Wiki source code of 06 Operation

Version 107.3 by Iris on 2025/07/21 16:18

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 0: standard setting (CW is forward rotation)
90
91 1: reverse mode (CCW is forward rotation)
92 )))|-
93
94 Table 6-3 Rotation direction parameters** **
95
96 == **Braking resistor** ==
97
98 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
99
100 The basis for judging whether the braking resistor is built-in or external.
101
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
103 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
104
105 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
106 **Setting method**
107 )))|=(% style="width: 126px;" %)(((
108 **Effective time**
109 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
110 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
111 Operation setting
112 )))|(% style="width:126px" %)(((
113 Effective immediately
114 )))|0|0 to 3|(((
115 0: use built-in braking resistor
116
117 1: use external braking resistor and natural cooling
118
119 2: use external braking resistor and forced air cooling; (cannot be set)
120
121 3: No braking resistor is used, it is all absorbed by capacitor.
122 )))|-
123 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G , VD2F-030SA1P-010SA1P and VD2L-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
124 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
125 Operation setting
126 )))|(% style="width:126px" %)(((
127 Effective immediately
128 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
129 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
130 Operation setting
131 )))|(% style="width:126px" %)(((
132 Effective immediately
133 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
134
135 Table 6-4 Braking resistor parameters
136
137 == **Servo operation** ==
138
139 **Set the servo enable (S-ON) to valid (ON)**
140
141 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
142
143 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
144
145 **Input the instruction and the motor rotates**
146
147 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
148
149 **Timing diagram of power on**
150
151 (% style="text-align:center" %)
152 (((
153 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
154 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
155 )))
156
157 == Servo shutdown ==
158
159 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
160
161 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
162 |=(% style="width: 150px;" %)Free stop|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
163 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
164
165 Table 6-5 Comparison of two shutdown modes
166
167 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
168 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
169
170 Table 6-6 Comparison of two shutdown status
171
172 **Servo enable (S-ON) OFF shutdown**
173
174 The related parameters of the servo OFF shutdown mode are shown in the table below.
175
176 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
177 **Setting method**
178 )))|=(% style="width: 134px;" %)(((
179 **Effective time**
180 )))|=(% style="width: 86px;" %)(((
181 **Default value**
182 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
183 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
184 Shutdown
185
186 setting
187 )))|(% style="width:134px" %)(((
188 Effective
189
190 immediately
191 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
192 0: Free stop, and the motor shaft remains free status.
193
194 1: Zero-speed stop, and the motor axis remains free status.
195 )))|-
196
197 Table 6-7 Servo OFF shutdown mode parameters details
198
199 **Emergency shutdown**
200
201 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
202
203 Estop mode 1 (deceleration stop):
204
205 ~1. Configurate DI function code: 8 [ESTOP]
206
207 2. Set P1-5 shutdown deceleration time.
208
209 3. Trigger DI emergency shutdown.
210
211 4. Servo emergency shutdown and deceleration to zero speed.
212
213 Estop mode 2:
214
215 ~1. Configurate DI function code: 1 [Servo enable SON]
216
217 2. Set P1-05 shutdown deceleration time.
218
219 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
220
221 4. Trigger DI to turn off servo enable SON.
222
223 5.Servo enable turns off and stops and decelerates to zero speed.
224
225 |Function code|Name|(((
226 Setting
227
228 method
229 )))|(((
230 Effective
231
232 time
233 )))|Default|Range|Definition|Unit
234 |P01-05|Shutdown deceleration time|(((
235 Shutdown
236
237 setting
238 )))|(((
239 immediately
240
241 Effective
242 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
243
244 **Overtravel shutdown**
245
246 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
247
248 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
249
250 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
251
252 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
253 **Setting method**
254 )))|=(% style="width: 114px;" %)(((
255 **Effective time**
256 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
257 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 0: OFF (not used)
259
260 01: S-ON servo enable
261
262 02: A-CLR fault and Warning Clear
263
264 03: POT forward drive prohibition
265
266 04: NOT Reverse drive prohibition
267
268 05: ZCLAMP Zero speed
269
270 06: CL Clear deviation counter
271
272 07: C-SIGN Inverted instruction
273
274 08: E-STOP Emergency stop
275
276 09: GEAR-SEL Electronic Gear Switch 1
277
278 10: GAIN-SEL gain switch
279
280 11: INH Instruction pulse prohibited input
281
282 12: VSSEL Vibration control switch input
283
284 13: INSPD1 Internal speed instruction selection 1
285
286 14: INSPD2 Internal speed instruction selection 2
287
288 15: INSPD3 Internal speedinstruction selection 3
289
290 16: J-SEL inertia ratio switch (not implemented yet)
291
292 17: MixModesel mixed mode selection
293
294 20: Internal multi-segment position enable signal
295
296 21: Internal multi-segment position selection 1
297
298 22: Internal multi-segment position selection 2
299
300 23: Internal multi-segment position selection 3
301
302 24: Internal multi-segment position selection 4
303
304 25: HOME_START Homing start
305 26: HOME ORG Homing signal
306 27: JOGU DI Forward jog
307 28: JOGD DI Reverse jog
308
309 Others: reserved
310 )))|-
311 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
312 Effective immediately
313 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
314 DI port input logic validity function selection.
315
316 0: Normally open input. Low level valid (switch on);
317
318 1: Normally closed input. High level valid (switch off);
319 )))|-
320 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
321 Effective immediately
322 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
323 Select the DI_3 port type to enable
324
325 0: Hardware DI_3 input terminal
326
327 1: Virtual VDI_3 input terminal
328 )))|-
329 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
330 Operation setting
331 )))|(% style="width:114px" %)(((
332 again Power-on
333 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
334 0: OFF (not used)
335
336 01: SON Servo enable
337
338 02: A-CLR Fault and Warning Clear
339
340 03: POT Forward drive prohibition
341
342 04: NOT Reverse drive prohibition
343
344 05: ZCLAMP Zero speed
345
346 06: CL Clear deviation counter
347
348 07: C-SIGN Inverted instruction
349
350 08: E-STOP Emergency shutdown
351
352 09: GEAR-SEL Electronic Gear Switch 1
353
354 10: GAIN-SEL gain switch
355
356 11: INH Instruction pulse prohibited input
357
358 12: VSSEL Vibration control switch input
359
360 13: INSPD1 Internal speed instruction selection 1
361
362 14: INSPD2 Internal speed instruction selection 2
363
364 15: INSPD3 Internal speed instruction selection 3
365
366 16: J-SEL inertia ratio switch (not implemented yet)
367
368 17: MixModesel mixed mode selection
369
370 20: Internal multi-segment position enable signal
371
372 21: Internal multi-segment position selection 1
373
374 22: Internal multi-segment position selection 2
375
376 23: Internal multi-segment position selection 3
377
378 24: Internal multi-segment position selection 4
379
380 25: HOME_START Homing start
381 26: HOME ORG Homing signal
382 27: JOGU DI Forward jog
383 28: JOGD DI Reverse jog
384
385 Others: reserved
386 )))|-
387 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
388 Effective immediately
389 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
390 DI port input logic validity function selection.
391
392 0: Normally open input. Low level valid (switch on);
393
394 1: Normally closed input. High level valid (switch off);
395 )))|-
396 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
397 Effective immediately
398 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
399 Select the DI_4 port type to enable
400
401 0: Hardware DI_4 input terminal
402
403 1: Virtual VDI_4 input terminal
404 )))|-
405
406 Table 6-8 DI3 and DI4 channel parameters
407
408 **(4) Malfunction shutdown**
409
410 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
411
412 == Brake device ==
413
414 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
415
416 (% class="warning" %)|(((
417 (% style="text-align:center" %)
418 [[image:image-20220611151617-1.png]]
419 )))
420 |(((
421 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
422
423 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
424
425 ✎The brake coil has no polarity;
426
427 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
428
429 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
430 )))
431
432 **Wiring of brake device**
433
434 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
435
436
437 (% style="text-align:center" %)
438 (((
439 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
440 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
441 )))
442
443 (% class="warning" %)|(((
444 (% style="text-align:center" %)
445 [[image:image-20220611151642-2.png]]
446 )))
447 |(((
448 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
449
450 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
451
452 ✎It is recommended to use cables above 0.5 mm².
453 )))
454
455 **Brake software setting**
456
457 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
458
459 Related function code is as below.
460
461 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
462 **Effective time**
463 )))
464 |=141|(% style="width:241px" %)(((
465 BRK-OFF Brake output
466 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
467
468 Table 6-2 Relevant function codes for brake setting
469
470 |=(% scope="row" %)**Function code**|=**Name**|=(((
471 **Setting method**
472 )))|=(((
473 **Effective time**
474 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
475 |=P1-30|Delay from brake output to instruction reception|(((
476 Operation setting
477 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
478 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
479 Operation setting
480 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
481 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
482 Operation setting
483 )))|Effective immediately|30|0 to 3000|(((
484 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
485
486 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
487 )))|rpm
488 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
489 Operation setting
490 )))|Effective immediately|500|1 to 1000|(((
491 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
492
493 When brake output (BRK-OFF) is not allocated, this function code has no effect.
494 )))|ms
495
496 Table 6-9 Brake setting function codes
497
498 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
499
500 **Servo drive brake timing in normal state**
501
502 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
503
504 * Brake timing when servo motor is stationary
505
506 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
507
508 (% class="warning" %)|(((
509 (% style="text-align:center" %)
510 [[image:image-20220611151705-3.png]]
511 )))
512 |(((
513 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
514
515 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
516 )))
517
518 (% style="text-align:center" %)
519 (((
520 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
521 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
522 )))
523
524 (% class="box infomessage" %)
525 (((
526 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
527 )))
528
529 * The brake timing when servo motor rotates
530
531 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
532
533 (% class="warning" %)|(((
534 (% style="text-align:center" %)
535 [[image:image-20220611151719-4.png]]
536 )))
537 |(((
538 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
539
540 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
541
542 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
543
544 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
545
546 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
547 )))
548
549 (% style="text-align:center" %)
550 (((
551 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
552 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
553 )))
