Wiki source code of 06 Operation

Last modified by Wecon on 2025/09/03 21:04

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After powering on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 (% class="table-bordered" style="margin-left:auto; margin-right:auto" %)
74 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
75 |=(((
76 P00-04
77 )))|(((
78 Rotation direction
79 )))|(((
80 Shutdown setting
81 )))|(((
82 Effective immediately
83 )))|(((
84 0
85 )))|(((
86 0 to 2
87 )))|(((
88 Forward rotation: Face the motor shaft to watch
89
90 0: standard setting (CW is forward rotation)
91
92 1: reverse mode (CCW is forward rotation)
93
94 2:reverse mode (CCW is forward rotation),set P1-12,P1-17 to limit the speed in CCW direction; set P1-13,P1-18 to limit the speed in CCW direction.
95
96 **✎Note: VD2L driver P0-04 setting range: 0~~1, P00-4=2 is not supported!**
97 )))|-
98
99 Table 6-3 Rotation direction parameters** **
100
101 == **Braking resistor** ==
102
103 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
104
105 The basis for judging whether the braking resistor is built-in or external.
106
107 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
108 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
109
110 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
111 **Setting method**
112 )))|=(% style="width: 126px;" %)(((
113 **Effective time**
114 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
115 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
116 Operation setting
117 )))|(% style="width:126px" %)(((
118 Effective immediately
119 )))|0|0 to 3|(((
120 0: use built-in braking resistor
121
122 1: use external braking resistor and natural cooling
123
124 2: use external braking resistor and forced air cooling; (cannot be set)
125
126 3: No braking resistor is used, it is all absorbed by capacitor.
127 )))|-
128 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G , VD2F-030SA1P-010SA1P and VD2L-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
129 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
130 Operation setting
131 )))|(% style="width:126px" %)(((
132 Effective immediately
133 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
134 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
135 Operation setting
136 )))|(% style="width:126px" %)(((
137 Effective immediately
138 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
139
140 Table 6-4 Braking resistor parameters
141
142 == **Servo operation** ==
143
144 **Set the servo enable (S-ON) to valid (ON)**
145
146 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
147
148 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
149
150 **Input the instruction and the motor rotates**
151
152 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
153
154 **Timing diagram of power on**
155
156 (% style="text-align:center" %)
157 (((
158 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
159 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
160 )))
161
162 == Servo shutdown ==
163
164 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
165
166 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
167 |=(% style="width: 150px;" %)Free stop|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
168 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
169
170 Table 6-5 Comparison of two shutdown modes
171
172 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
173 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
174
175 Table 6-6 Comparison of two shutdown status
176
177 **Servo enable (S-ON) OFF shutdown**
178
179 The related parameters of the servo OFF shutdown mode are shown in the table below.
180
181 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
182 **Setting method**
183 )))|=(% style="width: 134px;" %)(((
184 **Effective time**
185 )))|=(% style="width: 86px;" %)(((
186 **Default value**
187 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
188 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
189 Shutdown
190
191 setting
192 )))|(% style="width:134px" %)(((
193 Effective
194
195 immediately
196 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
197 0: Free stop, and the motor shaft remains free status.
198
199 1: Zero-speed stop, and the motor axis remains free status.
200 )))|-
201
202 Table 6-7 Servo OFF shutdown mode parameters details
203
204 **Emergency shutdown**
205
206 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
207
208 Estop mode 1 (deceleration stop):
209
210 ~1. Configurate DI function code: 8 [ESTOP]
211
212 2. Set P1-5 shutdown deceleration time.
213
214 3. Trigger DI emergency shutdown.
215
216 4. Servo emergency shutdown and deceleration to zero speed.
217
218 Estop mode 2:
219
220 ~1. Configurate DI function code: 1 [Servo enable SON]
221
222 2. Set P1-05 shutdown deceleration time.
223
224 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
225
226 4. Trigger DI to turn off servo enable SON.
227
228 5.Servo enable turns off and stops and decelerates to zero speed.
229
230 |Function code|Name|(((
231 Setting
232
233 method
234 )))|(((
235 Effective
236
237 time
238 )))|Default|Range|Definition|Unit
239 |P01-05|Shutdown deceleration time|(((
240 Shutdown
241
242 setting
243 )))|(((
244 immediately
245
246 Effective
247 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
248
249 Table 6-8 Downtime deceleration time parameter details
250
251 **Overtravel shutdown**
252
253 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
254
255 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
256
257 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
258
259 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
260 **Setting method**
261 )))|=(% style="width: 114px;" %)(((
262 **Effective time**
263 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
264 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
265 0: OFF (not used)
266
267 01: S-ON servo enable
268
269 02: A-CLR fault and Warning Clear
270
271 03: POT forward drive prohibition
272
273 04: NOT Reverse drive prohibition
274
275 05: ZCLAMP Zero speed
276
277 06: CL Clear deviation counter
278
279 07: C-SIGN Inverted instruction
280
281 08: E-STOP Emergency stop
282
283 09: GEAR-SEL Electronic Gear Switch 1
284
285 10: GAIN-SEL gain switch
286
287 11: INH Instruction pulse prohibited input
288
289 12: VSSEL Vibration control switch input
290
291 13: INSPD1 Internal speed instruction selection 1
292
293 14: INSPD2 Internal speed instruction selection 2
294
295 15: INSPD3 Internal speedinstruction selection 3
296
297 16: J-SEL inertia ratio switch (not implemented yet)
298
299 17: MixModesel mixed mode selection
300
301 20: Internal multi-segment position enable signal
302
303 21: Internal multi-segment position selection 1
304
305 22: Internal multi-segment position selection 2
306
307 23: Internal multi-segment position selection 3
308
309 24: Internal multi-segment position selection 4
310
311 Others: reserved
312 )))|-
313 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
314 Effective immediately
315 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
316 DI port input logic validity function selection.
317
318 0: Normally open input. Low level valid (switch on);
319
320 1: Normally closed input. High level valid (switch off);
321 )))|-
322 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
323 Effective immediately
324 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
325 Select the DI_3 port type to enable
326
327 0: Hardware DI_3 input terminal
328
329 1: Virtual VDI_3 input terminal
330 )))|-
331 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
332 Operation setting
333 )))|(% style="width:114px" %)(((
334 Power-on again
335 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
336 0: OFF (not used)
337
338 01: SON Servo enable
339
340 02: A-CLR Fault and Warning Clear
341
342 03: POT Forward drive prohibition
343
344 04: NOT Reverse drive prohibition
345
346 05: ZCLAMP Zero speed
347
348 06: CL Clear deviation counter
349
350 07: C-SIGN Inverted instruction
351
352 08: E-STOP Emergency shutdown
353
354 09: GEAR-SEL Electronic Gear Switch 1
355
356 10: GAIN-SEL gain switch
357
358 11: INH Instruction pulse prohibited input
359
360 12: VSSEL Vibration control switch input
361
362 13: INSPD1 Internal speed instruction selection 1
363
364 14: INSPD2 Internal speed instruction selection 2
365
366 15: INSPD3 Internal speed instruction selection 3
367
368 16: J-SEL inertia ratio switch (not implemented yet)
369
370 17: MixModesel mixed mode selection
371
372 20: Internal multi-segment position enable signal
373
374 21: Internal multi-segment position selection 1
375
376 22: Internal multi-segment position selection 2
377
378 23: Internal multi-segment position selection 3
379
380 24: Internal multi-segment position selection 4
381
382 Others: reserved
383 )))|-
384 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
385 Effective immediately
386 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
387 DI port input logic validity function selection.
388
389 0: Normally open input. Low level valid (switch on);
390
391 1: Normally closed input. High level valid (switch off);
392 )))|-
393 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
394 Effective immediately
395 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
396 Select the DI_4 port type to enable
397
398 0: Hardware DI_4 input terminal
399
400 1: Virtual VDI_4 input terminal
401 )))|-
402
403 Table 6-9 DI3 and DI4 channel parameters
404
405 **(4) Malfunction shutdown**
406
407 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
408
409 == Brake device ==
410
411 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
412
413 (% class="warning" %)|(((
414 (% style="text-align:center" %)
415 [[image:image-20220611151617-1.png]]
416 )))
417 |(((
418 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
419
420 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
421
422 ✎The brake coil has no polarity;
423
424 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
425
426 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
427 )))
428
429 **Wiring of brake device**
430
431 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
432
433
434 (% style="text-align:center" %)
435 (((
436 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
437 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
438 )))
439
440 (% class="warning" %)|(((
441 (% style="text-align:center" %)
442 [[image:image-20220611151642-2.png]]
443 )))
444 |(((
445 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
446
447 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
448
449 ✎It is recommended to use cables above 0.5 mm².
450 )))
451
452 **Brake software setting**
453
454 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
455
456 Related function code is as below.
457
458 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
459 **Effective time**
460 )))
461 |=141|(% style="width:241px" %)(((
462 BRK-OFF Brake output
463 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
464
465 |=(% scope="row" %)**Function code**|=**Name**|=(((
466 **Setting method**
467 )))|=(((
468 **Effective time**
469 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
470 |=P1-30|Delay from brake output to instruction reception|(((
471 Operation setting
472 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
473 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
474 Operation setting
475 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
476 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
477 Operation setting
478 )))|Effective immediately|30|0 to 3000|(((
479 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
480
481 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
482 )))|rpm
483 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
484 Operation setting
485 )))|Effective immediately|500|1 to 1000|(((
486 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
487
488 When brake output (BRK-OFF) is not allocated, this function code has no effect.
489 )))|ms
490
491 Table 6-10 Relevant function codes for brake setting
492
493 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
494
495 **Servo drive brake timing in normal state**
496
497 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
498
499 * Brake timing when servo motor is stationary
500
501 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
502
503 (% class="warning" %)|(((
504 (% style="text-align:center" %)
505 [[image:image-20220611151705-3.png]]
506 )))
507 |(((
508 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
509
510 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
511 )))
512
513 (% style="text-align:center" %)
514 (((
515 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
516 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
517 )))
518
519 (% class="box infomessage" %)
520 (((
521 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
522 )))
523
524 * The brake timing when servo motor rotates
525
526 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
527
528 (% class="warning" %)|(((
529 (% style="text-align:center" %)
530 [[image:image-20220611151719-4.png]]
531 )))
532 |(((
533 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
534
535 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
536
537 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
538
539 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
540
541 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
542 )))
543
544 (% style="text-align:center" %)
545 (((
546 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
547 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
548 )))
549
550 **Brake timing when the servo drive fails**
551
552 The brake timing (free shutdown) in the fault status is as follows.
553
554 (% style="text-align:center" %)
555 (((
556 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
557 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
558 )))
559
560 **✎Note**: The "delay arrival" of the brake signal is about 20ms, and the actual parameter is subject to the motor manufacturer
561
562 = **Position control mode** =
563
564 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
565
566 (% style="text-align:center" %)
567 (((
568 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
569 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
570 )))
571
572 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
573
574 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
575 **Setting method**
576 )))|=(((
577 **Effective time**
578 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
579 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
580 Operation setting
581 )))|(((
582 immediately Effective
583 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
584 1: position control
585
586 2: speed control
587
588 3: torque control
589
590 4: position/speed mix control
591
592 5: position/torque mix control
593
594 6: speed /torque mix control
595
596 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
597 )))|(% style="width:151px" %)-
598
599 Table 6-11 Control mode parameters
600
601 == Position instruction input setting ==
602
603 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
604
605 |=(% scope="row" %)**Function code**|=**Name**|=(((
606 **Setting method**
607 )))|=(((
608 **Effective time**
609 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
610 |=P01-06|Position instruction source|(((
611 Operation setting
612 )))|(((
613 immediately Effective
614 )))|0|0 to 1|(((
615 0: pulse instruction
616
617 1: internal position instruction
618 )))|-
619
620 Table 6-12 Position instruction source parameter
621
622 **The source of position instruction is pulse instruction (P01-06=0)**
623
624 Low-speed pulse instruction input
625
626 |(% style="text-align:center" %)(((
627 (% class="wikigeneratedid" %)
628 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
629 )))|(% style="text-align:center" %)(((
630 (% class="wikigeneratedid" %)
631 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
632 )))
633 |(% colspan="2" %)Figure 6-7 Position instruction input setting
634
635 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
636
637 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
638
639 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
640 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
641 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
642
643 Table 6-13 Pulse input specifications
644
645 * Differential input
646
647 Take VD2A , VD2B and VD2C  drive as examples, the connection of differential input is shown as below.
648
649 (% style="text-align:center" %)
650 (((
651 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
652 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
653 )))
654
655 (% class="box infomessage" %)
656 (((
657 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
658 )))
659
660 * Open collector input
661
662 Take VD2A, VD2B and VD2C drive as examples, the connection of differential input is shown as below.
663
664 (% style="text-align:center" %)
665 (((
666 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
667 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
668 )))
669
670
671 (% class="box infomessage" %)
672 (((
673 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
674 )))
675
676 * Position pulse frequency and anti-interference level
677
678 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
679
680 (% style="text-align:center" %)
681 (((
682 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
683 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
684 )))
685
686 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown in Table 6-14.
687
688 **✎Note:**The parameter of VD2L P00-14 is different from other models in the VD2 series.
689
690 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
691 **Setting method**
692 )))|=(((
693 **Effective time**
694 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
695 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
696 Operation setting
697 )))|(% rowspan="3" %)(((
698 Power-on again
699 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
700 Set the anti-interference level of external pulse instruction.
701
702 0: no filtering;
703
704 1: Filtering time 128ns
705
706 2: Filtering time 256ns
707
708 3: Filtering time 512ns
709
710 4: Filtering time 1.024us
711
712 5: Filtering time 2.048us
713
714 6: Filtering time 4.096us
715
716 7: Filtering time 8.192us
717
718 8: Filtering time 16.384us
719
720 9:
721
722 VD2: Filtering time 32.768us
723
724 VD2F: Filtering time 25.5us
725 )))|(% rowspan="3" %)-
726
727 Table 6-14 Position pulse frequency and anti-interference level parameters
728
729 |**Function code**|**Name**|(((
730 **Setting**
731
732 **method**
733 )))|(((
734 **Effective**
735
736 **time**
737 )))|**Default value**|**Range**|**Definition**|**Unit**
738 |P00-14|Position pulse anti-interference level|(((
739 Operation
740
741 setting
742 )))|(((
743 Power-on
744
745 again
746 )))|3|0 to 8|(((
747 VD2L drive set the anti-interference level of external pulse instruction.
748
749 0: no filtering;
750
751 1: Filtering time 111.1ns
752
753 2: Filtering time 222.2ns
754
755 3: Filtering time 444.4ns
756
757 4: Filtering time 888.8ns
758
759 5: Filtering time 1777.7ns
760
761 6: Filtering time 3555.5ns
762
763 7: Filtering time 7111.7ns
764
765 8: Filtering time 14222.2ns
766
767
768 )))|-
769
770 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
771
772
773 * Position pulse type selection
774
775 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
776
777 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
778 **Setting method**
779 )))|=(% style="width: 109px;" %)(((
780 **Effective time**
781 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
782 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
783 Operation setting
784 )))|(% style="width:109px" %)(((
785 Power-on again
786 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
787 0: direction + pulse (positive logic)
788
789 1: CW/CCW
790
791 2: A, B phase quadrature pulse (4 times frequency)
792
793 3: Direction + pulse (negative logic)
794
795 4: CW/CCW (negative logic)
796
797 5: A, B phase quadrature pulse (4 times frequency negative logic)
798
799 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
800 )))|-
801
802 Table 6-16 Position pulse type selection parameter
803
804 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
805 |=0|(% style="width:200px" %)(((
806 Direction + pulse
807
808 (Positive logic)
809 )))|(% style="width:161px" %)(((
810 PULSE
811
812 SIGN
813 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
814 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
815 PULSE (CW)
816
817 SIGN (CCW)
818 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
819 |=2|(% style="width:200px" %)(((
820 AB phase orthogonal
821
822 pulse (4 times frequency)
823 )))|(% style="width:161px" %)(((
824 PULSE (Phase A)
825
826 SIGN (Phase B)
827 )))|(((
828
829
830 [[image:image-20220707094358-9.jpeg]]
831
832 Phase A is 90° ahead of Phase B
833 )))|(((
834
835
836 [[image:image-20220707094407-10.jpeg]]
837
838 Phase B is 90° ahead of Phase A
839 )))
840 |=3|(% style="width:200px" %)(((
841 Direction + pulse
842
843 (Negative logic)
844 )))|(% style="width:161px" %)(((
845 PULSE
846
847 SIGN
848 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
849 |=4|(% style="width:200px" %)(((
850 CW/CCW
851
852 (Negative logic)
853 )))|(% style="width:161px" %)(((
854 PULSE (CW)
855
856 SIGN (CCW)
857 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
858 |=5|(% style="width:200px" %)(((
859 AB phase orthogonal
860
861 pulse (4 times frequency negative logic)
862 )))|(% style="width:161px" %)(((
863 PULSE (Phase A)
864
865 SIGN (Phase B)
866 )))|(((
867
868
869 [[image:image-20220707094429-14.jpeg]]
870
871 Phase B is ahead of A phase by 90°
872 )))|(((
873
874
875 [[image:image-20220707094437-15.jpeg]]
876
877 Phase A is ahead of B phase by 90°
878 )))
879
880 Table 6-17 Pulse description
881
882 **The source of position instruction is internal position instruction (P01-06=1)**
883
884 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
885
886 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
887
888 (% style="text-align:center" %)
889 (((
890 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
891 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
892 )))
893
894
895 * Set multi-segment position running mode
896
897 |=(% scope="row" %)**Function code**|=**Name**|=(((
898 **Setting method**
899 )))|=(((
900 **Effective time**
901 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
902 |=P07-01|Multi-segment position running mode|(((
903 Shutdown setting
904 )))|(((
905 Effective immediately
906 )))|0|0 to 2|(((
907 0: Single running
908
909 1: Cycle running
910
911 2: DI switching running
912 )))|-
913 |=P07-02|Start segment number|(((
914 Shutdown setting
915 )))|(((
916 Effective immediately
917 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
918 |=P07-03|End segment number|(((
919 Shutdown setting
920 )))|(((
921 Effective immediately
922 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
923 |=P07-04|Margin processing method|(((
924 Shutdown setting
925 )))|(((
926 Effective immediately
927 )))|0|0 to 1|(((
928 0: Run the remaining segments
929
930 1: Run again from the start segment
931 )))|-
932 |=P07-05|Displacement instruction type|(((
933 Shutdown setting
934 )))|(((
935 Effective immediately
936 )))|0|0 to 1|(((
937 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
938
939 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
940 )))|-
941
942 Table 6-18 multi-segment position running mode parameters
943
944 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
945
946 1. Single running
947
948 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
949
950 (% style="text-align:center" %)
951 (((
952 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
953 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
954 )))
955
956 * 2. Cycle running
957
958 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
959
960 (% style="text-align:center" %)
961 (((
962 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
963 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
964 )))
965
966 (% class="warning" %)|(((
967 (% style="text-align:center" %)
968 [[image:image-20220611151917-5.png]]
969 )))
970 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
971
972 (% start="3" %)
973 1. DI switching running
974
975 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
976
977 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
978 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
979 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
980 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
981 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
982
983 Table 6-19 DI function code
984
985 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
986
987 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
988 |=0|0|0|0|1
989 |=0|0|0|1|2
990 |=0|0|1|0|3
991 |=0|0|1|1|4
992 |=0|1|0|0|5
993 |=0|1|0|1|6
994 |=0|1|1|0|7
995 |=0|1|1|1|8
996 |=1|0|0|0|9
997 |=1|0|0|1|10
998 |=1|0|1|0|11
999 |=1|0|1|1|12
1000 |=1|1|0|0|13
1001 |=1|1|0|1|14
1002 |=1|1|1|0|15
1003 |=1|1|1|1|16
1004
1005 Table 6-20 INPOS corresponds to running segment number
1006
1007 The operating curve in this running mode is shown in __Figure 6-14__.
1008
1009 (% style="text-align:center" %)
1010 (((
1011 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1012 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
1013 )))
1014
1015 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
1016
1017 **Run the remaining segments**
1018
1019 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
1020
1021 (% style="text-align:center" %)
1022 (((
1023 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1024 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
1025 )))
1026
1027 (% style="text-align:center" %)
1028 (((
1029 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
1030 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
1031 )))
1032
1033 **Run again from the start segment**
1034
1035 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
1036
1037 (% style="text-align:center" %)
1038 (((
1039 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1040 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
1041 )))
1042
1043 (% style="text-align:center" %)
1044 (((
1045 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1046 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
1047 )))
1048
1049 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
1050
1051 * Relative position instruction
1052
1053 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
1054
1055 |(((
1056 (% style="text-align:center" %)
1057 (((
1058 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1059 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
1060 )))
1061 )))|(((
1062 (% style="text-align:center" %)
1063 (((
1064 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1065 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
1066 )))
1067 )))
1068
1069 * Absolute position instruction
1070
1071 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
1072
1073 |(((
1074 (% style="text-align:center" %)
1075 (((
1076 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1077 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
1078 )))
1079 )))|(((
1080 (% style="text-align:center" %)
1081 (((
1082 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1083 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1084 )))
1085 )))
1086
1087 * Multi-segment position running curve setting
1088
1089 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]-21__ are the related function codes of the 1st segment running curve.
1090
1091 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1092 |=P07-09|(((
1093 1st segment
1094
1095 displacement
1096 )))|(((
1097 Operation setting
1098 )))|(((
1099 Effective immediately
1100 )))|10000|(((
1101 -2147483647 to
1102
1103 2147483646
1104 )))|Position instruction, positive and negative values could be set|-
1105 |=P07-10|Maximum speed of the 1st displacement|(((
1106 Operation setting
1107 )))|(((
1108 Effective immediately
1109 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1110 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1111 Operation setting
1112 )))|(((
1113 Effective immediately
1114 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1115 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1116 Operation setting
1117 )))|(((
1118 Effective immediately
1119 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1120
1121 Table 6-21 The 1st position operation curve parameters table
1122
1123 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1124
1125 (% style="text-align:center" %)
1126 (((
1127 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1128 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1129 )))
1130
1131
1132 * multi-segment position instruction enable
1133
1134 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1135
1136 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1137 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1138 DI port logic invalid: Does not affect the current operation of the servo motor.
1139
1140 DI port logic valid: Motor runs multi-segment position
1141 )))
1142
1143 (% style="text-align:center" %)
1144 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1145
1146 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1147
1148 == Electronic gear ratio ==
1149
1150 **Definition of electronic gear ratio**
1151
1152 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1153
1154 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1155
1156 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1157
1158 (% style="text-align:center" %)
1159 [[image:企业微信截图_17543857797694.png||alt="企业微信截图_17543857797694" class="img-thumbnail"]]
1160
1161 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1162
1163 **Setting steps of electronic gear ratio**
1164
1165 (% style="text-align:center" %)
1166 (((
1167 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1168 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1169 )))
1170
1171 **lectronic gear ratio switch setting**
1172
1173 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1174
1175 |=(% scope="row" %)**Function code**|=**Name**|=(((
1176 **Setting method**
1177 )))|=(((
1178 **Effective time**
1179 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1180 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1181 Shutdown setting
1182 )))|(((
1183 Effective immediately
1184 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1185 Instruction pulse
1186
1187 unit
1188 )))
1189 |=P00-17|(((
1190 Electronic gear 1
1191
1192 numerator
1193 )))|Operation setting|(((
1194 Effective immediately
1195 )))|1|1 to 4294967294|(((
1196 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1197
1198 **✎Note:**The setting range of VD2L is inconsistent with other models in the VD2 series.
1199 )))|-
1200 |=P00-18|(((
1201 Electronic gear 1
1202
1203 denominator
1204 )))|(((
1205 Operation setting
1206 )))|(((
1207 Effective immediately
1208 )))|1|1 to 4294967294|(((
1209 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1210
1211 **✎Note:**The setting range of VD2L is inconsistent with other models in the VD2 series.
1212 )))|-
1213 |=P00-19|(((
1214 Electronic gear 2
1215
1216 numerator
1217 )))|Operation setting|(((
1218 Effective immediately
1219 )))|1|1 to 4294967294|(((
1220 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1221
1222 **✎Note**:The setting range of VD2L is inconsistent with other models in the VD2 series.
1223
1224 For:1~~2147483647.
1225 )))|-
1226 |=P00-20|(((
1227 Electronic gear 2
1228
1229 denominator
1230 )))|Operation setting|(((
1231 Effective immediately
1232 )))|1|1 to 4294967294|(((
1233 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1234
1235 **✎Note:**The setting range of VD2L is inconsistent with other models in the VD2 series.
1236
1237 For:1~~2147483647.
1238 )))|-
1239
1240 Table 6-22 Electronic gear ratio function code
1241
1242 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1243
1244 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1245 |=09|GEAR-SEL electronic gear switch 1|(((
1246 DI port logic invalid: electronic gear ratio 1
1247
1248 DI port logic valid: electronic gear ratio 2
1249 )))
1250
1251 Table 6-23. Switching conditions of electronic gear ratio group
1252
1253 |=(% style="width: 123px;" %)**P00-16 value**|=(% style="width: 351px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1254 |(% rowspan="2" style="width:123px" %) 0|(% style="width:351px" %)DI port logic invalid|(% style="width:400px" %)(((
1255 (% style="text-align:center" %)
1256 [[image:image-20220707101328-21.png]]
1257 )))
1258 |(% style="width:351px" %)DI port logic valid|(% style="width:400px" %)(((
1259 (% style="text-align:center" %)
1260 [[image:image-20220707101336-22.png]]
1261 )))
1262 |(% style="width:123px" %)1 to 131072|(% style="width:351px" %)~-~-|(% style="width:400px" %)(((
1263 (% style="text-align:center" %)
1264 [[image:image-20220707101341-23.png]]
1265 )))
1266
1267 Table 6-24 Application of electronic gear ratio
1268
1269 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1270
1271 == Position instruction filtering ==
1272
1273 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1274
1275 In the following situations, position instruction filtering should be added.
1276
1277 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1278 1. The pulse instruction frequency is low;
1279 1. When the electronic gear ratio is 10 times or more.
1280
1281 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1282
1283 (% style="text-align:center" %)
1284 (((
1285 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1286 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1287 )))
1288
1289 |=(% scope="row" %)**Function code**|=**Name**|=(((
1290 **Setting method**
1291 )))|=(((
1292 **Effective time**
1293 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1294 |=P04-01|Pulse instruction filtering method|(((
1295 Shutdown setting
1296 )))|(((
1297 Effective immediately
1298 )))|0|0 to 1|(((
1299 0: 1st-order low-pass filtering
1300
1301 1: average filtering
1302 )))|-
1303 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1304 Effective immediately
1305 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1306 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1307 Effective immediately
1308 )))|0|0 to 128|Position instruction average filtering time constant|ms
1309
1310 Table 6-25 Position instruction filter function code
1311
1312 == Clearance of position deviation ==
1313
1314 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1315
1316 Position deviation = (position instruction-position feedback) (encoder unit)
1317
1318 == Position-related DO output function ==
1319
1320 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1321
1322 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1323 **Positioning completion/positioning approach output**
1324
1325 (% class="wikigeneratedid" %)
1326 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1327
1328 (% style="text-align:center" %)
1329 (((
1330 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1331 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1332 )))
1333
1334 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1335
1336 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as Table 6-26.
1337
1338 (% style="text-align:center" %)
1339 (((
1340 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1341 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1342 )))
1343
1344 |=(% scope="row" %)**Function code**|=**Name**|=(((
1345 **Setting method**
1346 )))|=(% style="width: 129px;" %)(((
1347 **Effective time**
1348 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1349 |=P05-12|Positioning completion threshold|(((
1350 Operation setting
1351 )))|(% style="width:129px" %)(((
1352 Effective immediately
1353 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1354 |=P05-13|Positioning approach threshold|(((
1355 Operation setting
1356 )))|(% style="width:129px" %)(((
1357 Effective immediately
1358 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1359 |=P05-14|Position detection window time|(((
1360 Operation setting
1361 )))|(% style="width:129px" %)(((
1362 Effective immediately
1363 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1364 |=P05-15|Positioning signal hold time|(((
1365 Operation setting
1366 )))|(% style="width:129px" %)(((
1367 Effective immediately
1368 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1369
1370 Table 6-26 Function code parameters of positioning completion
1371
1372 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1373 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1374 |=135|(((
1375 P-NEAR positioning close
1376 )))|(((
1377 Output this signal indicates that the servo drive position is close.
1378 )))
1379
1380 Table 6-27 Description of DO rotation detection function code
1381
1382 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1383
1384 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1385
1386 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1387
1388 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1389
1390 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1391
1392 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1393
1394 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1395
1396 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1397
1398
1399 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1400 |DO_2 channel function selection|Operation setting|Effective immediately|130|128-149|DI/DO|-
1401 |(% colspan="8" %)(((
1402 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1403
1404 |Setting value|DO channel function| |Setting value|DO channel function
1405 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1406 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1407 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1408 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1409 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1410 |133|ZSP (zero speed signal)| |144|N/A
1411 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1412 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1413 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1414 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1415 |138|T-COIN (torque arrival)| |149|(((
1416 HOME_ATTAIN(original arrival)
1417 )))
1418
1419 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1420
1421 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1422
1423 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1424
1425 Note 2:
1426
1427 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1428
1429 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1430
1431 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1432
1433 ④ VD2L does not support 149 function code at this time.
1434 )))
1435
1436 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1437 |DO_3 channel function selection|Operation setting|Effective immediately|129|128-149|DI/DO|-
1438 |(% colspan="8" %)(((
1439 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1440
1441 |Setting value|DO channel function| |Setting value|DO channel function
1442 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1443 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1444 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1445 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1446 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1447 |133|ZSP (zero speed signal)| |144|None
1448 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1449 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1450 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1451 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1452 |138|T-COIN (torque arrival)| |149|(((
1453 HOME_ATTAIN (original arrival)
1454 )))
1455
1456 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1457
1458 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1459
1460 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1461
1462 **Note 2:**
1463
1464 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1465
1466 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1467
1468 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1469
1470 ④ VD2L does not support 149 function code at this time.
1471 )))
1472
1473 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1474 |DO_4 channel function selection|Operation setting|Effective immediately|134|128-149|DI/DO|-
1475 |(% colspan="8" %)(((
1476 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1477
1478 |Setting value|DO channel function| |Setting value|DO channel function
1479 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1480 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1481 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1482 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1483 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1484 |133|ZSP (zero speed signal)| |144|None
1485 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1486 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1487 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1488 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1489 |138|T-COIN (torque arrival)| |149|(((
1490 HOME_ATTAIN (original arrival)
1491 )))
1492
1493 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1494
1495 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1496
1497 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1498
1499 **Note 2:**
1500
1501 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1502
1503 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1504
1505 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1506
1507 ④ VD2L does not support 149 function code at this time.
1508 )))
1509
1510 = **Speed control mode** =
1511
1512 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1513
1514 (% style="text-align:center" %)
1515 (((
1516 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1517 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1518 )))
1519
1520 == Speed instruction input setting ==
1521
1522 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1523
1524 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1525 **Setting method**
1526 )))|=(% style="width: 125px;" %)(((
1527 **Effective time**
1528 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1529 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1530 Shutdown setting
1531 )))|(% style="width:125px" %)(((
1532 Effective immediately
1533 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1534 0: internal speed instruction
1535
1536 1: AI_1 analog input (not supported by **VD2F and VD2L**)
1537 )))|-
1538
1539 Table 6-28 Speed instruction source parameter
1540
1541 **Speed instruction source is internal speed instruction (P01-01=0)**
1542
1543 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1544
1545 (% style="width:1141px" %)
1546 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1547 **Setting**
1548
1549 **method**
1550 )))|=(% colspan="2" %)(((
1551 **Effective**
1552
1553 **time**
1554 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1555 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1556 Internal speed
1557
1558 Instruction 0
1559 )))|(% colspan="2" %)(((
1560 Operation
1561
1562 setting
1563 )))|(% colspan="2" %)(((
1564 Effective
1565
1566 immediately
1567 )))|(% colspan="2" %)0|(% colspan="2" %)(((
1568 -6000 to 6000
1569 )))|(% colspan="2" %)(((
1570 Internal speed instruction 0
1571
1572 When DI input port:
1573
1574 15-INSPD3: 0
1575
1576 14-INSPD2: 0
1577
1578 13-INSPD1: 0,
1579
1580 select this speed instruction to be effective.
1581 )))|(% colspan="2" %)rpm
1582 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1583 Internal speed
1584
1585 Instruction 1
1586 )))|(% colspan="2" %)(((
1587 Operation
1588
1589 setting
1590 )))|(% colspan="2" %)(((
1591 Effective
1592
1593 immediately
1594 )))|(% colspan="2" %)0|(% colspan="2" %)(((
1595 ~-~-6000 to 6000
1596 )))|(% colspan="2" %)(((
1597 Internal speed instruction 1
1598
1599 When DI input port:
1600
1601 15-INSPD3: 0
1602
1603 14-INSPD2: 0
1604
1605 13-INSPD1: 1,
1606
1607 Select this speed instruction to be effective.
1608 )))|(% colspan="2" %)rpm
1609 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1610 Internal speed
1611
1612 Instruction 2
1613 )))|(% colspan="2" %)(((
1614 Operation
1615
1616 setting
1617 )))|(% colspan="2" %)(((
1618 Effective
1619
1620 immediately
1621 )))|(% colspan="2" %)0|(% colspan="2" %)(((
1622 -6000 to 6000
1623 )))|(% colspan="2" %)(((
1624 Internal speed instruction 2
1625
1626 When DI input port:
1627
1628 15-INSPD3: 0
1629
1630 14-INSPD2: 1
1631
1632 13-INSPD1: 0,
1633
1634 Select this speed instruction to be effective.
1635 )))|(% colspan="2" %)rpm
1636 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1637 Internal speed
1638
1639 Instruction 3
1640 )))|(% colspan="2" %)(((
1641 Operation
1642
1643 setting
1644 )))|(% colspan="2" %)(((
1645 Effective
1646
1647 immediately
1648 )))|(% colspan="2" %)0|(% colspan="2" %)(((
1649 -6000 to 6000
1650 )))|(% colspan="2" %)(((
1651 Internal speed instruction 3
1652
1653 When DI input port:
1654
1655 15-INSPD3: 0
1656
1657 14-INSPD2: 1
1658
1659 13-INSPD1: 1,
1660
1661 Select this speed instruction to be effective.
1662 )))|(% colspan="2" %)rpm
1663 |=P01-26|(% colspan="2" %)(((
1664 Internal speed
1665
1666 Instruction 4
1667 )))|(% colspan="2" %)(((
1668 Operation
1669
1670 setting
1671 )))|(% colspan="2" %)(((
1672 Effective
1673
1674 immediately
1675 )))|(% colspan="2" %)0|(% colspan="2" %)(((
1676 -6000 to 6000
1677 )))|(% colspan="2" %)(((
1678 Internal speed instruction 4
1679
1680 When DI input port:
1681
1682 15-INSPD3: 1
1683
1684 14-INSPD2: 0
1685
1686 13-INSPD1: 0,
1687
1688 Select this speed instruction to be effective.
1689 )))|(% colspan="1" %)rpm
1690 |=P01-27|(% colspan="2" %)(((
1691 Internal speed
1692
1693 Instruction 5
1694 )))|(% colspan="2" %)(((
1695 Operation
1696
1697 setting
1698 )))|(% colspan="2" %)(((
1699 Effective
1700
1701 immediately
1702 )))|(% colspan="2" %)0|(% colspan="2" %)(((
1703 -6000 to 6000
1704 )))|(% colspan="2" %)(((
1705 Internal speed instruction 5
1706
1707 When DI input port:
1708
1709 15-INSPD3: 1
1710
1711 14-INSPD2: 0
1712
1713 13-INSPD1: 1,
1714
1715 Select this speed instruction to be effective.
1716 )))|(% colspan="1" %)rpm
1717 |=P01-28|(% colspan="2" %)(((
1718 Internal speed
1719
1720 Instruction 6
1721 )))|(% colspan="2" %)(((
1722 Operation
1723
1724 setting
1725 )))|(% colspan="2" %)(((
1726 Effective
1727
1728 immediately
1729 )))|(% colspan="2" %)0|(% colspan="2" %)(((
1730 -6000 to 6000
1731 )))|(% colspan="2" %)(((
1732 Internal speed instruction 6
1733
1734 When DI input port:
1735
1736 15-INSPD3: 1
1737
1738 14-INSPD2: 1
1739
1740 13-INSPD1: 0,
1741
1742 Select this speed instruction to be effective.
1743 )))|(% colspan="1" %)rpm
1744 |=P01-29|(% colspan="2" %)(((
1745 Internal speed
1746
1747 Instruction 7
1748 )))|(% colspan="2" %)(((
1749 Operation
1750
1751 setting
1752 )))|(% colspan="2" %)(((
1753 Effective
1754
1755 immediately
1756 )))|(% colspan="2" %)0|(% colspan="2" %)(((
1757 -6000 to 6000
1758 )))|(% colspan="2" %)(((
1759 Internal speed instruction 7
1760
1761 When DI input port:
1762
1763 15-INSPD3: 1
1764
1765 14-INSPD2: 1
1766
1767 13-INSPD1: 1,
1768
1769 Select this speed instruction to be effective.
1770 )))|(% colspan="1" %)rpm
1771
1772 Table 6-29 Internal speed instruction parameters
1773
1774 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1775 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1776 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1777 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1778
1779 Table 6-30 DI multi-speed function code description
1780
1781 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1782
1783
1784 (% style="margin-left:auto; margin-right:auto" %)
1785 |=(% style="text-align: center; vertical-align: middle;" %)**INSPD3**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD2**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD1**|=(% style="text-align: center; vertical-align: middle;" %)**Running segment number**|=(% style="text-align: center; vertical-align: middle;" %)**Internal speed instruction number**
1786 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1787 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1788 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1789 |(% colspan="5" style="text-align:center; vertical-align:middle" %)......
1790 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1791
1792 Table 6-31 Correspondence between INSPD bits and segment numbers
1793
1794 (% style="text-align:center" %)
1795 (((
1796 (% style="display:inline-block" %)
1797 [[Figure 6-29 Multi-segment speed running curve>>image:企业微信截图_17544722176825.png]]
1798 )))
1799
1800 **Speed instruction source is internal speed instruction (P01-01=1)**
1801
1802 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1803
1804 (% style="text-align:center" %)
1805 (((
1806 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1807 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1808 )))
1809
1810 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1811
1812 (% style="text-align:center" %)
1813 (((
1814 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1815 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1816 )))
1817
1818 Explanation of related terms:
1819
1820 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1821 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1822 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1823
1824 (% style="text-align:center" %)
1825 (((
1826 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1827 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1828 )))
1829
1830 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1831 |=P05-01(((
1832
1833 )))|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1834 |=P05-02(((
1835
1836 )))|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1837 |=P05-03(((
1838
1839 )))|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1840 |=P05-04(((
1841
1842 )))|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1843
1844 Table 6-32 AI_1 parameter
1845
1846 (% class="box infomessage" %)
1847 (((
1848 ✎**Note: **
1849
1850 ☆: Indicates that the VD2F servo drive does not support this function code
1851
1852 〇: Indicates that the VD2F servo drive does not support this function code
1853
1854 ★: Indicates that VD2F and VD2L servo drives do not support this function code
1855
1856
1857 )))
1858
1859 == Acceleration and deceleration time setting ==
1860
1861 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1862
1863 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1864
1865 (% style="text-align:center" %)
1866 (((
1867 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1868 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1869 )))
1870
1871 (% style="text-align:center" %)
1872 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1873
1874 |=(% scope="row" %)**Function code**|=**Name**|=(((
1875 **Setting method**
1876 )))|=(((
1877 **Effective time**
1878 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1879 |=P01-03|Acceleration time|(((
1880 Operation setting
1881 )))|(((
1882 Effective immediately
1883 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1884 |=P01-04|Deceleration time|(((
1885 Operation setting
1886 )))|(((
1887 Effective immediately
1888 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1889
1890 Table 6-33 Acceleration and deceleration time parameters
1891
1892 == Speed instruction limit ==
1893
1894 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1895
1896 1. P01-10: Set the maximum speed limit value
1897 1. P01-12: Set forward speed limit value
1898 1. P01-13: Set reverse speed limit value
1899 1. The maximum speed of the motor: determined by motor model
1900
1901 The actual motor speed limit interval satisfies the following relationship:
1902
1903 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1904
1905 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1906
1907 |=(% scope="row" %)**Function code**|=**Name**|=(((
1908 **Setting method**
1909 )))|=(((
1910 **Effective time**
1911 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1912 |=P01-10|Maximum speed threshold|(((
1913 Operation setting
1914 )))|(((
1915 Effective immediately
1916 )))|3600|0 to 8000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1917 |=P01-12|Forward speed threshold|(((
1918 Operation setting
1919 )))|(((
1920 Effective immediately
1921 )))|3000|0 to 6000|Set forward speed limit value|rpm
1922 |=P01-13|Reverse speed threshold|(((
1923 Operation setting
1924 )))|(((
1925 Effective immediately
1926 )))|3000|0 to 6000|Set reverse speed limit value|rpm
1927
1928 Table 6-34 Rotation speed related function codes
1929
1930 == Zero-speed clamp function ==
1931
1932 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1933
1934 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1935
1936 |=(% scope="row" %)**Function code**|=**Name**|=(((
1937 **Setting method**
1938 )))|=(((
1939 **Effective time**
1940 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1941 |=P01-21|(((
1942 Zero-speed clamp function selection
1943 )))|(((
1944 Operation setting
1945 )))|(((
1946 Effective immediately
1947 )))|0|0 to 3|(((
1948 Set the zero-speed clamp function. In speed mode:
1949
1950 0: Force the speed to 0;
1951
1952 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1953
1954 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1955
1956 3: Invalid, ignore zero-speed clamp input
1957 )))|-
1958 |=P01-22|(((
1959 Zero-speed clamp speed threshold
1960 )))|(((
1961 Operation setting
1962 )))|(((
1963 Effective immediately
1964 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1965
1966 Table 6-35 Zero-speed clamp related parameters
1967
1968 (% style="text-align:center" %)
1969 (((
1970 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1971 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1972 )))
1973
1974 == Speed-related DO output function ==
1975
1976 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1977
1978 **Rotation detection signal**
1979
1980 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1981
1982 (% style="text-align:center" %)
1983 (((
1984 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1985 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1986 )))
1987
1988 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-36__and __Table 6-37__.
1989
1990 |=(% scope="row" %)**Function code**|=**Name**|=(((
1991 **Setting method**
1992 )))|=(((
1993 **Effective time**
1994 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1995 |=P05-16|(((
1996 Rotation detection
1997
1998 speed threshold
1999 )))|(((
2000 Operation setting
2001 )))|(((
2002 Effective immediately
2003 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
2004
2005 Table 6-36 Rotation detection speed threshold parameters
2006
2007 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
2008 |=132|(% style="width:247px" %)(((
2009 T-GON rotation detection
2010 )))|(% style="width:695px" %)(((
2011 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
2012
2013 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
2014 )))
2015
2016 Table 6-37 DO rotation detection function code
2017
2018 **Zero-speed signal**
2019
2020 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
2021
2022 (% style="text-align:center" %)
2023 (((
2024 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2025 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
2026 )))
2027
2028 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
2029
2030 |=(% scope="row" %)**Function code**|=**Name**|=(((
2031 **Setting method**
2032 )))|=(((
2033 **Effective time**
2034 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2035 |=P05-19|Zero speed output signal threshold|(((
2036 Operation setting
2037 )))|(((
2038 Effective immediately
2039 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
2040
2041 Table 6-38 Zero-speed output signal threshold parameter
2042
2043 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2044 |=133|(((
2045 ZSP zero speed signal
2046 )))|Output this signal indicates that the servo motor is stopping rotation
2047
2048 Table 6-39 DO zero-speed signal function code
2049
2050 **Speed consistent signal**
2051
2052 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
2053
2054 (% style="text-align:center" %)
2055 (((
2056 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2057 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
2058 )))
2059
2060 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-40__and __Table 6-41__.
2061
2062 |=(% scope="row" %)**Function code**|=**Name**|=(((
2063 **Setting method**
2064 )))|=(((
2065 **Effective time**
2066 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2067 |=P05-17|Speed consistent signal threshold|(((
2068 Operation setting
2069 )))|(((
2070 Effective immediately
2071 )))|10|0 to 100|Set speed consistent signal threshold|rpm
2072
2073 Table 6-40 Speed consistent signal threshold parameters
2074
2075 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
2076 |=136|(% style="width:262px" %)(((
2077 V-COIN consistent speed
2078 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
2079
2080 Table 6-41 DO speed consistent function code
2081
2082 **Speed approach signal**
2083
2084 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
2085
2086 (% style="text-align:center" %)
2087 (((
2088 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2089 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
2090 )))
2091
2092 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-42__ and __Table 6-43__
2093
2094 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
2095 **Setting method**
2096 )))|=(((
2097 **Effective time**
2098 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2099 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
2100 Operation setting
2101 )))|(((
2102 Effective immediately
2103 )))|100|10 to 6000|Set speed approach signal threshold|rpm
2104
2105 Table 6-42 Speed approaching signal threshold parameters
2106
2107 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2108 |=137|(((
2109 V-NEAR speed approach
2110 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
2111
2112 Table 6-43 DO speed approach function code
2113
2114 = **Torque control mode** =
2115
2116 The current of the servo motor has a cablear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
2117
2118 (% style="text-align:center" %)
2119 (((
2120 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2121 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
2122 )))
2123
2124 == **Torque instruction input setting** ==
2125
2126 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F and VD2L  drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
2127
2128 |=(% scope="row" %)**Function code**|=**Name**|=(((
2129 **Setting method**
2130 )))|=(((
2131 **Effective time**
2132 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2133 |=P01-07|Torque instruction source|(((
2134 Shutdown setting
2135 )))|(((
2136 Effective immediately
2137 )))|0|0 to 1|(((
2138 0: internal torque instruction
2139
2140 1: AI_1 analog input(not supported by VD2F and VD2L)
2141 )))|-
2142
2143 Table 6-44 Torque instruction source parameter
2144
2145 **Torque instruction source is internal torque instruction (P01-07=0)**
2146
2147 Torque instruction source is from inside, the value is set by function code P01-08.
2148
2149 |=(% scope="row" %)**Function code**|=**Name**|=(((
2150 **Setting method**
2151 )))|=(((
2152 **Effective time**
2153 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2154 |=P01-08|Torque instruction keyboard set value|(((
2155 Operation setting
2156 )))|(((
2157 Effective immediately
2158 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2159
2160 Table 6-45 Torque instruction keyboard set value
2161
2162 **Torque instruction source is AI_1 analog input (P01-07=1)**
2163
2164 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2165
2166 (% style="text-align:center" %)
2167 (((
2168 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2169 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2170 )))
2171
2172 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2173
2174 (% style="text-align:center" %)
2175 (((
2176 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2177 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2178 )))
2179
2180 Explanation of related terms:
2181
2182 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2183 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2184 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2185
2186 (% style="text-align:center" %)
2187 (((
2188 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2189 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2190 )))
2191
2192 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2193 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2194 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2195 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2196 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2197
2198 Table 6-46 AI_1 parameters
2199
2200 (% class="box infomessage" %)
2201 (((
2202 ✎**Note: **
2203
2204
2205 ☆: Indicates that the VD2F servo drive does not support this function code
2206
2207 〇: Indicates that the VD2F servo drive does not support this function code
2208
2209 ★: Indicates that VD2F and VD2L servo drives do not support this function code
2210 )))
2211
2212 == Torque instruction filtering ==
2213
2214 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2215
2216 |=(% scope="row" %)**Function code**|=**Name**|=(((
2217 **Setting method**
2218 )))|=(((
2219 **Effective time**
2220 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2221 |=P04-04|Torque filtering time constant|(((
2222 Operation setting
2223 )))|(((
2224 Effective immediately
2225 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2226
2227 Table 6-47 Torque filtering time constant parameter details
2228
2229 (% class="box infomessage" %)
2230 (((
2231 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2232 )))
2233
2234 (% style="text-align:center" %)
2235 (((
2236 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2237 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2238 )))
2239
2240 == Torque instruction limit ==
2241
2242 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2243
2244 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2245
2246 (% style="text-align:center" %)
2247 (((
2248 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2249 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2250 )))
2251
2252 **Set torque limit source**
2253
2254 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2255
2256 |=(% scope="row" %)**Function code**|=**Name**|=(((
2257 **Setting method**
2258 )))|=(((
2259 **Effective time**
2260 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2261 |=P01-14|(((
2262 Torque limit source
2263 )))|(((
2264 Shutdown setting
2265 )))|(((
2266 Effective immediately
2267 )))|0|0 to 1|(((
2268 0: internal value
2269
2270 1: AI_1 analog input (not supported by VD2F and VD2L)
2271 )))|-
2272
2273 * Torque limit source is internal torque instruction (P01-14=0)
2274
2275 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2276
2277 |=(% scope="row" %)**Function code**|=**Name**|=(((
2278 **Setting method**
2279 )))|=(((
2280 **Effective time**
2281 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2282 |=P01-15|(((
2283 Forward torque limit
2284 )))|(((
2285 Operation setting
2286 )))|(((
2287 Effective immediately
2288 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2289 |=P01-16|(((
2290 Reverse torque limit
2291 )))|(((
2292 Operation setting
2293 )))|(((
2294 Effective immediately
2295 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2296
2297 Table 6-48 Torque limit parameter details
2298
2299 * Torque limit source is external (P01-14=1)
2300
2301 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2302
2303 **Set torque limit DO signal output**
2304
2305 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2306
2307 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2308 |=139|(((
2309 T-LIMIT in torque limit
2310 )))|Output of this signal indicates that the servo motor torque is limited
2311
2312 Table 6-49 DO torque limit function codes
2313
2314 == **Speed limit in torque mode** ==
2315
2316 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2317
2318 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2319
2320 |(((
2321 (% style="text-align:center" %)
2322 (((
2323 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2324 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2325 )))
2326 )))|(((
2327 (% style="text-align:center" %)
2328 (((
2329 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2330 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2331 )))
2332 )))
2333
2334 |=(% scope="row" %)**Function code**|=**Name**|=(((
2335 **Setting method**
2336 )))|=(((
2337 **Effective time**
2338 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2339 |=P01-17|(((
2340 Forward speed
2341
2342 limit in torque mode
2343 )))|(((
2344 Operation setting
2345 )))|(((
2346 Effective immediately
2347 )))|3000|0 to 6000|(((
2348 Forward torque
2349
2350 limit in torque mode
2351 )))|rpm
2352 |=P01-18|(((
2353 Reverse speed
2354
2355 limit in torque mode
2356 )))|(((
2357 Operation setting
2358 )))|(((
2359 Effective immediately
2360 )))|3000|0 to 6000|(((
2361 Reverse torque
2362
2363 limit in torque mode
2364 )))|rpm
2365
2366 Table 6-48 Speed limit parameters in torque mode
2367
2368 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2369
2370 == Torque-related DO output functions ==
2371
2372 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2373
2374 **Torque arrival**
2375
2376 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2377
2378 (% style="text-align:center" %)
2379 (((
2380 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2381 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2382 )))
2383
2384 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-47__ and __Table 6-48__.
2385
2386 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2387 **Setting method**
2388 )))|=(% style="width: 124px;" %)(((
2389 **Effective time**
2390 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2391 |=P05-20|(% style="width:113px" %)(((
2392 Torque arrival
2393
2394 threshold
2395 )))|(% style="width:100px" %)(((
2396 Operation setting
2397 )))|(% style="width:124px" %)(((
2398 Effective immediately
2399 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2400 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2401
2402 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2403
2404 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2405 )))|%
2406 |=P05-21|(% style="width:113px" %)(((
2407 Torque arrival
2408
2409 hysteresis
2410 )))|(% style="width:100px" %)(((
2411 Operation setting
2412 )))|(% style="width:124px" %)(((
2413 Effective immediately
2414 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2415
2416 Table 6-49 Torque arrival parameters
2417
2418 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2419 |=138|(((
2420 T-COIN torque arrival
2421 )))|Used to determine whether the actual torque instruction has reached the set range
2422
2423 Table 6-50 DO Torque Arrival Function Code
2424
2425 = **Mixed control mode** =
2426
2427 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2428
2429 * Position mode⇔ Speed mode
2430 * Position mode ⇔Torque mode
2431 * Speed mode ⇔Torque mode
2432
2433 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2434
2435 |=(% scope="row" %)**Function code**|=**Name**|=(((
2436 **Setting method**
2437 )))|=(((
2438 **Effective time**
2439 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2440 |=P00-01|Control mode|(((
2441 Shutdown setting
2442 )))|(((
2443 Shutdown setting
2444 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2445 1: Position control
2446
2447 2: Speed control
2448
2449 3: Torque control
2450
2451 4: Position/speed mixed control
2452
2453 5: Position/torque mixed control
2454
2455 6: Speed/torque mixed control
2456
2457 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2458 )))|-
2459
2460 Table 6-51 Mixed control mode parameters
2461
2462 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2463
2464 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2465 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2466 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2467 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2468 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2469 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2470 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2471 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2472 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2473 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2474 )))
2475
2476 Table 6-52 Description of DI function codes in control mode
2477
2478 (% class="box infomessage" %)
2479 (((
2480 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2481 )))
2482
2483 = **Absolute system** =
2484
2485 == Overview ==
2486
2487 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2488
2489 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2490
2491 == Single-turn absolute value system ==
2492
2493 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2494
2495 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2496 |A1 (single-turn magnetic encoder)|17|0 to 131071
2497
2498 Table 6-53 Single-turn absolute encoder information
2499
2500 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2501
2502 (% style="text-align:center" %)
2503 (((
2504 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2505 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2506 )))
2507
2508 == Multi-turn absolute value system ==
2509
2510 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2511
2512 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2513 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2514 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2515
2516 Table 6-54 Multi-turn absolute encoder information
2517
2518 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2519
2520 (% style="text-align:center" %)
2521 (((
2522 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2523 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2524 )))
2525
2526 (% class="wikigeneratedid" %)
2527 (((
2528 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2529 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2530 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2531 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2532
2533 |**Function code**|**Name**|(((
2534 **Setting**
2535
2536 **method**
2537 )))|(((
2538 **Effective**
2539
2540 **time**
2541 )))|**Default**|**Range**|**Definition**|**Unit**
2542 |P10-06|Multi-turn absolute encoder reset|(((
2543 Shutdown
2544
2545 setting
2546 )))|Effective immediately|0|0 to 1|(((
2547 0: No operation
2548
2549 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2550
2551 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2552 )))|-
2553
2554 (% style="background-color:#ffffff" %)
2555 |**Function code**|**Name**|(((
2556 **Setting**
2557
2558 **method**
2559 )))|(((
2560 **Effective**
2561
2562 **time**
2563 )))|**Default**|**Range**|**Definition**|**Unit**
2564 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2565 Operation
2566
2567 setting
2568 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2569 )))
2570
2571 == Related functions and parameters ==
2572
2573 **Encoder feedback data**
2574
2575 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2576
2577 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2578 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2579 |=U0-55|Universal|Rotations number of absolute encoder|circle|32-bit
2580 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2581
2582 Table 6-55 Encoder feedback data
2583
2584 **Shield multi-turn absolute encoder battery fault**
2585
2586 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2587
2588 |=(% scope="row" %)**Function code**|=**Name**|=(((
2589 **Setting**
2590
2591 **method**
2592 )))|=(((
2593 **Effective**
2594
2595 **time**
2596 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2597 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 3|(((
2598 0: Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2599
2600 1: **[Not recommended]** Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2601
2602 2: **[Not recommended]** Shield multi-turn absolute value encoder battery under temperature fault, which is very likely to cause mechanical failure. Please use it carefully!
2603
2604 3: **[Not recommended]** Shield absolute value encoder battery undervoltage and low voltage failure and multi-turn absolute value encoder battery under temperature failure are very likely to cause mechanical failure, please use it carefully!
2605 )))|-
2606
2607 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2608
2609 **A93 warning solution**
2610
2611 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2612 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2613
2614 |**Function code**|**Name**|(((
2615 **Setting**
2616
2617 **method**
2618 )))|(((
2619 **Effective**
2620
2621 **time**
2622 )))|**Default**|**Range**|**Definition**|**Unit**
2623 |P00-31|Encoder read-write check abnormal frequency|(((
2624 Operation
2625
2626 setting
2627 )))|(((
2628 immediately
2629
2630 Effective
2631 )))|20|0 to100|(((
2632 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2633
2634 0: no alarm
2635
2636 Others: When this setting value is exceeded, report A93.
2637 )))|-
2638
2639 (% class="box infomessage" %)
2640 (((
2641 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2642 )))
2643
2644 == Absolute value system encoder battery box use precautions. ==
2645
2646 **Cautions**
2647
2648 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2649
2650 (% style="text-align:center" %)
2651 (((
2652 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2653 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2654 )))
2655
2656 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2657
2658 **Replace the battery**
2659
2660 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2661
2662 The specific replacement method is as follows:
2663
2664 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2665 * Step2 Remove the old battery.
2666 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2667 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2668
2669 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2670
2671 |=(% scope="row" %)**Function code**|=**Name**|=(((
2672 **Setting method**
2673 )))|=(((
2674 **Effective time**
2675 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2676 |=P10-06|Multi-turn absolute encoder reset|(((
2677 Shutdown setting
2678 )))|(((
2679 Effective immediately
2680 )))|0|0 to 1|(((
2681 * 0: No operation
2682 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2683
2684 (% class="box infomessage" %)
2685 (((
2686 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2687 )))
2688 )))|-
2689
2690 Table 6-56 Absolute encoder reset enable parameter
2691
2692 **Battery selection**
2693
2694 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2695 |(% rowspan="4" style="width:361px" %)(((
2696 Nominal Voltage: 3.6V
2697
2698 Nominal capacity: 2700mAh
2699 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2700 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2701 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2702 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2703
2704 Table 6-57 Absolute value encoder battery information
2705
2706 **✎Note: **
2707
2708 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2709
2710 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2711
2712 Correct placement of batteries +, - direction
2713
2714 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2715 1. This battery cannot be charged.
2716 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2717 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2718 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2719
2720 = **Other functions** =
2721
2722 == VDI ==
2723
2724 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2725
2726 (% class="box infomessage" %)
2727 (((
2728 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2729 )))
2730
2731 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2732
2733 (% style="text-align:center" %)
2734 (((
2735 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2736 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2737 )))
2738
2739 |=(% scope="row" %)**Function code**|=**Name**|=(((
2740 **Setting method**
2741 )))|=(((
2742 **Effective time**
2743 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2744 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2745 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2746
2747 VDI_1 input level:
2748
2749 0: Low level
2750
2751 1: High level
2752 )))|-
2753 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2754 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2755
2756 VDI_2 input level:
2757
2758 0: Low level
2759
2760 1: High level
2761 )))|-
2762 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2763 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2764
2765 VDI_3 input level:
2766
2767 0: Low level
2768
2769 1: High level
2770 )))|-
2771 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2772 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2773
2774 VDI_4 input level:
2775
2776 0: Low level
2777
2778 1: High level
2779 )))|-
2780 |=P13-05(((
2781
2782 )))|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2783 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2784
2785 VDI_5 input level:
2786
2787 0: Low level
2788
2789 1: High level
2790 )))|-
2791 |=P13-06(((
2792
2793 )))|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2794 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2795
2796 VDI_6 input level:
2797
2798 0: Low level
2799
2800 1: High level
2801 )))|-
2802 |=P13-07(((
2803
2804 )))|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2805 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2806
2807 VDI_7 input level:
2808
2809 0: Low level
2810
2811 1: High level
2812 )))|-
2813 |=P13-08(((
2814
2815 )))|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2816 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2817
2818 VDI_8 input level:
2819
2820 0: Low level
2821
2822 1: High level
2823 )))|-
2824
2825 Table 6-58 Virtual VDI parameters
2826
2827 (% class="box infomessage" %)
2828 (((
2829 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
2830 )))
2831
2832 == Port filtering time ==
2833
2834 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2835
2836 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2837 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2838 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2839
2840 Table 6-59 DI terminal channel logic selection
2841
2842 == **VDO** ==
2843
2844 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2845
2846 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2847
2848 (% style="text-align:center" %)
2849 (((
2850 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2851 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2852 )))
2853
2854
2855 |=(% scope="row" %)**Function code**|=**Name**|=(((
2856 **Setting method**
2857 )))|=(((
2858 **Effective time**
2859 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2860 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2861 VDO_1 output level:
2862
2863 0: Low level
2864
2865 1: High level
2866 )))|-
2867 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2868 VDO_2 output level:
2869
2870 0: Low level
2871
2872 1: High level
2873 )))|-
2874 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2875 VDO_3 output level:
2876
2877 0: Low level
2878
2879 1: High level
2880 )))|-
2881 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2882 VDO_4 output level:
2883
2884 0: Low level
2885
2886 1: High level
2887 )))|-
2888
2889 Table 6-60 Communication control DO function parameters
2890
2891 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2892 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2893 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2894 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2895 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2896
2897 Table 6-61 VDO function number
2898
2899 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2900
2901 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2902
2903 == Motor overload protection ==
2904
2905 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2906
2907 |=(% scope="row" %)**Function code**|=**Name**|=(((
2908 **Setting method**
2909 )))|=(((
2910 **Effective time**
2911 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2912 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2913 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2914
2915 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2916 )))|%
2917
2918 In the following cases, it could be modified according to the actual heat generation of the motor
2919
2920 1. The motor works in a place with high ambient temperature
2921 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2922
2923 = Homing mode =
2924
2925 The homing mode is used to find the mechanical origin and locate the positional relationship between the mechanical origin and the mechanical zero.
2926
2927 Mechanical homing: A mechanically fixed position may correspond to a certain defined homing switch, or may correspond to the motor Z signal.
2928
2929 Mechanical zero point: Mechanically absolute 0 position.
2930
2931 After the homing, the stop position of the motor is the mechanical homing. By setting P10-08, the relationship between the mechanical homing and the mechanical zero can be set:
2932
2933 Mechanical homing = Mechanical zero +P10-08 (homing offset)
2934
2935 When P10-08=0, the mechanical homing coincides with the mechanical zero.
2936
2937 == Control block diagram ==
2938
2939 (% style="text-align:center" %)
2940 (((
2941 (% style="display:inline-block" %)
2942 [[Figure 6-53 Homing mode control block diagram>>image:企业微信截图_17531688812839.png]]
2943 )))
2944
2945 === Homing mode related function codes ===
2946
2947 |Function code|Name|(((
2948 Setting
2949
2950 method
2951 )))|(((
2952 Effective
2953
2954 time
2955 )))|Default|Range|Definition|Unit
2956 |P01-39|Homing start mode|(((
2957 Stop
2958
2959 settings
2960 )))|(((
2961 Effective immediately
2962 )))|0|0 to 2|(((
2963 0: Close
2964
2965 1: The servo is powered ON and started after the first ON
2966
2967 2: DI enable
2968 )))|-
2969 |P01-40|Homing mode|(((
2970 Stop
2971
2972 settings
2973 )))|(((
2974 Effective immediately
2975 )))|0|0 to 35|(((
2976 0 ~~ 35 Homing mode;
2977
2978 ✎Note: VD2 currently does not support 15, 16, 31, 32 modes
2979 )))|-
2980 |(% style="width:89px" %)P01-41|(% style="width:90px" %)High-speed search deceleration point signal velocity|(% style="width:74px" %)(((
2981 Operation setting
2982 )))|(% style="width:90px" %)(((
2983 Effective immediately
2984 )))|(% style="width:61px" %)300|(% style="width:50px" %)1 to 3000|(% style="width:242px" %)High-speed search deceleration point signal velocity in homing mode|rpm
2985 |P01-42|Low speed search homing signal speed|(((
2986 Operation setting
2987 )))|(((
2988 Effective immediately
2989 )))|60|1 to 300|Low-speed search origin signal velocity in homing mode|rpm
2990 |P01-43|Homing acceleration and deceleration|(((
2991 Operation setting
2992 )))|(((
2993 Effective immediately
2994 )))|50|1to1000|(((
2995 Acceleration and deceleration in homing mode
2996
2997 Time for speed acceleration from 0 to 1000rpm
2998 )))|ms
2999 |P01-44|Homing timeout limited time|(((
3000 Operation setting
3001 )))|(((
3002 Effective immediately
3003 )))|65535|100 to 65535|Homing timeout limited time|ms
3004 |P10-08|Multi-turn absolute encoder homing offset compensation|(((
3005 Operation setting
3006 )))|(((
3007 Effective immediately
3008 )))|0|(((
3009 -2147483647~~
3010
3011 2147483646
3012 )))|(((
3013 P10-08 multi-turn absolute encoder homing offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position.
3014
3015 When P10-6 is set to 1, the value of U0-56 is updated to P10-8.
3016 )))|-
3017
3018 (% style="color:inherit; font-family:inherit; font-size:max(20px, min(24px, 12.8889px + 0.925926vw))" %)Introduction to homing mode
3019
3020 In the following figure, "H" represents P01-41 (high-speed search deceleration point signal speed), and "L" represents P01-42 (low-speed search homing signal speed).
3021
3022
3023 (1) P01-40 =1
3024
3025 Mechanical homing: Motor Z signal
3026
3027 Deceleration point: Reverse limit switch (NOT)
3028
3029 ① The deceleration point signal is invalid when starting homing
3030
3031 (% style="text-align:center" %)
3032 [[image:1748221916083-747.jpg||height="347" width="600"]]
3033
3034 When the motor starts to move, NOT=0, the servo motor runs in the high-speed in reverse direction until it meets the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.
3035
3036
3037 ② The deceleration point signal is valid when starting homing
3038
3039 (% style="text-align:center" %)
3040 [[image:1748222134730-241.jpg||height="341" width="600"]]
3041
3042 When the motor starts to move when NOT=1, it directly run in low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.
3043
3044
3045 (2) P01-40=2
3046
3047 Mechanical homing: Motor Z signal
3048
3049 Deceleration point: Positive Limit Switch (POT)
3050
3051 ① The deceleration point signal is invalid when starting homing
3052
3053 (% style="text-align:center" %)
3054 [[image:1748222168627-745.jpg||height="334" width="600"]]
3055
3056
3057 When the motor starts to move and POT = 0, the servo motor runs in the high-speed in forward direction until it meets the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of POT.
3058
3059
3060 ② The deceleration point signal is valid when starting homing
3061
3062 (% style="text-align:center" %)
3063 [[image:1748222190794-857.jpg||height="337" width="600"]]
3064
3065 When the motor starts to home and POT=1, it directly starts to move at low speed in the reverse direction, and stops at the first Z signal after encountering the falling edge of NOT.
3066
3067
3068 (3) P01-40=3
3069
3070 Mechanical homing: Motor Z signal
3071
3072 Deceleration point: Home switch (HW)
3073
3074 ① The deceleration point signal is invalid when starting homing
3075
3076 (% style="text-align:center" %)
3077 [[image:1748226127686-390.jpg||height="337" width="600"]]
3078
3079
3080 The motor starts to move and HW = 0. It starts to move at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction. It runs at a reverse low speed. After encountering the falling edge of HW, it continues to run, and then stops when encountering the first Z signal.
3081
3082
3083 ② The deceleration point signal is valid when starting homing
3084
3085 (% style="text-align:center" %)
3086 [[image:1748226169150-834.jpg||height="337" width="600"]]
3087
3088 When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction, and stops at the first Z signal after encountering the falling edge of HW.
3089
3090
3091 (4) P01-40=4
3092
3093 Mechanical homing: Motor Z signal
3094
3095 Deceleration point: Home switch (HW)
3096
3097 ① The deceleration point signal is invalid when starting homing
3098
3099 (% style="text-align:center" %)
3100 [[image:1748226182842-731.jpg||height="337" width="600"]]
3101
3102 When the motor starts to home and HW=0, it directly starts to move at low speed in the forward direction, and stops at the first Z signal after encountering the rising edge of HW.
3103
3104
3105 ② The deceleration point signal is valid when starting homing
3106
3107 (% style="text-align:center" %)
3108 [[image:1748226201716-810.jpg||height="338" width="600"]]
3109
3110
3111 The motor starts to move and HW = 1, It starts to move at a high speed in the reverse direction. After encountering the falling edge of HW, It decelerates and reverses, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the rising edge of HW.
3112
3113
3114 (5) P01-40=5
3115
3116 Mechanical homing: Motor Z signal
3117
3118 Deceleration point: Home switch (HW)
3119
3120 ① The deceleration point signal is invalid when starting homing
3121
3122 (% style="text-align:center" %)
3123 [[image:1748226251451-548.jpg||height="337" width="600"]]
3124
3125 When the motor start to move and HW = 0, and it starts to move at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of HW.
3126
3127
3128 ② The deceleration point signal is valid when starting homing
3129
3130 (% style="text-align:center" %)
3131 [[image:1748226264724-999.jpg||height="337" width="600"]]
3132
3133 When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of HW.
3134
3135
3136 (6) P01-40=6
3137
3138 Mechanical homing: Motor Z signal
3139
3140 Deceleration point: Home switch (HW)
3141
3142 ① The deceleration point signal is invalid when starting homing
3143
3144 (% style="text-align:center" %)
3145 [[image:1748226277996-278.jpg||height="337" width="600"]]
3146
3147 When the motor starts to home and HW=0, it directly starts to move at low speed in the reverse direction, and stops at the first Z signal after encountering the rising edge of HW.
3148
3149
3150 ② The deceleration point signal is valid when starting homing
3151
3152 (% style="text-align:center" %)
3153 [[image:1748226309059-457.jpg||height="337" width="600"]]
3154
3155 When starting to homing, HW = 1, start to homing at a forward high speed, after encountering the falling edge of HW, decelerate and reverse, run at a reverse low speed, and stop at the first Z signal after encountering the rising edge of HW.
3156
3157
3158 (7) P01-40=7
3159
3160 Mechanical homing: Motor Z signal
3161
3162 Deceleration point: Home switch (HW)
3163
3164 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3165
3166 (% style="text-align:center" %)
3167 [[image:1748226329690-925.jpg||height="405" width="600"]]
3168
3169 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3170
3171
3172 ②When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3173
3174 (% style="text-align:center" %)
3175 [[image:企业微信截图_17531707793586.png]]
3176
3177 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3178
3179
3180 ③ The deceleration point signal is valid when starting homing
3181
3182 (% style="text-align:center" %)
3183 [[image:1748226362415-253.jpg||height="406" width="600"]]
3184
3185 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3186
3187
3188 (8) P01-40=8
3189
3190 Mechanical homing: Motor Z signal
3191
3192 Deceleration point: Home switch (HW)
3193
3194 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3195
3196 (% style="text-align:center" %)
3197 [[image:1748226377919-294.jpg||height="425" width="600"]]
3198
3199 When it starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.
3200
3201
3202 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3203
3204 (% style="text-align:center" %)
3205 [[image:1748226441814-616.jpg||height="460" width="600"]]
3206
3207 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.
3208
3209
3210 ③ The deceleration point signal is valid when starting homing
3211
3212 (% style="text-align:center" %)
3213 [[image:1748226458987-236.jpg||height="403" width="600"]]
3214
3215 When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.
3216
3217
3218 (9) P01-40=9
3219
3220 Mechanical homing: Motor Z signal
3221
3222 Deceleration point: Home switch (HW)
3223
3224 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3225
3226 (% style="text-align:center" %)
3227 [[image:1748226475073-462.jpg||height="407" width="600"]]
3228
3229 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3230
3231
3232 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3233
3234 (% style="text-align:center" %)
3235 [[image:1748226491294-972.jpg||height="473" width="600"]]
3236
3237 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3238
3239 ③ The deceleration point signal is valid when starting homing
3240
3241 (% style="text-align:center" %)
3242 [[image:1748226509824-146.jpg||height="406" width="600"]]
3243
3244 When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW;
3245
3246
3247 (10) P01-40=10
3248
3249 Mechanical homing: Motor Z signal
3250
3251 Deceleration point: Home switch (HW)
3252
3253 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3254
3255 (% style="text-align:center" %)
3256 [[image:1748226583138-561.jpg||height="403" width="600"]]
3257
3258 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3259
3260 ② When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3261
3262 (% style="text-align:center" %)
3263 [[image:1748226640407-712.jpg||height="474" width="600"]]
3264
3265 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3266
3267
3268 ③ The deceleration point signal is valid when starting homing
3269
3270 (% style="text-align:center" %)
3271 [[image:1748226662455-861.jpg||height="392" width="600"]]
3272
3273 When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of HW.
3274
3275
3276 (11) P01-40=11
3277
3278 Mechanical homing: Motor Z signal
3279
3280 Deceleration point: Home switch (HW)
3281
3282 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3283
3284 (% style="text-align:center" %)
3285 [[image:1748226681272-116.jpg||height="406" width="600"]]
3286
3287 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3288
3289
3290 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3291
3292 (% style="text-align:center" %)
3293 [[image:1748226729793-833.jpg||height="484" width="600"]]
3294
3295 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3296
3297 ③ The deceleration point signal is valid when starting homing
3298
3299 (% style="text-align:center" %)
3300 [[image:1748226803530-631.jpg||height="414" width="600"]]
3301
3302 When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of HW.
3303
3304
3305 (12) P01-40=12
3306
3307 Mechanical homing: Motor Z signal
3308
3309 Deceleration point: Home switch (HW)
3310
3311 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3312
3313 (% style="text-align:center" %)
3314 [[image:1748226829420-255.jpg||height="406" width="600"]]
3315
3316
3317 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3318
3319
3320 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3321
3322 (% style="text-align:center" %)
3323 [[image:1748226863974-673.jpg||height="484" width="600"]]
3324
3325 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3326
3327
3328 ③ The deceleration point signal is valid when starting homing
3329
3330 (% style="text-align:center" %)
3331 [[image:1748226879060-830.jpg||height="414" width="600"]]
3332
3333 When starting to homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. The first Z signal after encountering the rising edge of HW will stop.
3334
3335 (13) P01-40=13
3336
3337 Mechanical homing: Motor Z signal
3338
3339 Deceleration point: Home switch (HW)
3340
3341 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3342
3343 (% style="text-align:center" %)
3344 [[image:1748227007116-603.jpg||height="443" width="600"]]
3345
3346 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.
3347
3348
3349 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3350
3351 (% style="text-align:center" %)
3352 [[image:1748227023585-740.jpg||height="472" width="600"]]
3353
3354 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops at the first Z signal after encountering the rising edge of HW.
3355
3356 ③ The deceleration point signal is valid when starting homing
3357
3358 (% style="text-align:center" %)
3359 [[image:1748227043041-279.jpg||height="414" width="600"]]
3360
3361 When starting homing, HW=1 starts homing directly at reverse low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and forward low speed operation;
3362
3363
3364 (14) P01-40=14
3365
3366 Mechanical homing: Motor Z signal
3367
3368 Deceleration point: Home switch (HW)
3369
3370 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3371
3372 (% style="text-align:center" %)
3373 [[image:1748227060842-543.jpg||height="416" width="600"]]
3374
3375 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of HW.
3376
3377
3378 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3379
3380 (% style="text-align:center" %)
3381 [[image:1748227079908-302.jpg||height="445" width="600"]]
3382
3383 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates and runs in a reverse direction, and stops the first Z signal after encountering a falling edge of HW at a reverse low speed.
3384
3385
3386 ③ The deceleration point signal is valid when starting homing
3387
3388 (% style="text-align:center" %)
3389 [[image:1748227101511-101.jpg||height="414" width="600"]]
3390
3391 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3392
3393
3394 (15) P01-40=17
3395
3396 Mechanical homing: Negative overtravel switch (NOT)
3397
3398 Deceleration point: Negative overtravel switch (NOT)
3399
3400 ① The deceleration point signal is invalid when starting homing
3401
3402 (% style="text-align:center" %)
3403 [[image:1748227125161-655.jpg||height="295" width="600"]]
3404
3405 When the motor starts to home and NOT = 0, it starts to move at a reverse high speed. After encountering the rising edge of NOT, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of NOT.
3406
3407
3408 ② The deceleration point signal is valid when starting homing
3409
3410 (% style="text-align:center" %)
3411 [[image:1748227138852-942.jpg||height="324" width="600"]]
3412
3413 When the motor starts to home and NOT=1, it directly starts to move at low speed in the forward direction, and stops after encountering the falling edge of NOT.
3414
3415
3416 (16) P01-40=18
3417
3418 Mechanical homing: Positive overtravel switch (POT)
3419
3420 Deceleration point: Positive overtravel switch (POT)
3421
3422 ① The deceleration point signal is invalid when starting homing
3423
3424 (% style="text-align:center" %)
3425 [[image:1748227153999-626.jpg||height="300" width="600"]]
3426
3427 When the motor starts to home and POT = 0, it starts to move at a forward high speed. After encountering the rising edge of POT, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of POT.
3428
3429
3430 ② The deceleration point signal is valid when starting homing
3431
3432 (% style="text-align:center" %)
3433 [[image:1748227169369-310.jpg||height="267" width="600"]]
3434
3435 When starting homing, POT=1, start homing at low speed in reverse directly, and stop when encountering POT falling edge;
3436
3437
3438 (17) P01-40=19
3439
3440 Mechanical homing: Home switch (HW)
3441
3442 Deceleration point: Home switch (HW)
3443
3444 ① The deceleration point signal is invalid when starting homing
3445
3446 (% style="text-align:center" %)
3447 [[image:1748227186962-656.jpg||height="313" width="600"]]
3448
3449 When the motor starts to home and HW = 0, it starts to move at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.
3450
3451
3452 ② The deceleration point signal is valid when starting homing
3453
3454 (% style="text-align:center" %)
3455 [[image:1748227202174-768.jpg||height="313" width="600"]]
3456
3457 When the motor starts to home and HW =1, it directly starts to move at low speed in the reverse direction, and stops after encountering the falling edge of HW.
3458
3459
3460 (18) P01-40=20
3461
3462 Mechanical homing: Home switch (HW)
3463
3464 Deceleration point: Home switch (HW)
3465
3466 ① The deceleration point signal is invalid when starting homing
3467
3468 (% style="text-align:center" %)
3469 [[image:1748227247408-755.jpg||height="314" width="600"]]
3470
3471 When the motor starts to home and HW =0, it directly starts to move at low speed in the forward direction, and stops after encountering the rising edge of HW.
3472
3473
3474 ② The deceleration point signal is valid when starting homing
3475
3476 (% style="text-align:center" %)
3477 [[image:1748227263354-495.jpg||height="313" width="600"]]
3478
3479 When the motor starts to home and HW = 1, it starts to move at a reverse high speed. After encountering the falling edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the rising edge of HW.
3480
3481
3482 (19) P01-40=21
3483
3484 Mechanical homing: Home switch (HW)
3485
3486 Deceleration point: Home switch (HW)
3487
3488 ① The deceleration point signal is invalid when starting homing
3489
3490 (% style="text-align:center" %)
3491 [[image:1748227279599-847.jpg||height="314" width="600"]]
3492
3493 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.
3494
3495
3496 ② The deceleration point signal is valid when starting homing
3497
3498 (% style="text-align:center" %)
3499 [[image:1748227292762-413.jpg||height="313" width="600"]]
3500
3501 When the motor starts to home and HW =1, it directly starts to move at low speed in the forward direction, and stops after encountering the falling edge of HW.
3502
3503
3504 (20) P01-40=22
3505
3506 Mechanical homing: Home switch (HW)
3507
3508 Deceleration point: Home switch (HW)
3509
3510 ① The deceleration point signal is invalid when starting homing
3511
3512 (% style="text-align:center" %)
3513 [[image:1748227358104-464.jpg||height="314" width="600"]]
3514
3515 When the motor starts to home and HW =0, it directly starts to move at low speed in the reverse direction, and stops after encountering the rising edge of HW.
3516
3517
3518 ② Deceleration point signal is valid when homing start
3519
3520 (% style="text-align:center" %)
3521 [[image:1748227380961-172.jpg||height="343" width="600"]]
3522
3523 When the motor starts to home and HW = 1, it starts to move at a forward high speed. After encountering the falling edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the rising edge of HW.
3524
3525
3526 (21) P01-40=23
3527
3528 Mechanical homing: Home switch (HW)
3529
3530 Deceleration point: Home switch (HW)
3531
3532 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3533
3534 (% style="text-align:center" %)
3535 [[image:1748227395851-339.jpg||height="387" width="600"]]
3536
3537 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.
3538
3539
3540 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3541
3542 (% style="text-align:center" %)
3543 [[image:1748227414217-295.jpg||height="385" width="600"]]
3544
3545 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.
3546
3547
3548 ③ The deceleration point signal is valid when starting homing
3549
3550 (% style="text-align:center" %)
3551 [[image:1748227429391-234.jpg||height="385" width="600"]]
3552
3553 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.
3554
3555
3556 (22) P01-40=24
3557
3558 Mechanical homing: Home switch (HW)
3559
3560 Deceleration point: Home switch (HW)
3561
3562 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3563
3564 (% style="text-align:center" %)
3565 [[image:1748227484547-328.jpg||height="385" width="600"]]
3566
3567 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.
3568
3569
3570 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3571
3572 (% style="text-align:center" %)
3573 [[image:1748227532124-334.jpg||height="385" width="600"]]
3574
3575 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.
3576
3577
3578 ③ The deceleration point signal is valid when starting homing
3579
3580 (% style="text-align:center" %)
3581 [[image:1748227548455-494.jpg||height="387" width="600"]]
3582
3583 When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.
3584
3585
3586 (23) P01-40=25
3587
3588 Mechanical homing: Home switch (HW)
3589
3590 Deceleration point: Home switch (HW)
3591
3592 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3593
3594 (% style="text-align:center" %)
3595 [[image:1748227564603-199.jpg||height="385" width="600"]]
3596
3597 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.
3598
3599
3600 ②The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3601
3602 (% style="text-align:center" %)
3603 [[image:1748227581797-586.jpg||height="385" width="600"]]
3604
3605 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.
3606
3607
3608 ③ The deceleration point signal is valid when starting homing
3609
3610 (% style="text-align:center" %)
3611 [[image:1748227596969-949.jpg||height="385" width="600"]]
3612
3613 When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.
3614
3615
3616 (24) P01-40=26
3617
3618 Mechanical homing: Home switch (HW)
3619
3620 Deceleration point: Home switch (HW)
3621
3622 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3623
3624 (% style="text-align:center" %)
3625 [[image:1748227611517-496.jpg||height="349" width="600"]]
3626
3627 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.
3628
3629
3630 ②The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3631
3632 (% style="text-align:center" %)
3633 [[image:1748227628144-968.jpg||height="385" width="600"]]
3634
3635 When the motor starts to home and HW = 0, it starts to move at a forward high speed. If the limit switch is encountered, it will reverse and run at a reverse high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.
3636
3637
3638 ③ The deceleration point signal is valid when starting homing
3639
3640 (% style="text-align:center" %)
3641 [[image:1748227641046-963.jpg||height="343" width="600"]]
3642
3643 When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction, and stops after encountering the falling edge of HW.
3644
3645
3646 (25) P01-40=27
3647
3648 Mechanical homing: Home switch (HW)
3649
3650 Deceleration point: Home switch (HW)
3651
3652 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3653
3654 (% style="text-align:center" %)
3655 [[image:1748227660426-173.jpg||height="362" width="600"]]
3656
3657 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.
3658
3659
3660 ②The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3661
3662 (% style="text-align:center" %)
3663 [[image:1748227698028-549.jpg||height="392" width="600"]]
3664
3665 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed, and stops after encountering the falling edge of HW.
3666
3667
3668 ③ The deceleration point signal is valid when starting homing
3669
3670 (% style="text-align:center" %)
3671 [[image:1748227728238-666.jpg||height="394" width="600"]]
3672
3673 When the motor starts to home, HW=1, it directly starts to move at low speed in the forward direction, and stops after encountering the falling edge of HW.
3674
3675
3676 (26) P01-40=28
3677
3678 Mechanical homing: Home switch (HW)
3679
3680 Deceleration point: Home switch (HW)
3681
3682 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3683
3684 (% style="text-align:center" %)
3685 [[image:1748227742531-619.jpg||height="437" width="600"]]
3686
3687 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.
3688
3689
3690 ②The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3691
3692 (% style="text-align:center" %)
3693 [[image:1751361620036-469.png||height="389" width="600"]]
3694
3695 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.
3696
3697
3698 ③ The deceleration point signal is valid when starting homing
3699
3700 (% style="text-align:center" %)
3701 [[image:1748227779034-947.jpg||height="394" width="600"]]
3702
3703 When the motor starts to home and HW=1, it directly starts to move at low speed in the forward direction. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops after encountering the rising edge of HW.
3704
3705
3706 (27) P01-40=29
3707
3708 Mechanical homing: Home switch (HW)
3709
3710 Deceleration point: Home switch (HW)
3711
3712 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3713
3714 (% style="text-align:center" %)
3715 [[image:1748227795620-564.jpg||height="432" width="600"]]
3716
3717 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3718
3719
3720 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3721
3722 (% style="text-align:center" %)
3723 [[image:1748227810884-219.jpg||height="395" width="600"]]
3724
3725 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.
3726
3727 ③ The deceleration point signal is valid when starting homing
3728
3729 (% style="text-align:center" %)
3730 [[image:1748227826652-200.jpg||height="392" width="600"]]
3731
3732 When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops after encountering the rising edge of HW.
3733
3734
3735 (28) P01-40=30
3736
3737 Mechanical homing: Home switch (HW)
3738
3739 Deceleration point: Home switch (HW)
3740
3741 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3742
3743 (% style="text-align:center" %)
3744 [[image:1748227844268-953.jpg||height="437" width="600"]]
3745
3746 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.
3747
3748
3749 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3750
3751 (% style="text-align:center" %)
3752 [[image:1748227859385-295.jpg||height="394" width="600"]]
3753
3754 When the motor starts to home and HW = 0, it starts to move at a reverse high speed. If the limit switch is encountered, it will reverse and run at a forward high speed. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed, and stops after encountering the falling edge of HW.
3755
3756
3757 ③ The deceleration point signal is valid when starting homing
3758
3759 (% style="text-align:center" %)
3760 [[image:1748227876370-835.jpg||height="395" width="600"]]
3761
3762 When the motor starts to home and HW=1, it directly starts to move at low speed in the reverse direction, and stops after encountering the falling edge of HW.
3763
3764
3765 (29) P01-40=33 and P01-40=34
3766
3767 Mechanical homing: Z signal.
3768
3769 Deceleration point: None
3770
3771 Homing mode 33: Reverse low speed operation, stop the first Z signal encountered
3772
3773 Homing mode 34: running at low speed in forward direction, stopping the first Z signal encountered
3774
3775 (% style="text-align:center" %)
3776 [[image:1748227893108-875.jpg||height="161" width="600"]]
3777
3778
3779 (30) P01-40=35
3780
3781 Homing mode 35: When the motor starts to home, it sets the current position as the mechanical origin (P01-39: 0x00→0x01/0x00 → 0x02). After the homing is completed, it executes P10-06 (encoder multi-turn reset operation) according to the setting value of P10-08 (origin offset compensation)
3782
3783
3784