Changes for page 06 Operation
Last modified by Iris on 2025/08/08 14:40
From version 58.1
edited by Jim(Forgotten)
on 2023/02/06 11:22
on 2023/02/06 11:22
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Jim1 +XWiki.Stone - Content
-
... ... @@ -2,20 +2,20 @@ 2 2 3 3 == **Check before operation** == 4 4 5 -|=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width:996px;" %)**Content**5 +|=(% scope="row" style="width: 58px;" %)**No.**|=(% style="width: 1017px;" %)**Content** 6 6 |=(% colspan="2" %)Wiring 7 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.8 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.9 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.10 -|=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.11 -|=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.12 -|=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.13 -|=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.14 -|=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.7 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected. 8 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected. 9 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited. 10 +|=(% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected. 11 +|=(% style="width: 58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably. 12 +|=(% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed. 13 +|=(% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range. 14 +|=(% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated. 15 15 |=(% colspan="2" %)Environment and Machinery 16 -|=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.17 -|=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.18 -|=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.16 +|=(% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive. 17 +|=(% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects. 18 +|=(% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected. 19 19 20 20 Table 6-1 Check contents before operation 21 21 ... ... @@ -46,23 +46,11 @@ 46 46 )))|=((( 47 47 **Effective time** 48 48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 49 -|=((( 50 -P10-01 51 -)))|((( 52 -JOG speed 53 -)))|((( 49 +|=P10-01|JOG speed|((( 54 54 Operation setting 55 55 )))|((( 56 56 Effective immediately 57 -)))|((( 58 -100 59 -)))|((( 60 -0 to 3000 61 -)))|((( 62 -JOG speed 63 -)))|((( 64 -rpm 65 -))) 53 +)))|100|0 to 3000|JOG speed|rpm 66 66 67 67 Table 6-2 JOG speed parameter 68 68 ... ... @@ -71,19 +71,11 @@ 71 71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below. 72 72 73 73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit** 74 -|=((( 75 -P00-04 76 -)))|((( 77 -Rotation direction 78 -)))|((( 62 +|=P00-04|Rotation direction|((( 79 79 Shutdown setting 80 80 )))|((( 81 81 Effective immediately 82 -)))|((( 83 -0 84 -)))|((( 85 -0 to 1 86 -)))|((( 66 +)))|0|0 to 1|((( 87 87 Forward rotation: Face the motor shaft to watch 88 88 89 89 * 0: standard setting (CW is forward rotation) ... ... @@ -101,14 +101,14 @@ 101 101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor. 102 102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor. 103 103 104 -|=(% scope="row" %)**Function code**|=**Name**|=( % style="width: 118px;" %)(((84 +|=(% scope="row" %)**Function code**|=**Name**|=((( 105 105 **Setting method** 106 -)))|=( % style="width: 126px;" %)(((86 +)))|=((( 107 107 **Effective time** 108 108 )))|=**Default**|=**Range**|=**Definition**|=**Unit** 109 -|=P00-09|Braking resistor setting|( % style="width:118px" %)(((89 +|=P00-09|Braking resistor setting|((( 110 110 Operation setting 111 -)))|( % style="width:126px" %)(((91 +)))|((( 112 112 Effective immediately 113 113 )))|0|0 to 3|((( 114 114 * 0: use built-in braking resistor ... ... @@ -116,15 +116,15 @@ 116 116 * 2: use external braking resistor and forced air cooling; (cannot be set) 117 117 * 3: No braking resistor is used, it is all absorbed by capacitor. 118 118 )))|- 119 - (% class="info" %)|(% colspan="8"scope="row"%)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).120 -|=P00-10|External braking resistor value|( % style="width:118px" %)(((99 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor). 100 +|=P00-10|External braking resistor value|((( 121 121 Operation setting 122 -)))|( % style="width:126px" %)(((102 +)))|((( 123 123 Effective immediately 124 124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω 125 -|=P00-11|External braking resistor power|( % style="width:118px" %)(((105 +|=P00-11|External braking resistor power|((( 126 126 Operation setting 127 -)))|( % style="width:126px" %)(((107 +)))|((( 128 128 Effective immediately 129 129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W 130 130 ... ... @@ -146,7 +146,7 @@ 146 146 147 147 (% style="text-align:center" %) 148 148 ((( 149 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)129 +(% class="wikigeneratedid" style="display:inline-block" %) 150 150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]] 151 151 ))) 152 152 ... ... @@ -154,14 +154,14 @@ 154 154 155 155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__. 156 156 157 -|=(% scope="row" style="width: 150px;"%)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics158 -|= (% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.159 -|= (% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.137 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics 138 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process. 139 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process. 160 160 161 161 Table 6-5 Comparison of two shutdown modes 162 162 163 -|=(% scope="row" style="width: 151px;"%)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**164 -|= (% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.143 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked** 144 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely. 165 165 166 166 Table 6-6 Comparison of two shutdown status 167 167 ... ... @@ -169,22 +169,22 @@ 169 169 170 170 The related parameters of the servo OFF shutdown mode are shown in the table below. 171 171 172 -|=(% scope="row" style="width: 94px;"%)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((152 +|=(% scope="row" %)**Function code**|=**Name**|=((( 173 173 **Setting method** 174 -)))|=( % style="width: 134px;" %)(((154 +)))|=((( 175 175 **Effective time** 176 -)))|=( % style="width: 86px;" %)(((156 +)))|=((( 177 177 **Default value** 178 -)))|= (% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**179 -|= (% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((158 +)))|=**Range**|=**Definition**|=**Unit** 159 +|=P00-05|Servo OFF shutdown|((( 180 180 Shutdown 181 181 182 182 setting 183 -)))|( % style="width:134px" %)(((163 +)))|((( 184 184 Effective 185 185 186 186 immediately 187 -)))| (% style="width:86px" %)0|(% style="width:70px"%)0to 1|(% style="width:347px" %)(((167 +)))|0|0 to 1|((( 188 188 * 0: Free shutdown, and the motor shaft remains free status. 189 189 * 1: Zero-speed shutdown, and the motor shaft remains free status. 