Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
From version 58.1
edited by Jim(Forgotten)
on 2023/02/06 11:22
on 2023/02/06 11:22
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Jim1 +XWiki.Stone - Content
-
... ... @@ -2,67 +2,57 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|=(% scope="row" style="width: 79px;"%)**No.**|=(% style="width: 996px;" %)**Content**5 +|=(% scope="row" %)**No.**|=**Content** 6 6 |=(% colspan="2" %)Wiring 7 -|= (% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -|= (% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -|= (% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -|= (% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -|= (% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.12 -|= (% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.13 -|= (% style="width:79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.14 -|= (% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=5|Servo drive and servo motor must be grounded reliably. 12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=7|The force of all cables is within the specified range. 14 +|=8|The wiring terminals have been insulated. 15 15 |=(% colspan="2" %)Environment and Machinery 16 -|= (% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -|= (% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.18 -|= (% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=2|The servo drive and external braking resistor are not placed on combustible objects. 18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 22 -== Power-on == 22 +== **Power-on** == 23 23 24 -**Connect the main circuit power supply** 24 +**(1) Connect the main circuit power supply** 25 25 26 26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal. 27 27 28 -If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02.WebHome]]__” to analyze and eliminate the cause of the fault.28 +If the drive panel displays other fault codes, please refer to __[[“10 Faults>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/]]__” to analyze and eliminate the cause of the fault. 29 29 30 -**Set the servo drive enable (S-ON) to invalid (OFF)** 30 +**(2) Set the servo drive enable (S-ON) to invalid (OFF)** 31 31 32 -== Jog operation == 32 +== **Jog operation** == 33 33 34 34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform. 35 35 36 -**Panel jog operation** 36 +**(1) Panel jog operation** 37 37 38 -Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/0 2%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.38 +Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__. 39 39 40 -**Jog operation of servo debugging platform** 40 +**(2) Jog operation of servo debugging platform** 41 41 42 42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below. 43 43 44 + 45 + 44 44 |=(% scope="row" %)**Function code**|=**Name**|=((( 45 45 **Setting method** 46 46 )))|=((( 47 47 **Effective time** 48 48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 49 -|=((( 50 -P10-01 51 -)))|((( 52 -JOG speed 53 -)))|((( 51 +|=P10-01|JOG speed|((( 54 54 Operation setting 55 55 )))|((( 56 56 Effective immediately 57 -)))|((( 58 -100 59 -)))|((( 60 -0 to 3000 61 -)))|((( 62 -JOG speed 63 -)))|((( 64 -rpm 65 -))) 55 +)))|100|0 to 3000|JOG speed|rpm 66 66 67 67 Table 6-2 JOG speed parameter 68 68 ... ... @@ -70,24 +70,18 @@ 70 70 71 71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 72 72 63 + 73 73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 74 -|=((( 75 -P00-04 76 -)))|((( 77 -Rotation direction 78 -)))|((( 65 +|=P00-04|Rotation direction|((( 79 79 Shutdown setting 80 80 )))|((( 81 81 Effective immediately 82 -)))|((( 83 -0 84 -)))|((( 85 -0 to 1 86 -)))|((( 69 +)))|0|0 to 1|((( 87 87 Forward rotation: Face the motor shaft to watch 88 88 89 -* 0: standard setting (CW is forward rotation) 90 -* 1: reverse mode (CCW is forward rotation) 72 +0: standard setting (CW is forward rotation) 73 + 74 +1: reverse mode (CCW is forward rotation) 91 91 )))|- 92 92 93 93 Table 6-3 Rotation direction parameters** ** ... ... @@ -101,30 +101,33 @@ 101 101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 102 102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 103 103 104 -|=(% scope="row" %)**Function code**|=**Name**|=( % style="width: 118px;" %)(((88 +|=(% scope="row" %)**Function code**|=**Name**|=((( 105 105 **Setting method** 106 -)))|=( % style="width: 126px;" %)(((90 +)))|=((( 107 107 **Effective time** 108 108 )))|=**Default**|=**Range**|=**Definition**|=**Unit** 109 -|=P00-09|Braking resistor setting|( % style="width:118px" %)(((93 +|=P00-09|Braking resistor setting|((( 110 110 Operation setting 111 -)))|( % style="width:126px" %)(((95 +)))|((( 112 112 Effective immediately 113 113 )))|0|0 to 3|((( 114 -* 0: use built-in braking resistor 115 -* 1: use external braking resistor and natural cooling 116 -* 2: use external braking resistor and forced air cooling; (cannot be set) 117 -* 3: No braking resistor is used, it is all absorbed by capacitor. 98 +0: use built-in braking resistor 99 + 100 +1: use external braking resistor and natural cooling 101 + 102 +2: use external braking resistor and forced air cooling; (cannot be set) 103 + 104 +3: No braking resistor is used, it is all absorbed by capacitor. 118 118 )))|- 119 - (% class="info" %)|(% colspan="8"scope="row"%)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).120 -|=P00-10|External braking resistor value|( % style="width:118px" %)(((106 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 107 +|=P00-10|External braking resistor value|((( 121 121 Operation setting 122 -)))|( % style="width:126px" %)(((109 +)))|((( 123 123 Effective immediately 124 124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 125 -|=P00-11|External braking resistor power|( % style="width:118px" %)(((112 +|=P00-11|External braking resistor power|((( 126 126 Operation setting 127 -)))|( % style="width:126px" %)(((114 +)))|((( 128 128 Effective immediately 129 129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 130 130 ... ... @@ -132,70 +132,73 @@ 132 132 133 133 == **Servo operation** == 134 134 135 -**Set the servo enable (S-ON) to valid (ON)** 122 +**(1) Set the servo enable (S-ON) to valid (ON)** 136 136 137 137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked. 138 138 139 139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration". 140 140 141 -**Input the instruction and the motor rotates** 128 +**(2) Input the instruction and the motor rotates** 142 142 143 -Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc :Servo.Manual.02.WebHome]], the motor could work as expected.130 +Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected. 144 144 145 -**Timing diagram of power on** 132 +**(3) Timing diagram of power on** 146 146 147 -(% style="text-align:center" %) 148 -((( 149 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 150 -[[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]] 151 -))) 152 152 153 - == Servo shutdown==135 +[[image:image-20220608163014-1.png]] 154 154 155 - Accordingto the different shutdown modes, it could be divided into freeshutdownand zero speed shutdown.The respective characteristics are shownin __Table 6-5__. Accordingto the shutdown status,it could be divided intofreerunning state andposition locked,as shownin __Table 6-6__.137 +Figure 6-1 Timing diagram of power on 156 156 157 -|=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics 158 -|=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process. 159 -|=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process. 139 +== **Servo shutdown** == 160 160 141 +According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HServoshutdown]]__. 142 + 143 + 144 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 145 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 146 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 147 + 161 161 Table 6-5 Comparison of two shutdown modes 162 162 163 -|=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked** 164 -|=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely. 165 165 151 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 152 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 153 + 166 166 Table 6-6 Comparison of two shutdown status 167 167 168 -**Servo enable (S-ON) OFF shutdown** 156 +**(1) Servo enable (S-ON) OFF shutdown** 169 169 170 170 The related parameters of the servo OFF shutdown mode are shown in the table below. 171 171 172 -|=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)((( 160 + 161 +|=(% scope="row" %)**Function code**|=**Name**|=((( 173 173 **Setting method** 174 -)))|=( % style="width: 134px;" %)(((163 +)))|=((( 175 175 **Effective time** 176 -)))|=( % style="width: 86px;" %)(((165 +)))|=((( 177 177 **Default value** 178 -)))|= (% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**179 -|= (% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((167 +)))|=**Range**|=**Definition**|=**Unit** 168 +|=P00-05|Servo OFF shutdown|((( 180 180 Shutdown 181 181 182 182 setting 183 -)))|( % style="width:134px" %)(((172 +)))|((( 184 184 Effective 185 185 186 186 immediately 187 -)))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)((( 188 -* 0: Free shutdown, and the motor shaft remains free status. 189 -* 1: Zero-speed shutdown, and the motor shaft remains free status. 176 +)))|0|0 to 1|((( 177 +0: Free shutdown, and the motor shaft remains free status. 178 + 179 +1: Zero-speed shutdown, and the motor shaft remains free status. 190 190 )))|- 191 191 192 -Table 6-7 Servo OFF shutdown mode parameters details 182 +Table 6-7Table 6-1 Servo OFF shutdown mode parameters details 193 193 194 -**Emergency shutdown** 184 +**(2) Emergency shutdown** 195 195 196 196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". 197 197 198 -**Overtravel shutdown** 188 +**(3) Overtravel shutdown** 199 199 200 200 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel. 201 201 ... ... @@ -203,98 +203,149 @@ 203 203 204 204 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 205 205 206 -|=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)((( 196 + 197 +|=(% scope="row" %)**Function code**|=**Name**|=((( 207 207 **Setting method** 208 -)))|=( % style="width: 114px;" %)(((199 +)))|=((( 209 209 **Effective time** 210 -)))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit** 211 -|=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)((( 212 -* 0: OFF (not used) 213 -* 01: S-ON servo enable 214 -* 02: A-CLR fault and Warning Clear 215 -* 03: POT forward drive prohibition 216 -* 04: NOT Reverse drive prohibition 217 -* 05: ZCLAMP Zero speed 218 -* 06: CL Clear deviation counter 219 -* 07: C-SIGN Inverted instruction 220 -* 08: E-STOP Emergency stop 221 -* 09: GEAR-SEL Electronic Gear Switch 1 222 -* 10: GAIN-SEL gain switch 223 -* 11: INH Instruction pulse prohibited input 224 -* 12: VSSEL Vibration control switch input 225 -* 13: INSPD1 Internal speed instruction selection 1 226 -* 14: INSPD2 Internal speed instruction selection 2 227 -* 15: INSPD3 Internal speedinstruction selection 3 228 -* 16: J-SEL inertia ratio switch (not implemented yet) 229 -* 17: MixModesel mixed mode selection 230 -* 20: Internal multi-segment position enable signal 231 -* 21: Internal multi-segment position selection 1 232 -* 22: Internal multi-segment position selection 2 233 -* 23: Internal multi-segment position selection 3 234 -* 24: Internal multi-segment position selection 4 235 -* Others: reserved 201 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 202 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|((( 203 +0: OFF (not used) 204 + 205 +01: S-ON servo enable 206 + 207 +02: A-CLR fault and Warning Clear 208 + 209 +03: POT forward drive prohibition 210 + 211 +04: NOT Reverse drive prohibition 212 + 213 +05: ZCLAMP Zero speed 214 + 215 +06: CL Clear deviation counter 216 + 217 +07: C-SIGN Inverted instruction 218 + 219 +08: E-STOP Emergency stop 220 + 221 +09: GEAR-SEL Electronic Gear Switch 1 222 + 223 +10: GAIN-SEL gain switch 224 + 225 +11: INH Instruction pulse prohibited input 226 + 227 +12: VSSEL Vibration control switch input 228 + 229 +13: INSPD1 Internal speed instruction selection 1 230 + 231 +14: INSPD2 Internal speed instruction selection 2 232 + 233 +15: INSPD3 Internal speedinstruction selection 3 234 + 235 +16: J-SEL inertia ratio switch (not implemented yet) 236 + 237 +17: MixModesel mixed mode selection 238 + 239 +20: Internal multi-segment position enable signal 240 + 241 +21: Internal multi-segment position selection 1 242 + 243 +22: Internal multi-segment position selection 2 244 + 245 +23: Internal multi-segment position selection 3 246 + 247 +24: Internal multi-segment position selection 4 248 + 249 +Others: reserved 236 236 )))|- 237 -|= (% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((251 +|=P06-09|DI_3 channel logic selection|Operation setting|((( 238 238 Effective immediately 239 -)))| (% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((253 +)))|0|0 to 1|((( 240 240 DI port input logic validity function selection. 