" %)
1477 -(((
1478 1478  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1479 -)))
1480 1480  
1481 -== Acceleration and deceleration time setting ==
1493 +== **Acceleration and deceleration time setting** ==
1482 1482  
1483 1483  The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1484 1484  
... ... @@ -1485,25 +1485,24 @@
1485 1485  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1486 1486  
1487 1487  (% style="text-align:center" %)
1488 -(((
1489 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1490 -[[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1491 -)))
1500 +[[image:image-20220608171314-29.png]]
1492 1492  
1502 +Figure 6-33 of acceleration and deceleration time diagram
1503 +
1493 1493  (% style="text-align:center" %)
1494 -[[image:image-20220707103616-27.png||class="img-thumbnail"]]
1505 +[[image:image-20220707103616-27.png]]
1495 1495  
1496 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1507 +|**Function code**|**Name**|(((
1497 1497  **Setting method**
1498 -)))|=(((
1509 +)))|(((
1499 1499  **Effective time**
1500 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1501 -|=P01-03|Acceleration time|(((
1511 +)))|**Default value**|**Range**|**Definition**|**Unit**
1512 +|P01-03|Acceleration time|(((
1502 1502  Operation setting
1503 1503  )))|(((
1504 1504  Effective immediately
1505 1505  )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1506 -|=P01-04|Deceleration time|(((
1517 +|P01-04|Deceleration time|(((
1507 1507  Operation setting
1508 1508  )))|(((
1509 1509  Effective immediately
... ... @@ -1511,7 +1511,7 @@
1511 1511  
1512 1512  Table 6-31 Acceleration and deceleration time parameters
1513 1513  
1514 -== Speed instruction limit ==
1525 +== **Speed instruction limit** ==
1515 1515  
1516 1516  In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1517 1517  
... ... @@ -1526,22 +1526,23 @@
1526 1526  
1527 1527  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1528 1528  
1529 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1540 +
1541 +|**Function code**|**Name**|(((
1530 1530  **Setting method**
1531 -)))|=(((
1543 +)))|(((
1532 1532  **Effective time**
1533 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1534 -|=P01-10|Maximum speed threshold|(((
1545 +)))|**Default value**|**Range**|**Definition**|**Unit**
1546 +|P01-10|Maximum speed threshold|(((
1535 1535  Operation setting
1536 1536  )))|(((
1537 1537  Effective immediately
1538 1538  )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1539 -|=P01-12|Forward speed threshold|(((
1551 +|P01-12|Forward speed threshold|(((
1540 1540  Operation setting
1541 1541  )))|(((
1542 1542  Effective immediately
1543 1543  )))|3000|0 to 5000|Set forward speed limit value|rpm
1544 -|=P01-13|Reverse speed threshold|(((
1556 +|P01-13|Reverse speed threshold|(((
1545 1545  Operation setting
1546 1546  )))|(((
1547 1547  Effective immediately
... ... @@ -1549,18 +1549,19 @@
1549 1549  
1550 1550  Table 6-32 Rotation speed related function codes
1551 1551  
1552 -== Zero-speed clamp function ==
1564 +== **Zero-speed clamp function** ==
1553 1553  
1554 1554  The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1555 1555  
1556 1556  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1557 1557  
1558 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1570 +
1571 +|**Function code**|**Name**|(((
1559 1559  **Setting method**
1560 -)))|=(((
1573 +)))|(((
1561 1561  **Effective time**
1562 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1563 -|=P01-21|(((
1575 +)))|**Default value**|**Range**|**Definition**|**Unit**
1576 +|P01-21|(((
1564 1564  Zero-speed clamp function selection
1565 1565  )))|(((
1566 1566  Operation setting
... ... @@ -1569,12 +1569,15 @@
1569 1569  )))|0|0 to 3|(((
1570 1570  Set the zero-speed clamp function. In speed mode:
1571 1571  
1572 -* 0: Force the speed to 0;
1573 -* 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1574 -* 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1575 -* 3: Invalid, ignore zero-speed clamp input
1585 +0: Force the speed to 0;
1586 +
1587 +1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1588 +
1589 +2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1590 +
1591 +3: Invalid, ignore zero-speed clamp input
1576 1576  )))|-
1577 -|=P01-22|(((
1593 +|P01-22|(((
1578 1578  Zero-speed clamp speed threshold
1579 1579  )))|(((
1580 1580  Operation setting
... ... @@ -1584,34 +1584,33 @@
1584 1584  
1585 1585  Table 6-33 Zero-speed clamp related parameters
1586 1586  
1587 -(% style="text-align:center" %)
1588 -(((
1589 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1590 -[[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1591 -)))
1592 1592  
1593 -== Speed-related DO output function ==
1604 +[[image:image-20220608171549-30.png]]
1594 1594  
1606 +Figure 6-34 Zero-speed clamp diagram
1607 +
1608 +== **Speed-related DO output function** ==
1609 +
1595 1595  The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1596 1596  
1597 -**Rotation detection signal**
1612 +**(1) Rotation detection signal**
1598 1598  
1599 1599  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1600 1600  
1601 -(% style="text-align:center" %)