190 190 )))|- ... ... @@ -203,12 +203,12 @@ 203 203 204 204 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below. 205 205 206 -|=(% scope="row" style="width: 89px;"%)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((186 +|=(% scope="row" %)**Function code**|=(% style="width: 143px;" %)**Name**|=(% style="width: 137px;" %)((( 207 207 **Setting method** 208 -)))|=(% style="width: 1 14px;" %)(((188 +)))|=(% style="width: 141px;" %)((( 209 209 **Effective time** 210 -)))|=(% style="width: 106px;" %)**Default value**|=(% style="width:84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**211 -|= (% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((190 +)))|=(% style="width: 84px;" %)**Default value**|=(% style="width: 100px;" %)**Range**|=**Definition**|=**Unit** 191 +|=P06-08|(% style="width:143px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|((( 212 212 * 0: OFF (not used) 213 213 * 01: S-ON servo enable 214 214 * 02: A-CLR fault and Warning Clear ... ... @@ -234,27 +234,27 @@ 234 234 * 24: Internal multi-segment position selection 4 235 235 * Others: reserved 236 236 )))|- 237 -|= (% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((217 +|=P06-09|(% style="width:143px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 238 238 Effective immediately 239 -)))|(% style="width: 106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((219 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 240 240 DI port input logic validity function selection. 241 241 242 242 * 0: Normally open input. Active low level (switch on); 243 243 * 1: Normally closed input. Active high level (switch off); 244 244 )))|- 245 -|= (% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((225 +|=P06-10|(% style="width:143px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 246 246 Effective immediately 247 -)))|(% style="width: 106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((227 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 248 248 Select the DI_3 port type to enable 249 249 250 250 * 0: Hardware DI_3 input terminal 251 251 * 1: virtual VDI_3 input terminal 252 252 )))|- 253 -|= (% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((233 +|=P06-11|(% style="width:143px" %)DI_4 channel function selection|(% style="width:137px" %)((( 254 254 Operation setting 255 -)))|(% style="width:1 14px" %)(((235 +)))|(% style="width:141px" %)((( 256 256 again Power-on 257 -)))|(% style="width: 106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((237 +)))|(% style="width:84px" %)4|(% style="width:100px" %)0 to 32|((( 258 258 * 0: OFF (not used) 259 259 * 01: SON Servo enable 260 260 * 02: A-CLR Fault and Warning Clear ... ... @@ -280,17 +280,17 @@ 280 280 * 24: Internal multi-segment position selection 4 281 281 * Others: reserved 282 282 )))|- 283 -|= (% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((263 +|=P06-12|(% style="width:143px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 284 284 Effective immediately 285 -)))|(% style="width: 106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((265 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 286 286 DI port input logic validity function selection. 287 287 288 288 * 0: Normally open input. Active low level (switch on); 289 289 * 1: Normally closed input. Active high level (switch off); 290 290 )))|- 291 -|= (% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((271 +|=P06-13|(% style="width:143px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)((( 292 292 Effective immediately 293 -)))|(% style="width: 106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((273 +)))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|((( 294 294 Select the DI_4 port type to enable 295 295 296 296 * 0: Hardware DI_4 input terminal ... ... @@ -307,7 +307,7 @@ 307 307 308 308 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force. 309 309 310 - (% class="warning" %)|(((290 +|((( 311 311 (% style="text-align:center" %) 312 312 [[image:image-20220611151617-1.png]] 313 313 ))) ... ... @@ -325,16 +325,16 @@ 325 325 326 326 **Wiring of brake device** 327 327 328 -The brake input signal has no polarity. Userneed to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)308 +The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example) 329 329 330 330 331 331 (% style="text-align:center" %) 332 332 ((( 333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)313 +(% class="wikigeneratedid" style="display:inline-block" %) 334 334 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]] 335 335 ))) 336 336 337 - (% class="warning" %)|(((317 +|((( 338 338 (% style="text-align:center" %) 339 339 [[image:image-20220611151642-2.png]] 340 340 ))) ... ... @@ -352,12 +352,12 @@ 352 352 353 353 Related function code is as below. 354 354 355 -|=(% scope="row" %)**DO function code**|= (% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((335 +|=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=((( 356 356 **Effective time** 357 357 ))) 358 -|=144|( % style="width:241px" %)(((338 +|=144|((( 359 359 BRK-OFF Brake output 360 -)))| (% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again340 +)))|Output the signal indicates the servo motor brake release|Power-on again 361 361 362 362 Table 6-2 Relevant function codes for brake setting 363 363 ... ... @@ -399,8 +399,7 @@ 399 399 400 400 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__ 401 401 402 -(% class="warning" %)|((( 403 -(% style="text-align:center" %) 382 +|((( 404 404 [[image:image-20220611151705-3.png]] 405 405 ))) 406 406 |((( ... ... @@ -411,7 +411,7 @@ 411 411 412 412 (% style="text-align:center" %) 413 413 ((( 414 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)393 +(% class="wikigeneratedid" style="display:inline-block" %) 415 415 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]] 416 416 ))) 417 417 ... ... @@ -424,7 +424,7 @@ 424 424 425 425 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__. 