554
555 **Brake timing when the servo drive fails**
556
557 The brake timing (free shutdown) in the fault status is as follows.
558
559 (% style="text-align:center" %)
560 (((
561 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
562 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
563 )))
564
565 = **Position control mode** =
566
567 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
568
569 (% style="text-align:center" %)
570 (((
571 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
572 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
573 )))
574
575 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
576
577 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
578 **Setting method**
579 )))|=(((
580 **Effective time**
581 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
582 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
583 Operation setting
584 )))|(((
585 immediately Effective
586 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
587 1: position control
588
589 2: speed control
590
591 3: torque control
592
593 4: position/speed mix control
594
595 5: position/torque mix control
596
597 6: speed /torque mix control
598
599 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
600 )))|(% style="width:151px" %)-
601
602 Table 6-10 Control mode parameters
603
604 == Position instruction input setting ==
605
606 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
607
608 |=(% scope="row" %)**Function code**|=**Name**|=(((
609 **Setting method**
610 )))|=(((
611 **Effective time**
612 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
613 |=P01-06|Position instruction source|(((
614 Operation setting
615 )))|(((
616 immediately Effective
617 )))|0|0 to 1|(((
618 0: pulse instruction
619
620 1: internal position instruction
621 )))|-
622
623 Table 6-12 Position instruction source parameter
624
625 **The source of position instruction is pulse instruction (P01-06=0)**
626
627 Low-speed pulse instruction input
628
629 |(% style="text-align:center" %)(((
630 (% class="wikigeneratedid" %)
631 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
632 )))|(% style="text-align:center" %)(((
633 (% class="wikigeneratedid" %)
634 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
635 )))
636 |(% colspan="2" %)Figure 6-7 Position instruction input setting
637
638 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
639
640 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
641
642 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
643 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
644 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
645
646 Table 6-13 Pulse input specifications
647
648 * Differential input
649
650 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
651
652 (% style="text-align:center" %)
653 (((
654 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
655 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
656 )))
657
658 (% class="box infomessage" %)
659 (((
660 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
661 )))
662
663 * Open collector input
664
665 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
666
667 (% style="text-align:center" %)
668 (((
669 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
670 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
671 )))
672
673
674 (% class="box infomessage" %)
675 (((
676 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
677 )))
678
679 * Position pulse frequency and anti-interference level
680
681 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
682
683 (% style="text-align:center" %)
684 (((
685 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
686 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
687 )))
688
689 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
690
691 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
692 **Setting method**
693 )))|=(((
694 **Effective time**
695 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
696 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
697 Operation setting
698 )))|(% rowspan="3" %)(((
699 Power-on again
700 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
701 Set the anti-interference level of external pulse instruction.
702
703 0: no filtering;
704
705 1: Filtering time 128ns
706
707 2: Filtering time 256ns
708
709 3: Filtering time 512ns
710
711 4: Filtering time 1.024us
712
713 5: Filtering time 2.048us
714
715 6: Filtering time 4.096us
716
717 7: Filtering time 8.192us
718
719 8: Filtering time 16.384us
720
721 9:
722
723 VD2: Filtering time 32.768us
724
725 VD2F: Filtering time 25.5us
726 )))|(% rowspan="3" %)-
727
728 Table 6-14 Position pulse frequency and anti-interference level parameters
729
730 |**Function code**|**Name**|(((
731 **Setting**
732
733 **method**
734 )))|(((
735 **Effective**
736
737 **time**
738 )))|**Default value**|**Range**|**Definition**|**Unit**
739 |P00-14|Position pulse anti-interference level|(((
740 Operation
741
742 setting
743 )))|(((
744 Power-on
745
746 again
747 )))|2|0 to 8|(((
748 VD2L drive set the anti-interference level of external pulse instruction.
749
750 0: no filtering;
751
752 1: Filtering time 111.1ns
753
754 2: Filtering time 222.2ns
755
756 3: Filtering time 444.4ns
757
758 4: Filtering time 888.8ns
759
760 5: Filtering time 1777.7ns
761
762 6: Filtering time 3555.5ns
763
764 7: Filtering time 7111.7ns
765
766 8: Filtering time 14222.2ns
767
768
769 )))|-
770
771 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
772
773
774 * Position pulse type selection
775
776 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
777
778 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
779 **Setting method**
780 )))|=(% style="width: 109px;" %)(((
781 **Effective time**
782 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
783 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
784 Operation setting
785 )))|(% style="width:109px" %)(((
786 Power-on again
787 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
788 0: direction + pulse (positive logic)
789
790 1: CW/CCW
791
792 2: A, B phase quadrature pulse (4 times frequency)
793
794 3: Direction + pulse (negative logic)
795
796 4: CW/CCW (negative logic)
797
798 5: A, B phase quadrature pulse (4 times frequency negative logic)
799
800 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
801 )))|-
802
803 Table 6-15 Position pulse type selection parameter
804
805 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
806 |=0|(% style="width:200px" %)(((
807 Direction + pulse
808
809 (Positive logic)
810 )))|(% style="width:161px" %)(((
811 PULSE
812
813 SIGN
814 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
815 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
816 PULSE (CW)
817
818 SIGN (CCW)
819 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
820 |=2|(% style="width:200px" %)(((
821 AB phase orthogonal
822
823 pulse (4 times frequency)
824 )))|(% style="width:161px" %)(((
825 PULSE (Phase A)
826
827 SIGN (Phase B)
828 )))|(((
829
830
831 [[image:image-20220707094358-9.jpeg]]
832
833 Phase A is 90° ahead of Phase B
834 )))|(((
835
836
837 [[image:image-20220707094407-10.jpeg]]
838
839 Phase B is 90° ahead of Phase A
840 )))
841 |=3|(% style="width:200px" %)(((
842 Direction + pulse
843
844 (Negative logic)
845 )))|(% style="width:161px" %)(((
846 PULSE
847
848 SIGN
849 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
850 |=4|(% style="width:200px" %)(((
851 CW/CCW
852
853 (Negative logic)
854 )))|(% style="width:161px" %)(((
855 PULSE (CW)
856
857 SIGN (CCW)
858 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
859 |=5|(% style="width:200px" %)(((
860 AB phase orthogonal
861
862 pulse (4 times frequency negative logic)
863 )))|(% style="width:161px" %)(((
864 PULSE (Phase A)
865
866 SIGN (Phase B)
867 )))|(((
868
869
870 [[image:image-20220707094429-14.jpeg]]
871
872 Phase B is ahead of A phase by 90°
873 )))|(((
874
875
876 [[image:image-20220707094437-15.jpeg]]
877
878 Phase A is ahead of B phase by 90°
879 )))
880
881 Table 6-16 Pulse description
882
883 **The source of position instruction is internal position instruction (P01-06=1)**
884
885 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
886
887 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
888
889 (% style="text-align:center" %)
890 (((
891 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
892 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
893 )))
894
895
896 * Set multi-segment position running mode
897
898 |=(% scope="row" %)**Function code**|=**Name**|=(((
899 **Setting method**
900 )))|=(((
901 **Effective time**
902 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
903 |=P07-01|Multi-segment position running mode|(((
904 Shutdown setting
905 )))|(((
906 Effective immediately
907 )))|0|0 to 2|(((
908 0: Single running
909
910 1: Cycle running
911
912 2: DI switching running
913 )))|-
914 |=P07-02|Start segment number|(((
915 Shutdown setting
916 )))|(((
917 Effective immediately
918 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
919 |=P07-03|End segment number|(((
920 Shutdown setting
921 )))|(((
922 Effective immediately
923 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
924 |=P07-04|Margin processing method|(((
925 Shutdown setting
926 )))|(((
927 Effective immediately
928 )))|0|0 to 1|(((
929 0: Run the remaining segments
930
931 1: Run again from the start segment
932 )))|-
933 |=P07-05|Displacement instruction type|(((
934 Shutdown setting
935 )))|(((
936 Effective immediately
937 )))|0|0 to 1|(((
938 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
939
940 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
941 )))|-
942
943 Table 6-17 multi-segment position running mode parameters
944
945 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
946
947 1. Single running
948
949 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
950
951 (% style="text-align:center" %)
952 (((
953 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
954 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
955 )))
956
957 * 2. Cycle running
958
959 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
960
961 (% style="text-align:center" %)
962 (((
963 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
964 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
965 )))
966
967 (% class="warning" %)|(((
968 (% style="text-align:center" %)
969 [[image:image-20220611151917-5.png]]
970 )))
971 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
972
973 (% start="3" %)
974 1. DI switching running
975
976 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
977
978 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
979 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
980 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
981 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
982 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
983
984 Table 6-18 DI function code
985
986 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
987
988 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
989 |=0|0|0|0|1
990 |=0|0|0|1|2
991 |=0|0|1|0|3
992 |=0|0|1|1|4
993 |=0|1|0|0|5
994 |=0|1|0|1|6
995 |=0|1|1|0|7
996 |=0|1|1|1|8
997 |=1|0|0|0|9
998 |=1|0|0|1|10
999 |=1|0|1|0|11
1000 |=1|0|1|1|12
1001 |=1|1|0|0|13
1002 |=1|1|0|1|14
1003 |=1|1|1|0|15
1004 |=1|1|1|1|16
1005
1006 Table 6-20 INPOS corresponds to running segment number
1007
1008 The operating curve in this running mode is shown in __Figure 6-14__.
1009
1010 (% style="text-align:center" %)
1011 (((
1012 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1013 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
1014 )))
1015
1016 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
1017
1018 **Run the remaining segments**
1019
1020 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
1021
1022 (% style="text-align:center" %)
1023 (((
1024 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1025 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
1026 )))
1027
1028 (% style="text-align:center" %)
1029 (((
1030 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
1031 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
1032 )))
1033
1034 **Run again from the start segment**
1035
1036 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
1037
1038 (% style="text-align:center" %)
1039 (((
1040 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1041 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
1042 )))
1043
1044 (% style="text-align:center" %)
1045 (((
1046 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1047 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
1048 )))
1049
1050 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
1051
1052 * Relative position instruction
1053
1054 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
1055
1056 |(((
1057 (% style="text-align:center" %)
1058 (((
1059 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1060 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
1061 )))
1062 )))|(((
1063 (% style="text-align:center" %)
1064 (((
1065 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1066 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
1067 )))
1068 )))
1069
1070 * Absolute position instruction
1071
1072 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
1073
1074 |(((
1075 (% style="text-align:center" %)
1076 (((
1077 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1078 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
1079 )))
1080 )))|(((
1081 (% style="text-align:center" %)
1082 (((
1083 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1084 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1085 )))
1086 )))
1087
1088 * Multi-segment position running curve setting
1089
1090 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1091
1092 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1093 |=P07-09|(((
1094 1st segment
1095
1096 displacement
1097 )))|(((
1098 Operation setting
1099 )))|(((
1100 Effective immediately
1101 )))|10000|(((
1102 -2147483647 to
1103
1104 2147483646
1105 )))|Position instruction, positive and negative values could be set|-
1106 |=P07-10|Maximum speed of the 1st displacement|(((
1107 Operation setting
1108 )))|(((
1109 Effective immediately
1110 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1111 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1112 Operation setting
1113 )))|(((
1114 Effective immediately
1115 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1116 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1117 Operation setting
1118 )))|(((
1119 Effective immediately
1120 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1121
1122 Table 6-21 The 1st position operation curve parameters table
1123
1124 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1125
1126 (% style="text-align:center" %)
1127 (((
1128 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1129 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1130 )))
1131
1132
1133 * multi-segment position instruction enable
1134
1135 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1136
1137 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1138 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1139 DI port logic invalid: Does not affect the current operation of the servo motor.
1140
1141 DI port logic valid: Motor runs multi-segment position
1142 )))
1143
1144 (% style="text-align:center" %)
1145 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1146
1147 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1148
1149 == Electronic gear ratio ==
1150
1151 **Definition of electronic gear ratio**
1152
1153 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1154
1155 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1156
1157 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1158
1159 (% style="text-align:center" %)
1160 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1161
1162 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1163
1164 **Setting steps of electronic gear ratio**
1165
1166 (% style="text-align:center" %)
1167 (((
1168 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1169 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1170 )))
1171
1172 **lectronic gear ratio switch setting**
1173
1174 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1175
1176 |=(% scope="row" %)**Function code**|=**Name**|=(((
1177 **Setting method**
1178 )))|=(((
1179 **Effective time**
1180 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1181 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1182 Shutdown setting
1183 )))|(((
1184 Effective immediately
1185 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1186 Instruction pulse
1187
1188 unit
1189 )))
1190 |=P00-17|(((
1191 Electronic gear 1
1192
1193 numerator
1194 )))|Operation setting|(((
1195 Effective immediately
1196 )))|1|1 to 4294967294|(((
1197 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1198
1199 **VD2L: 1-2147483647**
1200 )))|-
1201 |=P00-18|(((
1202 Electronic gear 1
1203
1204 denominator
1205 )))|(((
1206 Operation setting
1207 )))|(((
1208 Effective immediately
1209 )))|1|1 to 4294967294|(((
1210 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1211
1212 **VD2L: 1-2147483647**
1213 )))|-
1214 |=P00-19|(((
1215 Electronic gear 2
1216
1217 numerator
1218 )))|Operation setting|(((
1219 Effective immediately
1220 )))|1|1 to 4294967294|(((
1221 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1222
1223 **VD2L: 1-2147483647**
1224 )))|-
1225 |=P00-20|(((
1226 Electronic gear 2
1227
1228 denominator
1229 )))|Operation setting|(((
1230 Effective immediately
1231 )))|1|1 to 4294967294|(((
1232 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1233
1234 **VD2L: 1-2147483647**
1235 )))|-
1236
1237 Table 6-20 Electronic gear ratio function code
1238
1239 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1240
1241 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1242 |=09|GEAR-SEL electronic gear switch 1|(((
1243 DI port logic invalid: electronic gear ratio 1
1244
1245 DI port logic valid: electronic gear ratio 2
1246 )))
1247
1248 Table 6-21 Switching conditions of electronic gear ratio group
1249
1250 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1251 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1252 (% style="text-align:center" %)
1253 [[image:image-20220707101328-21.png]]
1254 )))
1255 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1256 (% style="text-align:center" %)
1257 [[image:image-20220707101336-22.png]]
1258 )))
1259 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1260 (% style="text-align:center" %)
1261 [[image:image-20220707101341-23.png]]
1262 )))
1263
1264 Table 6-22 Application of electronic gear ratio
1265
1266 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1267
1268 == Position instruction filtering ==
1269
1270 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1271
1272 In the following situations, position instruction filtering should be added.
1273
1274 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1275 1. The pulse instruction frequency is low;
1276 1. When the electronic gear ratio is 10 times or more.
1277
1278 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1279
1280 (% style="text-align:center" %)
1281 (((
1282 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1283 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1284 )))
1285
1286 |=(% scope="row" %)**Function code**|=**Name**|=(((
1287 **Setting method**
1288 )))|=(((
1289 **Effective time**
1290 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1291 |=P04-01|Pulse instruction filtering method|(((
1292 Shutdown setting
1293 )))|(((
1294 Effective immediately
1295 )))|0|0 to 1|(((
1296 0: 1st-order low-pass filtering
1297
1298 1: average filtering
1299 )))|-
1300 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1301 Effective immediately
1302 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1303 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1304 Effective immediately
1305 )))|0|0 to 128|Position instruction average filtering time constant|ms
1306
1307 Table 6-25 Position instruction filter function code
1308
1309 == Clearance of position deviation ==
1310
1311 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1312
1313 Position deviation = (position instruction-position feedback) (encoder unit)
1314
1315 == Position-related DO output function ==
1316
1317 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1318
1319 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1320 **Positioning completion/positioning approach output**
1321
1322 (% class="wikigeneratedid" %)
1323 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1324
1325 (% style="text-align:center" %)
1326 (((
1327 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1328 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1329 )))
1330
1331 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1332
1333 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1334
1335 (% style="text-align:center" %)
1336 (((
1337 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1338 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1339 )))
1340
1341 |=(% scope="row" %)**Function code**|=**Name**|=(((
1342 **Setting method**
1343 )))|=(% style="width: 129px;" %)(((
1344 **Effective time**
1345 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1346 |=P05-12|Positioning completion threshold|(((
1347 Operation setting
1348 )))|(% style="width:129px" %)(((
1349 Effective immediately
1350 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1351 |=P05-13|Positioning approach threshold|(((
1352 Operation setting
1353 )))|(% style="width:129px" %)(((
1354 Effective immediately
1355 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1356 |=P05-14|Position detection window time|(((
1357 Operation setting
1358 )))|(% style="width:129px" %)(((
1359 Effective immediately
1360 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1361 |=P05-15|Positioning signal hold time|(((
1362 Operation setting
1363 )))|(% style="width:129px" %)(((
1364 Effective immediately
1365 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1366
1367 Table 6-26 Function code parameters of positioning completion
1368
1369 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1370 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1371 |=135|(((
1372 P-NEAR positioning close
1373 )))|(((
1374 Output this signal indicates that the servo drive position is close.
1375 )))
1376
1377 Table 6-27 Description of DO rotation detection function code
1378
1379 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1380
1381 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1382
1383 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1384
1385 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1386
1387 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1388
1389 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1390
1391 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1392
1393 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1394
1395
1396 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1397 |DO_2 channel function selection|Operation setting|Effective immediately|130|128-149|DI/DO|-
1398 |(% colspan="8" %)(((
1399 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1400
1401 |Setting value|DO channel function| |Setting value|DO channel function
1402 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1403 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1404 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1405 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1406 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1407 |133|ZSP (zero speed signal)| |144|N/A
1408 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1409 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1410 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1411 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1412 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1413
1414 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1415
1416 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1417
1418 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1419
1420 Note 2:
1421
1422 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1423
1424 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1425
1426 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1427
1428 ④VD2L does not support function code 149.
1429 )))
1430
1431 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1432 |DO_3 channel function selection|Operation setting|Effective immediately|129|128-149|DI/DO|-
1433 |(% colspan="8" %)(((
1434 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1435
1436 |Setting value|DO channel function| |Setting value|DO channel function
1437 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1438 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1439 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1440 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1441 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1442 |133|ZSP (zero speed signal)| |144|None
1443 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1444 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1445 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1446 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1447 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1448
1449 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1450
1451 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1452
1453 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1454
1455 **Note 2:**
1456
1457 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1458
1459 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1460
1461 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1462
1463 ④VD2L does not support function code 149.
1464 )))
1465
1466 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1467 |DO_4 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1468 |(% colspan="8" %)(((
1469 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1470
1471 |Setting value|DO channel function| |Setting value|DO channel function
1472 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1473 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1474 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1475 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1476 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1477 |133|ZSP (zero speed signal)| |144|None
1478 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1479 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1480 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1481 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1482 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1483
1484 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1485
1486 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1487
1488 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1489
1490 **Note 2:**
1491
1492 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1493
1494 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1495
1496 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1497
1498 ④VD2L does not support function code 149.
1499 )))
1500
1501 = **Speed control mode** =
1502
1503 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1504
1505 (% style="text-align:center" %)
1506 (((
1507 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1508 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1509 )))
1510
1511 == Speed instruction input setting ==
1512
1513 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1514
1515 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1516 **Setting method**
1517 )))|=(% style="width: 125px;" %)(((
1518 **Effective time**
1519 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1520 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1521 Shutdown setting
1522 )))|(% style="width:125px" %)(((
1523 Effective immediately
1524 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1525 0: internal speed instruction
1526
1527 1: AI_1 analog input (not supported by **VD2F and VD2L**)
1528 )))|-
1529
1530 Table 6-26 Speed instruction source parameter
1531
1532 **Speed instruction source is internal speed instruction (P01-01=0)**
1533
1534 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1535
1536 (% style="width:1141px" %)
1537 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1538 **Setting**
1539
1540 **method**
1541 )))|=(% colspan="2" %)(((
1542 **Effective**
1543
1544 **time**
1545 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1546 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1547 Internal speed
1548
1549 Instruction 0
1550 )))|(% colspan="2" %)(((
1551 Operation
1552
1553 setting
1554 )))|(% colspan="2" %)(((
1555 Effective
1556
1557 immediately
1558 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1559 Internal speed instruction 0
1560
1561 When DI input port:
1562
1563 15-INSPD3: 0
1564
1565 14-INSPD2: 0
1566
1567 13-INSPD1: 0,
1568
1569 select this speed instruction to be effective.
1570 )))|(% colspan="2" %)rpm
1571 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1572 Internal speed
1573
1574 Instruction 1
1575 )))|(% colspan="2" %)(((
1576 Operation
1577
1578 setting
1579 )))|(% colspan="2" %)(((
1580 Effective
1581
1582 immediately
1583 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1584 Internal speed instruction 1
1585
1586 When DI input port:
1587
1588 15-INSPD3: 0
1589
1590 14-INSPD2: 0
1591
1592 13-INSPD1: 1,
1593
1594 Select this speed instruction to be effective.
1595 )))|(% colspan="2" %)rpm
1596 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1597 Internal speed
1598
1599 Instruction 2
1600 )))|(% colspan="2" %)(((
1601 Operation
1602
1603 setting
1604 )))|(% colspan="2" %)(((
1605 Effective
1606
1607 immediately
1608 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1609 Internal speed instruction 2
1610
1611 When DI input port:
1612
1613 15-INSPD3: 0
1614
1615 14-INSPD2: 1
1616
1617 13-INSPD1: 0,
1618
1619 Select this speed instruction to be effective.
1620 )))|(% colspan="2" %)rpm
1621 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1622 Internal speed
1623
1624 Instruction 3
1625 )))|(% colspan="2" %)(((
1626 Operation
1627
1628 setting
1629 )))|(% colspan="2" %)(((
1630 Effective
1631
1632 immediately
1633 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1634 Internal speed instruction 3
1635
1636 When DI input port:
1637
1638 15-INSPD3: 0
1639
1640 14-INSPD2: 1
1641
1642 13-INSPD1: 1,
1643
1644 Select this speed instruction to be effective.
1645 )))|(% colspan="2" %)rpm
1646 |=P01-26|(% colspan="2" %)(((
1647 Internal speed
1648
1649 Instruction 4
1650 )))|(% colspan="2" %)(((
1651 Operation
1652
1653 setting
1654 )))|(% colspan="2" %)(((
1655 Effective
1656
1657 immediately
1658 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1659 Internal speed instruction 4
1660
1661 When DI input port:
1662
1663 15-INSPD3: 1
1664
1665 14-INSPD2: 0
1666
1667 13-INSPD1: 0,
1668
1669 Select this speed instruction to be effective.
1670 )))|(% colspan="1" %)rpm
1671 |=P01-27|(% colspan="2" %)(((
1672 Internal speed
1673
1674 Instruction 5
1675 )))|(% colspan="2" %)(((
1676 Operation
1677
1678 setting
1679 )))|(% colspan="2" %)(((
1680 Effective
1681
1682 immediately
1683 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1684 Internal speed instruction 5
1685
1686 When DI input port:
1687
1688 15-INSPD3: 1
1689
1690 14-INSPD2: 0
1691
1692 13-INSPD1: 1,
1693
1694 Select this speed instruction to be effective.
1695 )))|(% colspan="1" %)rpm
1696 |=P01-28|(% colspan="2" %)(((
1697 Internal speed
1698
1699 Instruction 6
1700 )))|(% colspan="2" %)(((
1701 Operation
1702
1703 setting
1704 )))|(% colspan="2" %)(((
1705 Effective
1706
1707 immediately
1708 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1709 Internal speed instruction 6
1710
1711 When DI input port:
1712
1713 15-INSPD3: 1
1714
1715 14-INSPD2: 1
1716
1717 13-INSPD1: 0,
1718
1719 Select this speed instruction to be effective.
1720 )))|(% colspan="1" %)rpm
1721 |=P01-29|(% colspan="2" %)(((
1722 Internal speed
1723
1724 Instruction 7
1725 )))|(% colspan="2" %)(((
1726 Operation
1727
1728 setting
1729 )))|(% colspan="2" %)(((
1730 Effective
1731
1732 immediately
1733 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1734 Internal speed instruction 7
1735
1736 When DI input port:
1737
1738 15-INSPD3: 1
1739
1740 14-INSPD2: 1
1741
1742 13-INSPD1: 1,
1743
1744 Select this speed instruction to be effective.
1745 )))|(% colspan="1" %)rpm
1746
1747 Table 6-27 Internal speed instruction parameters
1748
1749 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1750 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1751 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1752 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1753
1754 Table 6-28 DI multi-speed function code description
1755
1756 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1757
1758
1759 (% style="margin-left:auto; margin-right:auto" %)
1760 |=(% style="text-align: center; vertical-align: middle;" %)**INSPD3**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD2**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD1**|=(% style="text-align: center; vertical-align: middle;" %)**Running segment number**|=(% style="text-align: center; vertical-align: middle;" %)**Internal speed instruction number**
1761 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1762 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1763 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1764 |(% colspan="5" style="text-align:center; vertical-align:middle" %)......
1765 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1766
1767 Table 6-29 Correspondence between INSPD bits and segment numbers
1768
1769 (% style="text-align:center" %)
1770 (((
1771 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1772 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1773 )))
1774
1775 **Speed instruction source is internal speed instruction (P01-01=1)**
1776
1777 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1778
1779 (% style="text-align:center" %)
1780 (((
1781 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1782 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1783 )))
1784
1785 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1786
1787 (% style="text-align:center" %)
1788 (((
1789 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1790 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1791 )))
1792
1793 Explanation of related terms:
1794
1795 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1796 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1797 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1798
1799 (% style="text-align:center" %)
1800 (((
1801 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1802 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1803 )))
1804
1805 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1806 |=P05-01(((
1807
1808 )))|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1809 |=P05-02(((
1810
1811 )))|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1812 |=P05-03(((
1813
1814 )))|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1815 |=P05-04(((
1816
1817 )))|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1818
1819 (% class="box infomessage" %)
1820 (((
1821 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
1822 )))
1823
1824 == Acceleration and deceleration time setting ==
1825
1826 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1827
1828 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1829
1830 (% style="text-align:center" %)
1831 (((
1832 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1833 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1834 )))
1835
1836 (% style="text-align:center" %)
1837 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1838
1839 |=(% scope="row" %)**Function code**|=**Name**|=(((
1840 **Setting method**
1841 )))|=(((
1842 **Effective time**
1843 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1844 |=P01-03|Acceleration time|(((
1845 Operation setting
1846 )))|(((
1847 Effective immediately
1848 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1849 |=P01-04|Deceleration time|(((
1850 Operation setting
1851 )))|(((
1852 Effective immediately
1853 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1854
1855 Table 6-31 Acceleration and deceleration time parameters
1856
1857 == Speed instruction limit ==
1858
1859 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1860
1861 1. P01-10: Set the maximum speed limit value
1862 1. P01-12: Set forward speed limit value
1863 1. P01-13: Set reverse speed limit value
1864 1. The maximum speed of the motor: determined by motor model
1865
1866 The actual motor speed limit interval satisfies the following relationship:
1867
1868 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1869
1870 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1871
1872 |=(% scope="row" %)**Function code**|=**Name**|=(((
1873 **Setting method**
1874 )))|=(((
1875 **Effective time**
1876 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1877 |=P01-10|Maximum speed threshold|(((
1878 Operation setting
1879 )))|(((
1880 Effective immediately
1881 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1882 |=P01-12|Forward speed threshold|(((
1883 Operation setting
1884 )))|(((
1885 Effective immediately
1886 )))|3000|0 to 5000|Set forward speed limit value|rpm
1887 |=P01-13|Reverse speed threshold|(((
1888 Operation setting
1889 )))|(((
1890 Effective immediately
1891 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1892
1893 Table 6-32 Rotation speed related function codes
1894
1895 == Zero-speed clamp function ==
1896
1897 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1898
1899 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1900
1901 |=(% scope="row" %)**Function code**|=**Name**|=(((
1902 **Setting method**
1903 )))|=(((
1904 **Effective time**
1905 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1906 |=P01-21|(((
1907 Zero-speed clamp function selection
1908 )))|(((
1909 Operation setting
1910 )))|(((
1911 Effective immediately
1912 )))|0|0 to 3|(((
1913 Set the zero-speed clamp function. In speed mode:
1914
1915 0: Force the speed to 0;
1916
1917 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1918
1919 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1920
1921 3: Invalid, ignore zero-speed clamp input
1922 )))|-
1923 |=P01-22|(((
1924 Zero-speed clamp speed threshold
1925 )))|(((
1926 Operation setting
1927 )))|(((
1928 Effective immediately
1929 )))|20|0 to 6000|Set the speed threshold of zero-speed clamp function|rpm
1930
1931 Table 6-33 Zero-speed clamp related parameters
1932
1933 (% style="text-align:center" %)
1934 (((
1935 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1936 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1937 )))
1938
1939 == Speed-related DO output function ==
1940
1941 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1942
1943 **Rotation detection signal**
1944
1945 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1946
1947 (% style="text-align:center" %)
1948 (((
1949 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1950 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1951 )))
1952
1953 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1954
1955 |=(% scope="row" %)**Function code**|=**Name**|=(((
1956 **Setting method**
1957 )))|=(((
1958 **Effective time**
1959 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1960 |=P05-16|(((
1961 Rotation detection
1962
1963 speed threshold
1964 )))|(((
1965 Operation setting
1966 )))|(((
1967 Effective immediately
1968 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1969
1970 Table 6-34 Rotation detection speed threshold parameters
1971
1972 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1973 |=132|(% style="width:247px" %)(((
1974 TGON rotation detection
1975 )))|(% style="width:695px" %)(((
1976 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1977
1978 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1979 )))
1980
1981 Table 6-35 DO rotation detection function code
1982
1983 **Zero-speed signal**
1984
1985 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1986
1987 (% style="text-align:center" %)
1988 (((
1989 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1990 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1991 )))
1992
1993 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1994
1995 |=(% scope="row" %)**Function code**|=**Name**|=(((
1996 **Setting method**
1997 )))|=(((
1998 **Effective time**
1999 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2000 |=P05-19|Zero speed output signal threshold|(((
2001 Operation setting
2002 )))|(((
2003 Effective immediately
2004 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
2005
2006 Table 6-36 Zero-speed output signal threshold parameter
2007
2008 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2009 |=133|(((
2010 ZSP zero speed signal
2011 )))|Output this signal indicates that the servo motor is stopping rotation
2012
2013 Table 6-37 DO zero-speed signal function code
2014
2015 **Speed consistent signal**
2016
2017 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
2018
2019 (% style="text-align:center" %)
2020 (((
2021 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2022 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
2023 )))
2024
2025 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
2026
2027 |=(% scope="row" %)**Function code**|=**Name**|=(((
2028 **Setting method**
2029 )))|=(((
2030 **Effective time**
2031 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2032 |=P05-17|Speed consistent signal threshold|(((
2033 Operationsetting
2034 )))|(((
2035 Effective immediately
2036 )))|10|0 to 100|Set speed consistent signal threshold|rpm
2037
2038 Table 6-38 Speed consistent signal threshold parameters
2039
2040 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
2041 |=136|(% style="width:262px" %)(((
2042 V-COIN consistent speed
2043 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
2044
2045 Table 6-39 DO speed consistent function code
2046
2047 **Speed approach signal**
2048
2049 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
2050
2051 (% style="text-align:center" %)
2052 (((
2053 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2054 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
2055 )))
2056
2057 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
2058
2059 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
2060 **Setting method**
2061 )))|=(((
2062 **Effective time**
2063 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2064 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
2065 Operation setting
2066 )))|(((
2067 Effective immediately
2068 )))|100|10 to 6000|Set speed approach signal threshold|rpm
2069
2070 Table 6-40 Speed approaching signal threshold parameters
2071
2072 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2073 |=137|(((
2074 V-NEAR speed approach
2075 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
2076
2077 Table 6-41 DO speed approach function code
2078
2079 = **Torque control mode** =
2080
2081 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
2082
2083 (% style="text-align:center" %)
2084 (((
2085 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2086 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
2087 )))
2088
2089 == **Torque instruction input setting** ==
2090
2091 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
2092
2093 |=(% scope="row" %)**Function code**|=**Name**|=(((
2094 **Setting method**
2095 )))|=(((
2096 **Effective time**
2097 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2098 |=P01-07|Torque instruction source|(((
2099 Shutdown setting
2100 )))|(((
2101 Effective immediately
2102 )))|0|0 to 1|(((
2103 0: internal torque instruction
2104
2105 1: AI_1 analog input(not supported by VD2F and VD2L)
2106 )))|-
2107
2108 Table 6-42 Torque instruction source parameter
2109
2110 **Torque instruction source is internal torque instruction (P01-07=0)**
2111
2112 Torque instruction source is from inside, the value is set by function code P01-08.
2113
2114 |=(% scope="row" %)**Function code**|=**Name**|=(((
2115 **Setting method**
2116 )))|=(((
2117 **Effective time**
2118 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2119 |=P01-08|Torque instruction keyboard set value|(((
2120 Operation setting
2121 )))|(((
2122 Effective immediately
2123 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2124
2125 Table 6-43 Torque instruction keyboard set value
2126
2127 **Torque instruction source is AI_1 analog input (P01-07=1)**
2128
2129 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2130
2131 (% style="text-align:center" %)
2132 (((
2133 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2134 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2135 )))
2136
2137 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2138
2139 (% style="text-align:center" %)
2140 (((
2141 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2142 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2143 )))
2144
2145 Explanation of related terms:
2146
2147 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2148 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2149 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2150
2151 (% style="text-align:center" %)
2152 (((
2153 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2154 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2155 )))
2156
2157 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2158 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2159 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2160 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2161 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2162
2163 Table 6-44 AI_1 parameters
2164
2165 (% class="box infomessage" %)
2166 (((
2167 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2168 )))
2169
2170 == Torque instruction filtering ==
2171
2172 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2173
2174 |=(% scope="row" %)**Function code**|=**Name**|=(((
2175 **Setting method**
2176 )))|=(((
2177 **Effective time**
2178 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2179 |=P04-04|Torque filtering time constant|(((
2180 Operation setting
2181 )))|(((
2182 Effective immediately
2183 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2184
2185 Table 6-45 Torque filtering time constant parameter details
2186
2187 (% class="box infomessage" %)
2188 (((
2189 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2190 )))
2191
2192 (% style="text-align:center" %)
2193 (((
2194 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2195 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2196 )))
2197
2198 == Torque instruction limit ==
2199
2200 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2201
2202 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2203
2204 (% style="text-align:center" %)
2205 (((
2206 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2207 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2208 )))
2209
2210 **Set torque limit source**
2211
2212 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2213
2214 |=(% scope="row" %)**Function code**|=**Name**|=(((
2215 **Setting method**
2216 )))|=(((
2217 **Effective time**
2218 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2219 |=P01-14|(((
2220 Torque limit source
2221 )))|(((
2222 Shutdown setting
2223 )))|(((
2224 Effective immediately
2225 )))|0|0 to 1|(((
2226 0: internal value
2227
2228 1: AI_1 analog input (not supported by VD2F and VD2L)
2229 )))|-
2230
2231 * Torque limit source is internal torque instruction (P01-14=0)
2232
2233 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2234
2235 |=(% scope="row" %)**Function code**|=**Name**|=(((
2236 **Setting method**
2237 )))|=(((
2238 **Effective time**
2239 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2240 |=P01-15|(((
2241 Forward torque limit
2242 )))|(((
2243 Operation setting
2244 )))|(((
2245 Effective immediately
2246 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2247 |=P01-16|(((
2248 Reverse torque limit
2249 )))|(((
2250 Operation setting
2251 )))|(((
2252 Effective immediately
2253 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2254
2255 Table 6-46 Torque limit parameter details
2256
2257 * Torque limit source is external (P01-14=1)
2258
2259 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2260
2261 **Set torque limit DO signal output**
2262
2263 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2264
2265 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2266 |=139|(((
2267 T-LIMIT in torque limit
2268 )))|Output of this signal indicates that the servo motor torque is limited
2269
2270 Table 6-47 DO torque limit function codes
2271
2272 == **Speed limit in torque mode** ==
2273
2274 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2275
2276 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2277
2278 |(((
2279 (% style="text-align:center" %)
2280 (((
2281 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2282 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2283 )))
2284 )))|(((
2285 (% style="text-align:center" %)
2286 (((
2287 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2288 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2289 )))
2290 )))
2291
2292 |=(% scope="row" %)**Function code**|=**Name**|=(((
2293 **Setting method**
2294 )))|=(((
2295 **Effective time**
2296 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2297 |=P01-17|(((
2298 Forward speed
2299
2300 limit in torque mode
2301 )))|(((
2302 Operation setting
2303 )))|(((
2304 Effective immediately
2305 )))|3000|0 to 6000|(((
2306 Forward torque
2307
2308 limit in torque mode
2309 )))|rpm
2310 |=P01-18|(((
2311 Reverse speed
2312
2313 limit in torque mode
2314 )))|(((
2315 Operation setting
2316 )))|(((
2317 Effective immediately
2318 )))|3000|0 to 6000|(((
2319 Reverse torque
2320
2321 limit in torque mode
2322 )))|rpm
2323
2324 Table 6-48 Speed limit parameters in torque mode
2325
2326 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2327
2328 == Torque-related DO output functions ==
2329
2330 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2331
2332 **Torque arrival**
2333
2334 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2335
2336 (% style="text-align:center" %)
2337 (((
2338 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2339 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2340 )))
2341
2342 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2343
2344 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2345 **Setting method**
2346 )))|=(% style="width: 124px;" %)(((
2347 **Effective time**
2348 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2349 |=P05-20|(% style="width:113px" %)(((
2350 Torque arrival
2351
2352 threshold
2353 )))|(% style="width:100px" %)(((
2354 Operation setting
2355 )))|(% style="width:124px" %)(((
2356 Effective immediately
2357 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2358 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2359
2360 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2361
2362 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2363 )))|%
2364 |=P05-21|(% style="width:113px" %)(((
2365 Torque arrival
2366
2367 hysteresis
2368 )))|(% style="width:100px" %)(((
2369 Operation setting
2370 )))|(% style="width:124px" %)(((
2371 Effective immediately
2372 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2373
2374 Table 6-49 Torque arrival parameters
2375
2376 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2377 |=138|(((
2378 T-COIN torque arrival
2379 )))|Used to determine whether the actual torque instruction has reached the set range
2380
2381 Table 6-50 DO Torque Arrival Function Code
2382
2383 = **Mixed control mode** =
2384
2385 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2386
2387 * Position mode⇔ Speed mode
2388 * Position mode ⇔Torque mode
2389 * Speed mode ⇔Torque mode
2390
2391 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2392
2393 |=(% scope="row" %)**Function code**|=**Name**|=(((
2394 **Setting method**
2395 )))|=(((
2396 **Effective time**
2397 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2398 |=P00-01|Control mode|(((
2399 Shutdown setting
2400 )))|(((
2401 Shutdown setting
2402 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2403 1: Position control
2404
2405 2: Speed control
2406
2407 3: Torque control
2408
2409 4: Position/speed mixed control
2410
2411 5: Position/torque mixed control
2412
2413 6: Speed/torque mixed control
2414
2415 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2416 )))|-
2417
2418 Table 6-51 Mixed control mode parameters
2419
2420 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2421
2422 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2423 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2424 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2425 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2426 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2427 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2428 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2429 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2430 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2431 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2432 )))
2433
2434 Table 6-52 Description of DI function codes in control mode
2435
2436 (% class="box infomessage" %)
2437 (((
2438 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2439 )))
2440
2441 = **Absolute system** =
2442
2443 == Overview ==
2444
2445 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2446
2447 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2448
2449 == Single-turn absolute value system ==
2450
2451 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2452
2453 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2454 |A1 (single-turn magnetic encoder)|17|0 to 131071
2455
2456 Table 6-53 Single-turn absolute encoder information
2457
2458 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2459
2460 (% style="text-align:center" %)
2461 (((
2462 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2463 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2464 )))
2465
2466 == Multi-turn absolute value system ==
2467
2468 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2469
2470 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2471 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2472 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2473
2474 Table 6-54 Multi-turn absolute encoder information
2475
2476 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2477
2478 (% style="text-align:center" %)
2479 (((
2480 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2481 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2482 )))
2483
2484 (% class="wikigeneratedid" %)
2485 (((
2486 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2487 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2488 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2489 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2490
2491 |**Function code**|**Name**|(((
2492 **Setting**
2493
2494 **method**
2495 )))|(((
2496 **Effective**
2497
2498 **time**
2499 )))|**Default**|**Range**|**Definition**|**Unit**
2500 |P10-06|Multi-turn absolute encoder reset|(((
2501 Shutdown
2502
2503 setting
2504 )))|Effective immediately|0|0 to 1|(((
2505 0: No operation
2506
2507 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2508
2509 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2510 )))|-
2511
2512 (% style="background-color:#ffffff" %)
2513 |**Function code**|**Name**|(((
2514 **Setting**
2515
2516 **method**
2517 )))|(((
2518 **Effective**
2519
2520 **time**
2521 )))|**Default**|**Range**|**Definition**|**Unit**
2522 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2523 Operation
2524
2525 setting
2526 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2527 )))
2528
2529 == Related functions and parameters ==
2530
2531 **Encoder feedback data**
2532
2533 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2534
2535 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2536 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2537 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2538 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2539
2540 Table 6-55 Encoder feedback data
2541
2542 **Shield multi-turn absolute encoder battery fault**
2543
2544 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2545
2546 |=(% scope="row" %)**Function code**|=**Name**|=(((
2547 **Setting**
2548
2549 **method**
2550 )))|=(((
2551 **Effective**
2552
2553 **time**
2554 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2555 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2556 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2557
2558 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2559 )))|-
2560
2561 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2562
2563 **A93 warning solution**
2564
2565 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2566 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2567
2568 |**Function code**|**Name**|(((
2569 **Setting**
2570
2571 **method**
2572 )))|(((
2573 **Effective**
2574
2575 **time**
2576 )))|**Default**|**Range**|**Definition**|**Unit**
2577 |P00-31|Encoder read-write check abnormal frequency|(((
2578 Operation
2579
2580 setting
2581 )))|(((
2582 immediately
2583
2584 Effective
2585 )))|20|0 to100|(((
2586 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2587
2588 0: no alarm
2589
2590 Others: When this setting value is exceeded, report A93.
2591 )))|-
2592
2593 (% class="box infomessage" %)
2594 (((
2595 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2596 )))
2597
2598 == Absolute value system encoder battery box use precautions. ==
2599
2600 **Cautions**
2601
2602 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2603
2604 (% style="text-align:center" %)
2605 (((
2606 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2607 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2608 )))
2609
2610 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2611
2612 **Replace the battery**
2613
2614 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2615
2616 The specific replacement method is as follows:
2617
2618 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2619 * Step2 Remove the old battery.
2620 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2621 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2622
2623 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2624
2625 |=(% scope="row" %)**Function code**|=**Name**|=(((
2626 **Setting method**
2627 )))|=(((
2628 **Effective time**
2629 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2630 |=P10-06|Multi-turn absolute encoder reset|(((
2631 Shutdown setting
2632 )))|(((
2633 Effective immediately
2634 )))|0|0 to 1|(((
2635 * 0: No operation
2636 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2637
2638 (% class="box infomessage" %)
2639 (((
2640 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2641 )))
2642 )))|-
2643
2644 Table 6-56 Absolute encoder reset enable parameter
2645
2646 **Battery selection**
2647
2648 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2649 |(% rowspan="4" style="width:361px" %)(((
2650 Nominal Voltage: 3.6V
2651
2652 Nominal capacity: 2700mAh
2653 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2654 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2655 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2656 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2657
2658 Table 6-57 Absolute value encoder battery information
2659
2660 **✎Note: **
2661
2662 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2663
2664 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2665
2666 Correct placement of batteries +, - direction
2667
2668 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2669 1. This battery cannot be charged.
2670 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2671 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2672 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2673
2674 = **Other functions** =
2675
2676 == VDI ==
2677
2678 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2679
2680 (% class="box infomessage" %)
2681 (((
2682 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2683 )))
2684
2685 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2686
2687 (% style="text-align:center" %)
2688 (((
2689 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2690 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2691 )))
2692
2693 |=(% scope="row" %)**Function code**|=**Name**|=(((
2694 **Setting method**
2695 )))|=(((
2696 **Effective time**
2697 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2698 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2699 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2700
2701 VDI_1 input level:
2702
2703 0: Low level
2704
2705 1: High level
2706 )))|-
2707 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2708 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2709
2710 VDI_2 input level:
2711
2712 0: Low level
2713
2714 1: High level
2715 )))|-
2716 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2717 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2718
2719 VDI_3 input level:
2720
2721 0: Low level
2722
2723 1: High level
2724 )))|-
2725 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2726 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2727
2728 VDI_4 input level:
2729
2730 0: Low level
2731
2732 1: High level
2733 )))|-
2734 |=P13-05(((
2735
2736 )))|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2737 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2738
2739 VDI_5 input level:
2740
2741 0: Low level
2742
2743 1: High level
2744 )))|-
2745 |=P13-06(((
2746
2747 )))|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2748 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2749
2750 VDI_6 input level:
2751
2752 0: Low level
2753
2754 1: High level
2755 )))|-
2756 |=P13-07(((
2757
2758 )))|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2759 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2760
2761 VDI_7 input level:
2762
2763 0: Low level
2764
2765 1: High level
2766 )))|-
2767 |=P13-08(((
2768
2769 )))|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2770 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2771
2772 VDI_8 input level:
2773
2774 0: Low level
2775
2776 1: High level
2777 )))|-
2778
2779 Table 6-57 Virtual VDI parameters
2780
2781 (% class="box infomessage" %)
2782 (((
2783 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
2784 )))
2785
2786 == Port filtering time ==
2787
2788 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2789
2790 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2791 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2792 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2793
2794 Table 6-58 DI terminal channel logic selection
2795
2796 == **VDO** ==
2797
2798 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2799
2800 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2801
2802 (% style="text-align:center" %)
2803 (((
2804 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2805 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2806 )))
2807
2808
2809 |=(% scope="row" %)**Function code**|=**Name**|=(((
2810 **Setting method**
2811 )))|=(((
2812 **Effective time**
2813 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2814 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2815 VDO_1 output level:
2816
2817 0: Low level
2818
2819 1: High level
2820 )))|-
2821 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2822 VDO_2 output level:
2823
2824 0: Low level
2825
2826 1: High level
2827 )))|-
2828 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2829 VDO_3 output level:
2830
2831 0: Low level
2832
2833 1: High level
2834 )))|-
2835 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2836 VDO_4 output level:
2837
2838 0: Low level
2839
2840 1: High level
2841 )))|-
2842
2843 Table 6-59 Communication control DO function parameters
2844
2845 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2846 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2847 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2848 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2849 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2850
2851 Table 6-60 VDO function number
2852
2853 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2854
2855 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2856
2857 == Motor overload protection ==
2858
2859 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2860
2861 |=(% scope="row" %)**Function code**|=**Name**|=(((
2862 **Setting method**
2863 )))|=(((
2864 **Effective time**
2865 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2866 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2867 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2868
2869 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2870 )))|%
2871
2872 In the following cases, it could be modified according to the actual heat generation of the motor
2873
2874 1. The motor works in a place with high ambient temperature
2875 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2876
2877 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2878
2879 (% class="box infomessage" %)
2880 (((
2881 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2882 )))
2883
2884
2885 = Homing mode =
2886
2887 The homing mode is used to find the mechanical origin and locate the positional relationship between the mechanical origin and the mechanical zero.
2888
2889 Mechanical homing: A mechanically fixed position may correspond to a certain defined homing switch, or may correspond to the motor Z signal.
2890
2891 Mechanical zero point: Mechanically absolute 0 position.
2892
2893 After the homing, the stop position of the motor is the mechanical homing. By setting P10-08, the relationship between the mechanical homing and the mechanical zero can be set:
2894
2895 Mechanical homing = Mechanical zero +P10-08 (homing offset)
2896
2897 When P10-08=0, the mechanical homing coincides with the mechanical zero.
2898
2899 == Control block diagram ==
2900
2901
2902 === Homing mode related function codes ===
2903
2904 |Function code|Name|(((
2905 Setting
2906
2907 method
2908 )))|(((
2909 Effective
2910
2911 time
2912 )))|Default|Range|Definition|Unit
2913 |P01-39|Homing start mode|(((
2914 Stop
2915
2916 settings
2917 )))|(((
2918 Immediately
2919
2920 effective
2921 )))|0|0 to 2|(((
2922 0: Close
2923
2924 1: The servo is powered ON and started after the first ON
2925
2926 2: DI enable
2927 )))|-
2928
2929 |Function code|Name|(((
2930 Setting
2931
2932 method
2933 )))|(((
2934 Effective
2935
2936 time
2937 )))|Default|Range|Definition|Unit
2938 |P01-40|Homing mode|(((
2939 Stop
2940
2941 settings
2942 )))|(((
2943 Immediately
2944
2945 effective
2946 )))|0|0 to 35|(((
2947 0 ~~ 35 Homing mode;
2948
2949 ✎Note: VD2 currently does not support 15, 16, 31, 32 modes
2950 )))|-
2951
2952 |Function code|Name|(((
2953 Setting
2954
2955 method
2956 )))|(((
2957 Effective
2958
2959 time
2960 )))|Default|Range|Definition|Unit
2961 |P01-41|High-speed search deceleration point signal velocity|(((
2962 Running
2963
2964 settings
2965 )))|(((
2966 Immediately
2967
2968 effective
2969 )))|300|1 to 3000|High-speed search deceleration point signal velocity in homing mode|rpm
2970
2971 |Function code|Name|(((
2972 Setting
2973
2974 method
2975 )))|(((
2976 Effective
2977
2978 time
2979 )))|Default|Range|Definition|Unit
2980 |P01-42〇|Low speed search homing signal speed|(((
2981 Running
2982
2983 settings
2984 )))|(((
2985 Immediately
2986
2987 effective
2988 )))|60|1 to 300|Low-speed search origin signal velocity in homing mode|rpm
2989
2990 |Function code|Name|(((
2991 Setting
2992
2993 method
2994 )))|(((
2995 Effective
2996
2997 time
2998 )))|Default|Range|Definition|Unit
2999 |P01-43〇|Homing acceleration and deceleration|(((
3000 Running
3001
3002 settings
3003 )))|(((
3004 Immediately
3005
3006 effective
3007 )))|50|1to1000|(((
3008 Acceleration and deceleration in homing mode
3009
3010 Time for speed acceleration from 0 to 1000rpm
3011 )))|ms
3012
3013 |Function code|Name|(((
3014 Setting
3015
3016 method
3017 )))|(((
3018 Effective
3019
3020 time
3021 )))|Default|Range|Definition|Unit
3022 |P01-44〇|Homing timeout limited time|(((
3023 Running
3024
3025 settings
3026 )))|(((
3027 Immediately
3028
3029 effective
3030 )))|65535|100 to 65535|Homing timeout limited time|ms
3031
3032 |Function code|Name|(((
3033 Setting
3034
3035 method
3036 )))|(((
3037 Effective
3038
3039 time
3040 )))|Default|Range|Definition|Unit
3041 |P10-08〇|Multi-turn absolute encoder homing offset compensation|(((
3042 Running
3043
3044 settings
3045 )))|(((
3046 Immediately
3047
3048 effective
3049 )))|0|(((
3050 -2147483647~~
3051
3052 2147483646
3053 )))|(((
3054 P10-08 multi-turn absolute encoder homing offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position.
3055
3056 When P10-6 is set to 1, the value of U0-56 is updated to P10-8.
3057 )))|-
3058
3059 == Introduction to homing mode ==
3060
3061 In the following figure, "H" represents P01-41 (high-speed search deceleration point signal speed), and "L" represents P01-42 (low-speed search homing signal speed).
3062
3063
3064 (1) P01-40 =1
3065
3066 Mechanical homing: Motor Z signal
3067
3068 Deceleration point: Reverse limit switch (NOT)
3069
3070 ① The deceleration point signal is invalid when starting homing
3071
3072 (% style="text-align:center" %)
3073 [[image:1748221916083-747.jpg||height="347" width="600"]]
3074
3075 When it starts to homing, NOT=0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.
3076
3077
3078 ② The deceleration point signal is valid when starting homing
3079
3080 (% style="text-align:center" %)
3081 [[image:1748222134730-241.jpg||height="341" width="600"]]
3082
3083 When starting to homing, NOT=1, it starts to homing at a direct forward low speed, and stops at the first Z signal after encountering the falling edge of NOT.
3084
3085
3086
3087
3088
3089
3090 (2) P01-40=2
3091
3092 Mechanical homing: Motor Z signal
3093
3094 Deceleration point: Positive Limit Switch (POT)
3095
3096 ① The deceleration point signal is invalid when starting homing
3097
3098 (% style="text-align:center" %)
3099 [[image:1748222168627-745.jpg||height="334" width="600"]]
3100
3101
3102 When it starts to homing, POT = 0, and it starts to homing at a forward high speed. After encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of POT.
3103
3104
3105 ② The deceleration point signal is valid when starting homing
3106
3107 (% style="text-align:center" %)
3108 [[image:1748222190794-857.jpg||height="337" width="600"]]
3109
3110 POT=1 when start homing, run at low speed directly in the reverse direction, and stops at the first Z signal after the falling edge of POT.
3111
3112
3113
3114 (3) P01-40=3
3115
3116 Mechanical homing: Motor Z signal
3117
3118 Deceleration point: Home switch (HW)
3119
3120 ① The deceleration point signal is invalid when starting homing
3121
3122 (% style="text-align:center" %)
3123 [[image:1748226127686-390.jpg||height="337" width="600"]]
3124
3125
3126 When it starts to homing, HW=0. It starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction. It runs at a reverse low speed. After encountering the falling edge of HW, it continues to run, and then stops when encountering the first Z signal.
3127
3128
3129 ② The deceleration point signal is valid when starting homing
3130
3131 (% style="text-align:center" %)
3132 [[image:1748226169150-834.jpg||height="337" width="600"]]
3133
3134 When starting homing, HW=1, start homing at low speed in reverse directly, and stop at the first Z signal after encountering the falling edge of HW;
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148 (4) P01-40=4
3149
3150 Mechanical homing: Motor Z signal
3151
3152 Deceleration point: Home switch (HW)
3153
3154 ① The deceleration point signal is invalid when starting homing
3155
3156 (% style="text-align:center" %)
3157 [[image:1748226182842-731.jpg||height="337" width="600"]]
3158
3159 HW=0 when starting to homing, directly start to homing at low speed, and stop at the first Z signal after encountering the rising edge of HW;
3160
3161
3162 ② The deceleration point signal is valid when starting homing
3163
3164 (% style="text-align:center" %)
3165 [[image:1748226201716-810.jpg||height="338" width="600"]]
3166
3167
3168 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, decelerate and reverse, run at a low speed in the forward direction, and stop at the first Z signal after encountering the rising edge of HW.
3169
3170
3171
3172
3173
3174 (5) P01-40=5
3175
3176 Mechanical homing: Motor Z signal
3177
3178 Deceleration point: Home switch (HW)
3179
3180 ① The deceleration point signal is invalid when starting homing
3181
3182 (% style="text-align:center" %)
3183 [[image:1748226251451-548.jpg||height="337" width="600"]]
3184
3185 When it starts to homing, HW = 0, and it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3186
3187
3188 ② The deceleration point signal is valid when starting homing
3189
3190 (% style="text-align:center" %)
3191 [[image:1748226264724-999.jpg||height="337" width="600"]]
3192
3193 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3194
3195
3196
3197
3198
3199 (6) P01-40=6
3200
3201 Mechanical homing: Motor Z signal
3202
3203 Deceleration point: Home switch (HW)
3204
3205 ① The deceleration point signal is invalid when starting homing
3206
3207 (% style="text-align:center" %)
3208 [[image:1748226277996-278.jpg||height="337" width="600"]]
3209
3210 When starting to homing, HW=0, directly reverse low speed starts to homing, and the first Z signal stops after encountering the rising edge of HW;
3211
3212
3213 ② The deceleration point signal is valid when starting homing
3214
3215 (% style="text-align:center" %)
3216 [[image:1748226309059-457.jpg||height="337" width="600"]]
3217
3218 When starting to homing, HW = 1, start to homing at a forward high speed, after encountering the falling edge of HW, decelerate and reverse, run at a reverse low speed, and stop at the first Z signal after encountering the rising edge of HW.
3219
3220
3221
3222
3223
3224 (7) P01-40=7
3225
3226 Mechanical homing: Motor Z signal
3227
3228 Deceleration point: Home switch (HW)
3229
3230 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3231
3232 (% style="text-align:center" %)
3233 [[image:1748226329690-925.jpg||height="405" width="600"]]
3234
3235 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, and runs at a reverse low speed. The first Z signal after encountering the falling edge of HW stops.
3236
3237
3238 ②When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3239
3240 (% style="text-align:center" %)
3241 [[image:1748226347085-250.jpg||height="482" width="600"]]
3242
3243 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and continue to run at a reverse low speed. The first Z signal after the falling edge of HW will stop.
3244
3245
3246 ③ The deceleration point signal is valid when starting homing
3247
3248 (% style="text-align:center" %)
3249 [[image:1748226362415-253.jpg||height="406" width="600"]]
3250
3251 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3252
3253
3254 (8) P01-40=8
3255
3256 Mechanical homing: Motor Z signal
3257
3258 Deceleration point: Home switch (HW)
3259
3260 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3261
3262 (% style="text-align:center" %)
3263 [[image:1748226377919-294.jpg||height="425" width="600"]]
3264
3265 When it starts to homing, HM-0 starts to homing at a forward high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and reverse, and run at a reverse low speed. After encountering the falling edge of HW, reverse, run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3266
3267
3268 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3269
3270 (% style="text-align:center" %)
3271 [[image:1748226441814-616.jpg||height="460" width="600"]]
3272
3273 When it starts to homing, HW = 0, and it starts to homing at forward high speed. If it encounters a limit switch, it will automatically reverse and run at reverse high speed; After encountering the rising edge of HW, slow down and run at a reverse low speed; After encountering the falling edge of HW, reverse the direction, run at a forward low speed, and stop the first Z signal after encountering the rising edge of HW.
3274
3275
3276 ③ The deceleration point signal is valid when starting homing
3277
3278 (% style="text-align:center" %)
3279 [[image:1748226458987-236.jpg||height="403" width="600"]]
3280
3281 When starting to homing, HM-1 will directly reverse and start to return to zero at low speed. After encountering the falling edge of HW, it will reverse and run at forward low speed. The first Z signal after encountering the rising edge of HW will stop.
3282
3283
3284
3285 (9) P01-40=9
3286
3287 Mechanical homing: Motor Z signal
3288
3289 Deceleration point: Home switch (HW)
3290
3291 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3292
3293 (% style="text-align:center" %)
3294 [[image:1748226475073-462.jpg||height="407" width="600"]]
3295
3296 When it starts to homing, HW=0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed; After encountering the falling edge of HW, reverse, run at a low speed in the reverse direction, and stop at the first Z signal after encountering the rising edge of HW.
3297
3298
3299 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3300
3301 (% style="text-align:center" %)
3302 [[image:1748226491294-972.jpg||height="473" width="600"]]
3303
3304 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering a rising edge of HW, it will slow down and reverse to resume forward operation. Running at a forward low speed, after encountering a falling edge of HW, it will reverse. During reverse low speed operation, the first Z signal after encountering a rising edge of HW will stop.
3305
3306 ③ The deceleration point signal is valid when starting homing
3307
3308 (% style="text-align:center" %)
3309 [[image:1748226509824-146.jpg||height="406" width="600"]]
3310
3311 When starting homing, HW=1 starts homing directly at forward low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and reverse low speed operation;
3312
3313
3314 (10) P01-40=10
3315
3316 Mechanical homing: Motor Z signal
3317
3318 Deceleration point: Home switch (HW)
3319
3320 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3321
3322 (% style="text-align:center" %)
3323 [[image:1748226583138-561.jpg||height="403" width="600"]]
3324
3325 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, slow down and run at a forward low speed. After encountering the falling edge of HW, continue to run at a forward low speed, and then the first Z signal encountered stops.
3326
3327 ② When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3328
3329 (% style="text-align:center" %)
3330 [[image:1748226640407-712.jpg||height="474" width="600"]]
3331
3332 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and reverse to resume forward operation. The first Z signal after the low speed encounters the falling edge of HW will stop.
3333
3334
3335 ③ The deceleration point signal is valid when starting homing
3336
3337 (% style="text-align:center" %)
3338 [[image:1748226662455-861.jpg||height="392" width="600"]]
3339
3340 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3341
3342
3343 (11) P01-40=11
3344
3345 Mechanical homing: Motor Z signal
3346
3347 Deceleration point: Home switch (HW)
3348
3349 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3350
3351 (% style="text-align:center" %)
3352 [[image:1748226681272-116.jpg||height="406" width="600"]]
3353
3354 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3355
3356
3357 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3358
3359 (% style="text-align:center" %)
3360 [[image:1748226729793-833.jpg||height="484" width="600"]]
3361
3362 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it encounters a limit switch, it will automatically reverse and run at a forward high speed. After encountering a rising edge of HW, slow down and continue to run at a forward low speed. When encountering a falling edge of HW, the first Z signal after the edge stops.
3363
3364 ③ The deceleration point signal is valid when starting homing
3365
3366 (% style="text-align:center" %)
3367 [[image:1748226803530-631.jpg||height="414" width="600"]]
3368
3369 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3370
3371
3372 (12) P01-40=12
3373
3374 Mechanical homing: Motor Z signal
3375
3376 Deceleration point: Home switch (HW)
3377
3378 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3379
3380 (% style="text-align:center" %)
3381 [[image:1748226829420-255.jpg||height="406" width="600"]]
3382
3383
3384 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3385
3386
3387
3388 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3389
3390 (% style="text-align:center" %)
3391 [[image:1748226863974-673.jpg||height="484" width="600"]]
3392
3393 When it starts to homing, HW=0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates, runs at a forward low speed, encounters a falling edge of HW, reverses, runs at a reverse low speed, and stops at the first Z signal after encountering a rising edge of HW.
3394
3395
3396
3397 ③ The deceleration point signal is valid when starting homing
3398
3399 (% style="text-align:center" %)
3400 [[image:1748226879060-830.jpg||height="414" width="600"]]
3401
3402 When starting to homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. The first Z signal after encountering the rising edge of HW will stop.
3403
3404 (13) P01-40=13
3405
3406 Mechanical homing: Motor Z signal
3407
3408 Deceleration point: Home switch (HW)
3409
3410 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3411
3412 [[image:1748226908598-664.jpg]]
3413
3414 (% style="text-align:center" %)
3415 [[image:1748227007116-603.jpg||height="443" width="600"]]
3416
3417 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and run at a reverse low speed. After encountering the falling edge of HW, reverse and run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3418
3419
3420 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3421
3422 (% style="text-align:center" %)
3423 [[image:1748227023585-740.jpg||height="472" width="600"]]
3424
3425 When it starts to homing, HW=0, it starts to homing at reverse high speed, encounters the limit switch, automatically reverses, runs at forward high speed, after encountering the rising edge of HW, decelerates and runs in reverse low speed, and encounters the falling edge of HW when running at reverse low speed, the first Z signal after encountering the rising edge of HW stops.
3426
3427 ③ The deceleration point signal is valid when starting homing
3428
3429 (% style="text-align:center" %)
3430 [[image:1748227043041-279.jpg||height="414" width="600"]]
3431
3432 When starting homing, HW=1 starts homing directly at reverse low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and forward low speed operation;
3433
3434
3435 (14) P01-40=14
3436
3437 Mechanical homing: Motor Z signal
3438
3439 Deceleration point: Home switch (HW)
3440
3441 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3442
3443 (% style="text-align:center" %)
3444 [[image:1748227060842-543.jpg||height="416" width="600"]]
3445
3446 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates and runs at reverse low speed. After encountering the falling edge of HW, it continues to run at reverse low speed, and then the first Z signal encountered stops.
3447
3448
3449 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3450
3451 (% style="text-align:center" %)
3452 [[image:1748227079908-302.jpg||height="445" width="600"]]
3453
3454 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates and runs in a reverse direction, and stops the first Z signal after encountering a falling edge of HW at a reverse low speed.
3455
3456
3457 ③ The deceleration point signal is valid when starting homing
3458
3459 (% style="text-align:center" %)
3460 [[image:1748227101511-101.jpg||height="414" width="600"]]
3461
3462 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3463
3464
3465 (15) P01-40=17
3466
3467 Mechanical homing: Negative overrun switch (NOT)
3468
3469 Deceleration point: Negative overrun switch (NOT)
3470
3471 ① The deceleration point signal is invalid when starting homing
3472
3473 (% style="text-align:center" %)
3474 [[image:1748227125161-655.jpg||height="295" width="600"]]
3475
3476 When it starts to homing, NOT = 0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops after encountering the falling edge of NOT.
3477
3478
3479 ② The deceleration point signal is valid when starting homing
3480
3481 (% style="text-align:center" %)
3482 [[image:1748227138852-942.jpg||height="324" width="600"]]
3483
3484 When starting homing, NOT=1, start homing directly at low speed, and stop after encountering the falling edge of NOT.
3485
3486
3487 (16) P01-40=18
3488
3489 Mechanical homing: Positive overrun switch (POT)
3490
3491 Deceleration point: Positive overrun switch (POT)
3492
3493 ① The deceleration point signal is invalid when starting homing
3494
3495 (% style="text-align:center" %)
3496 [[image:1748227153999-626.jpg||height="300" width="600"]]
3497
3498 When it starts to return to zero, POT=0, it starts to homing at a forward high speed, after encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops after encountering the falling edge of POT.
3499
3500
3501 ② The deceleration point signal is valid when starting homing
3502
3503 (% style="text-align:center" %)
3504 [[image:1748227169369-310.jpg||height="267" width="600"]]
3505
3506 When starting homing, POT=1, start homing at low speed in reverse directly, and stop when encountering POT falling edge;
3507
3508
3509
3510 (17) P01-40=19
3511
3512 Mechanical homing: Home switch (HW)
3513
3514 Deceleration point: Home switch (HW)
3515
3516 ① The deceleration point signal is invalid when starting homing
3517
3518 (% style="text-align:center" %)
3519 [[image:1748227186962-656.jpg||height="313" width="600"]]
3520
3521 When it starts to homing, HW=0, and it starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3522
3523
3524 ② The deceleration point signal is valid when starting homing
3525
3526 (% style="text-align:center" %)
3527 [[image:1748227202174-768.jpg||height="313" width="600"]]
3528
3529 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3530
3531
3532 (18) P01-40=20
3533
3534 Mechanical homing: Home switch (HW)
3535
3536 Deceleration point: Home switch (HW)
3537
3538 ① The deceleration point signal is invalid when starting homing
3539
3540 (% style="text-align:center" %)
3541 [[image:1748227247408-755.jpg||height="314" width="600"]]
3542
3543 When starting to homing, HW=0, directly start to homing at low speed, and stop after encountering the rising edge of HW;
3544
3545
3546 ② The deceleration point signal is valid when starting homing
3547
3548 (% style="text-align:center" %)
3549 [[image:1748227263354-495.jpg||height="313" width="600"]]
3550
3551 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, slow down and reverse the direction, run at a low speed in the forward direction, and stop when encountering the rising edge of HW.
3552
3553
3554 (19) P01-40=21
3555
3556 Mechanical homing: Home switch (HW)
3557
3558 Deceleration point: Home switch (HW)
3559
3560 ① The deceleration point signal is invalid when starting homing
3561
3562 (% style="text-align:center" %)
3563 [[image:1748227279599-847.jpg||height="314" width="600"]]
3564
3565 When it starts to homing, HW=0, it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3566
3567
3568 ② The deceleration point signal is valid when starting homing
3569
3570 (% style="text-align:center" %)
3571 [[image:1748227292762-413.jpg||height="313" width="600"]]
3572
3573 When starting back to zero, HW=1, it will start homing directly at low speed, and stop after encountering the falling edge of HW;
3574
3575
3576 (20) P01-40=22
3577
3578 Mechanical homing: Home switch (HW)
3579
3580 Deceleration point: Home switch (HW)
3581
3582 ① The deceleration point signal is invalid when starting homing
3583
3584 (% style="text-align:center" %)
3585 [[image:1748227358104-464.jpg||height="314" width="600"]]
3586
3587 When starting to homing, HW=0, directly reverse low speed starts to homing, and stops when encountering HW rising edge;
3588
3589
3590 Deceleration point signal is valid when homing start
3591
3592 (% style="text-align:center" %)
3593 [[image:1748227380961-172.jpg||height="343" width="600"]]
3594
3595 When starting to homing, HW=1, start to homing at a forward high speed, after encountering the falling edge of HW, slow down and reverse, run at a reverse low speed, and stop when encountering the rising edge of HW.
3596
3597
3598 (21) P01-40=23
3599
3600 Mechanical homing: Home switch (HW)
3601
3602 Deceleration point: Home switch (HW)
3603
3604 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3605
3606 (% style="text-align:center" %)
3607 [[image:1748227395851-339.jpg||height="387" width="600"]]
3608
3609 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3610
3611
3612 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3613
3614 (% style="text-align:center" %)
3615 [[image:1748227414217-295.jpg||height="385" width="600"]]
3616
3617 When you start homing, HW = 0, start homing at a forward high speed. When encountering the limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, slow down, continue to run at reverse low speed, and stop when encountering the HW falling edge.
3618
3619
3620
3621 ③ The deceleration point signal is valid when starting homing
3622
3623 (% style="text-align:center" %)
3624 [[image:1748227429391-234.jpg||height="385" width="600"]]
3625
3626 When it starts to homing, HW=1, it starts to homing at a reverse low speed, and stops when it encounters the falling edge of HW.
3627
3628
3629 (22) P01-40=24
3630
3631 Mechanical homing: Home switch (HW)
3632
3633 Deceleration point: Home switch (HW)
3634
3635 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3636
3637 (% style="text-align:center" %)
3638 [[image:1748227484547-328.jpg||height="385" width="600"]]
3639
3640 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3641
3642
3643 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3644
3645 (% style="text-align:center" %)
3646 [[image:1748227532124-334.jpg||height="385" width="600"]]
3647
3648 When it starts to homing, HW = 0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, runs at reverse high speed, encounters the rising edge of HW, decelerates and runs at reverse low speed, encounters the falling edge of HW, reverses, runs at forward low speed, and stops when encountering the rising edge of HW.
3649
3650
3651 ③ The deceleration point signal is valid when starting homing
3652
3653 (% style="text-align:center" %)
3654 [[image:1748227548455-494.jpg||height="387" width="600"]]
3655
3656 When starting with homing, HW = 1, it will directly reverse the low speed and start to homing. After encountering the falling edge of HW, it will reverse the direction and run at a forward low speed, and stop when encountering the rising edge of HW.
3657
3658
3659 (23) P01-40=25
3660
3661 Mechanical homing: Home switch (HW)
3662
3663 Deceleration point: Home switch (HW)
3664
3665 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3666
3667 (% style="text-align:center" %)
3668 [[image:1748227564603-199.jpg||height="385" width="600"]]
3669
3670 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3671
3672
3673 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3674
3675 (% style="text-align:center" %)
3676 [[image:1748227581797-586.jpg||height="385" width="600"]]
3677
3678 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerate and reverse to resume forward operation. After encountering the falling edge of HW at forward low speed, reverse. When running at reverse low speed, stop when encountering the rising edge of HW.
3679
3680
3681 ③ The deceleration point signal is valid when starting homing
3682
3683 (% style="text-align:center" %)
3684 [[image:1748227596969-949.jpg||height="385" width="600"]]
3685
3686 When starting homing, when HW=1, it starts to homing directly at low speed in the forward direction. After encountering the falling edge of HW, it stops at the rising edge of HW in the reverse low speed operation
3687
3688
3689 (24) P01-40=26
3690
3691 Mechanical homing: Home switch (HW)
3692
3693 Deceleration point: Home switch (HW)
3694
3695 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3696
3697 (% style="text-align:center" %)
3698 [[image:1748227611517-496.jpg||height="349" width="600"]]
3699
3700 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates, runs at a forward low speed, and stops when encountering the falling edge of HW.
3701
3702
3703 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3704
3705 (% style="text-align:center" %)
3706 [[image:1748227628144-968.jpg||height="385" width="600"]]
3707
3708 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerates and reverses to resume forward operation, and stops when encountering the falling edge of HW at forward low speed.
3709
3710
3711 ③ The deceleration point signal is valid when starting homing
3712
3713 (% style="text-align:center" %)
3714 [[image:1748227641046-963.jpg||height="343" width="600"]]
3715
3716 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3717
3718
3719 (25) P01-40=27
3720
3721 Mechanical homing: Home switch (HW)
3722
3723 Deceleration point: Home switch (HW)
3724
3725 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3726
3727 (% style="text-align:center" %)
3728 [[image:1748227660426-173.jpg||height="362" width="600"]]
3729
3730 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3731
3732
3733 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3734
3735 (% style="text-align:center" %)
3736 [[image:1748227698028-549.jpg||height="392" width="600"]]
3737
3738 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and continues to run at a forward low speed. When it encounters a falling edge of HW, it stops.
3739
3740
3741 ③ The deceleration point signal is valid when starting homing
3742
3743 (% style="text-align:center" %)
3744 [[image:1748227728238-666.jpg||height="394" width="600"]]
3745
3746 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3747
3748
3749 (26) P01-40=28
3750
3751 Mechanical homing: Home switch (HW)
3752
3753 Deceleration point: Home switch (HW)
3754
3755 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3756
3757 (% style="text-align:center" %)
3758 [[image:1748227742531-619.jpg||height="437" width="600"]]
3759
3760 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3761
3762
3763 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3764
3765 (% style="text-align:center" %)
3766 [[image:1751361620036-469.png||height="389" width="600"]]
3767
3768 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When encountering a limit switch, it automatically reverses and runs at a forward high speed. When encountering a rising edge of HW, it decelerates and runs at a forward low speed. When encountering a falling edge of HW, it reverses and runs at a reverse low speed. When encountering a rising edge of HW, it stops.
3769
3770
3771 ③ The deceleration point signal is valid when starting homing
3772
3773 (% style="text-align:center" %)
3774 [[image:1748227779034-947.jpg||height="394" width="600"]]
3775
3776 When starting with homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. When encountering the rising edge of HW, it will stop.
3777
3778
3779 (27) P01-40=29
3780
3781 Mechanical homing: Home switch (HW)
3782
3783 Deceleration point: Home switch (HW)
3784
3785 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3786
3787 (% style="text-align:center" %)
3788 [[image:1748227795620-564.jpg||height="432" width="600"]]
3789
3790 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3791
3792
3793 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3794
3795 (% style="text-align:center" %)
3796 [[image:1748227810884-219.jpg||height="395" width="600"]]
3797
3798 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. After encountering a rising edge of HW, it decelerates and runs in a reverse low speed. After encountering a falling edge of HW, it reverses. When running at a forward low speed, it stops when it encounters a rising edge of HW.
3799
3800 ③ The deceleration point signal is valid when starting homing
3801
3802 (% style="text-align:center" %)
3803 [[image:1748227826652-200.jpg||height="392" width="600"]]
3804
3805 When starting homing, when HW=1, it starts to homing directly at low speed in reverse direction. After encountering the falling edge of HW, it stops when running at low speed in reverse direction and forward direction and encountering the rising edge of HW
3806
3807
3808 (28) P01-40=30
3809
3810 Mechanical homing: Home switch (HW)
3811
3812 Deceleration point: Home switch (HW)
3813
3814 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3815
3816 (% style="text-align:center" %)
3817 [[image:1748227844268-953.jpg||height="437" width="600"]]
3818
3819 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates, runs at reverse low speed, and stops when encountering the falling edge of HW.
3820
3821
3822 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3823
3824 (% style="text-align:center" %)
3825 [[image:1748227859385-295.jpg||height="394" width="600"]]
3826
3827 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and runs in a reverse low speed. When it encounters a falling edge of HW, it stops.
3828
3829
3830 ③ The deceleration point signal is valid when starting homing
3831
3832 (% style="text-align:center" %)
3833 [[image:1748227876370-835.jpg||height="395" width="600"]]
3834
3835 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3836
3837
3838 (29) P01-40=33 and P01-40=34
3839
3840 Mechanical homing: Z signal.
3841
3842 Deceleration point: None
3843
3844 Homing mode 33: Reverse low speed operation, stop the first Z signal encountered
3845
3846 Homing mode 34: running at low speed in forward direction, stopping the first Z signal encountered
3847
3848 (% style="text-align:center" %)
3849 [[image:1748227893108-875.jpg||height="161" width="600"]]
3850
3851
3852 (30) P01-40=35
3853
3854 Homing mode 35, taking the current position as the mechanical homing, after triggering the homing (P01-39: 0x00→0x01/0x00 → 0x02);
3855
3856 After the homing is completed, according to the set value of P10-08 (homing bias compensation), P10-06 (encoder multi-turn reset operation) is executed.
3857
3858
3859