1602 -(((
1603 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1604 -[[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1605 -)))
1606 1606  
1607 -To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1617 +[[image:image-20220608171625-31.png]]
1608 1608  
1609 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1619 +Figure 6-35 Rotation detection signal diagram
1620 +
1621 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1622 +
1623 +
1624 +|**Function code**|**Name**|(((
1610 1610  **Setting method**
1611 -)))|=(((
1626 +)))|(((
1612 1612  **Effective time**
1613 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1614 -|=P05-16|(((
1628 +)))|**Default value**|**Range**|**Definition**|**Unit**
1629 +|P05-16|(((
1615 1615  Rotation detection
1616 1616  
1617 1617  speed threshold
... ... @@ -1623,10 +1623,10 @@
1623 1623  
1624 1624  Table 6-34 Rotation detection speed threshold parameters
1625 1625  
1626 -|=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1627 -|=132|(% style="width:247px" %)(((
1641 +|**DO function code**|**Function name**|**Function**
1642 +|132|(((
1628 1628  T-COIN rotation detection
1629 -)))|(% style="width:695px" %)(((
1644 +)))|(((
1630 1630  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1631 1631  
1632 1632  Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
... ... @@ -1634,24 +1634,22 @@
1634 1634  
1635 1635  Table 6-35 DO rotation detection function code
1636 1636  
1637 -**Zero-speed signal**
1652 +**(2) Zero-speed signal**
1638 1638  
1639 1639  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1640 1640  
1641 -(% style="text-align:center" %)
1642 -(((
1643 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1644 -[[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1645 -)))
1656 +[[image:image-20220608171904-32.png]]
1646 1646  
1647 -To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1658 +Figure 6-36 Zero-speed signal diagram
1648 1648  
1649 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1660 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1661 +
1662 +|**Function code**|**Name**|(((
1650 1650  **Setting method**
1651 -)))|=(((
1664 +)))|(((
1652 1652  **Effective time**
1653 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1654 -|=P05-19|Zero speed output signal threshold|(((
1666 +)))|**Default value**|**Range**|**Definition**|**Unit**
1667 +|P05-19|Zero speed output signal threshold|(((
1655 1655  Operation setting
1656 1656  )))|(((
1657 1657  Effective immediately
... ... @@ -1659,31 +1659,30 @@
1659 1659  
1660 1660  Table 6-36 Zero-speed output signal threshold parameter
1661 1661  
1662 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1663 -|=133|(((
1675 +
1676 +|**DO function code**|**Function name**|**Function**
1677 +|133|(((
1664 1664  ZSP zero speed signal
1665 1665  )))|Output this signal indicates that the servo motor is stopping rotation
1666 1666  
1667 1667  Table 6-37 DO zero-speed signal function code
1668 1668  
1669 -**Speed consistent signal**
1683 +**(3) Speed consistent signal**
1670 1670  
1671 1671  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1672 1672  
1673 -(% style="text-align:center" %)
1674 -(((
1675 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1676 -[[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1677 -)))
1687 +[[image:image-20220608172053-33.png]]
1678 1678  
1679 -To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1689 +Figure 6-37 Speed consistent signal diagram
1680 1680  
1681 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1691 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1692 +
1693 +|**Function code**|**Name**|(((
1682 1682  **Setting method**
1683 -)))|=(((
1695 +)))|(((
1684 1684  **Effective time**
1685 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1686 -|=P05-17|Speed consistent signal threshold|(((
1697 +)))|**Default value**|**Range**|**Definition**|**Unit**
1698 +|P05-17|Speed consistent signal threshold|(((
1687 1687  Operationsetting
1688 1688  )))|(((
1689 1689  Effective immediately
... ... @@ -1691,31 +1691,30 @@
1691 1691  
1692 1692  Table 6-38 Speed consistent signal threshold parameters
1693 1693  
1694 -|=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1695 -|=136|(% style="width:262px" %)(((
1706 +
1707 +|**DO Function code**|**Function name**|**Function**
1708 +|136|(((
1696 1696  U-COIN consistent speed
1697 -)))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1710 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1698 1698  
1699 1699  Table 6-39 DO speed consistent function code
1700 1700  
1701 -**Speed approach signal**
1714 +**(4) Speed approach signal**
1702 1702  
1703 1703  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1704 1704  
1705 -(% style="text-align:center" %)
1706 -(((
1707 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1708 -[[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1709 -)))
1718 +[[image:image-20220608172207-34.png]]
1710 1710  
1711 -To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1720 +Figure 6-38 Speed approaching signal diagram
1712 1712  
1713 -|=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__.