426 426 427 - (% class="warning" %)|(((406 +|((( 428 428 (% style="text-align:center" %) 429 429 [[image:image-20220611151719-4.png]] 430 430 ))) ... ... @@ -442,7 +442,7 @@ 442 442 443 443 (% style="text-align:center" %) 444 444 ((( 445 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)424 +(% class="wikigeneratedid" style="display:inline-block" %) 446 446 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]] 447 447 ))) 448 448 ... ... @@ -452,7 +452,7 @@ 452 452 453 453 (% style="text-align:center" %) 454 454 ((( 455 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)434 +(% class="wikigeneratedid" style="display:inline-block" %) 456 456 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]] 457 457 ))) 458 458 ... ... @@ -462,18 +462,18 @@ 462 462 463 463 (% style="text-align:center" %) 464 464 ((( 465 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)444 +(% class="wikigeneratedid" style="display:inline-block" %) 466 466 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]] 467 467 ))) 468 468 469 469 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode. 470 470 471 -|=(% scope="row" style="width: 123px;"%)**Function code**|=(% style="width: 134px;" %)**Name**|=(((450 +|=(% scope="row" %)**Function code**|=**Name**|=((( 472 472 **Setting method** 473 473 )))|=((( 474 474 **Effective time** 475 475 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 476 -|= (% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((455 +|=P01-01|Control mode|((( 477 477 Operation setting 478 478 )))|((( 479 479 immediately Effective ... ... @@ -518,13 +518,8 @@ 518 518 519 519 Low-speed pulse instruction input 520 520 521 -|(% style="text-align:center" %)((( 522 -(% class="wikigeneratedid" style="display:inline-block" %) 523 -[[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]] 524 -)))|(% style="text-align:center" %)((( 525 -(% class="wikigeneratedid" style="display:inline-block" %) 526 -[[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]] 527 -))) 500 +|[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]] 501 +|VD2A and VD2B servo drives|VD2F servo drive 528 528 |(% colspan="2" %)Figure 6-7 Position instruction input setting 529 529 530 530 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__. ... ... @@ -531,9 +531,9 @@ 531 531 532 532 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below. 533 533 534 -|=(% scope="row" %)**Pulse method**|= (% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**535 -|=Open collector input| (% style="width:372px" %)200K|(% style="width:260px" %)24V536 -|=Differential input| (% style="width:372px" %)500K|(% style="width:260px" %)5V508 +|=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage** 509 +|=Open collector input|200K|24V 510 +|=Differential input|500K|5V 537 537 538 538 Table 6-12 Pulse input specifications 539 539 ... ... @@ -543,8 +543,8 @@ 543 543 544 544 (% style="text-align:center" %) 545 545 ((( 546 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)547 -[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg|| height="306" id="Iimage-20220707092615-5.jpeg"width="583"]]520 +(% class="wikigeneratedid" style="display:inline-block" %) 521 +[[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]] 548 548 ))) 549 549 550 550 (% class="box infomessage" %) ... ... @@ -558,8 +558,8 @@ 558 558 559 559 (% style="text-align:center" %) 560 560 ((( 561 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)562 -[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height=" 432" id="Iimage-20220707092401-3.jpeg" width="679"]]535 +(% class="wikigeneratedid" style="display:inline-block" %) 536 +[[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="530" id="Iimage-20220707092401-3.jpeg" width="834"]] 563 563 ))) 564 564 565 565 ... ... @@ -574,27 +574,27 @@ 574 574 575 575 (% style="text-align:center" %) 576 576 ((( 577 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)551 +(% class="wikigeneratedid" style="display:inline-block" %) 578 578 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]] 579 579 ))) 580 580 581 581 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below. 582 582 583 -|=**Function code**|= (% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((557 +|=**Function code**|=**Name**|=((( 584 584 **Setting method** 585 585 )))|=((( 586 586 **Effective time** 587 -)))|=**Default value**|= (% style="width: 87px;" %)**Range**|=(% colspan="2"style="width: 296px;"%)**Definition**|=**Unit**588 -|P00-13| (% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((561 +)))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit** 562 +|P00-13|Maximum position pulse frequency|((( 589 589 Shutdown setting 590 590 )))|((( 591 591 Effective immediately 592 -)))|300| (% style="width:87px" %)1 to 500|(% colspan="2"style="width:296px"%)Set the maximum frequency of external pulse instruction|KHz593 -|(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px"%)Position pulse anti-interference level|(% rowspan="3"style="width:146px"%)(((566 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz 567 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)((( 594 594 Operation setting 595 595 )))|(% rowspan="3" %)((( 596 596 Power-on again 597 -)))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px"%)0 to 9|(% colspan="2"style="width:296px"%)(((571 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)((( 598 598 Set the anti-interference level of external pulse instruction. 599 599 600 600 * 0: no filtering; ... ... @@ -617,16 +617,16 @@ 617 617 618 618 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below. 619 619 620 -|=(% scope="row" %)**Function code**|= (% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((594 +|=(% scope="row" %)**Function code**|=**Name**|=((( 621 621 **Setting method** 622 -)))|=( % style="width: 109px;" %)(((596 +)))|=((( 623 623 **Effective time** 624 -)))|= (% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**625 -|=P00-12| (% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((598 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 599 +|=P00-12|Position pulse type selection|((( 626 626 Operation setting 627 -)))|( % style="width:109px" %)(((601 +)))|((( 628 628 Power-on again 629 -)))| (% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((603 +)))|0|0 to 5|((( 630 630 * 0: direction + pulse (positive logic) 631 631 * 1: CW/CCW 632 632 * 2: A, B phase quadrature pulse (4 times frequency) ... ... @@ -637,26 +637,26 @@ 637 637 638 638 Table 6-14 Position pulse type selection parameter 639 639 640 -|=(% scope="row" %)**Pulse type selection**|= (% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**641 -|=0|( % style="width:200px" %)(((614 +|=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse** 615 +|=0|((( 642 642 Direction + pulse 643 643 644 644 (Positive logic) 645 -)))|( % style="width:161px" %)(((619 +)))|((( 646 646 PULSE 647 647 648 648 SIGN 649 649 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]] 650 -|=1| (% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((624 +|=1|CW/CCW|((( 651 651 PULSE (CW) 652 652 653 653 SIGN (CCW) 654 654 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]] 655 -|=2|( % style="width:200px" %)(((629 +|=2|((( 656 656 AB phase orthogonal 657 657 658 658 pulse (4 times frequency) 659 -)))|( % style="width:161px" %)(((633 +)))|((( 660 660 PULSE (Phase A) 661 661 662 662 SIGN (Phase B) ... ... @@ -673,29 +673,29 @@ 673 673 674 674 Phase B is 90° ahead of Phase A 675 675 ))) 676 -|=3|( % style="width:200px" %)(((650 +|=3|((( 677 677 Direction + pulse 678 678 679 679 (Negative logic) 680 -)))|( % style="width:161px" %)(((654 +)))|((( 681 681 PULSE 682 682 683 683 SIGN 684 684 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]] 685 -|=4|( % style="width:200px" %)(((659 +|=4|((( 686 686 CW/CCW 687 687 688 688 (Negative logic) 689 -)))|( % style="width:161px" %)(((663 +)))|((( 690 690 PULSE (CW) 691 691 692 692 SIGN (CCW) 693 693 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]] 694 -|=5|( % style="width:200px" %)(((668 +|=5|((( 695 695 AB phase orthogonal 696 696 697 