241 241 242 -* 0: Normally open input. Active low level (switch on); 243 -* 1: Normally closed input. Active high level (switch off); 256 +0: Normally open input. Active low level (switch on); 257 + 258 +1: Normally closed input. Active high level (switch off); 244 244 )))|- 245 -|= (% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((260 +|=P06-10|DI_3 input source selection|Operation setting|((( 246 246 Effective immediately 247 -)))| (% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((262 +)))|0|0 to 1|((( 248 248 Select the DI_3 port type to enable 249 249 250 -* 0: Hardware DI_3 input terminal 251 -* 1: virtual VDI_3 input terminal 265 +0: Hardware DI_3 input terminal 266 + 267 +1: virtual VDI_3 input terminal 252 252 )))|- 253 -|= (% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((269 +|=P06-11|DI_4 channel function selection|((( 254 254 Operation setting 255 -)))|( % style="width:114px" %)(((271 +)))|((( 256 256 again Power-on 257 -)))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)((( 258 -* 0: OFF (not used) 259 -* 01: SON Servo enable 260 -* 02: A-CLR Fault and Warning Clear 261 -* 03: POT Forward drive prohibition 262 -* 04: NOT Reverse drive prohibition 263 -* 05: ZCLAMP Zero speed 264 -* 06: CL Clear deviation counter 265 -* 07: C-SIGN Inverted instruction 266 -* 08: E-STOP Emergency shutdown 267 -* 09: GEAR-SEL Electronic Gear Switch 1 268 -* 10: GAIN-SEL gain switch 269 -* 11: INH Instruction pulse prohibited input 270 -* 12: VSSEL Vibration control switch input 271 -* 13: INSPD1 Internal speed instruction selection 1 272 -* 14: INSPD2 Internal speed instruction selection 2 273 -* 15: INSPD3 Internal speed instruction selection 3 274 -* 16: J-SEL inertia ratio switch (not implemented yet) 275 -* 17: MixModesel mixed mode selection 276 -* 20: Internal multi-segment position enable signal 277 -* 21: Internal multi-segment position selection 1 278 -* 22: Internal multi-segment position selection 2 279 -* 23: Internal multi-segment position selection 3 280 -* 24: Internal multi-segment position selection 4 281 -* Others: reserved 273 +)))|4|0 to 32|((( 274 +0 off (not used) 275 + 276 +01: SON Servo enable 277 + 278 +02: A-CLR Fault and Warning Clear 279 + 280 +03: POT Forward drive prohibition 281 + 282 +04: NOT Reverse drive prohibition 283 + 284 +05: ZCLAMP Zero speed 285 + 286 +06: CL Clear deviation counter 287 + 288 +07: C-SIGN Inverted instruction 289 + 290 +08: E-STOP Emergency shutdown 291 + 292 +09: GEAR-SEL Electronic Gear Switch 1 293 + 294 +10: GAIN-SEL gain switch 295 + 296 +11: INH Instruction pulse prohibited input 297 + 298 +12: VSSEL Vibration control switch input 299 + 300 +13: INSPD1 Internal speed instruction selection 1 301 + 302 +14: INSPD2 Internal speed instruction selection 2 303 + 304 +15: INSPD3 Internal speed instruction selection 3 305 + 306 +16: J-SEL inertia ratio switch (not implemented yet) 307 + 308 +17: MixModesel mixed mode selection 309 + 310 +20: Internal multi-segment position enable signal 311 + 312 +21: Internal multi-segment position selection 1 313 + 314 +22: Internal multi-segment position selection 2 315 + 316 +23: Internal multi-segment position selection 3 317 + 318 +24: Internal multi-segment position selection 4 319 + 320 +Others: reserved 282 282 )))|- 283 -|= (% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((322 +|=P06-12|DI_4 channel logic selection|Operation setting|((( 284 284 Effective immediately 285 -)))| (% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((324 +)))|0|0 to 1|((( 286 286 DI port input logic validity function selection. 287 287 288 -* 0: Normally open input. Active low level (switch on); 289 -* 1: Normally closed input. Active high level (switch off); 327 +0: Normally open input. Active low level (switch on); 328 + 329 +1: Normally closed input. Active high level (switch off); 290 290 )))|- 291 -|= (% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((331 +|=P06-13|DI_4 input source selection|Operation setting|((( 292 292 Effective immediately 293 -)))| (% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((333 +)))|0|0 to 1|((( 294 294 Select the DI_4 port type to enable 295 295 296 -* 0: Hardware DI_4 input terminal 297 -* 1: virtual VDI_4 input terminal 336 +0: Hardware DI_4 input terminal 337 + 338 +1: virtual VDI_4 input terminal 298 298 )))|- 299 299 300 300 Table 6-8 DI3 and DI4 channel parameters ... ... @@ -303,12 +303,12 @@ 303 303 304 304 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state. 305 305 306 -== Brake device == 347 +== **Brake device** == 307 307 308 308 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 309 309 310 - (% class="warning" %)|(((311 -( % style="text-align:center" %)351 + 352 +|((( 312 312 [[image:image-20220611151617-1.png]] 313 313 ))) 314 314 |((( ... ... @@ -323,19 +323,17 @@ 323 323 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function. 324 324 ))) 325 325 326 -**Wiring of brake device** 367 +**(1) Wiring of brake device** 327 327 328 -The brake input signal has no polarity. Userneed to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)369 +The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 329 329 330 330 331 -(% style="text-align:center" %) 332 -((( 333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 334 -[[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]] 335 -))) 372 +[[image:image-20220608163136-2.png]] 336 336 337 -(% class="warning" %)|((( 338 -(% style="text-align:center" %) 374 +Figure 6-2 VD2B servo drive brake wiring 375 + 376 + 377 +|((( 339 339 [[image:image-20220611151642-2.png]] 340 340 ))) 341 341 |((( ... ... @@ -346,21 +346,23 @@ 346 346 ✎It is recommended to use cables above 0.5 mm². 347 347 ))) 348 348 349 -**Brake software setting** 388 +**(2) Brake software setting** 350 350 351 351 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined. 352 352 353 353 Related function code is as below. 354 354 355 -|=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)((( 394 + 395 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=((( 356 356 **Effective time** 357 357 ))) 358 -|=144|( % style="width:241px" %)(((398 +|=144|((( 359 359 BRK-OFF Brake output 360 -)))| (% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again400 +)))|Output the signal indicates the servo motor brake release|Power-on again 361 361 362 362 Table 6-2 Relevant function codes for brake setting 363 363 404 + 364 364 |=(% scope="row" %)**Function code**|=**Name**|=((( 365 365 **Setting method** 366 366 )))|=((( ... ... @@ -391,16 +391,16 @@ 391 391 392 392 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive. 393 393 394 -**Servo drive brake timing in normal state** 435 +**(3) Servo drive brake timing in normal state** 395 395 396 396 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above). 397 397 398 - *Brake timing when servo motor is stationary439 +1) Brake timing when servo motor is stationary 399 399 400 -When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__ 441 +When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163304-3.png?rev=1.1]]__ 401 401 402 - (% class="warning" %)|(((403 -( % style="text-align:center" %)443 + 444 +|((( 404 404 [[image:image-20220611151705-3.png]] 405 405 ))) 406 406 |((( ... ... @@ -409,23 +409,18 @@ 409 409 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force. 410 410 ))) 411 411 412 -(% style="text-align:center" %) 413 -((( 414 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 415 -[[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]] 416 -))) 453 +[[image:image-20220608163304-3.png]] 417 417 418 - (%class="boxinfomessage" %)419 - (((455 +Figure 6-3 Brake Timing of when the motor is stationary 456 + 420 420 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor. 421 -))) 422 422 423 - *The brake timing when servo motor rotates459 +2) The brake timing when servo motor rotates 424 424 425 -When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__. 461 +When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608163425-4.png?rev=1.1]]__. 426 426 427 - (% class="warning" %)|(((428 -( % style="text-align:center" %)463 + 464 +|((( 429 429 [[image:image-20220611151719-4.png]] 430 430 ))) 431 431 |((( ... ... @@ -440,40 +440,37 @@ 440 440 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force. 441 441 ))) 442 442 443 -(% style="text-align:center" %) 444 -((( 445 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 446 -[[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]] 447 -))) 479 +[[image:image-20220608163425-4.png]] 448 448 449 - **Brake timing when theservodrivefails**481 +Figure 6-4 Brake timing when the motor rotates 450 450 483 +**(4) Brake timing when the servo drive fails** 484 + 451 451 The brake timing (free shutdown) in the fault status is as follows. 452 452 453 -(% style="text-align:center" %) 454 -((( 455 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 456 -[[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]] 457 -))) 458 458 488 +[[image:image-20220608163541-5.png]] 489 + 490 + Figure 6-5 The brake timing (free shutdown) in the fault state 491 + 459 459 = **Position control mode** = 460 460 461 461 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below. 462 462 463 -(% style="text-align:center" %) 464 -((( 465 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 466 -[[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]] 467 -))) 468 468 497 +[[image:image-20220608163643-6.png]] 498 + 499 +Figure 6-6 Position control diagram 500 + 469 469 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 470 470 471 -|=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=((( 503 + 504 +|=(% scope="row" %)**Function code**|=**Name**|=((( 472 472 **Setting method** 473 473 )))|=((( 474 474 **Effective time** 475 475 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 476 -|= (% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((509 +|=P01-01|Control mode|((( 477 477 Operation setting 478 478 )))|((( 479 479 immediately Effective ... ... @@ -493,10 +493,11 @@ 493 493 494 494 Table 6-10 Control mode parameters 495 495 496 -== Position instruction input setting == 529 +== **Position instruction input setting** == 497 497 498 498 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”. 499 499 533 + 500 500 |=(% scope="row" %)**Function code**|=**Name**|=((( 501 501 **Setting method** 502 502 )))|=((( ... ... @@ -514,149 +514,149 @@ 514 514 515 515 Table 6-11 Position instruction source parameter 516 516 517 -**The source of position instruction is pulse instruction (P01-06=0)** 551 +**(1) The source of position instruction is pulse instruction (P01-06=0)** 518 518 519 -Low-speed pulse instruction input 553 +1) Low-speed pulse instruction input 520 520 521 -|(% style="text-align:center" %)((( 522 -(% class="wikigeneratedid" style="display:inline-block" %) 523 -[[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]] 524 -)))|(% style="text-align:center" %)((( 525 -(% class="wikigeneratedid" style="display:inline-block" %) 526 -[[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]] 527 -))) 555 +|[[image:image-20220707092316-1.png]]|[[image:image-20220707092322-2.png]] 556 +|VD2A and VD2B servo drives|VD2F servo drive 528 528 |(% colspan="2" %)Figure 6-7 Position instruction input setting 529 529 530 -VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__. 559 +VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__. 