1723 +
1724 +|**Function code**|**Name**|(((
1714 1714  **Setting method**
1715 -)))|=(((
1726 +)))|(((
1716 1716  **Effective time**
1717 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1718 -|=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1728 +)))|**Default value**|**Range**|**Definition**|**Unit**
1729 +|P05-18|Speed approach signal threshold|(((
1719 1719  Operation setting
1720 1720  )))|(((
1721 1721  Effective immediately
... ... @@ -1723,8 +1723,8 @@
1723 1723  
1724 1724  Table 6-40 Speed approaching signal threshold parameters
1725 1725  
1726 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1727 -|=137|(((
1737 +|**DO function code**|**Function name**|**Function**
1738 +|137|(((
1728 1728  V-NEAR speed approach
1729 1729  )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1730 1730  
... ... @@ -1734,22 +1734,22 @@
1734 1734  
1735 1735  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1736 1736  
1737 -(% style="text-align:center" %)
1738 -(((
1739 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1740 -[[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1741 -)))
1742 1742  
1743 -== Torque instru**ction input setting** ==
1749 +[[image:image-20220608172405-35.png]]
1744 1744  
1751 +Figure 6-39 Torque mode diagram
1752 +
1753 +== **Torque instruction input setting** ==
1754 +
1745 1745  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1746 1746  
1747 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1757 +
1758 +|**Function code**|**Name**|(((
1748 1748  **Setting method**
1749 -)))|=(((
1760 +)))|(((
1750 1750  **Effective time**
1751 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1752 -|=P01-07|Torque instruction source|(((
1762 +)))|**Default value**|**Range**|**Definition**|**Unit**
1763 +|P01-08|Torque instruction source|(((
1753 1753  Shutdown setting
1754 1754  )))|(((
1755 1755  Effective immediately
... ... @@ -1761,16 +1761,17 @@
1761 1761  
1762 1762  Table 6-42 Torque instruction source parameter
1763 1763  
1764 -**Torque instruction source is internal torque instruction (P01-07=0)**
1775 +**(1) Torque instruction source is internal torque instruction (P01-07=0)**
1765 1765  
1766 1766  Torque instruction source is from inside, the value is set by function code P01-08.
1767 1767  
1768 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1779 +
1780 +|**Function code**|**Name**|(((
1769 1769  **Setting method**
1770 -)))|=(((
1782 +)))|(((
1771 1771  **Effective time**
1772 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1773 -|=P01-08|Torque instruction keyboard set value|(((
1784 +)))|**Default value**|**Range**|**Definition**|**Unit**
1785 +|P01-08|Torque instruction keyboard set value|(((
1774 1774  Operation setting
1775 1775  )))|(((
1776 1776  Effective immediately
... ... @@ -1778,24 +1778,22 @@
1778 1778  
1779 1779  Table 6-43 Torque instruction keyboard set value
1780 1780  
1781 -**Torque instruction source is internal torque instruction (P01-07=1)**
1793 +**(2) Torque instruction source is internal torque instruction (P01-07=1)**
1782 1782  
1783 1783  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1784 1784  
1785 1785  (% style="text-align:center" %)
1786 -(((
1787 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1788 -[[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1789 -)))
1798 +[[image:image-20220608153646-7.png||height="213" width="408"]]
1790 1790  
1800 +Figure 6-40 Analog input circuit
1801 +
1791 1791  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1792 1792  
1793 1793  (% style="text-align:center" %)
1794 -(((
1795 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1796 -[[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1797 -)))
1805 +[[image:image-20220608172502-36.png]]
1798 1798  
1807 +Figure 6-41 Analog voltage torque instruction setting steps
1808 +
1799 1799  Explanation of related terms:
1800 1800  
1801 1801  * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
... ... @@ -1803,74 +1803,65 @@
1803 1803  * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1804 1804  
1805 1805  (% style="text-align:center" %)
1806 -(((
1807 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1808 -[[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1809 -)))
1816 +[[image:image-20220608172611-37.png]]
1810 1810  
1811 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1812 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1813 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1814 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1815 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1818 +Figure 6-42 AI_1 diagram before and after bias
1816 1816  
1820 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1821 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1822 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1823 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1824 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1825 +
1817 1817  Table 6-44 AI_1 parameters
1818 1818  
1819 -(% class="box infomessage" %)
1820 -(((
1821 1821  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1822 -)))
1823 1823  
1824 -== Torque instruction filtering ==
1830 +== **Torque instruction filtering** ==
1825 1825  
1826 -In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1832 +In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1827 1827  
1828 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1834 +|**Function code**|**Name**|(((
1829 1829  **Setting method**
1830 -)))|=(((
1836 +)))|(((
1831 1831  **Effective time**
1832 -)))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1833 -|=P04-04|Torque filtering time constant|(((
1838 +)))|**Default value**|**Range**|**Definition**|**Unit**
1839 +|P04-04|Torque filtering time constant|(((
1834 1834  Operation setting
1835 1835  )))|(((
1836 1836  Effective immediately
1837 -)))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1843 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1838 1838  
1839 1839  Table 6-45 Torque filtering time constant parameter details
1840 1840  
1841 -(% class="box infomessage" %)
1842 -(((
1843 1843  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1844 -)))
1845 1845  
1846 1846  (% style="text-align:center" %)
1847 -(((
1848 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1849 -[[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1850 -)))
1850 +[[image:image-20220608172646-38.png]]
1851 1851  
1852 -== Torque instruction limit ==
1852 +Figure 6-43 Torque instruction-first-order filtering diagram
1853 1853  
1854 +== **Torque instruction limit** ==
1855 +
1854 1854  When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1855 1855  
1856 1856  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1857 1857  
1858 1858  (% style="text-align:center" %)
1859 -(((
1860 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1861 -[[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1862 -)))
1861 +[[image:image-20220608172806-39.png]]
1863 1863  
1864 -**Set torque limit source**
1863 +Figure 6-44 Torque instruction limit diagram
1865 1865  
1865 +**(1) Set torque limit source**
1866 +
1866 1866  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1867 1867  
1868 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1869 +|**Function code**|**Name**|(((
1869 1869  **Setting method**
1870 -)))|=(((
1871 +)))|(((
1871 1871  **Effective time**
1872 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1873 -|=P01-14|(((
1873 +)))|**Default value**|**Range**|**Definition**|**Unit**
1874 +|P01-14|(((
1874 1874  Torque limit source
1875 1875  )))|(((
1876 1876  Shutdown setting
... ... @@ -1877,46 +1877,49 @@
1877 1877  )))|(((
1878 1878  Effective immediately
1879 1879  )))|0|0 to 1|(((
1880 -* 0: internal value
1881 -* 1: AI_1 analog input (not supported by VD2F)
1881 +0: internal value
1882 +
1883 +1: AI_1 analog input
1884 +
1885 +(not supported by VD2F)
1882 1882  )))|-
1883 1883  
1884 -* Torque limit source is internal torque instruction (P01-14=0)
1888 +1) Torque limit source is internal torque instruction (P01-14=0)
1885 1885  
1886 1886  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1887 1887  
1888 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1892 +|**Function code**|**Name**|(((
1889 1889  **Setting method**
1890 -)))|=(((
1894 +)))|(((
1891 1891  **Effective time**
1892 -)))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1893 -|=P01-15|(((
1896 +)))|**Default value**|**Range**|**Definition**|**Unit**
1897 +|P01-15|(((
1894 1894  Forward torque limit
1895 1895  )))|(((
1896 1896  Operation setting
1897 1897  )))|(((
1898 1898  Effective immediately
1899 -)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1900 -|=P01-16|(((
1903 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1904 +|P01-16|(((
1901 1901  Reverse torque limit
1902 1902  )))|(((
1903 1903  Operation setting
1904 1904  )))|(((
1905 1905  Effective immediately
1906 -)))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1907 1907  
1908 1908  Table 6-46 Torque limit parameter details
1909 1909  
1910 -* Torque limit source is external (P01-14=1)
1914 +2) Torque limit source is external (P01-14=1)
1911 1911  
1912 1912  Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1913 1913  
1914 -**Set torque limit DO signal output**
1918 +**(2) Set torque limit DO signal output**
1915 1915  
1916 1916  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1917 1917  
1918 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1919 -|=139|(((
1922 +|**DO function code**|**Function name**|**Function**
1923 +|139|(((
1920 1920  T-LIMIT in torque limit
1921 1921  )))|Output of this signal indicates that the servo motor torque is limited
1922 1922  
... ... @@ -1926,28 +1926,21 @@
1926 1926  
1927 1927  In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1928 1928  
1929 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1933 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__.