697 pulse (4 times frequency negative logic) 698 -)))|( % style="width:161px" %)(((672 +)))|((( 699 699 PULSE (Phase A) 700 700 701 701 SIGN (Phase B) ... ... @@ -723,7 +723,7 @@ 723 723 724 724 (% style="text-align:center" %) 725 725 ((( 726 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)700 +(% class="wikigeneratedid" style="display:inline-block" %) 727 727 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]] 728 728 ))) 729 729 ... ... @@ -779,9 +779,10 @@ 779 779 780 780 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively 781 781 756 + 782 782 (% style="text-align:center" %) 783 783 ((( 784 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)759 +(% class="wikigeneratedid" style="display:inline-block" %) 785 785 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]] 786 786 ))) 787 787 ... ... @@ -791,11 +791,11 @@ 791 791 792 792 (% style="text-align:center" %) 793 793 ((( 794 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)769 +(% class="wikigeneratedid" style="display:inline-block" %) 795 795 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]] 796 796 ))) 797 797 798 - (% class="warning" %)|(((773 +|((( 799 799 (% style="text-align:center" %) 800 800 [[image:image-20220611151917-5.png]] 801 801 ))) ... ... @@ -829,7 +829,7 @@ 829 829 830 830 (% style="text-align:center" %) 831 831 ((( 832 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)807 +(% class="wikigeneratedid" style="display:inline-block" %) 833 833 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]] 834 834 ))) 835 835 ... ... @@ -841,29 +841,29 @@ 841 841 842 842 (% style="text-align:center" %) 843 843 ((( 844 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)819 +(% class="wikigeneratedid" style="display:inline-block" %) 845 845 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]] 846 846 ))) 847 847 848 848 (% style="text-align:center" %) 849 849 ((( 850 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)851 -[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png|| height="285" id="Iimage-20220608165032-14.png"width="734"]]825 +(% class="wikigeneratedid" style="display:inline-block" %) 826 +[[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]] 852 852 ))) 853 853 854 854 **Run again from the start segment** 855 855 856 -In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively. 831 +In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively. 857 857 858 858 (% style="text-align:center" %) 859 859 ((( 860 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)835 +(% class="wikigeneratedid" style="display:inline-block" %) 861 861 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]] 862 862 ))) 863 863 864 864 (% style="text-align:center" %) 865 865 ((( 866 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)841 +(% class="wikigeneratedid" style="display:inline-block" %) 867 867 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]] 868 868 ))) 869 869 ... ... @@ -876,13 +876,13 @@ 876 876 |((( 877 877 (% style="text-align:center" %) 878 878 ((( 879 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)854 +(% class="wikigeneratedid" style="display:inline-block" %) 880 880 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]] 881 881 ))) 882 882 )))|((( 883 883 (% style="text-align:center" %) 884 884 ((( 885 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)860 +(% class="wikigeneratedid" style="display:inline-block" %) 886 886 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]] 887 887 ))) 888 888 ))) ... ... @@ -894,13 +894,13 @@ 894 894 |((( 895 895 (% style="text-align:center" %) 896 896 ((( 897 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)872 +(% class="wikigeneratedid" style="display:inline-block" %) 898 898 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]] 899 899 ))) 900 900 )))|((( 901 901 (% style="text-align:center" %) 902 902 ((( 903 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)878 +(% class="wikigeneratedid" style="display:inline-block" %) 904 904 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]] 905 905 ))) 906 906 ))) ... ... @@ -945,7 +945,7 @@ 945 945 946 946 (% style="text-align:center" %) 947 947 ((( 948 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)923 +(% class="wikigeneratedid" style="display:inline-block" %) 949 949 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]] 950 950 ))) 951 951 ... ... @@ -962,7 +962,7 @@ 962 962 ))) 963 963 964 964 (% style="text-align:center" %) 965 -[[image:image-20220611152020-6.png ||class="img-thumbnail"]]940 +[[image:image-20220611152020-6.png]] 966 966 967 967 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive! 968 968 ... ... @@ -977,7 +977,7 @@ 977 977 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3) 978 978 979 979 (% style="text-align:center" %) 980 -[[image:image-20220707094901-16.png ||class="img-thumbnail"]]955 +[[image:image-20220707094901-16.png]] 981 981 982 982 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"! 983 983 ... ... @@ -985,8 +985,8 @@ 985 985 986 986 (% style="text-align:center" %) 987 987 ((( 988 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)989 -[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg|| height="458" id="Iimage-20220707100850-20.jpeg"width="1021"]]963 +(% class="wikigeneratedid" style="display:inline-block" %) 964 +[[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]] 990 990 ))) 991 991 992 992 **lectronic gear ratio switch setting** ... ... @@ -1083,8 +1083,8 @@ 1083 1083 1084 1084 (% style="text-align:center" %) 1085 1085 ((( 1086 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1087 -[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png|| height="230" id="Iimage-20220608170455-23.png"width="514"]]1061 +(% class="wikigeneratedid" style="display:inline-block" %) 1062 +[[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]] 1088 1088 ))) 1089 1089 1090 1090 |=(% scope="row" %)**Function code**|=**Name**|=((( ... ... @@ -1127,7 +1127,7 @@ 1127 1127 1128 1128 (% style="text-align:center" %) 1129 1129 ((( 1130 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1105 +(% class="wikigeneratedid" style="display:inline-block" %) 1131 1131 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]] 1132 1132 ))) 1133 1133 ... ... @@ -1137,8 +1137,8 @@ 1137 1137 1138 1138 (% style="text-align:center" %) 1139 1139 ((( 1140 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1141 -[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png|| height="331" id="Iimage-20220608170650-25.png"width="709"]]1115 +(% class="wikigeneratedid" style="display:inline-block" %) 1116 +[[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]] 1142 1142 ))) 1143 1143 1144 1144 |=(% scope="row" %)**Function code**|=**Name**|=((( ... ... @@ -1185,7 +1185,7 @@ 1185 1185 1186 1186 (% style="text-align:center" %) 1187 1187 ((( 1188 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1163 +(% class="wikigeneratedid" style="display:inline-block" %) 1189 1189 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]] 1190 1190 ))) 1191 1191 ... ... @@ -1193,12 +1193,12 @@ 1193 1193 1194 1194 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01. 1195 1195 1196 -|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 18 6px;" %)**Name**|=(% style="width: 128px;" %)(((1171 +|=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 189px;" %)**Name**|=(% style="width: 125px;" %)((( 1197 1197 **Setting method** 1198 1198 )))|=(% style="width: 125px;" %)((( 1199 1199 **Effective time** 1200 1200 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit** 1201 -|=(% style="width: 121px;" %)P01-01|(% style="width:18 6px" %)Speed instruction source|(% style="width:128px" %)(((1176 +|=(% style="width: 121px;" %)P01-01|(% style="width:189px" %)Speed instruction source|(% style="width:125px" %)((( 1202 1202 Shutdown setting 1203 1203 )))|(% style="width:125px" %)((( 1204 1204 Effective immediately ... ... @@ -1431,8 +1431,8 @@ 1431 1431 1432 1432 (% style="text-align:center" %) 1433 1433 ((( 1434 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1435 -[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png|| height="524" id="Iimage-20220608170845-26.png"width="814"]]1409 +(% class="wikigeneratedid" style="display:inline-block" %) 1410 +[[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]] 1436 1436 ))) 1437 1437 1438 1438 **Speed instruction source is internal speed instruction (P01-01=1)** ... ... @@ -1441,7 +1441,7 @@ 1441 1441 1442 1442 (% style="text-align:center" %) 1443 1443 ((( 1444 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1419 +(% class="wikigeneratedid" style="display:inline-block" %) 1445 1445 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]] 1446 1446 ))) 1447 1447 ... ... @@ -1449,7 +1449,7 @@ 1449 1449 1450 1450 (% style="text-align:center" %) 1451 1451 ((( 1452 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1427 +(% class="wikigeneratedid" style="display:inline-block" %) 1453 1453 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]] 1454 1454 ))) 1455 1455 ... ... @@ -1461,7 +1461,7 @@ 1461 1461 1462 1462 (% style="text-align:center" %) 1463 1463 ((( 1464 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1439 +(% class="wikigeneratedid" style="display:inline-block" %) 1465 1465 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]] 1466 1466 ))) 1467 1467 ... ... @@ -1486,12 +1486,12 @@ 1486 1486 1487 1487 (% style="text-align:center" %) 1488 1488 ((( 1489 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1464 +(% class="wikigeneratedid" style="display:inline-block" %) 1490 1490 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]] 1491 1491 ))) 1492 1492 1493 1493 (% style="text-align:center" %) 1494 -[[image:image-20220707103616-27.png ||class="img-thumbnail"]]1469 +[[image:image-20220707103616-27.png]] 1495 1495 1496 1496 |=(% scope="row" %)**Function code**|=**Name**|=((( 1497 1497 **Setting method** ... ... @@ -1586,7 +1586,7 @@ 1586 1586 1587 1587 (% style="text-align:center" %) 1588 1588 ((( 1589 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1564 +(% class="wikigeneratedid" style="display:inline-block" %) 1590 1590 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]] 1591 1591 ))) 1592 1592 ... ... @@ -1600,7 +1600,7 @@ 1600 1600 1601 1601 (% style="text-align:center" %) 1602 1602 ((( 1603 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1578 +(% class="wikigeneratedid" style="display:inline-block" %) 1604 1604 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]] 1605 1605 ))) 1606 1606 ... ... @@ -1640,7 +1640,7 @@ 1640 1640 1641 1641 (% style="text-align:center" %) 1642 1642 ((( 1643 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1618 +(% class="wikigeneratedid" style="display:inline-block" %) 1644 1644 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]] 1645 1645 ))) 1646 1646 ... ... @@ -1672,7 +1672,7 @@ 1672 1672 1673 1673 (% style="text-align:center" %) 1674 1674 ((( 1675 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1650 +(% class="wikigeneratedid" style="display:inline-block" %) 1676 1676 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]] 1677 1677 ))) 1678 1678 ... ... @@ -1704,18 +1704,18 @@ 1704 1704 1705 1705 (% style="text-align:center" %) 1706 1706 ((( 1707 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1682 +(% class="wikigeneratedid" style="display:inline-block" %) 1708 1708 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]] 1709 1709 ))) 1710 1710 1711 1711 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__. 1712 1712 1713 -|=(% scope="row" style="width: 147px;"%)**Function code**|=(% style="width: 184px;" %)**Name**|=(((1688 +|=(% scope="row" %)**Function code**|=**Name**|=((( 1714 1714 **Setting method** 1715 1715 )))|=((( 1716 1716 **Effective time** 1717 1717 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1718 -|= (% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((1693 +|=P05-18|Speed approach signal threshold|((( 1719 1719 Operation setting 1720 1720 )))|((( 1721 1721 Effective immediately ... ... @@ -1736,7 +1736,7 @@ 1736 1736 1737 1737 (% style="text-align:center" %) 1738 1738 ((( 1739 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1714 +(% class="wikigeneratedid" style="display:inline-block" %) 1740 1740 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]] 1741 1741 ))) 1742 1742 ... ... @@ -1749,7 +1749,7 @@ 1749 1749 )))|=((( 1750 1750 **Effective time** 1751 1751 )))|=**Default value**|=**Range**|=**Definition**|=**Unit** 1752 -|=P01-0 7|Torque instruction source|(((1727 +|=P01-08|Torque instruction source|((( 1753 1753 Shutdown setting 1754 1754 )))|((( 1755 1755 Effective immediately ... ... @@ -1784,7 +1784,7 @@ 1784 1784 1785 1785 (% style="text-align:center" %) 1786 1786 ((( 1787 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1762 +(% class="wikigeneratedid" style="display:inline-block" %) 1788 1788 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]] 1789 1789 ))) 1790 1790 ... ... @@ -1792,7 +1792,7 @@ 1792 1792 1793 1793 (% style="text-align:center" %) 1794 1794 ((( 1795 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1770 +(% class="wikigeneratedid" style="display:inline-block" %) 1796 1796 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]] 1797 1797 ))) 1798 1798 ... ... @@ -1804,7 +1804,7 @@ 1804 1804 1805 1805 (% style="text-align:center" %) 1806 1806 ((( 1807 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1782 +(% class="wikigeneratedid" style="display:inline-block" %) 1808 1808 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]] 1809 1809 ))) 1810 1810 ... ... @@ -1845,7 +1845,7 @@ 1845 1845 1846 1846 (% style="text-align:center" %) 1847 1847 ((( 1848 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1823 +(% class="wikigeneratedid" style="display:inline-block" %) 1849 1849 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]] 1850 1850 ))) 1851 1851 ... ... @@ -1857,7 +1857,7 @@ 1857 1857 1858 1858 (% style="text-align:center" %) 1859 1859 ((( 1860 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1835 +(% class="wikigeneratedid" style="display:inline-block" %) 1861 1861 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]] 1862 1862 ))) 1863 1863 ... ... @@ -1931,13 +1931,13 @@ 1931 1931 |((( 1932 1932 (% style="text-align:center" %) 1933 1933 ((( 1934 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1909 +(% class="wikigeneratedid" style="display:inline-block" %) 1935 1935 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]] 1936 1936 ))) 1937 1937 )))|((( 1938 1938 (% style="text-align:center" %) 1939 1939 ((( 1940 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)1915 +(% class="wikigeneratedid" style="display:inline-block" %) 1941 1941 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]] 1942 1942 ))) 1943 1943 ))) ... ... @@ -1978,7 +1978,7 @@ 1978 1978 1979 1979 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__. 1980 1980 1981 -== Torque-related DO output functions == 1956 +== **Torque-related DO output functions** == 1982 1982 1983 1983 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid. 1984 1984 ... ... @@ -1987,27 +1987,26 @@ 1987 1987 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use. 1988 1988 1989 1989 (% style="text-align:center" %) 1990 -((( 1991 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1992 -[[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]] 1993 -))) 1965 +[[image:image-20220608173541-42.png]] 1994 1994 1995 - To use the torque arrival function, a DO terminal of theservo drive should be assigned to function 138 (T-COIN,torque arrival).The function codeparameters and related DO functioncodesare shown in __Table 6-49__ and __Table 6-50__.1967 +Figure 6-47 Torque arrival output diagram 1996 1996 1997 -|=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)((( 1969 +To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HTorque-relatedDOoutputfunctions]]__. 1970 + 1971 +|**Function code**|**Name**|((( 1998 1998 **Setting method** 1999 -)))| =(% style="width: 124px;" %)(((1973 +)))|((( 2000 2000 **Effective time** 2001 -)))| =(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**2002 -| =P05-20|(% style="width:113px" %)(((1975 +)))|**Default value**|**Range**|**Definition**|**Unit** 1976 +|P05-20|((( 2003 2003 Torque arrival 2004 2004 2005 2005 threshold 2006 -)))|( % style="width:100px" %)(((1980 +)))|((( 2007 2007 Operation setting 2008 -)))|( % style="width:124px" %)(((1982 +)))|((( 2009 2009 Effective immediately 2010 -)))| (% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((1984 +)))|100|0 to 300|((( 2011 2011 The torque arrival threshold must be used with “Torque arrival hysteresis value”: 2012 2012 2013 2013 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid; ... ... @@ -2014,20 +2014,21 @@ 2014 2014 2015 2015 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid 2016 2016 )))|% 2017 -| =P05-21|(% style="width:113px" %)(((1991 +|P05-21|((( 2018 2018 Torque arrival 2019 2019 2020 2020 hysteresis 2021 -)))|( % style="width:100px" %)(((1995 +)))|((( 2022 2022 Operation setting 2023 -)))|( % style="width:124px" %)(((1997 +)))|((( 2024 2024 Effective immediately 2025 -)))| (% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%1999 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|% 2026 2026 2027 2027 Table 6-49 Torque arrival parameters 2028 2028 2029 -|=(% scope="row" %)**DO function code**|=**Function name**|=**Function** 2030 -|=138|((( 2003 + 2004 +|**DO function code**|**Function name**|**Function** 2005 +|138|((( 2031 2031 T-COIN torque arrival 2032 2032 )))|Used to determine whether the actual torque instruction has reached the set range 2033 2033 ... ... @@ -2037,28 +2037,35 @@ 2037 2037 2038 2038 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes: 2039 2039 2040 -* Position mode⇔ Speed mode 2041 -* Position mode ⇔Torque mode 2042 -* Speed mode ⇔Torque mode 2015 +Position mode⇔ Speed mode 2043 2043 2017 +Position mode ⇔Torque mode 2018 + 2019 +Speed mode ⇔Torque mode 2020 + 2044 2044 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode. 2045 2045 2046 -| =(% scope="row" %)**Function code**|=**Name**|=(((2023 +|**Function code**|**Name**|((( 2047 2047 **Setting method** 2048 -)))| =(((2025 +)))|((( 2049 2049 **Effective time** 2050 -)))| =**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**2051 -| =P00-01|Control mode|(((2027 +)))|**Default value**|**Range**|**Definition**|**Unit** 2028 +|P00-01|Control mode|((( 2052 2052 Shutdown setting 2053 2053 )))|((( 2054 2054 Shutdown setting 2055 -)))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)((( 2056 -* 1: Position control 2057 -* 2: Speed control 2058 -* 3: Torque control 2059 -* 4: Position/speed mixed control 2060 -* 5: Position/torque mixed control 2061 -* 6: Speed/torque mixed control 2032 +)))|1|1 to 6|((( 2033 +1: Position control 2034 + 2035 +2: Speed control 2036 + 2037 +3: Torque control 2038 + 2039 +4: Position/speed mixed control 2040 + 2041 +5: Position/torque mixed control 2042 + 2043 +6: Speed/torque mixed control 2062 2062 )))|- 2063 2063 2064 2064 Table 6-51 Mixed control mode parameters ... ... @@ -2065,38 +2065,35 @@ 2065 2065 2066 2066 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid. 2067 2067 2068 -|=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function** 2069 -|=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2070 -(% style="margin-left:auto; margin-right:auto; width:585px" %) 2071 -|=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode** 2072 -|(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode 2073 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2074 -|(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2075 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode 2076 -|(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode 2077 -|(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode 2050 +|**DI function code**|**Name**|**Function name**|**Function** 2051 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive((( 2052 +|**P00-01**|**MixModeSel terminal logic**|**Control mode** 2053 +|(% rowspan="2" %)4|Valid|Speed mode 2054 +|invalid|Position mode 2055 +|(% rowspan="2" %)5|Valid|Torque mode 2056 +|invalid|Position mode 2057 +|(% rowspan="2" %)6|Valid|Torque mode 2058 +|invalid|Speed mode 2078 2078 ))) 2079 2079 2080 2080 Table 6-52 Description of DI function codes in control mode 2081 2081 2082 -(% class="box infomessage" %) 2083 -((( 2084 2084 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother. 2085 -))) 2086 2086 2087 2087 = **Absolute system** = 2088 2088 2089 -== Overview == 2067 +== **Overview** == 2090 2090 2091 2091 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations. 2092 2092 2093 2093 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position. 2094 2094 2095 -== Single-turn absolute value system == 2073 +== **Single-turn absolute value system** == 2096 2096 2097 2097 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2098 2098 2099 -|=**Encoder type**|=**Encoder resolution (bits)**|=**Data range** 2077 + 2078 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2100 2100 |A1 (single-turn magnetic encoder)|17|0 to 131071 2101 2101 2102 2102 Table 6-53 Single-turn absolute encoder information ... ... @@ -2104,18 +2104,17 @@ 2104 2104 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example). 