531 531 532 532 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 533 533 534 -|=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage** 535 -|=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V 536 -|=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V 537 537 564 +|**Pulse method**|**Maximum frequency**|**Voltage** 565 +|Open collector input|200K|24V 566 +|Differential input|500K|5V 567 + 538 538 Table 6-12 Pulse input specifications 539 539 540 - *Differential input570 +1.Differential input 541 541 542 542 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 543 543 544 544 (% style="text-align:center" %) 545 -((( 546 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 547 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]] 548 -))) 575 +[[image:image-20220707092615-5.jpeg]] 549 549 550 -(% class="box infomessage" %) 551 -((( 552 -✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__” 553 -))) 577 +Figure 6-8 Differential input connection 554 554 555 -* Open collector input579 +✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 556 556 581 +2.Open collector input 582 + 557 557 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below. 558 558 559 559 (% style="text-align:center" %) 560 -((( 561 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 562 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]] 563 -))) 586 +[[image:image-20220707092401-3.jpeg||height="530" width="834"]] 564 564 588 +Figure 6-9 Open collector input connection 565 565 566 -(% class="box infomessage" %) 567 -((( 568 -✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__” 569 -))) 590 +✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__” 570 570 571 - *Position pulse frequency and anti-interference level592 +2) Position pulse frequency and anti-interference level 572 572 573 573 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10. 574 574 575 575 (% style="text-align:center" %) 576 -((( 577 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 578 -[[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]] 579 -))) 597 +[[image:image-20220608163952-8.png]] 580 580 599 +Figure 6-10 Example of filtered signal waveform 600 + 581 581 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 582 582 583 -|=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)((( 603 + 604 +|=(% scope="row" %)**Function code**|=**Name**|=((( 584 584 **Setting method** 585 585 )))|=((( 586 586 **Effective time** 587 -)))|=**Default value**|= (% style="width: 87px;" %)**Range**|=(% colspan="2"style="width: 296px;"%)**Definition**|=**Unit**588 -|P00-13| (% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((608 +)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit** 609 +|=P00-13|Maximum position pulse frequency|((( 589 589 Shutdown setting 590 590 )))|((( 591 591 Effective immediately 592 -)))|300| (% style="width:87px" %)1 to 500|(% colspan="2"style="width:296px"%)Set the maximum frequency of external pulse instruction|KHz593 -|(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px"%)Position pulse anti-interference level|(% rowspan="3"style="width:146px"%)(((613 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 614 +|=(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 594 594 Operation setting 595 595 )))|(% rowspan="3" %)((( 596 596 Power-on again 597 -)))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px"%)0 to 9|(% colspan="2"style="width:296px"%)(((618 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 598 598 Set the anti-interference level of external pulse instruction. 599 599 600 -* 0: no filtering; 601 -* 1: Filtering time 128ns 602 -* 2: Filtering time 256ns 603 -* 3: Filtering time 512ns 604 -* 4: Filtering time 1.024us 605 -* 5: Filtering time 2.048us 606 -* 6: Filtering time 4.096us 607 -* 7: Filtering time 8.192us 608 -* 8: Filtering time 16.384us 609 -* 9: 610 -** VD2: Filtering time 25.5us 611 -** VD2F: Filtering time 25.5us 621 +0: no filtering; 622 + 623 +1: Filtering time 128ns 624 + 625 +2: Filtering time 256ns 626 + 627 +3: Filtering time 512ns 628 + 629 +4: Filtering time 1.024us 630 + 631 +5: Filtering time 2.048us 632 + 633 +6: Filtering time 4.096us 634 + 635 +7: Filtering time 8.192us 636 + 637 +8: Filtering time 16.384us 612 612 )))|(% rowspan="3" %)- 639 +|=(% rowspan="2" %)9|VD2: Filtering time 25.5us 640 +|=VD2F: Filtering time 25.5us 613 613 614 614 Table 6-13 Position pulse frequency and anti-interference level parameters 615 615 616 - *Position pulse type selection644 +3) Position pulse type selection 617 617 618 618 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 619 619 620 -|=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)((( 648 + 649 +|=(% scope="row" %)**Function code**|=**Name**|=((( 621 621 **Setting method** 622 -)))|=( % style="width: 109px;" %)(((651 +)))|=((( 623 623 **Effective time** 624 -)))|= (% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**625 -|=P00-12| (% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((653 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 654 +|=P00-12|Position pulse type selection|((( 626 626 Operation setting 627 -)))|( % style="width:109px" %)(((656 +)))|((( 628 628 Power-on again 629 -)))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)((( 630 -* 0: direction + pulse (positive logic) 631 -* 1: CW/CCW 632 -* 2: A, B phase quadrature pulse (4 times frequency) 633 -* 3: Direction + pulse (negative logic) 634 -* 4: CW/CCW (negative logic) 635 -* 5: A, B phase quadrature pulse (4 times frequency negative logic) 658 +)))|0|0 to 5|((( 659 +0: direction + pulse (positive logic) 660 + 661 +1: CW/CCW 662 + 663 +2: A, B phase quadrature pulse (4 times frequency) 664 + 665 +3: Direction + pulse (negative logic) 666 + 667 +4: CW/CCW (negative logic) 668 + 669 +5: A, B phase quadrature pulse (4 times frequency negative logic) 636 636 )))|- 637 637 638 638 Table 6-14 Position pulse type selection parameter 639 639 640 -|=(% scope="row" %)**Pulse type selection**|= (% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**641 -|=0|( % style="width:200px" %)(((674 +|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse** 675 +|=0|((( 642 642 Direction + pulse 643 643 644 644 (Positive logic) 645 -)))|( % style="width:161px" %)(((679 +)))|((( 646 646 PULSE 647 647 648 648 SIGN 649 649 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]] 650 -|=1| (% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((684 +|=1|CW/CCW|((( 651 651 PULSE (CW) 652 652 653 653 SIGN (CCW) 654 654 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]] 655 -|=2|( % style="width:200px" %)(((689 +|=2|((( 656 656 AB phase orthogonal 657 657 658 658 pulse (4 times frequency) 659 -)))|( % style="width:161px" %)(((693 +)))|((( 660 660 PULSE (Phase A) 661 661 662 662 SIGN (Phase B) ... ... @@ -673,29 +673,29 @@ 673 673 674 674 Phase B is 90° ahead of Phase A 675 675 ))) 676 -|=3|( % style="width:200px" %)(((710 +|=3|((( 677 677 Direction + pulse 678 678 679 679 (Negative logic) 680 -)))|( % style="width:161px" %)(((714 +)))|((( 681 681 PULSE 682 682 683 683 SIGN 684 684 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]] 685 -|=4|( % style="width:200px" %)(((719 +|=4|((( 686 686 CW/CCW 687 687 688 688 (Negative logic) 689 -)))|( % style="width:161px" %)(((723 +)))|((( 690 690 PULSE (CW) 691 691 692 692 SIGN (CCW) 693 693 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]] 694 -|=5|( % style="width:200px" %)(((728 +|=5|((( 695 695 AB phase orthogonal 696 696 697 697 pulse (4 times frequency negative logic) 698 -)))|( % style="width:161px" %)(((732 +)))|((( 699 699 PULSE (Phase A) 700 700 701 701 SIGN (Phase B) ... ... @@ -708,7 +708,7 @@ 708 708 )))|((( 709 709 710 710 711 -[[image:image-20220707094437-15.jpeg]] 745 +[[image:image-20220707094437-15.jpeg]] 712 712 713 713 Phase A is ahead of B phase by 90° 714 714 ))) ... ... @@ -715,20 +715,18 @@ 715 715 716 716 Table 6-15 Pulse description 717 717 718 -**The source of position instruction is internal position instruction (P01-06=1)** 752 +**(2) The source of position instruction is internal position instruction (P01-06=1)** 719 719 720 -The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__. 754 +The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164116-9.png?rev=1.1]]__. 721 721 722 722 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation. 723 723 724 724 (% style="text-align:center" %) 725 -((( 726 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 727 -[[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]] 728 -))) 759 +[[image:image-20220608164116-9.png]] 729 729 761 +Figure 6-11 The setting process of multi-segment position 730 730 731 - *Set multi-segment position running mode763 +1) Set multi-segment position running mode 732 732 733 733 |=(% scope="row" %)**Function code**|=**Name**|=((( 734 734 **Setting method** ... ... @@ -740,9 +740,11 @@ 740 740 )))|((( 741 741 Effective immediately 742 742 )))|0|0 to 2|((( 743 -* 0: Single running 744 -* 1: Cycle running 745 -* 2: DI switching running 775 +0: Single running 776 + 777 +1: Cycle running 778 + 779 +2: DI switching running 746 746 )))|- 747 747 |=P07-02|Start segment number|((( 748 748 Shutdown setting ... ... @@ -759,8 +759,9 @@ 759 759 )))|((( 760 760 Effective immediately 761 761 )))|0|0 to 1|((( 762 -* 0: Run the remaining segments 763 -* 1: Run again from the start segment 796 +0: Run the remaining segments 797 + 798 +1: Run again from the start segment 764 764 )))|- 765 765 |=P07-05|Displacement instruction type|((( 766 766 Shutdown setting ... ... @@ -767,8 +767,9 @@ 767 767 )))|((( 768 768 Effective immediately 769 769 )))|0|0 to 1|((( 770 -* 0: Relative position instruction 771 -* 1: Absolute position instruction 805 +0: Relative position instruction 806 + 807 +1: Absolute position instruction 772 772 )))|- 773 773 774 774 Table 6-16 multi-segment position running mode parameters ... ... @@ -775,34 +775,30 @@ 775 775 776 776 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements. 777 777 778 -1. Single running 814 +~1. Single running 779 779 780 -In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 816 +In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164226-10.png?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 781 781 818 + 782 782 (% style="text-align:center" %) 783 -((( 784 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 785 -[[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]] 786 -))) 820 +[[image:image-20220608164226-10.png]] 787 787 788 - *2.Cycle running822 +Figure 6-12 Single running curve (P07-02=1, P07-03=2) 789 789 824 +2. Cycle running 825 + 790 790 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively. 791 791 792 -(% style="text-align:center" %) 793 -((( 794 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 795 -[[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]] 796 -))) 797 797 798 -(% class="warning" %)|((( 799 799 (% style="text-align:center" %) 800 -[[image:image-20220611151917-5.png]] 801 -))) 830 +[[image:image-20220608164327-11.png]] 831 + 832 +Figure 6-13 Cycle running curve (P07-02=1, P07-03=4) 833 + 834 +|[[image:image-20220611151917-5.png]] 802 802 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02. 803 803 804 -(% start="3" %) 805 -1. DI switching running 837 +3. DI switching running 806 806 807 807 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below. 808 808 ... ... @@ -825,87 +825,68 @@ 825 825 826 826 Table 6-18 INPOS corresponds to running segment number 827 827 828 -The operating curve in this running mode is shown in __Figure 6-14__. 860 +The operating curve in this running mode is shown in __[[Figure 6-14>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164545-12.png?rev=1.1]]__. 829 829 830 830 (% style="text-align:center" %) 831 -((( 832 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 833 -[[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]] 834 -))) 863 +[[image:image-20220608164545-12.png]] 835 835 865 +Figure 6-14 DI switching running curve 866 + 836 836 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04. 837 837 838 -**Run the remaining segments** 869 +**A. Run the remaining segments** 839 839 840 840 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively. 841 841 842 842 (% style="text-align:center" %) 843 -((( 844 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 845 -[[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]] 846 -))) 874 +[[image:image-20220608164847-13.png]] 847 847 876 +Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4) 877 + 848 848 (% style="text-align:center" %) 849 -((( 850 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 851 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]] 852 -))) 879 +[[image:image-20220608165032-14.png]] 853 853 854 - **Runagainfromthestartsegment**881 +Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4) 855 855 856 - Inthis processing mode, when the multi-segmentposition instruction enable is OFF duringrunning, the servo drive willabandon the uncompleted displacementpart and shutdown. Afterthe shutdown is completed,thepositioning completion signal is valid. Whenthemulti-segmentposition enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.883 +**B. Run again from the start segment** 857 857 885 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively. 886 + 858 858 (% style="text-align:center" %) 859 -((( 860 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 861 -[[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]] 862 -))) 888 +[[image:image-20220608165343-15.png]] 863 863 890 +Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4) 891 + 864 864 (% style="text-align:center" %) 865 -((( 866 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 867 -[[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]] 868 -))) 893 +[[image:image-20220608165558-16.png]] 869 869 895 +Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4) 896 + 870 870 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05. 871 871 872 - *Relative position instruction899 +A. Relative position instruction 873 873 874 874 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement. 875 875 876 876 |((( 877 -(% style="text-align:center" %) 878 -((( 879 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 880 -[[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]] 881 -))) 904 +[[image:image-20220608165710-17.png]] 882 882 )))|((( 883 -(% style="text-align:center" %) 884 -((( 885 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 886 -[[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]] 906 +[[image:image-20220608165749-18.png]] 887 887 ))) 888 - )))908 +|Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram 889 889 890 - *Absolute position instruction910 +B. Absolute position instruction 891 891 892 892 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement. 893 893 894 894 |((( 895 -(% style="text-align:center" %) 896 -((( 897 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 898 -[[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]] 899 -))) 915 +[[image:image-20220608165848-19.png]] 900 900 )))|((( 901 -(% style="text-align:center" %) 902 -((( 903 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 904 -[[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]] 917 +[[image:image-20220608170005-20.png]] 905 905 ))) 906 - )))919 +|Figure 6-21 Absolute indication|Figure 6-22 Displacement 907 907 908 - *Multi-segment position running curve setting921 +2) Multi-segment position running curve setting 909 909 910 910 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve. 911 911 ... ... @@ -944,13 +944,11 @@ 944 944 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23. 945 945 946 946 (% style="text-align:center" %) 947 -((( 948 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 949 -[[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]] 950 -))) 960 +[[image:image-20220608170149-21.png]] 951 951 962 +Figure 6-23 The 1st segment running curve of motor 952 952 953 - *multi-segment position instruction enable964 +3) multi-segment position instruction enable 954 954 955 955 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal. 956 956 ... ... @@ -961,14 +961,13 @@ 961 961 DI port logic valid: Motor runs multi-segment position 962 962 ))) 963 963 964 -(% style="text-align:center" %) 965 -[[image:image-20220611152020-6.png||class="img-thumbnail"]] 975 +[[image:image-20220611152020-6.png]] 966 966 967 967 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 968 968 969 -== Electronic gear ratio == 979 +== **Electronic gear ratio** == 970 970 971 -**Definition of electronic gear ratio** 981 +**(1) Definition of electronic gear ratio** 972 972 973 973 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio. 974 974 ... ... @@ -977,22 +977,25 @@ 977 977 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 978 978 979 979 (% style="text-align:center" %) 980 -[[image:image-20220707094901-16.png ||class="img-thumbnail"]]990 +[[image:image-20220707094901-16.png]] 981 981 992 + 993 + 994 + 982 982 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! 983 983 984 -**Setting steps of electronic gear ratio** 997 +**(2) Setting steps of electronic gear ratio** 985 985 986 -(% style="text-align:center" %) 987 -((( 988 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 989 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]] 990 -))) 999 +[[image:image-20220707100850-20.jpeg]] 991 991 992 - **lectronic gear ratioswitch setting**1001 +Figure 6-24 Setting steps of electronic gear ratio 993 993 1003 +**(3) lectronic gear ratio switch setting** 1004 + 1005 + 994 994 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below. 995 995 1008 + 996 996 |=(% scope="row" %)**Function code**|=**Name**|=((( 997 997 **Setting method** 998 998 )))|=((( ... ... @@ -1042,6 +1042,7 @@ 1042 1042 1043 1043 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal. 1044 1044 1058 + 1045 1045 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function** 1046 1046 |=09|GEAR-SEL electronic gear switch 1|((( 1047 1047 DI port logic invalid: electronic gear ratio 1 ... ... @@ -1051,25 +1051,16 @@ 1051 1051 1052 1052 Table 6-21 Switching conditions of electronic gear ratio group 1053 1053 1054 -|=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** 1055 -|(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)((( 1056 -(% style="text-align:center" %) 1057 -[[image:image-20220707101328-21.png]] 1058 -))) 1059 -|(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)((( 1060 -(% style="text-align:center" %) 1061 -[[image:image-20220707101336-22.png]] 1062 -))) 1063 -|1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)((( 1064 -(% style="text-align:center" %) 1065 -[[image:image-20220707101341-23.png]] 1066 -))) 1068 +|=(% scope="row" %)**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio** [[image:image-20220707101503-24.png]] 1069 +|=(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)[[image:image-20220707101328-21.png]] 1070 +|=(% style="width: 510px;" %)DI port logic valid|(% style="width:400px" %)[[image:image-20220707101336-22.png]] 1071 +|=1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)[[image:image-20220707101341-23.png]] 1067 1067 1068 1068 Table 6-22 Application of electronic gear ratio 1069 1069 1070 1070 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid. 1071 1071 1072 -== Position instruction filtering == 1077 +== **Position instruction filtering** == 1073 1073 1074 1074 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation. 1075 1075 ... ... @@ -1082,11 +1082,10 @@ 1082 1082 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering. 1083 1083 1084 1084 (% style="text-align:center" %) 1085 -((( 1086 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1087 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]] 1088 -))) 1090 +[[image:image-20220608170455-23.png]] 1089 1089 1092 +Figure 6-25 Position instruction filtering diagram 1093 + 1090 1090 |=(% scope="row" %)**Function code**|=**Name**|=((( 1091 1091 **Setting method** 1092 1092 )))|=((( ... ... @@ -1097,8 +1097,9 @@ 1097 1097 )))|((( 1098 1098 Effective immediately 1099 1099 )))|0|0 to 1|((( 1100 -* 0: 1st-order low-pass filtering 1101 -* 1: average filtering 1104 +0: 1st-order low-pass filtering 1105 + 1106 +1: average filtering 1102 1102 )))|- 1103 1103 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|((( 1104 1104 Effective immediately ... ... @@ -1109,13 +1109,13 @@ 1109 1109 1110 1110 Table 6-23 Position instruction filter function code 1111 1111 1112 -== Clearance of position deviation == 1117 +== **Clearance of position deviation** == 1113 1113 1114 1114 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal; 1115 1115 1116 1116 Position deviation = (position instruction-position feedback) (encoder unit) 1117 1117 1118 -== Position-related DO output function == 1123 +== **Position-related DO output function** == 1119 1119 1120 1120 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use. 1121 1121 ... ... @@ -1126,46 +1126,44 @@ 1126 1126 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal. 1127 1127 1128 1128 (% style="text-align:center" %) 1129 -((( 1130 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1131 -[[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]] 1132 -))) 1134 +[[image:image-20220608170550-24.png]] 1133 1133 1136 +Figure 6-26 Positioning completion signal output diagram 1137 + 1134 1134 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27. 1135 1135 1136 1136 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__. 1137 1137 1138 1138 (% style="text-align:center" %) 1139 -((( 1140 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1141 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]] 1142 -))) 1143 +[[image:image-20220608170650-25.png]] 1143 1143 1145 +Figure 6-27 Positioning completion signal output with increased window filter time diagram 1146 + 1144 1144 |=(% scope="row" %)**Function code**|=**Name**|=((( 1145 1145 **Setting method** 1146 -)))|=( % style="width: 129px;" %)(((1149 +)))|=((( 1147 1147 **Effective time** 1148 -)))|= (% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**1151 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1149 1149 |=P05-12|Positioning completion threshold|((( 1150 1150 Operation setting 1151 -)))|( % style="width:129px" %)(((1154 +)))|((( 1152 1152 Effective immediately 1153 -)))| (% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit1156 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit 1154 1154 |=P05-13|Positioning approach threshold|((( 1155 1155 Operation setting 1156 -)))|( % style="width:129px" %)(((1159 +)))|((( 1157 1157 Effective immediately 1158 -)))| (% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit1161 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit 1159 1159 |=P05-14|Position detection window time|((( 1160 1160 Operation setting 1161 -)))|( % style="width:129px" %)(((1164 +)))|((( 1162 1162 Effective immediately 1163 -)))| (% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms1166 +)))|10|0 to 20000|Set positioning completion detection window time|ms 1164 1164 |=P05-15|Positioning signal hold time|((( 1165 1165 Operation setting 1166 -)))|( % style="width:129px" %)(((1169 +)))|((( 1167 1167 Effective immediately 1168 -)))| (% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms1171 +)))|100|0 to 20000|Set positioning completion output hold time|ms 1169 1169 1170 1170 Table 6-24 Function code parameters of positioning completion 1171 1171 ... ... @@ -1184,46 +1184,47 @@ 1184 1184 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram. 1185 1185 1186 1186 (% style="text-align:center" %) 1187 -((( 1188 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1189 -[[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]] 1190 -))) 1190 +[[image:6.28.jpg||height="260" width="806"]] 1191 1191 1192 - ==Speedinstructioninputsetting==1192 +Figure 6-28 Speed control block diagram 1193 1193 1194 +== **Speed instruction input setting** == 1195 + 1194 1194 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1195 1195 1196 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)((( 1198 + 1199 +|**Function code**|**Name**|((( 1197 1197 **Setting method** 1198 -)))| =(% style="width: 125px;" %)(((1201 +)))|((( 1199 1199 **Effective time** 1200 -)))| =(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**1201 -| =(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((1203 +)))|**Default value**|**Range**|**Definition**|**Unit** 1204 +|P01-01|Speed instruction source|((( 1202 1202 Shutdown setting 1203 -)))|( % style="width:125px" %)(((1206 +)))|((( 1204 1204 Effective immediately 1205 -)))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)((( 1206 -* 0: internal speed instruction 1207 -* 1: AI_1 analog input (not supported by VD2F) 1208 +)))|1|1 to 1|((( 1209 +0: internal speed instruction 1210 + 1211 +1: AI_1 analog input (not supported by VD2F) 1208 1208 )))|- 1209 1209 1210 1210 Table 6-26 Speed instruction source parameter 1211 1211 1212 -**Speed instruction source is internal speed instruction (P01-01=0)** 1216 +**(1) Speed instruction source is internal speed instruction (P01-01=0)** 1213 1213 1214 1214 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo 1215 1215 1216 1216 (% style="width:1141px" %) 1217 -| =(% colspan="1"scope="row"%)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((1221 +|(% colspan="1" %)**Function code**|(% colspan="2" %)**Name**|(% colspan="2" %)((( 1218 1218 **Setting** 1219 1219 1220 1220 **method** 1221 -)))| =(% colspan="2" %)(((1225 +)))|(% colspan="2" %)((( 1222 1222 **Effective** 1223 1223 1224 1224 **time** 1225 -)))| =(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**1226 -| =(% colspan="1" %)P01-02|(% colspan="2" %)(((1229 +)))|(% colspan="2" %)**Default value**|(% colspan="2" %)**Range**|(% colspan="2" %)**Definition**|(% colspan="2" %)**Unit** 1230 +|(% colspan="1" %)P01-02|(% colspan="2" %)((( 1227 1227 Internal speed 1228 1228 1229 1229 Instruction 0 ... ... @@ -1240,13 +1240,15 @@ 1240 1240 1241 1241 When DI input port: 1242 1242 1243 -* 15-INSPD3: 0 1244 -* 14-INSPD2: 0 1245 -* 13-INSPD1: 0, 1247 +15-INSPD3: 0 1246 1246 1249 +14-INSPD2: 0 1250 + 1251 +13-INSPD1: 0, 1252 + 1247 1247 select this speed instruction to be effective. 1248 1248 )))|(% colspan="2" %)rpm 1249 -| =(% colspan="1" %)P01-23|(% colspan="2" %)(((1255 +|(% colspan="1" %)P01-23|(% colspan="2" %)((( 1250 1250 Internal speed 1251 1251 1252 1252 Instruction 1 ... ... @@ -1263,13 +1263,15 @@ 1263 1263 1264 1264 When DI input port: 1265 1265 1266 -* 15-INSPD3: 0 1267 -* 14-INSPD2: 0 1268 -* 13-INSPD1: 1, 1272 +15-INSPD3: 0 1269 1269 1274 +14-INSPD2: 0 1275 + 1276 +13-INSPD1: 1, 1277 + 1270 1270 Select this speed instruction to be effective. 1271 1271 )))|(% colspan="2" %)rpm 1272 -| =(% colspan="1" %)P01-24|(% colspan="2" %)(((1280 +|(% colspan="1" %)P01-24|(% colspan="2" %)((( 1273 1273 Internal speed 1274 1274 1275 1275 Instruction 2 ... ... @@ -1286,13 +1286,15 @@ 1286 1286 1287 1287 When DI input port: 1288 1288 1289 -* 15-INSPD3: 0 1290 -* 14-INSPD2: 1 1291 -* 13-INSPD1: 0, 1297 +15-INSPD3: 0 1292 1292 1299 +14-INSPD2: 1 1300 + 1301 +13-INSPD1: 0, 1302 + 1293 1293 Select this speed instruction to be effective. 1294 1294 )))|(% colspan="2" %)rpm 1295 -| =(% colspan="1" %)P01-25|(% colspan="2" %)(((1305 +|(% colspan="1" %)P01-25|(% colspan="2" %)((( 1296 1296 Internal speed 1297 1297 1298 1298 Instruction 3 ... ... @@ -1309,13 +1309,15 @@ 1309 1309 1310 1310 When DI input port: 1311 1311 1312 -* 15-INSPD3: 0 1313 -* 14-INSPD2: 1 1314 -* 13-INSPD1: 1, 1322 +15-INSPD3: 0 1315 1315 1324 +14-INSPD2: 1 1325 + 1326 +13-INSPD1: 1, 1327 + 1316 1316 Select this speed instruction to be effective. 1317 1317 )))|(% colspan="2" %)rpm 1318 -| =P01-26|(% colspan="2" %)(((1330 +|P01-26|(% colspan="2" %)((( 1319 1319 Internal speed 1320 1320 1321 1321 Instruction 4 ... ... @@ -1332,13 +1332,15 @@ 1332 1332 1333 1333 When DI input port: 1334 1334 1335 -* 15-INSPD3: 1 1336 -* 14-INSPD2: 0 1337 -* 13-INSPD1: 0, 1347 +15-INSPD3: 1 1338 1338 1349 +14-INSPD2: 0 1350 + 1351 +13-INSPD1: 0, 1352 + 1339 1339 Select this speed instruction to be effective. 1340 1340 )))|(% colspan="1" %)rpm 1341 -| =P01-27|(% colspan="2" %)(((1355 +|P01-27|(% colspan="2" %)((( 1342 1342 Internal speed 1343 1343 1344 1344 Instruction 5 ... ... @@ -1355,13 +1355,15 @@ 1355 1355 1356 1356 When DI input port: 1357 1357 1358 -* 15-INSPD3: 1 1359 -* 14-INSPD2: 0 1360 -* 13-INSPD1: 1, 1372 +15-INSPD3: 1 1361 1361 1374 +14-INSPD2: 0 1375 + 1376 +13-INSPD1: 1, 1377 + 1362 1362 Select this speed instruction to be effective. 1363 1363 )))|(% colspan="1" %)rpm 1364 -| =P01-28|(% colspan="2" %)(((1380 +|P01-28|(% colspan="2" %)((( 1365 1365 Internal speed 1366 1366 1367 1367 Instruction 6 ... ... @@ -1378,13 +1378,15 @@ 1378 1378 1379 1379 When DI input port: 1380 1380 1381 -* 15-INSPD3: 1 1382 -* 14-INSPD2: 1 1383 -* 13-INSPD1: 0, 1397 +15-INSPD3: 1 1384 1384 1399 +14-INSPD2: 1 1400 + 1401 +13-INSPD1: 0, 1402 + 1385 1385 Select this speed instruction to be effective. 1386 1386 )))|(% colspan="1" %)rpm 1387 -| =P01-29|(% colspan="2" %)(((1405 +|P01-29|(% colspan="2" %)((( 1388 1388 Internal speed 1389 1389 1390 1390 Instruction 7 ... ... @@ -1401,19 +1401,21 @@ 1401 1401 1402 1402 When DI input port: 1403 1403 1404 -* 15-INSPD3: 1 1405 -* 14-INSPD2: 1 1406 -* 13-INSPD1: 1, 1422 +15-INSPD3: 1 1407 1407 1424 +14-INSPD2: 1 1425 + 1426 +13-INSPD1: 1, 1427 + 1408 1408 Select this speed instruction to be effective. 1409 1409 )))|(% colspan="1" %)rpm 1410 1410 1411 1411 Table 6-27 Internal speed instruction parameters 1412 1412 1413 -| =(% scope="row" %)**DI function code**|=**function name**|=**Function**1414 -| =13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number1415 -| =14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number1416 -| =15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number1433 +|**DI function code**|**function name**|**Function** 1434 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number 1435 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number 1436 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number 1417 1417 1418 1418 Table 6-28 DI multi-speed function code description 1419 1419 ... ... @@ -1420,7 +1420,7 @@ 1420 1420 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below. 1421 1421 1422 1422 1423 -| =**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**1443 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number** 1424 1424 |0|0|0|1|0 1425 1425 |0|0|1|2|1 1426 1426 |0|1|0|3|2 ... ... @@ -1429,30 +1429,26 @@ 1429 1429 1430 1430 Table 6-29 Correspondence between INSPD bits and segment numbers 1431 1431 1432 -(% style="text-align:center" %) 1433 -((( 1434 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1435 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]] 1436 -))) 1452 +[[image:image-20220608170845-26.png]] 1437 1437 1438 - **Speedinstruction sourceisinternalspeedinstruction(P01-01=1)**1454 +Figure 6-29 Multi-segment speed running curve 1439 1439 1456 +**(2) Speed instruction source is internal speed instruction (P01-01=1)** 1457 + 1440 1440 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit. 1441 1441 1442 1442 (% style="text-align:center" %) 1443 -((( 1444 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1445 -[[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]] 1446 -))) 1461 +[[image:image-20220608153341-5.png]] 1447 1447 1463 +Figure 6-30 Analog input circuit 1464 + 1448 1448 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below. 1449 1449 1450 1450 (% style="text-align:center" %) 1451 -((( 1452 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1453 -[[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]] 1454 -))) 1468 +[[image:image-20220608170955-27.png]] 1455 1455 1470 +Figure 6-31 Analog voltage speed instruction setting steps 1471 + 1456 1456 Explanation of related terms: 1457 1457 1458 1458 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. ... ... @@ -1460,25 +1460,21 @@ 1460 1460 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1461 1461 1462 1462 (% style="text-align:center" %) 1463 -((( 1464 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1465 -[[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]] 1466 -))) 1479 +[[image:image-20220608171124-28.png]] 1467 1467 1468 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 1469 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1470 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1471 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1472 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1481 +Figure 6-32 AI_1 diagram before and after bias 1473 1473 1483 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1484 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1485 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1486 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV 1487 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1488 + 1474 1474 Table 6-30 AI_1 parameters 1475 1475 1476 -(% class="box infomessage" %) 1477 -((( 1478 1478 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 1479 -))) 1480 1480 1481 -== Acceleration and deceleration time setting == 1493 +== **Acceleration and deceleration time setting** == 1482 1482 1483 1483 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration. 1484 1484 ... ... @@ -1485,25 +1485,24 @@ 1485 1485 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation. 1486 1486 1487 1487 (% style="text-align:center" %) 1488 -((( 1489 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1490 -[[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]] 1491 -))) 1500 +[[image:image-20220608171314-29.png]] 1492 1492 1502 +Figure 6-33 of acceleration and deceleration time diagram 1503 + 1493 1493 (% style="text-align:center" %) 1494 -[[image:image-20220707103616-27.png ||class="img-thumbnail"]]1505 +[[image:image-20220707103616-27.png]] 1495 1495 1496 -| =(% scope="row" %)**Function code**|=**Name**|=(((1507 +|**Function code**|**Name**|((( 1497 1497 **Setting method** 1498 -)))| =(((1509 +)))|((( 1499 1499 **Effective time** 1500 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1501 -| =P01-03|Acceleration time|(((1511 +)))|**Default value**|**Range**|**Definition**|**Unit** 1512 +|P01-03|Acceleration time|((( 1502 1502 Operation setting 1503 1503 )))|((( 1504 1504 Effective immediately 1505 1505 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms 1506 -| =P01-04|Deceleration time|(((1517 +|P01-04|Deceleration time|((( 1507 1507 Operation setting 1508 1508 )))|((( 1509 1509 Effective immediately ... ... @@ -1511,7 +1511,7 @@ 1511 1511 1512 1512 Table 6-31 Acceleration and deceleration time parameters 1513 1513 1514 -== Speed instruction limit == 1525 +== **Speed instruction limit** == 1515 1515 1516 1516 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include: 1517 1517 ... ... @@ -1526,22 +1526,23 @@ 1526 1526 1527 1527 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13) 1528 1528 1529 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1540 + 1541 +|**Function code**|**Name**|((( 1530 1530 **Setting method** 1531 -)))| =(((1543 +)))|((( 1532 1532 **Effective time** 1533 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1534 -| =P01-10|Maximum speed threshold|(((1545 +)))|**Default value**|**Range**|**Definition**|**Unit** 1546 +|P01-10|Maximum speed threshold|((( 1535 1535 Operation setting 1536 1536 )))|((( 1537 1537 Effective immediately 1538 1538 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm 1539 -| =P01-12|Forward speed threshold|(((1551 +|P01-12|Forward speed threshold|((( 1540 1540 Operation setting 1541 1541 )))|((( 1542 1542 Effective immediately 1543 1543 )))|3000|0 to 5000|Set forward speed limit value|rpm 1544 -| =P01-13|Reverse speed threshold|(((1556 +|P01-13|Reverse speed threshold|((( 1545 1545 Operation setting 1546 1546 )))|((( 1547 1547 Effective immediately ... ... @@ -1549,18 +1549,19 @@ 1549 1549 1550 1550 Table 6-32 Rotation speed related function codes 1551 1551 1552 -== Zero-speed clamp function == 1564 +== **Zero-speed clamp function** == 1553 1553 1554 1554 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid. 1555 1555 1556 1556 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction. 1557 1557 1558 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1570 + 1571 +|**Function code**|**Name**|((( 1559 1559 **Setting method** 1560 -)))| =(((1573 +)))|((( 1561 1561 **Effective time** 1562 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1563 -| =P01-21|(((1575 +)))|**Default value**|**Range**|**Definition**|**Unit** 1576 +|P01-21|((( 1564 1564 Zero-speed clamp function selection 1565 1565 )))|((( 1566 1566 Operation setting ... ... @@ -1569,12 +1569,15 @@ 1569 1569 )))|0|0 to 3|((( 1570 1570 Set the zero-speed clamp function. In speed mode: 1571 1571 1572 -* 0: Force the speed to 0; 1573 -* 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 1574 -* 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1575 -* 3: Invalid, ignore zero-speed clamp input 1585 +0: Force the speed to 0; 1586 + 1587 +1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 1588 + 1589 +2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 1590 + 1591 +3: Invalid, ignore zero-speed clamp input 1576 1576 )))|- 1577 -| =P01-22|(((1593 +|P01-22|((( 1578 1578 Zero-speed clamp speed threshold 1579 1579 )))|((( 1580 1580 Operation setting ... ... @@ -1584,34 +1584,33 @@ 1584 1584 1585 1585 Table 6-33 Zero-speed clamp related parameters 1586 1586 1587 -(% style="text-align:center" %) 1588 -((( 1589 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1590 -[[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]] 1591 -))) 1592 1592 1593 - == Speed-related DO output function ==1604 +[[image:image-20220608171549-30.png]] 1594 1594 1606 +Figure 6-34 Zero-speed clamp diagram 1607 + 1608 +== **Speed-related DO output function** == 1609 + 1595 1595 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use. 1596 1596 1597 -**Rotation detection signal** 1612 +**(1) Rotation detection signal** 1598 1598 1599 1599 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating. 1600 1600 1601 -(% style="text-align:center" %) 1602 -((( 1603 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1604 -[[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]] 1605 -))) 1606 1606 1607 - To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parametersand related DO function codes are shown in __Table 6-34__ and __Table6-35__.1617 +[[image:image-20220608171625-31.png]] 1608 1608 1609 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1619 +Figure 6-35 Rotation detection signal diagram 1620 + 1621 +To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-35>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1622 + 1623 + 1624 +|**Function code**|**Name**|((( 1610 1610 **Setting method** 1611 -)))| =(((1626 +)))|((( 1612 1612 **Effective time** 1613 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1614 -| =P05-16|(((1628 +)))|**Default value**|**Range**|**Definition**|**Unit** 1629 +|P05-16|((( 1615 1615 Rotation detection 1616 1616 1617 1617 speed threshold ... ... @@ -1623,10 +1623,10 @@ 1623 1623 1624 1624 Table 6-34 Rotation detection speed threshold parameters 1625 1625 1626 -| =(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**1627 -| =132|(% style="width:247px" %)(((1641 +|**DO function code**|**Function name**|**Function** 1642 +|132|((( 1628 1628 T-COIN rotation detection 1629 -)))|( % style="width:695px" %)(((1644 +)))|((( 1630 1630 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16 1631 1631 1632 1632 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16 ... ... @@ -1634,24 +1634,22 @@ 1634 1634 1635 1635 Table 6-35 DO rotation detection function code 1636 1636 1637 -**Zero-speed signal** 1652 +**(2) Zero-speed signal** 1638 1638 1639 1639 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid. 1640 1640 1641 -(% style="text-align:center" %) 1642 -((( 1643 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1644 -[[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]] 1645 -))) 1656 +[[image:image-20220608171904-32.png]] 1646 1646 1647 - To use the motor zero-speed signal output function, a DO terminal of servodrive should be assigned to function 133(ZSP, zero-speed signal).The function code parameters and related DO function codesare shown in __Table 6-36__ and __Table 6-37__.1658 +Figure 6-36 Zero-speed signal diagram 1648 1648 1649 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1660 +To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-37>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1661 + 1662 +|**Function code**|**Name**|((( 1650 1650 **Setting method** 1651 -)))| =(((1664 +)))|((( 1652 1652 **Effective time** 1653 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1654 -| =P05-19|Zero speed output signal threshold|(((1666 +)))|**Default value**|**Range**|**Definition**|**Unit** 1667 +|P05-19|Zero speed output signal threshold|((( 1655 1655 Operation setting 1656 1656 )))|((( 1657 1657 Effective immediately ... ... @@ -1659,31 +1659,30 @@ 1659 1659 1660 1660 Table 6-36 Zero-speed output signal threshold parameter 1661 1661 1662 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 1663 -|=133|((( 1675 + 1676 +|**DO function code**|**Function name**|**Function** 1677 +|133|((( 1664 1664 ZSP zero speed signal 1665 1665 )))|Output this signal indicates that the servo motor is stopping rotation 1666 1666 1667 1667 Table 6-37 DO zero-speed signal function code 1668 1668 1669 -**Speed consistent signal** 1683 +**(3) Speed consistent signal** 1670 1670 1671 1671 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid. 1672 1672 1673 -(% style="text-align:center" %) 1674 -((( 1675 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1676 -[[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]] 1677 -))) 1687 +[[image:image-20220608172053-33.png]] 1678 1678 1679 - Tousethemotor speed consistentfunction,aDO terminalof the servodrive should beassigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.1689 +Figure 6-37 Speed consistent signal diagram 1680 1680 1681 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1691 +To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-39>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1692 + 1693 +|**Function code**|**Name**|((( 1682 1682 **Setting method** 1683 -)))| =(((1695 +)))|((( 1684 1684 **Effective time** 1685 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1686 -| =P05-17|Speed consistent signal threshold|(((1697 +)))|**Default value**|**Range**|**Definition**|**Unit** 1698 +|P05-17|Speed consistent signal threshold|((( 1687 1687 Operationsetting 1688 1688 )))|((( 1689 1689 Effective immediately ... ... @@ -1691,31 +1691,30 @@ 1691 1691 1692 1692 Table 6-38 Speed consistent signal threshold parameters 1693 1693 1694 -|=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function** 1695 -|=136|(% style="width:262px" %)((( 1706 + 1707 +|**DO Function code**|**Function name**|**Function** 1708 +|136|((( 1696 1696 U-COIN consistent speed 1697 -)))| (% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value1710 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value 1698 1698 1699 1699 Table 6-39 DO speed consistent function code 1700 1700 1701 -**Speed approach signal** 1714 +**(4) Speed approach signal** 1702 1702 1703 1703 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid. 1704 1704 1705 -(% style="text-align:center" %) 1706 -((( 1707 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1708 -[[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]] 1709 -))) 1718 +[[image:image-20220608172207-34.png]] 1710 1710 1711 - Tousethemotor speed approachfunction,a DO terminalof the servodrive should beassigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.1720 +Figure 6-38 Speed approaching signal diagram 1712 1712 1713 -|=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=((( 1722 +To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__ and __[[Table 6-41>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeed-relatedDOoutputfunction]]__. 1723 + 1724 +|**Function code**|**Name**|((( 1714 1714 **Setting method** 1715 -)))| =(((1726 +)))|((( 1716 1716 **Effective time** 1717 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1718 -| =(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((1728 +)))|**Default value**|**Range**|**Definition**|**Unit** 1729 +|P05-18|Speed approach signal threshold|((( 1719 1719 Operation setting 1720 1720 )))|((( 1721 1721 Effective immediately ... ... @@ -1723,8 +1723,8 @@ 1723 1723 1724 1724 Table 6-40 Speed approaching signal threshold parameters 1725 1725 1726 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1727 -| =137|(((1737 +|**DO function code**|**Function name**|**Function** 1738 +|137|((( 1728 1728 V-NEAR speed approach 1729 1729 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value 1730 1730 ... ... @@ -1734,22 +1734,22 @@ 1734 1734 1735 1735 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage. 1736 1736 1737 -(% style="text-align:center" %) 1738 -((( 1739 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1740 -[[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]] 1741 -))) 1742 1742 1743 - == Torqueinstru**ction input setting** ==1749 +[[image:image-20220608172405-35.png]] 1744 1744 1751 +Figure 6-39 Torque mode diagram 1752 + 1753 +== **Torque instruction input setting** == 1754 + 1745 1745 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07. 1746 1746 1747 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1757 + 1758 +|**Function code**|**Name**|((( 1748 1748 **Setting method** 1749 -)))| =(((1760 +)))|((( 1750 1750 **Effective time** 1751 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1752 -| =P01-07|Torque instruction source|(((1762 +)))|**Default value**|**Range**|**Definition**|**Unit** 1763 +|P01-08|Torque instruction source|((( 1753 1753 Shutdown setting 1754 1754 )))|((( 1755 1755 Effective immediately ... ... @@ -1761,16 +1761,17 @@ 1761 1761 1762 1762 Table 6-42 Torque instruction source parameter 1763 1763 1764 -**Torque instruction source is internal torque instruction (P01-07=0)** 1775 +**(1) Torque instruction source is internal torque instruction (P01-07=0)** 1765 1765 1766 1766 Torque instruction source is from inside, the value is set by function code P01-08. 1767 1767 1768 -|=(% scope="row" %)**Function code**|=**Name**|=((( 1779 + 1780 +|**Function code**|**Name**|((( 1769 1769 **Setting method** 1770 -)))| =(((1782 +)))|((( 1771 1771 **Effective time** 1772 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1773 -| =P01-08|Torque instruction keyboard set value|(((1784 +)))|**Default value**|**Range**|**Definition**|**Unit** 1785 +|P01-08|Torque instruction keyboard set value|((( 1774 1774 Operation setting 1775 1775 )))|((( 1776 1776 Effective immediately ... ... @@ -1778,24 +1778,22 @@ 1778 1778 1779 1779 Table 6-43 Torque instruction keyboard set value 1780 1780 1781 -**Torque instruction source is internal torque instruction (P01-07=1)** 1793 +**(2) Torque instruction source is internal torque instruction (P01-07=1)** 1782 1782 1783 1783 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit. 1784 1784 1785 1785 (% style="text-align:center" %) 1786 -((( 1787 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1788 -[[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]] 1789 -))) 1798 +[[image:image-20220608153646-7.png||height="213" width="408"]] 1790 1790 1800 +Figure 6-40 Analog input circuit 1801 + 1791 1791 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below. 1792 1792 1793 1793 (% style="text-align:center" %) 1794 -((( 1795 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1796 -[[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]] 1797 -))) 1805 +[[image:image-20220608172502-36.png]] 1798 1798 1807 +Figure 6-41 Analog voltage torque instruction setting steps 1808 + 1799 1799 Explanation of related terms: 1800 1800 1801 1801 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND. ... ... @@ -1803,74 +1803,65 @@ 1803 1803 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0. 1804 1804 1805 1805 (% style="text-align:center" %) 1806 -((( 1807 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1808 -[[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]] 1809 -))) 1816 +[[image:image-20220608172611-37.png]] 1810 1810 1811 -|=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit** 1812 -|=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1813 -|=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1814 -|=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1815 -|=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1818 +Figure 6-42 AI_1 diagram before and after bias 1816 1816 1820 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit** 1821 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV 1822 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms 1823 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV 1824 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV 1825 + 1817 1817 Table 6-44 AI_1 parameters 1818 1818 1819 -(% class="box infomessage" %) 1820 -((( 1821 1821 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 1822 -))) 1823 1823 1824 -== Torque instruction filtering == 1830 +== **Torque instruction filtering** == 1825 1825 1826 -In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__. 1832 +In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__. 1827 1827 1828 -| =(% scope="row" %)**Function code**|=**Name**|=(((1834 +|**Function code**|**Name**|((( 1829 1829 **Setting method** 1830 -)))| =(((1836 +)))|((( 1831 1831 **Effective time** 1832 -)))| =**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**1833 -| =P04-04|Torque filtering time constant|(((1838 +)))|**Default value**|**Range**|**Definition**|**Unit** 1839 +|P04-04|Torque filtering time constant|((( 1834 1834 Operation setting 1835 1835 )))|((( 1836 1836 Effective immediately 1837 -)))|50| (% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms1843 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms 1838 1838 1839 1839 Table 6-45 Torque filtering time constant parameter details 1840 1840 1841 -(% class="box infomessage" %) 1842 -((( 1843 1843 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness. 1844 -))) 1845 1845 1846 1846 (% style="text-align:center" %) 1847 -((( 1848 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1849 -[[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]] 1850 -))) 1850 +[[image:image-20220608172646-38.png]] 1851 1851 1852 - ==Torque instructionlimit==1852 +Figure 6-43 Torque instruction-first-order filtering diagram 1853 1853 1854 +== **Torque instruction limit** == 1855 + 1854 1854 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer. 1855 1855 1856 1856 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque. 1857 1857 1858 1858 (% style="text-align:center" %) 1859 -((( 1860 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1861 -[[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]] 1862 -))) 1861 +[[image:image-20220608172806-39.png]] 1863 1863 1864 - **Settorque limitsource**1863 +Figure 6-44 Torque instruction limit diagram 1865 1865 1865 +**(1) Set torque limit source** 1866 + 1866 1866 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value. 1867 1867 1868 -| =(% scope="row" %)**Function code**|=**Name**|=(((1869 +|**Function code**|**Name**|((( 1869 1869 **Setting method** 1870 -)))| =(((1871 +)))|((( 1871 1871 **Effective time** 1872 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1873 -| =P01-14|(((1873 +)))|**Default value**|**Range**|**Definition**|**Unit** 1874 +|P01-14|((( 1874 1874 Torque limit source 1875 1875 )))|((( 1876 1876 Shutdown setting ... ... @@ -1877,46 +1877,49 @@ 1877 1877 )))|((( 1878 1878 Effective immediately 1879 1879 )))|0|0 to 1|((( 1880 -* 0: internal value 1881 -* 1: AI_1 analog input (not supported by VD2F) 1881 +0: internal value 1882 + 1883 +1: AI_1 analog input 1884 + 1885 +(not supported by VD2F) 1882 1882 )))|- 1883 1883 1884 - *Torque limit source is internal torque instruction (P01-14=0)1888 +1) Torque limit source is internal torque instruction (P01-14=0) 1885 1885 1886 1886 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16. 1887 1887 1888 -| =(% scope="row" %)**Function code**|=**Name**|=(((1892 +|**Function code**|**Name**|((( 1889 1889 **Setting method** 1890 -)))| =(((1894 +)))|((( 1891 1891 **Effective time** 1892 -)))| =**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**1893 -| =P01-15|(((1896 +)))|**Default value**|**Range**|**Definition**|**Unit** 1897 +|P01-15|((( 1894 1894 Forward torque limit 1895 1895 )))|((( 1896 1896 Operation setting 1897 1897 )))|((( 1898 1898 Effective immediately 1899 -)))|3000| (% style="width:106px"%)0to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%1900 -| =P01-16|(((1903 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1% 1904 +|P01-16|((( 1901 1901 Reverse torque limit 1902 1902 )))|((( 1903 1903 Operation setting 1904 1904 )))|((( 1905 1905 Effective immediately 1906 -)))|3000| (% style="width:106px"%)0to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1% 1907 1907 1908 1908 Table 6-46 Torque limit parameter details 1909 1909 1910 - *Torque limit source is external (P01-14=1)1914 +2) Torque limit source is external (P01-14=1) 1911 1911 1912 1912 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal. 1913 1913 1914 -**Set torque limit DO signal output** 1918 +**(2) Set torque limit DO signal output** 1915 1915 1916 1916 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid. 1917 1917 1918 -| =(% scope="row" %)**DO function code**|=**Function name**|=**Function**1919 -| =139|(((1922 +|**DO function code**|**Function name**|**Function** 1923 +|139|((( 1920 1920 T-LIMIT in torque limit 1921 1921 )))|Output of this signal indicates that the servo motor torque is limited 1922 1922 ... ... @@ -1926,28 +1926,21 @@ 1926 1926 1927 1927 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited. 1928 1928 1929 -In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__. 1933 +In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__ and __[[Figure 6-46>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedlimitintorquemode]]__. 1930 1930 1931 1931 |((( 1932 -(% style="text-align:center" %) 1933 -((( 1934 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1935 -[[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]] 1936 -))) 1936 +[[image:image-20220608172910-40.png]] 1937 1937 )))|((( 1938 -(% style="text-align:center" %) 1939 -((( 1940 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1941 -[[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]] 1938 +[[image:image-20220608173155-41.png]] 1942 1942 ))) 1943 - )))1940 +|Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve 1944 1944 1945 -| =(% scope="row" %)**Function code**|=**Name**|=(((1942 +|**Function code**|**Name**|((( 1946 1946 **Setting method** 1947 -)))| =(((1944 +)))|((( 1948 1948 **Effective time** 1949 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**1950 -| =P01-17|(((1946 +)))|**Default value**|**Range**|**Definition**|**Unit** 1947 +|P01-17|((( 1951 1951 Forward torque 1952 1952 1953 1953 limit in torque mode ... ... @@ -1960,7 +1960,7 @@ 1960 1960 1961 1961 limit in torque mode 1962 1962 )))|0.1% 1963 -| =P01-18|(((1960 +|P01-18|((( 1964 1964 Reverse torque 1965 1965 1966 1966 limit in torque mode ... ... @@ -1976,9 +1976,9 @@ 1976 1976 1977 1977 Table 6-48 Speed limit parameters in torque mode 1978 1978 1979 -✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/0 2%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.1976 +✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HSpeedinstructionlimit]]__. 1980 1980 1981 -== Torque-related DO output functions == 1978 +== **Torque-related DO output functions** == 1982 1982 1983 1983 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid. 1984 1984 ... ... @@ -1987,27 +1987,26 @@ 1987 1987 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1988 1988 1989 1989 (% style="text-align:center" %) 1990 -((( 1991 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1992 -[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]] 1993 -))) 1987 +[[image:image-20220608173541-42.png]] 1994 1994 1995 - To use the torque arrival function, a DO terminal of theservo drive should be assigned to function 138 (T-COIN,torque arrival).The function codeparameters and related DO functioncodesare shown in __Table 6-49__ and __Table 6-50__.1989 +Figure 6-47 Torque arrival output diagram 1996 1996 1997 -|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)((( 1991 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1992 + 1993 +|**Function code**|**Name**|((( 1998 1998 **Setting method** 1999 -)))| =(% style="width: 124px;" %)(((1995 +)))|((( 2000 2000 **Effective time** 2001 -)))| =(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**2002 -| =P05-20|(% style="width:113px" %)(((1997 +)))|**Default value**|**Range**|**Definition**|**Unit** 1998 +|P05-20|((( 2003 2003 Torque arrival 2004 2004 2005 2005 threshold 2006 -)))|( % style="width:100px" %)(((2002 +)))|((( 2007 2007 Operation setting 2008 -)))|( % style="width:124px" %)(((2004 +)))|((( 2009 2009 Effective immediately 2010 -)))| (% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((2006 +)))|100|0 to 300|((( 2011 2011 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2012 2012 2013 2013 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; ... ... @@ -2014,20 +2014,21 @@ 2014 2014 2015 2015 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2016 2016 )))|% 2017 -| =P05-21|(% style="width:113px" %)(((2013 +|P05-21|((( 2018 2018 Torque arrival 2019 2019 2020 2020 hysteresis 2021 -)))|( % style="width:100px" %)(((2017 +)))|((( 2022 2022 Operation setting 2023 -)))|( % style="width:124px" %)(((2019 +)))|((( 2024 2024 Effective immediately 2025 -)))| (% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%2021 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2026 2026 2027 2027 Table 6-49 Torque arrival parameters 2028 2028 2029 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 2030 -|=138|((( 2025 + 2026 +|**DO function code**|**Function name**|**Function** 2027 +|138|((( 2031 2031 T-COIN torque arrival 2032 2032 )))|Used to determine whether the actual torque instruction has reached the set range 2033 2033 ... ... @@ -2037,28 +2037,35 @@ 2037 2037 2038 2038 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2039 2039 2040 -* Position mode⇔ Speed mode 2041 -* Position mode ⇔Torque mode 2042 -* Speed mode ⇔Torque mode 2037 +Position mode⇔ Speed mode 2043 2043 2039 +Position mode ⇔Torque mode 2040 + 2041 +Speed mode ⇔Torque mode 2042 + 2044 2044 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2045 2045 2046 -| =(% scope="row" %)**Function code**|=**Name**|=(((2045 +|**Function code**|**Name**|((( 2047 2047 **Setting method** 2048 -)))| =(((2047 +)))|((( 2049 2049 **Effective time** 2050 -)))| =**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**2051 -| =P00-01|Control mode|(((2049 +)))|**Default value**|**Range**|**Definition**|**Unit** 2050 +|P00-01|Control mode|((( 2052 2052 Shutdown setting 2053 2053 )))|((( 2054 2054 Shutdown setting 2055 -)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)((( 2056 -* 1: Position control 2057 -* 2: Speed control 2058 -* 3: Torque control 2059 -* 4: Position/speed mixed control 2060 -* 5: Position/torque mixed control 2061 -* 6: Speed/torque mixed control 2054 +)))|1|1 to 6|((( 2055 +1: Position control 2056 + 2057 +2: Speed control 2058 + 2059 +3: Torque control 2060 + 2061 +4: Position/speed mixed control 2062 + 2063 +5: Position/torque mixed control 2064 + 2065 +6: Speed/torque mixed control 2062 2062 )))|- 2063 2063 2064 2064 Table 6-51 Mixed control mode parameters ... ... @@ -2065,38 +2065,35 @@ 2065 2065 2066 2066 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2067 2067 2068 -|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function** 2069 -|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2070 -(% style="margin-left:auto; margin-right:auto; width:585px" %) 2071 -|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode** 2072 -|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode 2073 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2074 -|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2075 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2076 -|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2077 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode 2072 +|**DI function code**|**Name**|**Function name**|**Function** 2073 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2074 +|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2075 +|(% rowspan="2" %)4|Valid|Speed mode 2076 +|invalid|Position mode 2077 +|(% rowspan="2" %)5|Valid|Torque mode 2078 +|invalid|Position mode 2079 +|(% rowspan="2" %)6|Valid|Torque mode 2080 +|invalid|Speed mode 2078 2078 ))) 2079 2079 2080 2080 Table 6-52 Description of DI function codes in control mode 2081 2081 2082 -(% class="box infomessage" %) 2083 -((( 2084 2084 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother. 2085 -))) 2086 2086 2087 2087 = **Absolute system** = 2088 2088 2089 -== Overview == 2089 +== **Overview** == 2090 2090 2091 2091 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations. 2092 2092 2093 2093 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position. 2094 2094 2095 -== Single-turn absolute value system == 2095 +== **Single-turn absolute value system** == 2096 2096 2097 2097 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2098 2098 2099 -|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range** 2099 + 2100 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2100 2100 |A1 (single-turn magnetic encoder)|17|0 to 131071 2101 2101 2102 2102 Table 6-53 Single-turn absolute encoder information ... ... @@ -2104,18 +2104,17 @@ 2104 2104 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2105 2105 2106 2106 (% style="text-align:center" %) 2107 -((( 2108 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2109 -[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]] 2110 -))) 2108 +[[image:image-20220608173618-43.png]] 2111 2111 2112 - == Multi-turnabsolutevaluesystem ==2110 +Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position 2113 2113 2112 +== **Multi-turn absolute value system** == 2113 + 2114 2114 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2115 2115 2116 -| =(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**2117 -| =C1 (multi-turn magnetic encoder)|17|0 to 1310712118 -| =D2 (multi-turn Optical encoder)|23|0 to 83886072116 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2117 +|C1 (multi-turn magnetic encoder)|17|0 to 131071 2118 +|D2 (multi-turn Optical encoder)|23|0 to 8388607 2119 2119 2120 2120 Table 6-54 Multi-turn absolute encoder information 2121 2121 ... ... @@ -2122,21 +2122,20 @@ 2122 2122 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2123 2123 2124 2124 (% style="text-align:center" %) 2125 -((( 2126 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2127 -[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]] 2128 -))) 2125 +[[image:image-20220608173701-44.png]] 2129 2129 2130 - ==Related functionsandparameters==2127 +Figure 6-49 The relationship between encoder feedback position and rotating load position 2131 2131 2129 +== **Related functions and parameters** == 2130 + 2132 2132 **Encoder feedback data** 2133 2133 2134 2134 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2135 2135 2136 -| =(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**2137 -| =U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit2138 -| =U0-55|Universal|Rotations number of absolute encoder|circle|16-bit2139 -| =U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit2135 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2136 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2137 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2138 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2140 2140 2141 2141 Table 6-55 Encoder feedback data 2142 2142 ... ... @@ -2144,28 +2144,26 @@ 2144 2144 2145 2145 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30. 2146 2146 2147 -| =(% scope="row" %)**Function code**|=**Name**|=(((2146 +|**Function code**|**Name**|((( 2148 2148 **Setting** 2149 2149 2150 2150 **method** 2151 -)))| =(((2150 +)))|((( 2152 2152 **Effective** 2153 2153 2154 2154 **time** 2155 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2156 -|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2157 -* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2158 -* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2154 +)))|**Default value**|**Range**|**Definition**|**Unit** 2155 +|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2156 +0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2157 + 2158 +1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2159 2159 )))|- 2160 2160 2161 2161 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur. 2162 2162 2163 -(% class="box infomessage" %) 2164 -((( 2165 2165 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death. 2166 -))) 2167 2167 2168 -== Absolute value system encoder battery box use precautions. == 2165 +== **Absolute value system encoder battery box use precautions**. == 2169 2169 2170 2170 **Cautions** 2171 2171 ... ... @@ -2172,11 +2172,10 @@ 2172 2172 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2173 2173 2174 2174 (% style="text-align:center" %) 2175 -((( 2176 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2177 -[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]] 2178 -))) 2172 +[[image:image-20220707111333-28.png]] 2179 2179 2174 +Figure 6-50 the encoder battery box 2175 + 2180 2180 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. 2181 2181 2182 2182 **Replace the battery** ... ... @@ -2192,19 +2192,20 @@ 2192 2192 2193 2193 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2194 2194 2195 -| =(% scope="row" %)**Function code**|=**Name**|=(((2191 +|**Function code**|**Name**|((( 2196 2196 **Setting method** 2197 -)))| =(((2193 +)))|((( 2198 2198 **Effective time** 2199 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2200 -| =P10-06|Multi-turn absolute encoder reset|(((2195 +)))|**Default value**|**Range**|**Definition**|**Unit** 2196 +|P10-06|Multi-turn absolute encoder reset|((( 2201 2201 Shutdown setting 2202 2202 )))|((( 2203 2203 Effective immediately 2204 2204 )))|0|0 to 1|((( 2205 -* 0: No operation 2206 -* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2201 +0: No operation 2207 2207 2203 +1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2204 + 2208 2208 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2209 2209 )))|- 2210 2210 ... ... @@ -2212,7 +2212,7 @@ 2212 2212 2213 2213 **Battery selection** 2214 2214 2215 -| =(% scope="row" style="width:;" %)**Battery selection specification**|=(% style="width:;" %)**Item**|=(% style="width:;" %)**Value**2212 +|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value** 2216 2216 |(% rowspan="4" style="width:361px" %)((( 2217 2217 Nominal Voltage: 3.6V 2218 2218 ... ... @@ -2240,108 +2240,111 @@ 2240 2240 2241 2241 = **Other functions** = 2242 2242 2243 -== VDI == 2240 +== **VDI** == 2244 2244 2245 2245 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use. 2246 2246 2247 -(% class="box infomessage" %) 2248 -((( 2249 2249 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate). 2250 -))) 2251 2251 2252 2252 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2253 2253 2248 + 2254 2254 (% style="text-align:center" %) 2255 -((( 2256 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2257 -[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]] 2258 -))) 2250 +[[image:image-20220608173804-46.png]] 2259 2259 2260 -|=(% scope="row" %)**Function code**|=**Name**|=((( 2252 +Figure 6-51 VDI_1 setting steps 2253 + 2254 +|**Function code**|**Name**|((( 2261 2261 **Setting method** 2262 -)))| =(((2256 +)))|((( 2263 2263 **Effective time** 2264 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2265 -| =P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((2258 +)))|**Default value**|**Range**|**Definition**|**Unit** 2259 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2266 2266 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2267 2267 2268 2268 VDI_1 input level: 2269 2269 2270 -* 0: low level 2271 -* 1: high level 2264 +0: low level 2265 + 2266 +1: high level 2272 2272 )))|- 2273 -| =P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((2268 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2274 2274 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2275 2275 2276 2276 VDI_2 input level: 2277 2277 2278 -* 0: low level 2279 -* 1: high level 2273 +0: low level 2274 + 2275 +1: high level 2280 2280 )))|- 2281 -| =P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((2277 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2282 2282 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2283 2283 2284 2284 VDI_3 input level: 2285 2285 2286 -* 0: low level 2287 -* 1: high level 2282 +0: low level 2283 + 2284 +1: high level 2288 2288 )))|- 2289 -| =P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((2286 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2290 2290 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2291 2291 2292 2292 VDI_4 input level: 2293 2293 2294 -* 0: low level 2295 -* 1: high level 2291 +0: low level 2292 + 2293 +1: high level 2296 2296 )))|- 2297 -| =P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((2295 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2298 2298 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2299 2299 2300 2300 VDI_5 input level: 2301 2301 2302 -* 0: low level 2303 -* 1: high level 2300 +0: low level 2301 + 2302 +1: high level 2304 2304 )))|- 2305 -| =P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((2304 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2306 2306 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2307 2307 2308 2308 VDI_6 input level: 2309 2309 2310 -* 0: low level 2311 -* 1: high level 2309 +0: low level 2310 + 2311 +1: high level 2312 2312 )))|- 2313 -| =P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((2313 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2314 2314 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2315 2315 2316 2316 VDI_7 input level: 2317 2317 2318 -* 0: low level 2319 -* 1: high level 2318 +0: low level 2319 + 2320 +1: high level 2320 2320 )))|- 2321 -| =P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((2322 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2322 2322 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2323 2323 2324 2324 VDI_8 input level: 2325 2325 2326 -* 0: low level 2327 -* 1: high level 2327 +0: low level 2328 + 2329 +1: high level 2328 2328 )))|- 2329 2329 2330 2330 Table 6-57 Virtual VDI parameters 2331 2331 2332 -(% class="box infomessage" %) 2333 -((( 2334 2334 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 2335 -))) 2336 2336 2337 -== Port filtering time == 2336 +== **Port filtering time** == 2338 2338 2339 2339 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2340 2340 2341 -|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration** 2342 -|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2343 -|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2344 2344 2341 +|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration** 2342 +|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2343 +|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2344 + 2345 2345 Table 6-58 DI terminal channel logic selection 2346 2346 2347 2347 == **VDO** == ... ... @@ -2351,49 +2351,51 @@ 2351 2351 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2352 2352 2353 2353 (% style="text-align:center" %) 2354 -((( 2355 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2356 -[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]] 2357 -))) 2354 +[[image:image-20220608173957-48.png]] 2358 2358 2356 +Figure 6-52 VDO_2 setting steps 2359 2359 2360 -| =(% scope="row" %)**Function code**|=**Name**|=(((2358 +|**Function code**|**Name**|((( 2361 2361 **Setting method** 2362 -)))| =(((2360 +)))|((( 2363 2363 **Effective time** 2364 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2365 -| =P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((2362 +)))|**Default value**|**Range**|**Definition**|**Unit** 2363 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2366 2366 VDO_1 output level: 2367 2367 2368 -* 0: low level 2369 -* 1: high level 2366 +0: low level 2367 + 2368 +1: high level 2370 2370 )))|- 2371 -| =P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((2370 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2372 2372 VDO_2 output level: 2373 2373 2374 -* 0: low level 2375 -* 1: high level 2373 +0: low level 2374 + 2375 +1: high level 2376 2376 )))|- 2377 -| =P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((2377 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2378 2378 VDO_3 output level: 2379 2379 2380 -* 0: low level 2381 -* 1: high level 2380 +0: low level 2381 + 2382 +1: high level 2382 2382 )))|- 2383 -| =P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((2384 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2384 2384 VDO_4 output level: 2385 2385 2386 -* 0: low level 2387 -* 1: high level 2387 +0: low level 2388 + 2389 +1: high level 2388 2388 )))|- 2389 2389 2390 2390 Table 6-59 Communication control DO function parameters 2391 2391 2392 -| =(% scope="row" %)**DO function number**|=**Function name**|=**Function**2393 -| =145|COM_VDO1 communication VDO1 output|Use communication VDO2394 -| =146|COM_VDO1 communication VDO2 output|Use communication VDO2395 -| =147|COM_VDO1 communication VDO3 output|Use communication VDO2396 -| =148|COM_VDO1 communication VDO4output|Use communication VDO2394 +|**DO function number**|**Function name**|**Function** 2395 +|145|COM_VDO1 communication VDO1 output|Use communication VDO 2396 +|146|COM_VDO1 communication VDO2 output|Use communication VDO 2397 +|147|COM_VDO1 communication VDO3 output|Use communication VDO 2398 +|148|COM_VDO1 communication VDO4output|Use communication VDO 2397 2397 2398 2398 Table 6-60 VDO function number 2399 2399 ... ... @@ -2401,16 +2401,16 @@ 2401 2401 2402 2402 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate). 2403 2403 2404 -== Motor overload protection == 2406 +== **Motor overload protection** == 2405 2405 2406 2406 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2407 2407 2408 -| =(% scope="row" %)**Function code**|=**Name**|=(((2410 +|**Function code**|**Name**|((( 2409 2409 **Setting method** 2410 -)))| =(((2412 +)))|((( 2411 2411 **Effective time** 2412 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2413 -| =P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((2414 +)))|**Default value**|**Range**|**Definition**|**Unit** 2415 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2414 2414 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2415 2415 2416 2416 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
- image-20220804160519-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -982.3 KB - Content
- image-20220804160624-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -975.3 KB - Content