1930 1930  
1931 1931  |(((
1932 -(% style="text-align:center" %)
1933 -(((
1934 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1935 -[[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1936 -)))
1936 +[[image:image-20220608172910-40.png]]
1937 1937  )))|(((
1938 -(% style="text-align:center" %)
1939 -(((
1940 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1941 -[[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1938 +[[image:image-20220608173155-41.png]]
1942 1942  )))
1943 -)))
1940 +|Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1944 1944  
1945 -|=(% scope="row" %)**Function code**|=**Name**|=(((
1942 +|**Function code**|**Name**|(((
1946 1946  **Setting method**
1947 -)))|=(((
1944 +)))|(((
1948 1948  **Effective time**
1949 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1950 -|=P01-17|(((
1946 +)))|**Default value**|**Range**|**Definition**|**Unit**
1947 +|P01-17|(((
1951 1951  Forward torque
1952 1952  
1953 1953  limit in torque mode
... ... @@ -1960,7 +1960,7 @@
1960 1960  
1961 1961  limit in torque mode
1962 1962  )))|0.1%
1963 -|=P01-18|(((
1960 +|P01-18|(((
1964 1964  Reverse torque
1965 1965  
1966 1966  limit in torque mode
... ... @@ -1976,9 +1976,9 @@
1976 1976  
1977 1977  Table 6-48 Speed limit parameters in torque mode
1978 1978  
1979 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1976 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__.
1980 1980  
1981 -== Torque-related DO output functions ==
1978 +== **Torque-related DO output functions** ==
1982 1982  
1983 1983  The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1984 1984  
... ... @@ -1987,27 +1987,26 @@
1987 1987  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1988 1988  
1989 1989  (% style="text-align:center" %)
1990 -(((
1991 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1992 -[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
1993 -)))
1987 +[[image:image-20220608173541-42.png]]
1994 1994  
1995 -To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
1989 +Figure 6-47 Torque arrival output diagram
1996 1996  
1997 -|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
1991 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1992 +
1993 +|**Function code**|**Name**|(((
1998 1998  **Setting method**
1999 -)))|=(% style="width: 124px;" %)(((
1995 +)))|(((
2000 2000  **Effective time**
2001 -)))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2002 -|=P05-20|(% style="width:113px" %)(((
1997 +)))|**Default value**|**Range**|**Definition**|**Unit**
1998 +|P05-20|(((
2003 2003  Torque arrival
2004 2004  
2005 2005  threshold
2006 -)))|(% style="width:100px" %)(((
2002 +)))|(((
2007 2007  Operation setting
2008 -)))|(% style="width:124px" %)(((
2004 +)))|(((
2009 2009  Effective immediately
2010 -)))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2006 +)))|100|0 to 300|(((
2011 2011  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2012 2012  
2013 2013  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
... ... @@ -2014,20 +2014,21 @@
2014 2014  
2015 2015  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2016 2016  )))|%
2017 -|=P05-21|(% style="width:113px" %)(((
2013 +|P05-21|(((
2018 2018  Torque arrival
2019 2019  
2020 2020  hysteresis
2021 -)))|(% style="width:100px" %)(((
2017 +)))|(((
2022 2022  Operation setting
2023 -)))|(% style="width:124px" %)(((
2019 +)))|(((
2024 2024  Effective immediately
2025 -)))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2021 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2026 2026  
2027 2027  Table 6-49 Torque arrival parameters
2028 2028  
2029 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2030 -|=138|(((
2025 +
2026 +|**DO function code**|**Function name**|**Function**
2027 +|138|(((
2031 2031  T-COIN torque arrival
2032 2032  )))|Used to determine whether the actual torque instruction has reached the set range
2033 2033  
... ... @@ -2037,28 +2037,35 @@
2037 2037  
2038 2038  Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2039 2039  
2040 -* Position mode⇔ Speed mode
2041 -* Position mode ⇔Torque mode
2042 -* Speed mode ⇔Torque mode
2037 +Position mode⇔ Speed mode
2043 2043  
2039 +Position mode ⇔Torque mode
2040 +
2041 +Speed mode ⇔Torque mode
2042 +
2044 2044  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2045 2045  
2046 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2045 +|**Function code**|**Name**|(((
2047 2047  **Setting method**
2048 -)))|=(((
2047 +)))|(((
2049 2049  **Effective time**
2050 -)))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2051 -|=P00-01|Control mode|(((
2049 +)))|**Default value**|**Range**|**Definition**|**Unit**
2050 +|P00-01|Control mode|(((
2052 2052  Shutdown setting
2053 2053  )))|(((
2054 2054  Shutdown setting
2055 -)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2056 -* 1: Position control
2057 -* 2: Speed control
2058 -* 3: Torque control
2059 -* 4: Position/speed mixed control
2060 -* 5: Position/torque mixed control
2061 -* 6: Speed/torque mixed control
2054 +)))|1|1 to 6|(((
2055 +1: Position control
2056 +
2057 +2: Speed control
2058 +
2059 +3: Torque control
2060 +
2061 +4: Position/speed mixed control
2062 +
2063 +5: Position/torque mixed control
2064 +
2065 +6: Speed/torque mixed control
2062 2062  )))|-
2063 2063  
2064 2064  Table 6-51 Mixed control mode parameters
... ... @@ -2065,38 +2065,35 @@
2065 2065  
2066 2066  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2067 2067  
2068 -|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2069 -|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2070 -(% style="margin-left:auto; margin-right:auto; width:585px" %)
2071 -|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2072 -|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2073 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2074 -|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2075 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2076 -|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2077 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2072 +|**DI function code**|**Name**|**Function name**|**Function**
2073 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2074 +|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2075 +|(% rowspan="2" %)4|Valid|Speed mode
2076 +|invalid|Position mode
2077 +|(% rowspan="2" %)5|Valid|Torque mode
2078 +|invalid|Position mode
2079 +|(% rowspan="2" %)6|Valid|Torque mode
2080 +|invalid|Speed mode
2078 2078  )))
2079 2079  
2080 2080  Table 6-52 Description of DI function codes in control mode
2081 2081  
2082 -(% class="box infomessage" %)
2083 -(((
2084 2084  ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2085 -)))
2086 2086  
2087 2087  = **Absolute system** =
2088 2088  
2089 -== Overview ==
2089 +== **Overview** ==
2090 2090  
2091 2091  Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2092 2092  
2093 2093  The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2094 2094  
2095 -== Single-turn absolute value system ==
2095 +== **Single-turn absolute value system** ==
2096 2096  
2097 2097  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2098 2098  
2099 -|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2099 +
2100 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2100 2100  |A1 (single-turn magnetic encoder)|17|0 to 131071
2101 2101  
2102 2102  Table 6-53 Single-turn absolute encoder information
... ... @@ -2104,18 +2104,17 @@
2104 2104  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2105 2105  
2106 2106  (% style="text-align:center" %)
2107 -(((
2108 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2109 -[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2110 -)))
2108 +[[image:image-20220608173618-43.png]]
2111 2111  
2112 -== Multi-turn absolute value system ==
2110 +Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2113 2113  
2112 +== **Multi-turn absolute value system** ==
2113 +
2114 2114  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2115 2115  
2116 -|=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2117 -|=C1 (multi-turn magnetic encoder)|17|0 to 131071
2118 -|=D2 (multi-turn Optical encoder)|23|0 to 8388607
2116 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2117 +|C1 (multi-turn magnetic encoder)|17|0 to 131071
2118 +|D2 (multi-turn Optical encoder)|23|0 to 8388607
2119 2119  
2120 2120  Table 6-54 Multi-turn absolute encoder information
2121 2121  
... ... @@ -2122,21 +2122,20 @@
2122 2122  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2123 2123  
2124 2124  (% style="text-align:center" %)
2125 -(((
2126 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2127 -[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2128 -)))
2125 +[[image:image-20220608173701-44.png]]
2129 2129  
2130 -== Related functions and parameters ==
2127 +Figure 6-49 The relationship between encoder feedback position and rotating load position
2131 2131  
2129 +== **Related functions and parameters** ==
2130 +
2132 2132  **Encoder feedback data**
2133 2133  
2134 2134  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2135 2135  
2136 -|=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2137 -|=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2138 -|=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2139 -|=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2135 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2136 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2137 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2138 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2140 2140  
2141 2141  Table 6-55 Encoder feedback data
2142 2142  
... ... @@ -2144,28 +2144,26 @@
2144 2144  
2145 2145  The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2146 2146  
2147 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2146 +|**Function code**|**Name**|(((
2148 2148  **Setting**
2149 2149  
2150 2150  **method**
2151 -)))|=(((
2150 +)))|(((
2152 2152  **Effective**
2153 2153  
2154 2154  **time**
2155 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2156 -|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2157 -* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2158 -* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2154 +)))|**Default value**|**Range**|**Definition**|**Unit**
2155 +|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2156 +0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2157 +
2158 +1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2159 2159  )))|-
2160 2160  
2161 2161  This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2162 2162  
2163 -(% class="box infomessage" %)
2164 -(((
2165 2165  **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2166 -)))
2167 2167  
2168 -== Absolute value system encoder battery box use precautions. ==
2165 +== **Absolute value system encoder battery box use precautions**. ==
2169 2169  
2170 2170  **Cautions**
2171 2171  
... ... @@ -2172,11 +2172,10 @@
2172 2172  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2173 2173  
2174 2174  (% style="text-align:center" %)
2175 -(((
2176 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2177 -[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2178 -)))
2172 +[[image:image-20220707111333-28.png]]
2179 2179  
2174 +Figure 6-50 the encoder battery box
2175 +
2180 2180  When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2181 2181  
2182 2182  **Replace the battery**
... ... @@ -2192,19 +2192,20 @@
2192 2192  
2193 2193  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2194 2194  
2195 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2191 +|**Function code**|**Name**|(((
2196 2196  **Setting method**
2197 -)))|=(((
2193 +)))|(((
2198 2198  **Effective time**
2199 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2200 -|=P10-06|Multi-turn absolute encoder reset|(((
2195 +)))|**Default value**|**Range**|**Definition**|**Unit**
2196 +|P10-06|Multi-turn absolute encoder reset|(((
2201 2201  Shutdown setting
2202 2202  )))|(((
2203 2203  Effective immediately
2204 2204  )))|0|0 to 1|(((
2205 -* 0: No operation
2206 -* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2201 +0: No operation
2207 2207  
2203 +1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2204 +
2208 2208  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2209 2209  )))|-
2210 2210  
... ... @@ -2212,7 +2212,7 @@
2212 2212  
2213 2213  **Battery selection**
2214 2214  
2215 -|=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2212 +|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value**
2216 2216  |(% rowspan="4" style="width:361px" %)(((
2217 2217  Nominal Voltage: 3.6V
2218 2218  
... ... @@ -2240,108 +2240,111 @@
2240 2240  
2241 2241  = **Other functions** =
2242 2242  
2243 -== VDI ==
2240 +== **VDI** ==
2244 2244  
2245 2245  VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2246 2246  
2247 -(% class="box infomessage" %)
2248 -(((
2249 2249  ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2250 -)))
2251 2251  
2252 2252  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2253 2253  
2248 +
2254 2254  (% style="text-align:center" %)
2255 -(((
2256 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2257 -[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2258 -)))
2250 +[[image:image-20220608173804-46.png]]
2259 2259  
2260 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2252 +Figure 6-51 VDI_1 setting steps
2253 +
2254 +|**Function code**|**Name**|(((
2261 2261  **Setting method**
2262 -)))|=(((
2256 +)))|(((
2263 2263  **Effective time**
2264 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2265 -|=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2258 +)))|**Default value**|**Range**|**Definition**|**Unit**
2259 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2266 2266  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2267 2267  
2268 2268  VDI_1 input level:
2269 2269  
2270 -* 0: low level
2271 -* 1: high level
2264 +0: low level
2265 +
2266 +1: high level
2272 2272  )))|-
2273 -|=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2268 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2274 2274  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2275 2275  
2276 2276  VDI_2 input level:
2277 2277  
2278 -* 0: low level
2279 -* 1: high level
2273 +0: low level
2274 +
2275 +1: high level
2280 2280  )))|-
2281 -|=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2277 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2282 2282  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2283 2283  
2284 2284  VDI_3 input level:
2285 2285  
2286 -* 0: low level
2287 -* 1: high level
2282 +0: low level
2283 +
2284 +1: high level
2288 2288  )))|-
2289 -|=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2286 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2290 2290  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2291 2291  
2292 2292  VDI_4 input level:
2293 2293  
2294 -* 0: low level
2295 -* 1: high level
2291 +0: low level
2292 +
2293 +1: high level
2296 2296  )))|-
2297 -|=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2295 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2298 2298  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2299 2299  
2300 2300  VDI_5 input level:
2301 2301  
2302 -* 0: low level
2303 -* 1: high level
2300 +0: low level
2301 +
2302 +1: high level
2304 2304  )))|-
2305 -|=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2304 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2306 2306  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2307 2307  
2308 2308  VDI_6 input level:
2309 2309  
2310 -* 0: low level
2311 -* 1: high level
2309 +0: low level
2310 +
2311 +1: high level
2312 2312  )))|-
2313 -|=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2313 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2314 2314  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2315 2315  
2316 2316  VDI_7 input level:
2317 2317  
2318 -* 0: low level
2319 -* 1: high level
2318 +0: low level
2319 +
2320 +1: high level
2320 2320  )))|-
2321 -|=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2322 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2322 2322  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2323 2323  
2324 2324  VDI_8 input level:
2325 2325  
2326 -* 0: low level
2327 -* 1: high level
2327 +0: low level
2328 +
2329 +1: high level
2328 2328  )))|-
2329 2329  
2330 2330  Table 6-57 Virtual VDI parameters
2331 2331  
2332 -(% class="box infomessage" %)
2333 -(((
2334 2334  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2335 -)))
2336 2336  
2337 -== Port filtering time ==
2336 +== **Port filtering time** ==
2338 2338  
2339 2339  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2340 2340  
2341 -|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2342 -|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2343 -|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2344 2344  
2341 +|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration**
2342 +|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2343 +|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2344 +
2345 2345  Table 6-58 DI terminal channel logic selection
2346 2346  
2347 2347  == **VDO** ==
... ... @@ -2351,49 +2351,51 @@
2351 2351  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2352 2352  
2353 2353  (% style="text-align:center" %)
2354 -(((
2355 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2356 -[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2357 -)))
2354 +[[image:image-20220608173957-48.png]]
2358 2358  
2356 +Figure 6-52 VDO_2 setting steps
2359 2359  
2360 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2358 +|**Function code**|**Name**|(((
2361 2361  **Setting method**
2362 -)))|=(((
2360 +)))|(((
2363 2363  **Effective time**
2364 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2365 -|=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2362 +)))|**Default value**|**Range**|**Definition**|**Unit**
2363 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2366 2366  VDO_1 output level:
2367 2367  
2368 -* 0: low level
2369 -* 1: high level
2366 +0: low level
2367 +
2368 +1: high level
2370 2370  )))|-
2371 -|=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2370 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2372 2372  VDO_2 output level:
2373 2373  
2374 -* 0: low level
2375 -* 1: high level
2373 +0: low level
2374 +
2375 +1: high level
2376 2376  )))|-
2377 -|=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2377 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2378 2378  VDO_3 output level:
2379 2379  
2380 -* 0: low level
2381 -* 1: high level
2380 +0: low level
2381 +
2382 +1: high level
2382 2382  )))|-
2383 -|=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2384 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2384 2384  VDO_4 output level:
2385 2385  
2386 -* 0: low level
2387 -* 1: high level
2387 +0: low level
2388 +
2389 +1: high level
2388 2388  )))|-
2389 2389  
2390 2390  Table 6-59 Communication control DO function parameters
2391 2391  
2392 -|=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2393 -|=145|COM_VDO1 communication VDO1 output|Use communication VDO
2394 -|=146|COM_VDO1 communication VDO2 output|Use communication VDO
2395 -|=147|COM_VDO1 communication VDO3 output|Use communication VDO
2396 -|=148|COM_VDO1 communication VDO4output|Use communication VDO
2394 +|**DO function number**|**Function name**|**Function**
2395 +|145|COM_VDO1 communication VDO1 output|Use communication VDO
2396 +|146|COM_VDO1 communication VDO2 output|Use communication VDO
2397 +|147|COM_VDO1 communication VDO3 output|Use communication VDO
2398 +|148|COM_VDO1 communication VDO4output|Use communication VDO
2397 2397  
2398 2398  Table 6-60 VDO function number
2399 2399  
... ... @@ -2401,16 +2401,16 @@
2401 2401  
2402 2402  If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2403 2403  
2404 -== Motor overload protection ==
2406 +== **Motor overload protection** ==
2405 2405  
2406 2406  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2407 2407  
2408 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2410 +|**Function code**|**Name**|(((
2409 2409  **Setting method**
2410 -)))|=(((
2412 +)))|(((
2411 2411  **Effective time**
2412 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2413 -|=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2414 +)))|**Default value**|**Range**|**Definition**|**Unit**
2415 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2414 2414  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2415 2415  
2416 2416  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
image-20220804160519-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -982.3 KB
Content
image-20220804160624-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -975.3 KB
Content