2105 2105 2106 2106 (% style="text-align:center" %) 2107 -((( 2108 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2109 -[[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]] 2110 -))) 2086 +[[image:image-20220608173618-43.png]] 2111 2111 2112 - == Multi-turnabsolutevaluesystem ==2088 +Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position 2113 2113 2090 +== **Multi-turn absolute value system** == 2091 + 2114 2114 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below. 2115 2115 2116 -| =(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**2117 -| =C1 (multi-turn magnetic encoder)|17|0 to 1310712118 -| =D2 (multi-turn Optical encoder)|23|0 to 83886072094 +|**Encoder type**|**Encoder resolution (bits)**|**Data range** 2095 +|C1 (multi-turn magnetic encoder)|17|0 to 131071 2096 +|D2 (multi-turn Optical encoder)|23|0 to 8388607 2119 2119 2120 2120 Table 6-54 Multi-turn absolute encoder information 2121 2121 ... ... @@ -2122,21 +2122,20 @@ 2122 2122 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example). 2123 2123 2124 2124 (% style="text-align:center" %) 2125 -((( 2126 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2127 -[[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]] 2128 -))) 2103 +[[image:image-20220608173701-44.png]] 2129 2129 2130 - ==Related functionsandparameters==2105 +Figure 6-49 The relationship between encoder feedback position and rotating load position 2131 2131 2107 +== **Related functions and parameters** == 2108 + 2132 2132 **Encoder feedback data** 2133 2133 2134 2134 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below. 2135 2135 2136 -| =(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**2137 -| =U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit2138 -| =U0-55|Universal|Rotations number of absolute encoder|circle|16-bit2139 -| =U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit2113 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type** 2114 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit 2115 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit 2116 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit 2140 2140 2141 2141 Table 6-55 Encoder feedback data 2142 2142 ... ... @@ -2144,28 +2144,26 @@ 2144 2144 2145 2145 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30. 2146 2146 2147 -| =(% scope="row" %)**Function code**|=**Name**|=(((2124 +|**Function code**|**Name**|((( 2148 2148 **Setting** 2149 2149 2150 2150 **method** 2151 -)))| =(((2128 +)))|((( 2152 2152 **Effective** 2153 2153 2154 2154 **time** 2155 -)))|=**Default value**|=**Range**|=**Definition**|=**Unit** 2156 -|=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2157 -* 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2158 -* 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2132 +)))|**Default value**|**Range**|**Definition**|**Unit** 2133 +|P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|((( 2134 +0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 2135 + 2136 +1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 2159 2159 )))|- 2160 2160 2161 2161 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur. 2162 2162 2163 -(% class="box infomessage" %) 2164 -((( 2165 2165 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death. 2166 -))) 2167 2167 2168 -== Absolute value system encoder battery box use precautions. == 2143 +== **Absolute value system encoder battery box use precautions**. == 2169 2169 2170 2170 **Cautions** 2171 2171 ... ... @@ -2172,11 +2172,10 @@ 2172 2172 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again. 2173 2173 2174 2174 (% style="text-align:center" %) 2175 -((( 2176 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2177 -[[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]] 2178 -))) 2150 +[[image:image-20220707111333-28.png]] 2179 2179 2152 +Figure 6-50 the encoder battery box 2153 + 2180 2180 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. 2181 2181 2182 2182 **Replace the battery** ... ... @@ -2192,19 +2192,20 @@ 2192 2192 2193 2193 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again. 2194 2194 2195 -| =(% scope="row" %)**Function code**|=**Name**|=(((2169 +|**Function code**|**Name**|((( 2196 2196 **Setting method** 2197 -)))| =(((2171 +)))|((( 2198 2198 **Effective time** 2199 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2200 -| =P10-06|Multi-turn absolute encoder reset|(((2173 +)))|**Default value**|**Range**|**Definition**|**Unit** 2174 +|P10-06|Multi-turn absolute encoder reset|((( 2201 2201 Shutdown setting 2202 2202 )))|((( 2203 2203 Effective immediately 2204 2204 )))|0|0 to 1|((( 2205 -* 0: No operation 2206 -* 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2179 +0: No operation 2207 2207 2181 +1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 2182 + 2208 2208 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required. 2209 2209 )))|- 2210 2210 ... ... @@ -2212,7 +2212,7 @@ 2212 2212 2213 2213 **Battery selection** 2214 2214 2215 -| =(% scope="row" style="width:;" %)**Battery selection specification**|=(% style="width:;" %)**Item**|=(% style="width:;" %)**Value**2190 +|(% style="width:361px" %)**Battery selection specification**|(% style="width:496px" %)**Item**|(% style="width:219px" %)**Value** 2216 2216 |(% rowspan="4" style="width:361px" %)((( 2217 2217 Nominal Voltage: 3.6V 2218 2218 ... ... @@ -2240,108 +2240,111 @@ 2240 2240 2241 2241 = **Other functions** = 2242 2242 2243 -== VDI == 2218 +== **VDI** == 2244 2244 2245 2245 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use. 2246 2246 2247 -(% class="box infomessage" %) 2248 -((( 2249 2249 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate). 2250 -))) 2251 2251 2252 2252 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below. 2253 2253 2226 + 2254 2254 (% style="text-align:center" %) 2255 -((( 2256 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2257 -[[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]] 2258 -))) 2228 +[[image:image-20220608173804-46.png]] 2259 2259 2260 -|=(% scope="row" %)**Function code**|=**Name**|=((( 2230 +Figure 6-51 VDI_1 setting steps 2231 + 2232 +|**Function code**|**Name**|((( 2261 2261 **Setting method** 2262 -)))| =(((2234 +)))|((( 2263 2263 **Effective time** 2264 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2265 -| =P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((2236 +)))|**Default value**|**Range**|**Definition**|**Unit** 2237 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|((( 2266 2266 When P06-04 is set to 1, DI_1 channel logic is control by this function code. 2267 2267 2268 2268 VDI_1 input level: 2269 2269 2270 -* 0: low level 2271 -* 1: high level 2242 +0: low level 2243 + 2244 +1: high level 2272 2272 )))|- 2273 -| =P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((2246 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|((( 2274 2274 When P06-07 is set to 1, DI_2 channel logic is control by this function code. 2275 2275 2276 2276 VDI_2 input level: 2277 2277 2278 -* 0: low level 2279 -* 1: high level 2251 +0: low level 2252 + 2253 +1: high level 2280 2280 )))|- 2281 -| =P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((2255 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|((( 2282 2282 When P06-10 is set to 1, DI_3 channel logic is control by this function code. 2283 2283 2284 2284 VDI_3 input level: 2285 2285 2286 -* 0: low level 2287 -* 1: high level 2260 +0: low level 2261 + 2262 +1: high level 2288 2288 )))|- 2289 -| =P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((2264 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|((( 2290 2290 When P06-13 is set to 1, DI_4 channel logic is control by this function code. 2291 2291 2292 2292 VDI_4 input level: 2293 2293 2294 -* 0: low level 2295 -* 1: high level 2269 +0: low level 2270 + 2271 +1: high level 2296 2296 )))|- 2297 -| =P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((2273 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|((( 2298 2298 When P06-16 is set to 1, DI_5 channel logic is control by this function code. 2299 2299 2300 2300 VDI_5 input level: 2301 2301 2302 -* 0: low level 2303 -* 1: high level 2278 +0: low level 2279 + 2280 +1: high level 2304 2304 )))|- 2305 -| =P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((2282 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|((( 2306 2306 When P06-19 is set to 1, DI_6 channel logic is control by this function code. 2307 2307 2308 2308 VDI_6 input level: 2309 2309 2310 -* 0: low level 2311 -* 1: high level 2287 +0: low level 2288 + 2289 +1: high level 2312 2312 )))|- 2313 -| =P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((2291 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|((( 2314 2314 When P06-22 is set to 1, DI_7 channel logic is control by this function code. 2315 2315 2316 2316 VDI_7 input level: 2317 2317 2318 -* 0: low level 2319 -* 1: high level 2296 +0: low level 2297 + 2298 +1: high level 2320 2320 )))|- 2321 -| =P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((2300 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|((( 2322 2322 When P06-25 is set to 1, DI_8 channel logic is control by this function code. 2323 2323 2324 2324 VDI_8 input level: 2325 2325 2326 -* 0: low level 2327 -* 1: high level 2305 +0: low level 2306 + 2307 +1: high level 2328 2328 )))|- 2329 2329 2330 2330 Table 6-57 Virtual VDI parameters 2331 2331 2332 -(% class="box infomessage" %) 2333 -((( 2334 2334 ✎**Note: **“☆” means VD2F servo drive does not support the function code . 2335 -))) 2336 2336 2337 -== Port filtering time == 2314 +== **Port filtering time** == 2338 2338 2339 2339 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals. 2340 2340 2341 -|=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration** 2342 -|=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2343 -|=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2344 2344 2319 +|(% style="width:204px" %)**Setting value**|(% style="width:235px" %)**DI channel logic selection**|(% style="width:637px" %)**Illustration** 2320 +|(% style="width:204px" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]] 2321 +|(% style="width:204px" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]] 2322 + 2345 2345 Table 6-58 DI terminal channel logic selection 2346 2346 2347 2347 == **VDO** == ... ... @@ -2351,49 +2351,51 @@ 2351 2351 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below. 2352 2352 2353 2353 (% style="text-align:center" %) 2354 -((( 2355 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 2356 -[[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]] 2357 -))) 2332 +[[image:image-20220608173957-48.png]] 2358 2358 2334 +Figure 6-52 VDO_2 setting steps 2359 2359 2360 -| =(% scope="row" %)**Function code**|=**Name**|=(((2336 +|**Function code**|**Name**|((( 2361 2361 **Setting method** 2362 -)))| =(((2338 +)))|((( 2363 2363 **Effective time** 2364 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2365 -| =P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((2340 +)))|**Default value**|**Range**|**Definition**|**Unit** 2341 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|((( 2366 2366 VDO_1 output level: 2367 2367 2368 -* 0: low level 2369 -* 1: high level 2344 +0: low level 2345 + 2346 +1: high level 2370 2370 )))|- 2371 -| =P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((2348 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|((( 2372 2372 VDO_2 output level: 2373 2373 2374 -* 0: low level 2375 -* 1: high level 2351 +0: low level 2352 + 2353 +1: high level 2376 2376 )))|- 2377 -| =P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((2355 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|((( 2378 2378 VDO_3 output level: 2379 2379 2380 -* 0: low level 2381 -* 1: high level 2358 +0: low level 2359 + 2360 +1: high level 2382 2382 )))|- 2383 -| =P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((2362 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|((( 2384 2384 VDO_4 output level: 2385 2385 2386 -* 0: low level 2387 -* 1: high level 2365 +0: low level 2366 + 2367 +1: high level 2388 2388 )))|- 2389 2389 2390 2390 Table 6-59 Communication control DO function parameters 2391 2391 2392 -| =(% scope="row" %)**DO function number**|=**Function name**|=**Function**2393 -| =145|COM_VDO1 communication VDO1 output|Use communication VDO2394 -| =146|COM_VDO1 communication VDO2 output|Use communication VDO2395 -| =147|COM_VDO1 communication VDO3 output|Use communication VDO2396 -| =148|COM_VDO1 communication VDO4output|Use communication VDO2372 +|**DO function number**|**Function name**|**Function** 2373 +|145|COM_VDO1 communication VDO1 output|Use communication VDO 2374 +|146|COM_VDO1 communication VDO2 output|Use communication VDO 2375 +|147|COM_VDO1 communication VDO3 output|Use communication VDO 2376 +|148|COM_VDO1 communication VDO4output|Use communication VDO 2397 2397 2398 2398 Table 6-60 VDO function number 2399 2399 ... ... @@ -2401,16 +2401,16 @@ 2401 2401 2402 2402 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate). 2403 2403 2404 -== Motor overload protection == 2384 +== **Motor overload protection** == 2405 2405 2406 2406 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%. 2407 2407 2408 -| =(% scope="row" %)**Function code**|=**Name**|=(((2388 +|**Function code**|**Name**|((( 2409 2409 **Setting method** 2410 -)))| =(((2390 +)))|((( 2411 2411 **Effective time** 2412 -)))| =**Default value**|=**Range**|=**Definition**|=**Unit**2413 -| =P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((2392 +)))|**Default value**|**Range**|**Definition**|**Unit** 2393 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|((( 2414 2414 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 2415 2415 2416 2416 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled