Changes for page 06 Operation

Last modified by Iris on 2025/08/08 14:40

From version 58.1
edited by Jim(Forgotten)
on 2023/02/06 11:22
Change comment: There is no comment for this version
To version 54.2
edited by Stone Wu
on 2022/08/30 11:07
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Jim
1 +XWiki.Stone
Content
... ... @@ -2,20 +2,20 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 -|=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
5 +|=(% scope="row" style="width: 58px;" %)**No.**|=(% style="width: 1017px;" %)**Content**
6 6  |=(% colspan="2" %)Wiring
7 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 -|=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 -|=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 -|=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 -|=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 -|=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
7 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|=(% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|=(% style="width: 58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably.
12 +|=(% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|=(% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range.
14 +|=(% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated.
15 15  |=(% colspan="2" %)Environment and Machinery
16 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
16 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19 19  
20 20  Table 6-1 Check contents before operation
21 21  
... ... @@ -46,23 +46,11 @@
46 46  )))|=(((
47 47  **Effective time**
48 48  )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 -|=(((
50 -P10-01
51 -)))|(((
52 -JOG speed
53 -)))|(((
49 +|=P10-01|JOG speed|(((
54 54  Operation setting
55 55  )))|(((
56 56  Effective immediately
57 -)))|(((
58 -100
59 -)))|(((
60 -0 to 3000
61 -)))|(((
62 -JOG speed
63 -)))|(((
64 -rpm
65 -)))
53 +)))|100|0 to 3000|JOG speed|rpm
66 66  
67 67  Table 6-2 JOG speed parameter
68 68  
... ... @@ -71,19 +71,11 @@
71 71  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72 72  
73 73  |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 -|=(((
75 -P00-04
76 -)))|(((
77 -Rotation direction
78 -)))|(((
62 +|=P00-04|Rotation direction|(((
79 79  Shutdown setting
80 80  )))|(((
81 81  Effective immediately
82 -)))|(((
83 -0
84 -)))|(((
85 -0 to 1
86 -)))|(((
66 +)))|0|0 to 1|(((
87 87  Forward rotation: Face the motor shaft to watch
88 88  
89 89  * 0: standard setting (CW is forward rotation)
... ... @@ -101,14 +101,14 @@
101 101  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 102  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103 103  
104 -|=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
84 +|=(% scope="row" %)**Function code**|=**Name**|=(((
105 105  **Setting method**
106 -)))|=(% style="width: 126px;" %)(((
86 +)))|=(((
107 107  **Effective time**
108 108  )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 -|=P00-09|Braking resistor setting|(% style="width:118px" %)(((
89 +|=P00-09|Braking resistor setting|(((
110 110  Operation setting
111 -)))|(% style="width:126px" %)(((
91 +)))|(((
112 112  Effective immediately
113 113  )))|0|0 to 3|(((
114 114  * 0: use built-in braking resistor
... ... @@ -116,15 +116,15 @@
116 116  * 2: use external braking resistor and forced air cooling; (cannot be set)
117 117  * 3: No braking resistor is used, it is all absorbed by capacitor.
118 118  )))|-
119 -(% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 -|=P00-10|External braking resistor value|(% style="width:118px" %)(((
99 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
100 +|=P00-10|External braking resistor value|(((
121 121  Operation setting
122 -)))|(% style="width:126px" %)(((
102 +)))|(((
123 123  Effective immediately
124 124  )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 -|=P00-11|External braking resistor power|(% style="width:118px" %)(((
105 +|=P00-11|External braking resistor power|(((
126 126  Operation setting
127 -)))|(% style="width:126px" %)(((
107 +)))|(((
128 128  Effective immediately
129 129  )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130 130  
... ... @@ -146,7 +146,7 @@
146 146  
147 147  (% style="text-align:center" %)
148 148  (((
149 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
129 +(% class="wikigeneratedid" style="display:inline-block" %)
150 150  [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 151  )))
152 152  
... ... @@ -154,14 +154,14 @@
154 154  
155 155  According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
156 156  
157 -|=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 -|=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 -|=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
137 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
138 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
139 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
160 160  
161 161  Table 6-5 Comparison of two shutdown modes
162 162  
163 -|=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 -|=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
143 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
144 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165 165  
166 166  Table 6-6 Comparison of two shutdown status
167 167  
... ... @@ -169,22 +169,22 @@
169 169  
170 170  The related parameters of the servo OFF shutdown mode are shown in the table below.
171 171  
172 -|=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
152 +|=(% scope="row" %)**Function code**|=**Name**|=(((
173 173  **Setting method**
174 -)))|=(% style="width: 134px;" %)(((
154 +)))|=(((
175 175  **Effective time**
176 -)))|=(% style="width: 86px;" %)(((
156 +)))|=(((
177 177  **Default value**
178 -)))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 -|=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
158 +)))|=**Range**|=**Definition**|=**Unit**
159 +|=P00-05|Servo OFF shutdown|(((
180 180  Shutdown
181 181  
182 182  setting
183 -)))|(% style="width:134px" %)(((
163 +)))|(((
184 184  Effective
185 185  
186 186  immediately
187 -)))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
167 +)))|0|0 to 1|(((
188 188  * 0: Free shutdown, and the motor shaft remains free status.
189 189  * 1: Zero-speed shutdown, and the motor shaft remains free status.
190 190  )))|-
... ... @@ -203,12 +203,12 @@
203 203  
204 204  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
205 205  
206 -|=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
186 +|=(% scope="row" %)**Function code**|=(% style="width: 143px;" %)**Name**|=(% style="width: 137px;" %)(((
207 207  **Setting method**
208 -)))|=(% style="width: 114px;" %)(((
188 +)))|=(% style="width: 141px;" %)(((
209 209  **Effective time**
210 -)))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
211 -|=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
190 +)))|=(% style="width: 84px;" %)**Default value**|=(% style="width: 100px;" %)**Range**|=**Definition**|=**Unit**
191 +|=P06-08|(% style="width:143px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|(((
212 212  * 0: OFF (not used)
213 213  * 01: S-ON servo enable
214 214  * 02: A-CLR fault and Warning Clear
... ... @@ -234,27 +234,27 @@
234 234  * 24: Internal multi-segment position selection 4
235 235  * Others: reserved
236 236  )))|-
237 -|=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
217 +|=P06-09|(% style="width:143px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
238 238  Effective immediately
239 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
219 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
240 240  DI port input logic validity function selection.
241 241  
242 242  * 0: Normally open input. Active low level (switch on);
243 243  * 1: Normally closed input. Active high level (switch off);
244 244  )))|-
245 -|=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
225 +|=P06-10|(% style="width:143px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
246 246  Effective immediately
247 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
227 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
248 248  Select the DI_3 port type to enable
249 249  
250 250  * 0: Hardware DI_3 input terminal
251 251  * 1: virtual VDI_3 input terminal
252 252  )))|-
253 -|=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
233 +|=P06-11|(% style="width:143px" %)DI_4 channel function selection|(% style="width:137px" %)(((
254 254  Operation setting
255 -)))|(% style="width:114px" %)(((
235 +)))|(% style="width:141px" %)(((
256 256  again Power-on
257 -)))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
237 +)))|(% style="width:84px" %)4|(% style="width:100px" %)0 to 32|(((
258 258  * 0: OFF (not used)
259 259  * 01: SON Servo enable
260 260  * 02: A-CLR Fault and Warning Clear
... ... @@ -280,17 +280,17 @@
280 280  * 24: Internal multi-segment position selection 4
281 281  * Others: reserved
282 282  )))|-
283 -|=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
263 +|=P06-12|(% style="width:143px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
284 284  Effective immediately
285 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
265 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
286 286  DI port input logic validity function selection.
287 287  
288 288  * 0: Normally open input. Active low level (switch on);
289 289  * 1: Normally closed input. Active high level (switch off);
290 290  )))|-
291 -|=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
271 +|=P06-13|(% style="width:143px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
292 292  Effective immediately
293 -)))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
273 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
294 294  Select the DI_4 port type to enable
295 295  
296 296  * 0: Hardware DI_4 input terminal
... ... @@ -307,7 +307,7 @@
307 307  
308 308  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
309 309  
310 -(% class="warning" %)|(((
290 +|(((
311 311  (% style="text-align:center" %)
312 312  [[image:image-20220611151617-1.png]]
313 313  )))
... ... @@ -325,16 +325,16 @@
325 325  
326 326  **Wiring of brake device**
327 327  
328 -The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
308 +The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
329 329  
330 330  
331 331  (% style="text-align:center" %)
332 332  (((
333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
313 +(% class="wikigeneratedid" style="display:inline-block" %)
334 334  [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
335 335  )))
336 336  
337 -(% class="warning" %)|(((
317 +|(((
338 338  (% style="text-align:center" %)
339 339  [[image:image-20220611151642-2.png]]
340 340  )))
... ... @@ -352,12 +352,12 @@
352 352  
353 353  Related function code is as below.
354 354  
355 -|=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
335 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
356 356  **Effective time**
357 357  )))
358 -|=144|(% style="width:241px" %)(((
338 +|=144|(((
359 359  BRK-OFF Brake output
360 -)))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
340 +)))|Output the signal indicates the servo motor brake release|Power-on again
361 361  
362 362  Table 6-2 Relevant function codes for brake setting
363 363  
... ... @@ -399,8 +399,7 @@
399 399  
400 400  When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
401 401  
402 -(% class="warning" %)|(((
403 -(% style="text-align:center" %)
382 +|(((
404 404  [[image:image-20220611151705-3.png]]
405 405  )))
406 406  |(((
... ... @@ -411,7 +411,7 @@
411 411  
412 412  (% style="text-align:center" %)
413 413  (((
414 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
393 +(% class="wikigeneratedid" style="display:inline-block" %)
415 415  [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
416 416  )))
417 417  
... ... @@ -424,7 +424,7 @@
424 424  
425 425  When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
426 426  
427 -(% class="warning" %)|(((
406 +|(((
428 428  (% style="text-align:center" %)
429 429  [[image:image-20220611151719-4.png]]
430 430  )))
... ... @@ -442,7 +442,7 @@
442 442  
443 443  (% style="text-align:center" %)
444 444  (((
445 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
424 +(% class="wikigeneratedid" style="display:inline-block" %)
446 446  [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
447 447  )))
448 448  
... ... @@ -452,7 +452,7 @@
452 452  
453 453  (% style="text-align:center" %)
454 454  (((
455 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
434 +(% class="wikigeneratedid" style="display:inline-block" %)
456 456  [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
457 457  )))
458 458  
... ... @@ -462,18 +462,18 @@
462 462  
463 463  (% style="text-align:center" %)
464 464  (((
465 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
444 +(% class="wikigeneratedid" style="display:inline-block" %)
466 466  [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
467 467  )))
468 468  
469 469  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
470 470  
471 -|=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
450 +|=(% scope="row" %)**Function code**|=**Name**|=(((
472 472  **Setting method**
473 473  )))|=(((
474 474  **Effective time**
475 475  )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
476 -|=(% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((
455 +|=P01-01|Control mode|(((
477 477  Operation setting
478 478  )))|(((
479 479  immediately Effective
... ... @@ -518,13 +518,8 @@
518 518  
519 519  Low-speed pulse instruction input
520 520  
521 -|(% style="text-align:center" %)(((
522 -(% class="wikigeneratedid" style="display:inline-block" %)
523 -[[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
524 -)))|(% style="text-align:center" %)(((
525 -(% class="wikigeneratedid" style="display:inline-block" %)
526 -[[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
527 -)))
500 +|[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]]
501 +|VD2A and VD2B servo drives|VD2F servo drive
528 528  |(% colspan="2" %)Figure 6-7 Position instruction input setting
529 529  
530 530  VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
... ... @@ -531,9 +531,9 @@
531 531  
532 532  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
533 533  
534 -|=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
535 -|=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
536 -|=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
508 +|=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage**
509 +|=Open collector input|200K|24V
510 +|=Differential input|500K|5V
537 537  
538 538  Table 6-12 Pulse input specifications
539 539  
... ... @@ -543,8 +543,8 @@
543 543  
544 544  (% style="text-align:center" %)
545 545  (((
546 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
547 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
520 +(% class="wikigeneratedid" style="display:inline-block" %)
521 +[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]]
548 548  )))
549 549  
550 550  (% class="box infomessage" %)
... ... @@ -558,8 +558,8 @@
558 558  
559 559  (% style="text-align:center" %)
560 560  (((
561 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
562 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
535 +(% class="wikigeneratedid" style="display:inline-block" %)
536 +[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="530" id="Iimage-20220707092401-3.jpeg" width="834"]]
563 563  )))
564 564  
565 565  
... ... @@ -574,27 +574,27 @@
574 574  
575 575  (% style="text-align:center" %)
576 576  (((
577 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
551 +(% class="wikigeneratedid" style="display:inline-block" %)
578 578  [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
579 579  )))
580 580  
581 581  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
582 582  
583 -|=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
557 +|=**Function code**|=**Name**|=(((
584 584  **Setting method**
585 585  )))|=(((
586 586  **Effective time**
587 -)))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
588 -|P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((
561 +)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
562 +|P00-13|Maximum position pulse frequency|(((
589 589  Shutdown setting
590 590  )))|(((
591 591  Effective immediately
592 -)))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz
593 -|(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
566 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
567 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
594 594  Operation setting
595 595  )))|(% rowspan="3" %)(((
596 596  Power-on again
597 -)))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
571 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
598 598  Set the anti-interference level of external pulse instruction.
599 599  
600 600  * 0: no filtering;
... ... @@ -617,16 +617,16 @@
617 617  
618 618  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
619 619  
620 -|=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
594 +|=(% scope="row" %)**Function code**|=**Name**|=(((
621 621  **Setting method**
622 -)))|=(% style="width: 109px;" %)(((
596 +)))|=(((
623 623  **Effective time**
624 -)))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
625 -|=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
598 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
599 +|=P00-12|Position pulse type selection|(((
626 626  Operation setting
627 -)))|(% style="width:109px" %)(((
601 +)))|(((
628 628  Power-on again
629 -)))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
603 +)))|0|0 to 5|(((
630 630  * 0: direction + pulse (positive logic)
631 631  * 1: CW/CCW
632 632  * 2: A, B phase quadrature pulse (4 times frequency)
... ... @@ -637,26 +637,26 @@
637 637  
638 638  Table 6-14 Position pulse type selection parameter
639 639  
640 -|=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
641 -|=0|(% style="width:200px" %)(((
614 +|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
615 +|=0|(((
642 642  Direction + pulse
643 643  
644 644  (Positive logic)
645 -)))|(% style="width:161px" %)(((
619 +)))|(((
646 646  PULSE
647 647  
648 648  SIGN
649 649  )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
650 -|=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
624 +|=1|CW/CCW|(((
651 651  PULSE (CW)
652 652  
653 653  SIGN (CCW)
654 654  )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
655 -|=2|(% style="width:200px" %)(((
629 +|=2|(((
656 656  AB phase orthogonal
657 657  
658 658  pulse (4 times frequency)
659 -)))|(% style="width:161px" %)(((
633 +)))|(((
660 660  PULSE (Phase A)
661 661  
662 662  SIGN (Phase B)
... ... @@ -673,29 +673,29 @@
673 673  
674 674  Phase B is 90° ahead of Phase A
675 675  )))
676 -|=3|(% style="width:200px" %)(((
650 +|=3|(((
677 677  Direction + pulse
678 678  
679 679  (Negative logic)
680 -)))|(% style="width:161px" %)(((
654 +)))|(((
681 681  PULSE
682 682  
683 683  SIGN
684 684  )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
685 -|=4|(% style="width:200px" %)(((
659 +|=4|(((
686 686  CW/CCW
687 687  
688 688  (Negative logic)
689 -)))|(% style="width:161px" %)(((
663 +)))|(((
690 690  PULSE (CW)
691 691  
692 692  SIGN (CCW)
693 693  )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
694 -|=5|(% style="width:200px" %)(((
668 +|=5|(((
695 695  AB phase orthogonal
696 696  
697 697  pulse (4 times frequency negative logic)
698 -)))|(% style="width:161px" %)(((
672 +)))|(((
699 699  PULSE (Phase A)
700 700  
701 701  SIGN (Phase B)
... ... @@ -723,7 +723,7 @@
723 723  
724 724  (% style="text-align:center" %)
725 725  (((
726 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
700 +(% class="wikigeneratedid" style="display:inline-block" %)
727 727  [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
728 728  )))
729 729  
... ... @@ -779,9 +779,10 @@
779 779  
780 780  In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
781 781  
756 +
782 782  (% style="text-align:center" %)
783 783  (((
784 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
759 +(% class="wikigeneratedid" style="display:inline-block" %)
785 785  [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
786 786  )))
787 787  
... ... @@ -791,11 +791,11 @@
791 791  
792 792  (% style="text-align:center" %)
793 793  (((
794 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
769 +(% class="wikigeneratedid" style="display:inline-block" %)
795 795  [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
796 796  )))
797 797  
798 -(% class="warning" %)|(((
773 +|(((
799 799  (% style="text-align:center" %)
800 800  [[image:image-20220611151917-5.png]]
801 801  )))
... ... @@ -829,7 +829,7 @@
829 829  
830 830  (% style="text-align:center" %)
831 831  (((
832 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
807 +(% class="wikigeneratedid" style="display:inline-block" %)
833 833  [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
834 834  )))
835 835  
... ... @@ -841,29 +841,29 @@
841 841  
842 842  (% style="text-align:center" %)
843 843  (((
844 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
819 +(% class="wikigeneratedid" style="display:inline-block" %)
845 845  [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
846 846  )))
847 847  
848 848  (% style="text-align:center" %)
849 849  (((
850 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
851 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
825 +(% class="wikigeneratedid" style="display:inline-block" %)
826 +[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]]
852 852  )))
853 853  
854 854  **Run again from the start segment**
855 855  
856 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
831 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.
857 857  
858 858  (% style="text-align:center" %)
859 859  (((
860 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
835 +(% class="wikigeneratedid" style="display:inline-block" %)
861 861  [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
862 862  )))
863 863  
864 864  (% style="text-align:center" %)
865 865  (((
866 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
841 +(% class="wikigeneratedid" style="display:inline-block" %)
867 867  [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
868 868  )))
869 869  
... ... @@ -876,13 +876,13 @@
876 876  |(((
877 877  (% style="text-align:center" %)
878 878  (((
879 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
854 +(% class="wikigeneratedid" style="display:inline-block" %)
880 880  [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
881 881  )))
882 882  )))|(((
883 883  (% style="text-align:center" %)
884 884  (((
885 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
860 +(% class="wikigeneratedid" style="display:inline-block" %)
886 886  [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
887 887  )))
888 888  )))
... ... @@ -894,13 +894,13 @@
894 894  |(((
895 895  (% style="text-align:center" %)
896 896  (((
897 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
872 +(% class="wikigeneratedid" style="display:inline-block" %)
898 898  [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
899 899  )))
900 900  )))|(((
901 901  (% style="text-align:center" %)
902 902  (((
903 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
878 +(% class="wikigeneratedid" style="display:inline-block" %)
904 904  [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
905 905  )))
906 906  )))
... ... @@ -945,7 +945,7 @@
945 945  
946 946  (% style="text-align:center" %)
947 947  (((
948 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
923 +(% class="wikigeneratedid" style="display:inline-block" %)
949 949  [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
950 950  )))
951 951  
... ... @@ -962,7 +962,7 @@
962 962  )))
963 963  
964 964  (% style="text-align:center" %)
965 -[[image:image-20220611152020-6.png||class="img-thumbnail"]]
940 +[[image:image-20220611152020-6.png]]
966 966  
967 967  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
968 968  
... ... @@ -977,7 +977,7 @@
977 977  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
978 978  
979 979  (% style="text-align:center" %)
980 -[[image:image-20220707094901-16.png||class="img-thumbnail"]]
955 +[[image:image-20220707094901-16.png]]
981 981  
982 982  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
983 983  
... ... @@ -985,8 +985,8 @@
985 985  
986 986  (% style="text-align:center" %)
987 987  (((
988 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
989 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
963 +(% class="wikigeneratedid" style="display:inline-block" %)
964 +[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]]
990 990  )))
991 991  
992 992  **lectronic gear ratio switch setting**
... ... @@ -1083,8 +1083,8 @@
1083 1083  
1084 1084  (% style="text-align:center" %)
1085 1085  (((
1086 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1087 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1061 +(% class="wikigeneratedid" style="display:inline-block" %)
1062 +[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]]
1088 1088  )))
1089 1089  
1090 1090  |=(% scope="row" %)**Function code**|=**Name**|=(((
... ... @@ -1127,7 +1127,7 @@
1127 1127  
1128 1128  (% style="text-align:center" %)
1129 1129  (((
1130 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1105 +(% class="wikigeneratedid" style="display:inline-block" %)
1131 1131  [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1132 1132  )))
1133 1133  
... ... @@ -1137,8 +1137,8 @@
1137 1137  
1138 1138  (% style="text-align:center" %)
1139 1139  (((
1140 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1141 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1115 +(% class="wikigeneratedid" style="display:inline-block" %)
1116 +[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]]
1142 1142  )))
1143 1143  
1144 1144  |=(% scope="row" %)**Function code**|=**Name**|=(((
... ... @@ -1185,7 +1185,7 @@
1185 1185  
1186 1186  (% style="text-align:center" %)
1187 1187  (((
1188 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1163 +(% class="wikigeneratedid" style="display:inline-block" %)
1189 1189  [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1190 1190  )))
1191 1191  
... ... @@ -1193,12 +1193,12 @@
1193 1193  
1194 1194  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1195 1195  
1196 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1171 +|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 189px;" %)**Name**|=(% style="width: 125px;" %)(((
1197 1197  **Setting method**
1198 1198  )))|=(% style="width: 125px;" %)(((
1199 1199  **Effective time**
1200 1200  )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1201 -|=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1176 +|=(% style="width: 121px;" %)P01-01|(% style="width:189px" %)Speed instruction source|(% style="width:125px" %)(((
1202 1202  Shutdown setting
1203 1203  )))|(% style="width:125px" %)(((
1204 1204  Effective immediately
... ... @@ -1431,8 +1431,8 @@
1431 1431  
1432 1432  (% style="text-align:center" %)
1433 1433  (((
1434 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1435 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1409 +(% class="wikigeneratedid" style="display:inline-block" %)
1410 +[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]]
1436 1436  )))
1437 1437  
1438 1438  **Speed instruction source is internal speed instruction (P01-01=1)**
... ... @@ -1441,7 +1441,7 @@
1441 1441  
1442 1442  (% style="text-align:center" %)
1443 1443  (((
1444 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1419 +(% class="wikigeneratedid" style="display:inline-block" %)
1445 1445  [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1446 1446  )))
1447 1447  
... ... @@ -1449,7 +1449,7 @@
1449 1449  
1450 1450  (% style="text-align:center" %)
1451 1451  (((
1452 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1427 +(% class="wikigeneratedid" style="display:inline-block" %)
1453 1453  [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1454 1454  )))
1455 1455  
... ... @@ -1461,7 +1461,7 @@
1461 1461  
1462 1462  (% style="text-align:center" %)
1463 1463  (((
1464 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1439 +(% class="wikigeneratedid" style="display:inline-block" %)
1465 1465  [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1466 1466  )))
1467 1467  
... ... @@ -1486,12 +1486,12 @@
1486 1486  
1487 1487  (% style="text-align:center" %)
1488 1488  (((
1489 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1464 +(% class="wikigeneratedid" style="display:inline-block" %)
1490 1490  [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1491 1491  )))
1492 1492  
1493 1493  (% style="text-align:center" %)
1494 -[[image:image-20220707103616-27.png||class="img-thumbnail"]]
1469 +[[image:image-20220707103616-27.png]]
1495 1495  
1496 1496  |=(% scope="row" %)**Function code**|=**Name**|=(((
1497 1497  **Setting method**
... ... @@ -1586,7 +1586,7 @@
1586 1586  
1587 1587  (% style="text-align:center" %)
1588 1588  (((
1589 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1564 +(% class="wikigeneratedid" style="display:inline-block" %)
1590 1590  [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1591 1591  )))
1592 1592  
... ... @@ -1600,7 +1600,7 @@
1600 1600  
1601 1601  (% style="text-align:center" %)
1602 1602  (((
1603 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1578 +(% class="wikigeneratedid" style="display:inline-block" %)
1604 1604  [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1605 1605  )))
1606 1606  
... ... @@ -1640,7 +1640,7 @@
1640 1640  
1641 1641  (% style="text-align:center" %)
1642 1642  (((
1643 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1618 +(% class="wikigeneratedid" style="display:inline-block" %)
1644 1644  [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1645 1645  )))
1646 1646  
... ... @@ -1672,7 +1672,7 @@
1672 1672  
1673 1673  (% style="text-align:center" %)
1674 1674  (((
1675 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1650 +(% class="wikigeneratedid" style="display:inline-block" %)
1676 1676  [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1677 1677  )))
1678 1678  
... ... @@ -1704,18 +1704,18 @@
1704 1704  
1705 1705  (% style="text-align:center" %)
1706 1706  (((
1707 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1682 +(% class="wikigeneratedid" style="display:inline-block" %)
1708 1708  [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1709 1709  )))
1710 1710  
1711 1711  To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1712 1712  
1713 -|=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1688 +|=(% scope="row" %)**Function code**|=**Name**|=(((
1714 1714  **Setting method**
1715 1715  )))|=(((
1716 1716  **Effective time**
1717 1717  )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1718 -|=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1693 +|=P05-18|Speed approach signal threshold|(((
1719 1719  Operation setting
1720 1720  )))|(((
1721 1721  Effective immediately
... ... @@ -1736,7 +1736,7 @@
1736 1736  
1737 1737  (% style="text-align:center" %)
1738 1738  (((
1739 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1714 +(% class="wikigeneratedid" style="display:inline-block" %)
1740 1740  [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1741 1741  )))
1742 1742  
... ... @@ -1749,7 +1749,7 @@
1749 1749  )))|=(((
1750 1750  **Effective time**
1751 1751  )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1752 -|=P01-07|Torque instruction source|(((
1727 +|=P01-08|Torque instruction source|(((
1753 1753  Shutdown setting
1754 1754  )))|(((
1755 1755  Effective immediately
... ... @@ -1784,7 +1784,7 @@
1784 1784  
1785 1785  (% style="text-align:center" %)
1786 1786  (((
1787 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1762 +(% class="wikigeneratedid" style="display:inline-block" %)
1788 1788  [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1789 1789  )))
1790 1790  
... ... @@ -1792,7 +1792,7 @@
1792 1792  
1793 1793  (% style="text-align:center" %)
1794 1794  (((
1795 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1770 +(% class="wikigeneratedid" style="display:inline-block" %)
1796 1796  [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1797 1797  )))
1798 1798  
... ... @@ -1804,7 +1804,7 @@
1804 1804  
1805 1805  (% style="text-align:center" %)
1806 1806  (((
1807 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1782 +(% class="wikigeneratedid" style="display:inline-block" %)
1808 1808  [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1809 1809  )))
1810 1810  
... ... @@ -1845,7 +1845,7 @@
1845 1845  
1846 1846  (% style="text-align:center" %)
1847 1847  (((
1848 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1823 +(% class="wikigeneratedid" style="display:inline-block" %)
1849 1849  [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1850 1850  )))
1851 1851  
... ... @@ -1857,7 +1857,7 @@
1857 1857  
1858 1858  (% style="text-align:center" %)
1859 1859  (((
1860 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1835 +(% class="wikigeneratedid" style="display:inline-block" %)
1861 1861  [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1862 1862  )))
1863 1863  
... ... @@ -1931,13 +1931,13 @@
1931 1931  |(((
1932 1932  (% style="text-align:center" %)
1933 1933  (((
1934 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1909 +(% class="wikigeneratedid" style="display:inline-block" %)
1935 1935  [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1936 1936  )))
1937 1937  )))|(((
1938 1938  (% style="text-align:center" %)
1939 1939  (((
1940 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1915 +(% class="wikigeneratedid" style="display:inline-block" %)
1941 1941  [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1942 1942  )))
1943 1943  )))
... ... @@ -1978,7 +1978,7 @@
1978 1978  
1979 1979  ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1980 1980  
1981 -== Torque-related DO output functions ==
1956 +== **Torque-related DO output functions** ==
1982 1982  
1983 1983  The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1984 1984  
... ... @@ -1987,27 +1987,26 @@
1987 1987  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1988 1988  
1989 1989  (% style="text-align:center" %)
1990 -(((
1991 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1992 -[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
1993 -)))
1965 +[[image:image-20220608173541-42.png]]
1994 1994  
1995 -To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
1967 +Figure 6-47 Torque arrival output diagram
1996 1996  
1997 -|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
1969 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1970 +
1971 +|**Function code**|**Name**|(((
1998 1998  **Setting method**
1999 -)))|=(% style="width: 124px;" %)(((
1973 +)))|(((
2000 2000  **Effective time**
2001 -)))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2002 -|=P05-20|(% style="width:113px" %)(((
1975 +)))|**Default value**|**Range**|**Definition**|**Unit**
1976 +|P05-20|(((
2003 2003  Torque arrival
2004 2004  
2005 2005  threshold
2006 -)))|(% style="width:100px" %)(((
1980 +)))|(((
2007 2007  Operation setting
2008 -)))|(% style="width:124px" %)(((
1982 +)))|(((
2009 2009  Effective immediately
2010 -)))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
1984 +)))|100|0 to 300|(((
2011 2011  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2012 2012  
2013 2013  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
... ... @@ -2014,20 +2014,21 @@
2014 2014  
2015 2015  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2016 2016  )))|%
2017 -|=P05-21|(% style="width:113px" %)(((
1991 +|P05-21|(((
2018 2018  Torque arrival
2019 2019  
2020 2020  hysteresis
2021 -)))|(% style="width:100px" %)(((
1995 +)))|(((
2022 2022  Operation setting
2023 -)))|(% style="width:124px" %)(((
1997 +)))|(((
2024 2024  Effective immediately
2025 -)))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
1999 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2026 2026  
2027 2027  Table 6-49 Torque arrival parameters
2028 2028  
2029 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2030 -|=138|(((
2003 +
2004 +|**DO function code**|**Function name**|**Function**
2005 +|138|(((
2031 2031  T-COIN torque arrival
2032 2032  )))|Used to determine whether the actual torque instruction has reached the set range
2033 2033  
... ... @@ -2037,28 +2037,35 @@
2037 2037  
2038 2038  Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2039 2039  
2040 -* Position mode⇔ Speed mode
2041 -* Position mode ⇔Torque mode
2042 -* Speed mode ⇔Torque mode
2015 +Position mode⇔ Speed mode
2043 2043  
2017 +Position mode ⇔Torque mode
2018 +
2019 +Speed mode ⇔Torque mode
2020 +
2044 2044  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2045 2045  
2046 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2023 +|**Function code**|**Name**|(((
2047 2047  **Setting method**
2048 -)))|=(((
2025 +)))|(((
2049 2049  **Effective time**
2050 -)))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2051 -|=P00-01|Control mode|(((
2027 +)))|**Default value**|**Range**|**Definition**|**Unit**
2028 +|P00-01|Control mode|(((
2052 2052  Shutdown setting
2053 2053  )))|(((
2054 2054  Shutdown setting
2055 -)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2056 -* 1: Position control
2057 -* 2: Speed control
2058 -* 3: Torque control
2059 -* 4: Position/speed mixed control
2060 -* 5: Position/torque mixed control
2061 -* 6: Speed/torque mixed control
2032 +)))|1|1 to 6|(((
2033 +1: Position control
2034 +
2035 +2: Speed control
2036 +
2037 +3: Torque control
2038 +
2039 +4: Position/speed mixed control
2040 +
2041 +5: Position/torque mixed control
2042 +
2043 +6: Speed/torque mixed control
2062 2062  )))|-
2063 2063  
2064 2064  Table 6-51 Mixed control mode parameters
... ... @@ -2065,38 +2065,35 @@
2065 2065  
2066 2066  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2067 2067  
2068 -|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2069 -|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2070 -(% style="margin-left:auto; margin-right:auto; width:585px" %)
2071 -|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2072 -|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2073 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2074 -|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2075 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2076 -|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2077 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2050 +|**DI function code**|**Name**|**Function name**|**Function**
2051 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2052 +|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2053 +|(% rowspan="2" %)4|Valid|Speed mode
2054 +|invalid|Position mode
2055 +|(% rowspan="2" %)5|Valid|Torque mode
2056 +|invalid|Position mode
2057 +|(% rowspan="2" %)6|Valid|Torque mode
2058 +|invalid|Speed mode
2078 2078  )))
2079 2079  
2080 2080  Table 6-52 Description of DI function codes in control mode
2081 2081  
2082 -(% class="box infomessage" %)
2083 -(((
2084 2084  ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2085 -)))
2086 2086  
2087 2087  = **Absolute system** =
2088 2088  
2089 -== Overview ==
2067 +== **Overview** ==
2090 2090  
2091 2091  Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2092 2092  
2093 2093  The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2094 2094  
2095 -== Single-turn absolute value system ==
2073 +== **Single-turn absolute value system** ==
2096 2096  
2097 2097  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2098 2098  
2099 -|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2077 +
2078 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2100 2100  |A1 (single-turn magnetic encoder)|17|0 to 131071
2101 2101  
2102 2102  Table 6-53 Single-turn absolute encoder information
... ... @@ -2104,18 +2104,17 @@
2104 2104  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2105 2105  
2106 2106  (% style="text-align:center" %)
2107 -(((
2108 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2109 -[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2110 -)))
2086 +[[image:image-20220608173618-43.png]]
2111 2111  
2112 -== Multi-turn absolute value system ==
2088 +Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2113 2113  
2090 +== **Multi-turn absolute value system** ==
2091 +
2114 2114  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2115 2115  
2116 -|=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2117 -|=C1 (multi-turn magnetic encoder)|17|0 to 131071
2118 -|=D2 (multi-turn Optical encoder)|23|0 to 8388607
2094 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2095 +|C1 (multi-turn magnetic encoder)|17|0 to 131071
2096 +|D2 (multi-turn Optical encoder)|23|0 to 8388607
2119 2119  
2120 2120  Table 6-54 Multi-turn absolute encoder information
2121 2121  
... ... @@ -2122,21 +2122,20 @@
2122 2122  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2123 2123  
2124 2124  (% style="text-align:center" %)
2125 -(((
2126 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2127 -[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2128 -)))
2103 +[[image:image-20220608173701-44.png]]
2129 2129  
2130 -== Related functions and parameters ==
2105 +Figure 6-49 The relationship between encoder feedback position and rotating load position
2131 2131  
2107 +== **Related functions and parameters** ==
2108 +
2132 2132  **Encoder feedback data**
2133 2133  
2134 2134  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2135 2135  
2136 -|=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2137 -|=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2138 -|=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2139 -|=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2113 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2114 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2115 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2116 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2140 2140  
2141 2141  Table 6-55 Encoder feedback data
2142 2142  
... ... @@ -2144,28 +2144,26 @@
2144 2144  
2145 2145  The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2146 2146  
2147 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2124 +|**Function code**|**Name**|(((
2148 2148  **Setting**
2149 2149  
2150 2150  **method**
2151 -)))|=(((
2128 +)))|(((
2152 2152  **Effective**
2153 2153  
2154 2154  **time**
2155 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2156 -|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2157 -* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2158 -* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2132 +)))|**Default value**|**Range**|**Definition**|**Unit**
2133 +|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2134 +0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2135 +
2136 +1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2159 2159  )))|-
2160 2160  
2161 2161  This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2162 2162  
2163 -(% class="box infomessage" %)
2164 -(((
2165 2165  **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2166 -)))
2167 2167  
2168 -== Absolute value system encoder battery box use precautions. ==
2143 +== **Absolute value system encoder battery box use precautions**. ==
2169 2169  
2170 2170  **Cautions**
2171 2171  
... ... @@ -2172,11 +2172,10 @@
2172 2172  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2173 2173  
2174 2174  (% style="text-align:center" %)
2175 -(((
2176 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2177 -[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2178 -)))
2150 +[[image:image-20220707111333-28.png]]
2179 2179  
2152 +Figure 6-50 the encoder battery box
2153 +
2180 2180  When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2181 2181  
2182 2182  **Replace the battery**
... ... @@ -2192,19 +2192,20 @@
2192 2192  
2193 2193  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2194 2194  
2195 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2169 +|**Function code**|**Name**|(((
2196 2196  **Setting method**
2197 -)))|=(((
2171 +)))|(((
2198 2198  **Effective time**
2199 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2200 -|=P10-06|Multi-turn absolute encoder reset|(((
2173 +)))|**Default value**|**Range**|**Definition**|**Unit**
2174 +|P10-06|Multi-turn absolute encoder reset|(((
2201 2201  Shutdown setting
2202 2202  )))|(((
2203 2203  Effective immediately
2204 2204  )))|0|0 to 1|(((
2205 -* 0: No operation
2206 -* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2179 +0: No operation
2207 2207  
2181 +1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2182 +
2208 2208  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2209 2209  )))|-
2210 2210  
... ... @@ -2212,7 +2212,7 @@
2212 2212  
2213 2213  **Battery selection**
2214 2214  
2215 -|=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2190 +|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value**
2216 2216  |(% rowspan="4" style="width:361px" %)(((
2217 2217  Nominal Voltage: 3.6V
2218 2218  
... ... @@ -2240,108 +2240,111 @@
2240 2240  
2241 2241  = **Other functions** =
2242 2242  
2243 -== VDI ==
2218 +== **VDI** ==
2244 2244  
2245 2245  VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2246 2246  
2247 -(% class="box infomessage" %)
2248 -(((
2249 2249  ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2250 -)))
2251 2251  
2252 2252  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2253 2253  
2226 +
2254 2254  (% style="text-align:center" %)
2255 -(((
2256 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2257 -[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2258 -)))
2228 +[[image:image-20220608173804-46.png]]
2259 2259  
2260 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2230 +Figure 6-51 VDI_1 setting steps
2231 +
2232 +|**Function code**|**Name**|(((
2261 2261  **Setting method**
2262 -)))|=(((
2234 +)))|(((
2263 2263  **Effective time**
2264 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2265 -|=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2236 +)))|**Default value**|**Range**|**Definition**|**Unit**
2237 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2266 2266  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2267 2267  
2268 2268  VDI_1 input level:
2269 2269  
2270 -* 0: low level
2271 -* 1: high level
2242 +0: low level
2243 +
2244 +1: high level
2272 2272  )))|-
2273 -|=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2246 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2274 2274  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2275 2275  
2276 2276  VDI_2 input level:
2277 2277  
2278 -* 0: low level
2279 -* 1: high level
2251 +0: low level
2252 +
2253 +1: high level
2280 2280  )))|-
2281 -|=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2255 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2282 2282  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2283 2283  
2284 2284  VDI_3 input level:
2285 2285  
2286 -* 0: low level
2287 -* 1: high level
2260 +0: low level
2261 +
2262 +1: high level
2288 2288  )))|-
2289 -|=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2264 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2290 2290  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2291 2291  
2292 2292  VDI_4 input level:
2293 2293  
2294 -* 0: low level
2295 -* 1: high level
2269 +0: low level
2270 +
2271 +1: high level
2296 2296  )))|-
2297 -|=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2273 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2298 2298  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2299 2299  
2300 2300  VDI_5 input level:
2301 2301  
2302 -* 0: low level
2303 -* 1: high level
2278 +0: low level
2279 +
2280 +1: high level
2304 2304  )))|-
2305 -|=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2282 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2306 2306  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2307 2307  
2308 2308  VDI_6 input level:
2309 2309  
2310 -* 0: low level
2311 -* 1: high level
2287 +0: low level
2288 +
2289 +1: high level
2312 2312  )))|-
2313 -|=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2291 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2314 2314  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2315 2315  
2316 2316  VDI_7 input level:
2317 2317  
2318 -* 0: low level
2319 -* 1: high level
2296 +0: low level
2297 +
2298 +1: high level
2320 2320  )))|-
2321 -|=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2300 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2322 2322  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2323 2323  
2324 2324  VDI_8 input level:
2325 2325  
2326 -* 0: low level
2327 -* 1: high level
2305 +0: low level
2306 +
2307 +1: high level
2328 2328  )))|-
2329 2329  
2330 2330  Table 6-57 Virtual VDI parameters
2331 2331  
2332 -(% class="box infomessage" %)
2333 -(((
2334 2334  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2335 -)))
2336 2336  
2337 -== Port filtering time ==
2314 +== **Port filtering time** ==
2338 2338  
2339 2339  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2340 2340  
2341 -|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2342 -|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2343 -|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2344 2344  
2319 +|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration**
2320 +|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2321 +|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2322 +
2345 2345  Table 6-58 DI terminal channel logic selection
2346 2346  
2347 2347  == **VDO** ==
... ... @@ -2351,49 +2351,51 @@
2351 2351  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2352 2352  
2353 2353  (% style="text-align:center" %)
2354 -(((
2355 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2356 -[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2357 -)))
2332 +[[image:image-20220608173957-48.png]]
2358 2358  
2334 +Figure 6-52 VDO_2 setting steps
2359 2359  
2360 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2336 +|**Function code**|**Name**|(((
2361 2361  **Setting method**
2362 -)))|=(((
2338 +)))|(((
2363 2363  **Effective time**
2364 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2365 -|=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2340 +)))|**Default value**|**Range**|**Definition**|**Unit**
2341 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2366 2366  VDO_1 output level:
2367 2367  
2368 -* 0: low level
2369 -* 1: high level
2344 +0: low level
2345 +
2346 +1: high level
2370 2370  )))|-
2371 -|=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2348 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2372 2372  VDO_2 output level:
2373 2373  
2374 -* 0: low level
2375 -* 1: high level
2351 +0: low level
2352 +
2353 +1: high level
2376 2376  )))|-
2377 -|=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2355 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2378 2378  VDO_3 output level:
2379 2379  
2380 -* 0: low level
2381 -* 1: high level
2358 +0: low level
2359 +
2360 +1: high level
2382 2382  )))|-
2383 -|=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2362 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2384 2384  VDO_4 output level:
2385 2385  
2386 -* 0: low level
2387 -* 1: high level
2365 +0: low level
2366 +
2367 +1: high level
2388 2388  )))|-
2389 2389  
2390 2390  Table 6-59 Communication control DO function parameters
2391 2391  
2392 -|=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2393 -|=145|COM_VDO1 communication VDO1 output|Use communication VDO
2394 -|=146|COM_VDO1 communication VDO2 output|Use communication VDO
2395 -|=147|COM_VDO1 communication VDO3 output|Use communication VDO
2396 -|=148|COM_VDO1 communication VDO4output|Use communication VDO
2372 +|**DO function number**|**Function name**|**Function**
2373 +|145|COM_VDO1 communication VDO1 output|Use communication VDO
2374 +|146|COM_VDO1 communication VDO2 output|Use communication VDO
2375 +|147|COM_VDO1 communication VDO3 output|Use communication VDO
2376 +|148|COM_VDO1 communication VDO4output|Use communication VDO
2397 2397  
2398 2398  Table 6-60 VDO function number
2399 2399  
... ... @@ -2401,16 +2401,16 @@
2401 2401  
2402 2402  If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2403 2403  
2404 -== Motor overload protection ==
2384 +== **Motor overload protection** ==
2405 2405  
2406 2406  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2407 2407  
2408 -|=(% scope="row" %)**Function code**|=**Name**|=(((
2388 +|**Function code**|**Name**|(((
2409 2409  **Setting method**
2410 -)))|=(((
2390 +)))|(((
2411 2411  **Effective time**
2412 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2413 -|=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2392 +)))|**Default value**|**Range**|**Definition**|**Unit**
2393 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2414 2414  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2415 2415  
2416 2416  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled