Wiki source code of 06 Operation

Version 109.1 by Iris on 2025/07/21 16:52

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 0: standard setting (CW is forward rotation)
90
91 1: reverse mode (CCW is forward rotation)
92 )))|-
93
94 Table 6-3 Rotation direction parameters** **
95
96 == **Braking resistor** ==
97
98 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
99
100 The basis for judging whether the braking resistor is built-in or external.
101
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
103 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
104
105 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
106 **Setting method**
107 )))|=(% style="width: 126px;" %)(((
108 **Effective time**
109 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
110 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
111 Operation setting
112 )))|(% style="width:126px" %)(((
113 Effective immediately
114 )))|0|0 to 3|(((
115 0: use built-in braking resistor
116
117 1: use external braking resistor and natural cooling
118
119 2: use external braking resistor and forced air cooling; (cannot be set)
120
121 3: No braking resistor is used, it is all absorbed by capacitor.
122 )))|-
123 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G , VD2F-030SA1P-010SA1P and VD2L-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
124 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
125 Operation setting
126 )))|(% style="width:126px" %)(((
127 Effective immediately
128 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
129 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
130 Operation setting
131 )))|(% style="width:126px" %)(((
132 Effective immediately
133 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
134
135 Table 6-4 Braking resistor parameters
136
137 == **Servo operation** ==
138
139 **Set the servo enable (S-ON) to valid (ON)**
140
141 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
142
143 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
144
145 **Input the instruction and the motor rotates**
146
147 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
148
149 **Timing diagram of power on**
150
151 (% style="text-align:center" %)
152 (((
153 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
154 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
155 )))
156
157 == Servo shutdown ==
158
159 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
160
161 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
162 |=(% style="width: 150px;" %)Free stop|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
163 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
164
165 Table 6-5 Comparison of two shutdown modes
166
167 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
168 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
169
170 Table 6-6 Comparison of two shutdown status
171
172 **Servo enable (S-ON) OFF shutdown**
173
174 The related parameters of the servo OFF shutdown mode are shown in the table below.
175
176 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
177 **Setting method**
178 )))|=(% style="width: 134px;" %)(((
179 **Effective time**
180 )))|=(% style="width: 86px;" %)(((
181 **Default value**
182 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
183 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
184 Shutdown
185
186 setting
187 )))|(% style="width:134px" %)(((
188 Effective
189
190 immediately
191 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
192 0: Free stop, and the motor shaft remains free status.
193
194 1: Zero-speed stop, and the motor axis remains free status.
195 )))|-
196
197 Table 6-7 Servo OFF shutdown mode parameters details
198
199 **Emergency shutdown**
200
201 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
202
203 Estop mode 1 (deceleration stop):
204
205 ~1. Configurate DI function code: 8 [ESTOP]
206
207 2. Set P1-5 shutdown deceleration time.
208
209 3. Trigger DI emergency shutdown.
210
211 4. Servo emergency shutdown and deceleration to zero speed.
212
213 Estop mode 2:
214
215 ~1. Configurate DI function code: 1 [Servo enable SON]
216
217 2. Set P1-05 shutdown deceleration time.
218
219 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
220
221 4. Trigger DI to turn off servo enable SON.
222
223 5.Servo enable turns off and stops and decelerates to zero speed.
224
225 |Function code|Name|(((
226 Setting
227
228 method
229 )))|(((
230 Effective
231
232 time
233 )))|Default|Range|Definition|Unit
234 |P01-05|Shutdown deceleration time|(((
235 Shutdown
236
237 setting
238 )))|(((
239 immediately
240
241 Effective
242 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
243
244 **Overtravel shutdown**
245
246 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
247
248 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
249
250 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
251
252 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
253 **Setting method**
254 )))|=(% style="width: 114px;" %)(((
255 **Effective time**
256 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
257 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 0: OFF (not used)
259
260 01: S-ON servo enable
261
262 02: A-CLR fault and Warning Clear
263
264 03: POT forward drive prohibition
265
266 04: NOT Reverse drive prohibition
267
268 05: ZCLAMP Zero speed
269
270 06: CL Clear deviation counter
271
272 07: C-SIGN Inverted instruction
273
274 08: E-STOP Emergency stop
275
276 09: GEAR-SEL Electronic Gear Switch 1
277
278 10: GAIN-SEL gain switch
279
280 11: INH Instruction pulse prohibited input
281
282 12: VSSEL Vibration control switch input
283
284 13: INSPD1 Internal speed instruction selection 1
285
286 14: INSPD2 Internal speed instruction selection 2
287
288 15: INSPD3 Internal speedinstruction selection 3
289
290 16: J-SEL inertia ratio switch (not implemented yet)
291
292 17: MixModesel mixed mode selection
293
294 20: Internal multi-segment position enable signal
295
296 21: Internal multi-segment position selection 1
297
298 22: Internal multi-segment position selection 2
299
300 23: Internal multi-segment position selection 3
301
302 24: Internal multi-segment position selection 4
303 )))|-
304 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
305 Effective immediately
306 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
307 DI port input logic validity function selection.
308
309 0: Normally open input. Low level valid (switch on);
310
311 1: Normally closed input. High level valid (switch off);
312 )))|-
313 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
314 Effective immediately
315 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
316 Select the DI_3 port type to enable
317
318 0: Hardware DI_3 input terminal
319
320 1: Virtual VDI_3 input terminal
321 )))|-
322 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
323 Operation setting
324 )))|(% style="width:114px" %)(((
325 again Power-on
326 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
327 0: OFF (not used)
328
329 01: SON Servo enable
330
331 02: A-CLR Fault and Warning Clear
332
333 03: POT Forward drive prohibition
334
335 04: NOT Reverse drive prohibition
336
337 05: ZCLAMP Zero speed
338
339 06: CL Clear deviation counter
340
341 07: C-SIGN Inverted instruction
342
343 08: E-STOP Emergency shutdown
344
345 09: GEAR-SEL Electronic Gear Switch 1
346
347 10: GAIN-SEL gain switch
348
349 11: INH Instruction pulse prohibited input
350
351 12: VSSEL Vibration control switch input
352
353 13: INSPD1 Internal speed instruction selection 1
354
355 14: INSPD2 Internal speed instruction selection 2
356
357 15: INSPD3 Internal speed instruction selection 3
358
359 16: J-SEL inertia ratio switch (not implemented yet)
360
361 17: MixModesel mixed mode selection
362
363 20: Internal multi-segment position enable signal
364
365 21: Internal multi-segment position selection 1
366
367 22: Internal multi-segment position selection 2
368
369 23: Internal multi-segment position selection 3
370
371 24: Internal multi-segment position selection 4
372 )))|-
373 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
374 Effective immediately
375 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
376 DI port input logic validity function selection.
377
378 0: Normally open input. Low level valid (switch on);
379
380 1: Normally closed input. High level valid (switch off);
381 )))|-
382 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
383 Effective immediately
384 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
385 Select the DI_4 port type to enable
386
387 0: Hardware DI_4 input terminal
388
389 1: Virtual VDI_4 input terminal
390 )))|-
391
392 Table 6-8 DI3 and DI4 channel parameters
393
394 **(4) Malfunction shutdown**
395
396 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
397
398 == Brake device ==
399
400 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
401
402 (% class="warning" %)|(((
403 (% style="text-align:center" %)
404 [[image:image-20220611151617-1.png]]
405 )))
406 |(((
407 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
408
409 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
410
411 ✎The brake coil has no polarity;
412
413 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
414
415 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
416 )))
417
418 **Wiring of brake device**
419
420 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
421
422
423 (% style="text-align:center" %)
424 (((
425 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
426 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
427 )))
428
429 (% class="warning" %)|(((
430 (% style="text-align:center" %)
431 [[image:image-20220611151642-2.png]]
432 )))
433 |(((
434 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
435
436 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
437
438 ✎It is recommended to use cables above 0.5 mm².
439 )))
440
441 **Brake software setting**
442
443 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
444
445 Related function code is as below.
446
447 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
448 **Effective time**
449 )))
450 |=141|(% style="width:241px" %)(((
451 BRK-OFF Brake output
452 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
453
454 Table 6-2 Relevant function codes for brake setting
455
456 |=(% scope="row" %)**Function code**|=**Name**|=(((
457 **Setting method**
458 )))|=(((
459 **Effective time**
460 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
461 |=P1-30|Delay from brake output to instruction reception|(((
462 Operation setting
463 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
464 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
465 Operation setting
466 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
467 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
468 Operation setting
469 )))|Effective immediately|30|0 to 3000|(((
470 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
471
472 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
473 )))|rpm
474 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
475 Operation setting
476 )))|Effective immediately|500|1 to 1000|(((
477 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
478
479 When brake output (BRK-OFF) is not allocated, this function code has no effect.
480 )))|ms
481
482 Table 6-9 Brake setting function codes
483
484 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
485
486 **Servo drive brake timing in normal state**
487
488 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
489
490 * Brake timing when servo motor is stationary
491
492 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
493
494 (% class="warning" %)|(((
495 (% style="text-align:center" %)
496 [[image:image-20220611151705-3.png]]
497 )))
498 |(((
499 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
500
501 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
502 )))
503
504 (% style="text-align:center" %)
505 (((
506 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
507 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
508 )))
509
510 (% class="box infomessage" %)
511 (((
512 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
513 )))
514
515 * The brake timing when servo motor rotates
516
517 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
518
519 (% class="warning" %)|(((
520 (% style="text-align:center" %)
521 [[image:image-20220611151719-4.png]]
522 )))
523 |(((
524 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
525
526 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
527
528 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
529
530 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
531
532 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
533 )))
534
535 (% style="text-align:center" %)
536 (((
537 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
538 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
539 )))
540
541 **Brake timing when the servo drive fails**
542
543 The brake timing (free shutdown) in the fault status is as follows.
544
545 (% style="text-align:center" %)
546 (((
547 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
548 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
549 )))
550
551 = **Position control mode** =
552
553 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
554
555 (% style="text-align:center" %)
556 (((
557 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
558 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
559 )))
560
561 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
562
563 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
564 **Setting method**
565 )))|=(((
566 **Effective time**
567 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
568 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
569 Operation setting
570 )))|(((
571 immediately Effective
572 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
573 1: position control
574
575 2: speed control
576
577 3: torque control
578
579 4: position/speed mix control
580
581 5: position/torque mix control
582
583 6: speed /torque mix control
584
585 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
586 )))|(% style="width:151px" %)-
587
588 Table 6-10 Control mode parameters
589
590 == Position instruction input setting ==
591
592 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
593
594 |=(% scope="row" %)**Function code**|=**Name**|=(((
595 **Setting method**
596 )))|=(((
597 **Effective time**
598 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
599 |=P01-06|Position instruction source|(((
600 Operation setting
601 )))|(((
602 immediately Effective
603 )))|0|0 to 1|(((
604 0: pulse instruction
605
606 1: internal position instruction
607 )))|-
608
609 Table 6-12 Position instruction source parameter
610
611 **The source of position instruction is pulse instruction (P01-06=0)**
612
613 Low-speed pulse instruction input
614
615 |(% style="text-align:center" %)(((
616 (% class="wikigeneratedid" %)
617 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
618 )))|(% style="text-align:center" %)(((
619 (% class="wikigeneratedid" %)
620 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
621 )))
622 |(% colspan="2" %)Figure 6-7 Position instruction input setting
623
624 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
625
626 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
627
628 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
629 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
630 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
631
632 Table 6-13 Pulse input specifications
633
634 * Differential input
635
636 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
637
638 (% style="text-align:center" %)
639 (((
640 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
641 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
642 )))
643
644 (% class="box infomessage" %)
645 (((
646 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
647 )))
648
649 * Open collector input
650
651 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
652
653 (% style="text-align:center" %)
654 (((
655 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
656 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
657 )))
658
659
660 (% class="box infomessage" %)
661 (((
662 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
663 )))
664
665 * Position pulse frequency and anti-interference level
666
667 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
668
669 (% style="text-align:center" %)
670 (((
671 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
672 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
673 )))
674
675 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
676
677 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
678 **Setting method**
679 )))|=(((
680 **Effective time**
681 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
682 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
683 Operation setting
684 )))|(% rowspan="3" %)(((
685 Power-on again
686 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
687 Set the anti-interference level of external pulse instruction.
688
689 0: no filtering;
690
691 1: Filtering time 128ns
692
693 2: Filtering time 256ns
694
695 3: Filtering time 512ns
696
697 4: Filtering time 1.024us
698
699 5: Filtering time 2.048us
700
701 6: Filtering time 4.096us
702
703 7: Filtering time 8.192us
704
705 8: Filtering time 16.384us
706
707 9:
708
709 VD2: Filtering time 32.768us
710
711 VD2F: Filtering time 25.5us
712 )))|(% rowspan="3" %)-
713
714 Table 6-14 Position pulse frequency and anti-interference level parameters
715
716 |**Function code**|**Name**|(((
717 **Setting**
718
719 **method**
720 )))|(((
721 **Effective**
722
723 **time**
724 )))|**Default value**|**Range**|**Definition**|**Unit**
725 |P00-14|Position pulse anti-interference level|(((
726 Operation
727
728 setting
729 )))|(((
730 Power-on
731
732 again
733 )))|2|0 to 8|(((
734 VD2L drive set the anti-interference level of external pulse instruction.
735
736 0: no filtering;
737
738 1: Filtering time 111.1ns
739
740 2: Filtering time 222.2ns
741
742 3: Filtering time 444.4ns
743
744 4: Filtering time 888.8ns
745
746 5: Filtering time 1777.7ns
747
748 6: Filtering time 3555.5ns
749
750 7: Filtering time 7111.7ns
751
752 8: Filtering time 14222.2ns
753
754
755 )))|-
756
757 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
758
759
760 * Position pulse type selection
761
762 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
763
764 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
765 **Setting method**
766 )))|=(% style="width: 109px;" %)(((
767 **Effective time**
768 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
769 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
770 Operation setting
771 )))|(% style="width:109px" %)(((
772 Power-on again
773 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
774 0: direction + pulse (positive logic)
775
776 1: CW/CCW
777
778 2: A, B phase quadrature pulse (4 times frequency)
779
780 3: Direction + pulse (negative logic)
781
782 4: CW/CCW (negative logic)
783
784 5: A, B phase quadrature pulse (4 times frequency negative logic)
785
786 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
787 )))|-
788
789 Table 6-15 Position pulse type selection parameter
790
791 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
792 |=0|(% style="width:200px" %)(((
793 Direction + pulse
794
795 (Positive logic)
796 )))|(% style="width:161px" %)(((
797 PULSE
798
799 SIGN
800 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
801 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
802 PULSE (CW)
803
804 SIGN (CCW)
805 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
806 |=2|(% style="width:200px" %)(((
807 AB phase orthogonal
808
809 pulse (4 times frequency)
810 )))|(% style="width:161px" %)(((
811 PULSE (Phase A)
812
813 SIGN (Phase B)
814 )))|(((
815
816
817 [[image:image-20220707094358-9.jpeg]]
818
819 Phase A is 90° ahead of Phase B
820 )))|(((
821
822
823 [[image:image-20220707094407-10.jpeg]]
824
825 Phase B is 90° ahead of Phase A
826 )))
827 |=3|(% style="width:200px" %)(((
828 Direction + pulse
829
830 (Negative logic)
831 )))|(% style="width:161px" %)(((
832 PULSE
833
834 SIGN
835 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
836 |=4|(% style="width:200px" %)(((
837 CW/CCW
838
839 (Negative logic)
840 )))|(% style="width:161px" %)(((
841 PULSE (CW)
842
843 SIGN (CCW)
844 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
845 |=5|(% style="width:200px" %)(((
846 AB phase orthogonal
847
848 pulse (4 times frequency negative logic)
849 )))|(% style="width:161px" %)(((
850 PULSE (Phase A)
851
852 SIGN (Phase B)
853 )))|(((
854
855
856 [[image:image-20220707094429-14.jpeg]]
857
858 Phase B is ahead of A phase by 90°
859 )))|(((
860
861
862 [[image:image-20220707094437-15.jpeg]]
863
864 Phase A is ahead of B phase by 90°
865 )))
866
867 Table 6-16 Pulse description
868
869 **The source of position instruction is internal position instruction (P01-06=1)**
870
871 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
872
873 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
874
875 (% style="text-align:center" %)
876 (((
877 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
878 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
879 )))
880
881
882 * Set multi-segment position running mode
883
884 |=(% scope="row" %)**Function code**|=**Name**|=(((
885 **Setting method**
886 )))|=(((
887 **Effective time**
888 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
889 |=P07-01|Multi-segment position running mode|(((
890 Shutdown setting
891 )))|(((
892 Effective immediately
893 )))|0|0 to 2|(((
894 0: Single running
895
896 1: Cycle running
897
898 2: DI switching running
899 )))|-
900 |=P07-02|Start segment number|(((
901 Shutdown setting
902 )))|(((
903 Effective immediately
904 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
905 |=P07-03|End segment number|(((
906 Shutdown setting
907 )))|(((
908 Effective immediately
909 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
910 |=P07-04|Margin processing method|(((
911 Shutdown setting
912 )))|(((
913 Effective immediately
914 )))|0|0 to 1|(((
915 0: Run the remaining segments
916
917 1: Run again from the start segment
918 )))|-
919 |=P07-05|Displacement instruction type|(((
920 Shutdown setting
921 )))|(((
922 Effective immediately
923 )))|0|0 to 1|(((
924 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
925
926 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
927 )))|-
928
929 Table 6-17 multi-segment position running mode parameters
930
931 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
932
933 1. Single running
934
935 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
936
937 (% style="text-align:center" %)
938 (((
939 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
940 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
941 )))
942
943 * 2. Cycle running
944
945 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
946
947 (% style="text-align:center" %)
948 (((
949 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
950 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
951 )))
952
953 (% class="warning" %)|(((
954 (% style="text-align:center" %)
955 [[image:image-20220611151917-5.png]]
956 )))
957 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
958
959 (% start="3" %)
960 1. DI switching running
961
962 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
963
964 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
965 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
966 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
967 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
968 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
969
970 Table 6-18 DI function code
971
972 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
973
974 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
975 |=0|0|0|0|1
976 |=0|0|0|1|2
977 |=0|0|1|0|3
978 |=0|0|1|1|4
979 |=0|1|0|0|5
980 |=0|1|0|1|6
981 |=0|1|1|0|7
982 |=0|1|1|1|8
983 |=1|0|0|0|9
984 |=1|0|0|1|10
985 |=1|0|1|0|11
986 |=1|0|1|1|12
987 |=1|1|0|0|13
988 |=1|1|0|1|14
989 |=1|1|1|0|15
990 |=1|1|1|1|16
991
992 Table 6-20 INPOS corresponds to running segment number
993
994 The operating curve in this running mode is shown in __Figure 6-14__.
995
996 (% style="text-align:center" %)
997 (((
998 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
999 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
1000 )))
1001
1002 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
1003
1004 **Run the remaining segments**
1005
1006 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
1007
1008 (% style="text-align:center" %)
1009 (((
1010 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1011 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
1012 )))
1013
1014 (% style="text-align:center" %)
1015 (((
1016 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
1017 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
1018 )))
1019
1020 **Run again from the start segment**
1021
1022 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
1023
1024 (% style="text-align:center" %)
1025 (((
1026 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1027 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
1028 )))
1029
1030 (% style="text-align:center" %)
1031 (((
1032 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1033 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
1034 )))
1035
1036 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
1037
1038 * Relative position instruction
1039
1040 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
1041
1042 |(((
1043 (% style="text-align:center" %)
1044 (((
1045 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1046 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
1047 )))
1048 )))|(((
1049 (% style="text-align:center" %)
1050 (((
1051 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1052 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
1053 )))
1054 )))
1055
1056 * Absolute position instruction
1057
1058 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
1059
1060 |(((
1061 (% style="text-align:center" %)
1062 (((
1063 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1064 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
1065 )))
1066 )))|(((
1067 (% style="text-align:center" %)
1068 (((
1069 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1070 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1071 )))
1072 )))
1073
1074 * Multi-segment position running curve setting
1075
1076 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1077
1078 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1079 |=P07-09|(((
1080 1st segment
1081
1082 displacement
1083 )))|(((
1084 Operation setting
1085 )))|(((
1086 Effective immediately
1087 )))|10000|(((
1088 -2147483647 to
1089
1090 2147483646
1091 )))|Position instruction, positive and negative values could be set|-
1092 |=P07-10|Maximum speed of the 1st displacement|(((
1093 Operation setting
1094 )))|(((
1095 Effective immediately
1096 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1097 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1098 Operation setting
1099 )))|(((
1100 Effective immediately
1101 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1102 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1103 Operation setting
1104 )))|(((
1105 Effective immediately
1106 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1107
1108 Table 6-21 The 1st position operation curve parameters table
1109
1110 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1111
1112 (% style="text-align:center" %)
1113 (((
1114 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1115 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1116 )))
1117
1118
1119 * multi-segment position instruction enable
1120
1121 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1122
1123 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1124 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1125 DI port logic invalid: Does not affect the current operation of the servo motor.
1126
1127 DI port logic valid: Motor runs multi-segment position
1128 )))
1129
1130 (% style="text-align:center" %)
1131 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1132
1133 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1134
1135 == Electronic gear ratio ==
1136
1137 **Definition of electronic gear ratio**
1138
1139 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1140
1141 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1142
1143 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1144
1145 (% style="text-align:center" %)
1146 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1147
1148 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1149
1150 **Setting steps of electronic gear ratio**
1151
1152 (% style="text-align:center" %)
1153 (((
1154 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1155 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1156 )))
1157
1158 **lectronic gear ratio switch setting**
1159
1160 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1161
1162 |=(% scope="row" %)**Function code**|=**Name**|=(((
1163 **Setting method**
1164 )))|=(((
1165 **Effective time**
1166 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1167 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1168 Shutdown setting
1169 )))|(((
1170 Effective immediately
1171 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1172 Instruction pulse
1173
1174 unit
1175 )))
1176 |=P00-17|(((
1177 Electronic gear 1
1178
1179 numerator
1180 )))|Operation setting|(((
1181 Effective immediately
1182 )))|1|1 to 4294967294|(((
1183 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1184
1185 **VD2L: 1-2147483647**
1186 )))|-
1187 |=P00-18|(((
1188 Electronic gear 1
1189
1190 denominator
1191 )))|(((
1192 Operation setting
1193 )))|(((
1194 Effective immediately
1195 )))|1|1 to 4294967294|(((
1196 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1197
1198 **VD2L: 1-2147483647**
1199 )))|-
1200 |=P00-19|(((
1201 Electronic gear 2
1202
1203 numerator
1204 )))|Operation setting|(((
1205 Effective immediately
1206 )))|1|1 to 4294967294|(((
1207 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1208
1209 **VD2L: 1-2147483647**
1210 )))|-
1211 |=P00-20|(((
1212 Electronic gear 2
1213
1214 denominator
1215 )))|Operation setting|(((
1216 Effective immediately
1217 )))|1|1 to 4294967294|(((
1218 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1219
1220 **VD2L: 1-2147483647**
1221 )))|-
1222
1223 Table 6-20 Electronic gear ratio function code
1224
1225 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1226
1227 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1228 |=09|GEAR-SEL electronic gear switch 1|(((
1229 DI port logic invalid: electronic gear ratio 1
1230
1231 DI port logic valid: electronic gear ratio 2
1232 )))
1233
1234 Table 6-21 Switching conditions of electronic gear ratio group
1235
1236 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1237 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1238 (% style="text-align:center" %)
1239 [[image:image-20220707101328-21.png]]
1240 )))
1241 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1242 (% style="text-align:center" %)
1243 [[image:image-20220707101336-22.png]]
1244 )))
1245 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1246 (% style="text-align:center" %)
1247 [[image:image-20220707101341-23.png]]
1248 )))
1249
1250 Table 6-22 Application of electronic gear ratio
1251
1252 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1253
1254 == Position instruction filtering ==
1255
1256 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1257
1258 In the following situations, position instruction filtering should be added.
1259
1260 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1261 1. The pulse instruction frequency is low;
1262 1. When the electronic gear ratio is 10 times or more.
1263
1264 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1265
1266 (% style="text-align:center" %)
1267 (((
1268 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1269 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1270 )))
1271
1272 |=(% scope="row" %)**Function code**|=**Name**|=(((
1273 **Setting method**
1274 )))|=(((
1275 **Effective time**
1276 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1277 |=P04-01|Pulse instruction filtering method|(((
1278 Shutdown setting
1279 )))|(((
1280 Effective immediately
1281 )))|0|0 to 1|(((
1282 0: 1st-order low-pass filtering
1283
1284 1: average filtering
1285 )))|-
1286 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1287 Effective immediately
1288 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1289 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1290 Effective immediately
1291 )))|0|0 to 128|Position instruction average filtering time constant|ms
1292
1293 Table 6-25 Position instruction filter function code
1294
1295 == Clearance of position deviation ==
1296
1297 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1298
1299 Position deviation = (position instruction-position feedback) (encoder unit)
1300
1301 == Position-related DO output function ==
1302
1303 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1304
1305 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1306 **Positioning completion/positioning approach output**
1307
1308 (% class="wikigeneratedid" %)
1309 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1310
1311 (% style="text-align:center" %)
1312 (((
1313 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1314 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1315 )))
1316
1317 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1318
1319 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1320
1321 (% style="text-align:center" %)
1322 (((
1323 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1324 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1325 )))
1326
1327 |=(% scope="row" %)**Function code**|=**Name**|=(((
1328 **Setting method**
1329 )))|=(% style="width: 129px;" %)(((
1330 **Effective time**
1331 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1332 |=P05-12|Positioning completion threshold|(((
1333 Operation setting
1334 )))|(% style="width:129px" %)(((
1335 Effective immediately
1336 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1337 |=P05-13|Positioning approach threshold|(((
1338 Operation setting
1339 )))|(% style="width:129px" %)(((
1340 Effective immediately
1341 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1342 |=P05-14|Position detection window time|(((
1343 Operation setting
1344 )))|(% style="width:129px" %)(((
1345 Effective immediately
1346 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1347 |=P05-15|Positioning signal hold time|(((
1348 Operation setting
1349 )))|(% style="width:129px" %)(((
1350 Effective immediately
1351 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1352
1353 Table 6-26 Function code parameters of positioning completion
1354
1355 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1356 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1357 |=135|(((
1358 P-NEAR positioning close
1359 )))|(((
1360 Output this signal indicates that the servo drive position is close.
1361 )))
1362
1363 Table 6-27 Description of DO rotation detection function code
1364
1365 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1366
1367 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1368
1369 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1370
1371 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1372
1373 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1374
1375 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1376
1377 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1378
1379 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1380
1381
1382 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1383 |DO_2 channel function selection|Operation setting|Effective immediately|130|128-149|DI/DO|-
1384 |(% colspan="8" %)(((
1385 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1386
1387 |Setting value|DO channel function| |Setting value|DO channel function
1388 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1389 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1390 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1391 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1392 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1393 |133|ZSP (zero speed signal)| |144|N/A
1394 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1395 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1396 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1397 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1398 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1399
1400 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1401
1402 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1403
1404 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1405
1406 Note 2:
1407
1408 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1409
1410 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1411
1412 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1413
1414 ④VD2L does not support function code 149.
1415 )))
1416
1417 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1418 |DO_3 channel function selection|Operation setting|Effective immediately|129|128-149|DI/DO|-
1419 |(% colspan="8" %)(((
1420 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1421
1422 |Setting value|DO channel function| |Setting value|DO channel function
1423 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1424 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1425 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1426 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1427 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1428 |133|ZSP (zero speed signal)| |144|None
1429 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1430 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1431 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1432 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1433 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1434
1435 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1436
1437 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1438
1439 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1440
1441 **Note 2:**
1442
1443 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1444
1445 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1446
1447 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1448
1449 ④VD2L does not support function code 149.
1450 )))
1451
1452 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1453 |DO_4 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1454 |(% colspan="8" %)(((
1455 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1456
1457 |Setting value|DO channel function| |Setting value|DO channel function
1458 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1459 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1460 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1461 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1462 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1463 |133|ZSP (zero speed signal)| |144|None
1464 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1465 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1466 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1467 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1468 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1469
1470 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1471
1472 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1473
1474 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1475
1476 **Note 2:**
1477
1478 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1479
1480 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1481
1482 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1483
1484 ④VD2L does not support function code 149.
1485 )))
1486
1487 = **Speed control mode** =
1488
1489 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1490
1491 (% style="text-align:center" %)
1492 (((
1493 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1494 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1495 )))
1496
1497 == Speed instruction input setting ==
1498
1499 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1500
1501 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1502 **Setting method**
1503 )))|=(% style="width: 125px;" %)(((
1504 **Effective time**
1505 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1506 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1507 Shutdown setting
1508 )))|(% style="width:125px" %)(((
1509 Effective immediately
1510 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1511 0: internal speed instruction
1512
1513 1: AI_1 analog input (not supported by **VD2F and VD2L**)
1514 )))|-
1515
1516 Table 6-26 Speed instruction source parameter
1517
1518 **Speed instruction source is internal speed instruction (P01-01=0)**
1519
1520 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1521
1522 (% style="width:1141px" %)
1523 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1524 **Setting**
1525
1526 **method**
1527 )))|=(% colspan="2" %)(((
1528 **Effective**
1529
1530 **time**
1531 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1532 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1533 Internal speed
1534
1535 Instruction 0
1536 )))|(% colspan="2" %)(((
1537 Operation
1538
1539 setting
1540 )))|(% colspan="2" %)(((
1541 Effective
1542
1543 immediately
1544 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1545 Internal speed instruction 0
1546
1547 When DI input port:
1548
1549 15-INSPD3: 0
1550
1551 14-INSPD2: 0
1552
1553 13-INSPD1: 0,
1554
1555 select this speed instruction to be effective.
1556 )))|(% colspan="2" %)rpm
1557 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1558 Internal speed
1559
1560 Instruction 1
1561 )))|(% colspan="2" %)(((
1562 Operation
1563
1564 setting
1565 )))|(% colspan="2" %)(((
1566 Effective
1567
1568 immediately
1569 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1570 Internal speed instruction 1
1571
1572 When DI input port:
1573
1574 15-INSPD3: 0
1575
1576 14-INSPD2: 0
1577
1578 13-INSPD1: 1,
1579
1580 Select this speed instruction to be effective.
1581 )))|(% colspan="2" %)rpm
1582 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1583 Internal speed
1584
1585 Instruction 2
1586 )))|(% colspan="2" %)(((
1587 Operation
1588
1589 setting
1590 )))|(% colspan="2" %)(((
1591 Effective
1592
1593 immediately
1594 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1595 Internal speed instruction 2
1596
1597 When DI input port:
1598
1599 15-INSPD3: 0
1600
1601 14-INSPD2: 1
1602
1603 13-INSPD1: 0,
1604
1605 Select this speed instruction to be effective.
1606 )))|(% colspan="2" %)rpm
1607 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1608 Internal speed
1609
1610 Instruction 3
1611 )))|(% colspan="2" %)(((
1612 Operation
1613
1614 setting
1615 )))|(% colspan="2" %)(((
1616 Effective
1617
1618 immediately
1619 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1620 Internal speed instruction 3
1621
1622 When DI input port:
1623
1624 15-INSPD3: 0
1625
1626 14-INSPD2: 1
1627
1628 13-INSPD1: 1,
1629
1630 Select this speed instruction to be effective.
1631 )))|(% colspan="2" %)rpm
1632 |=P01-26|(% colspan="2" %)(((
1633 Internal speed
1634
1635 Instruction 4
1636 )))|(% colspan="2" %)(((
1637 Operation
1638
1639 setting
1640 )))|(% colspan="2" %)(((
1641 Effective
1642
1643 immediately
1644 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1645 Internal speed instruction 4
1646
1647 When DI input port:
1648
1649 15-INSPD3: 1
1650
1651 14-INSPD2: 0
1652
1653 13-INSPD1: 0,
1654
1655 Select this speed instruction to be effective.
1656 )))|(% colspan="1" %)rpm
1657 |=P01-27|(% colspan="2" %)(((
1658 Internal speed
1659
1660 Instruction 5
1661 )))|(% colspan="2" %)(((
1662 Operation
1663
1664 setting
1665 )))|(% colspan="2" %)(((
1666 Effective
1667
1668 immediately
1669 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1670 Internal speed instruction 5
1671
1672 When DI input port:
1673
1674 15-INSPD3: 1
1675
1676 14-INSPD2: 0
1677
1678 13-INSPD1: 1,
1679
1680 Select this speed instruction to be effective.
1681 )))|(% colspan="1" %)rpm
1682 |=P01-28|(% colspan="2" %)(((
1683 Internal speed
1684
1685 Instruction 6
1686 )))|(% colspan="2" %)(((
1687 Operation
1688
1689 setting
1690 )))|(% colspan="2" %)(((
1691 Effective
1692
1693 immediately
1694 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1695 Internal speed instruction 6
1696
1697 When DI input port:
1698
1699 15-INSPD3: 1
1700
1701 14-INSPD2: 1
1702
1703 13-INSPD1: 0,
1704
1705 Select this speed instruction to be effective.
1706 )))|(% colspan="1" %)rpm
1707 |=P01-29|(% colspan="2" %)(((
1708 Internal speed
1709
1710 Instruction 7
1711 )))|(% colspan="2" %)(((
1712 Operation
1713
1714 setting
1715 )))|(% colspan="2" %)(((
1716 Effective
1717
1718 immediately
1719 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1720 Internal speed instruction 7
1721
1722 When DI input port:
1723
1724 15-INSPD3: 1
1725
1726 14-INSPD2: 1
1727
1728 13-INSPD1: 1,
1729
1730 Select this speed instruction to be effective.
1731 )))|(% colspan="1" %)rpm
1732
1733 Table 6-27 Internal speed instruction parameters
1734
1735 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1736 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1737 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1738 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1739
1740 Table 6-28 DI multi-speed function code description
1741
1742 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1743
1744
1745 (% style="margin-left:auto; margin-right:auto" %)
1746 |=(% style="text-align: center; vertical-align: middle;" %)**INSPD3**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD2**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD1**|=(% style="text-align: center; vertical-align: middle;" %)**Running segment number**|=(% style="text-align: center; vertical-align: middle;" %)**Internal speed instruction number**
1747 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1748 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1749 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1750 |(% colspan="5" style="text-align:center; vertical-align:middle" %)......
1751 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1752
1753 Table 6-29 Correspondence between INSPD bits and segment numbers
1754
1755 (% style="text-align:center" %)
1756 (((
1757 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1758 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1759 )))
1760
1761 **Speed instruction source is internal speed instruction (P01-01=1)**
1762
1763 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1764
1765 (% style="text-align:center" %)
1766 (((
1767 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1768 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1769 )))
1770
1771 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1772
1773 (% style="text-align:center" %)
1774 (((
1775 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1776 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1777 )))
1778
1779 Explanation of related terms:
1780
1781 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1782 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1783 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1784
1785 (% style="text-align:center" %)
1786 (((
1787 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1788 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1789 )))
1790
1791 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1792 |=P05-01(((
1793
1794 )))|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1795 |=P05-02(((
1796
1797 )))|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1798 |=P05-03(((
1799
1800 )))|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1801 |=P05-04(((
1802
1803 )))|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1804
1805 (% class="box infomessage" %)
1806 (((
1807 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
1808 )))
1809
1810 == Acceleration and deceleration time setting ==
1811
1812 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1813
1814 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1815
1816 (% style="text-align:center" %)
1817 (((
1818 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1819 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1820 )))
1821
1822 (% style="text-align:center" %)
1823 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1824
1825 |=(% scope="row" %)**Function code**|=**Name**|=(((
1826 **Setting method**
1827 )))|=(((
1828 **Effective time**
1829 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1830 |=P01-03|Acceleration time|(((
1831 Operation setting
1832 )))|(((
1833 Effective immediately
1834 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1835 |=P01-04|Deceleration time|(((
1836 Operation setting
1837 )))|(((
1838 Effective immediately
1839 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1840
1841 Table 6-31 Acceleration and deceleration time parameters
1842
1843 == Speed instruction limit ==
1844
1845 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1846
1847 1. P01-10: Set the maximum speed limit value
1848 1. P01-12: Set forward speed limit value
1849 1. P01-13: Set reverse speed limit value
1850 1. The maximum speed of the motor: determined by motor model
1851
1852 The actual motor speed limit interval satisfies the following relationship:
1853
1854 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1855
1856 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1857
1858 |=(% scope="row" %)**Function code**|=**Name**|=(((
1859 **Setting method**
1860 )))|=(((
1861 **Effective time**
1862 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1863 |=P01-10|Maximum speed threshold|(((
1864 Operation setting
1865 )))|(((
1866 Effective immediately
1867 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1868 |=P01-12|Forward speed threshold|(((
1869 Operation setting
1870 )))|(((
1871 Effective immediately
1872 )))|3000|0 to 5000|Set forward speed limit value|rpm
1873 |=P01-13|Reverse speed threshold|(((
1874 Operation setting
1875 )))|(((
1876 Effective immediately
1877 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1878
1879 Table 6-32 Rotation speed related function codes
1880
1881 == Zero-speed clamp function ==
1882
1883 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1884
1885 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1886
1887 |=(% scope="row" %)**Function code**|=**Name**|=(((
1888 **Setting method**
1889 )))|=(((
1890 **Effective time**
1891 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1892 |=P01-21|(((
1893 Zero-speed clamp function selection
1894 )))|(((
1895 Operation setting
1896 )))|(((
1897 Effective immediately
1898 )))|0|0 to 3|(((
1899 Set the zero-speed clamp function. In speed mode:
1900
1901 0: Force the speed to 0;
1902
1903 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1904
1905 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1906
1907 3: Invalid, ignore zero-speed clamp input
1908 )))|-
1909 |=P01-22|(((
1910 Zero-speed clamp speed threshold
1911 )))|(((
1912 Operation setting
1913 )))|(((
1914 Effective immediately
1915 )))|20|0 to 6000|Set the speed threshold of zero-speed clamp function|rpm
1916
1917 Table 6-33 Zero-speed clamp related parameters
1918
1919 (% style="text-align:center" %)
1920 (((
1921 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1922 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1923 )))
1924
1925 == Speed-related DO output function ==
1926
1927 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1928
1929 **Rotation detection signal**
1930
1931 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1932
1933 (% style="text-align:center" %)
1934 (((
1935 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1936 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1937 )))
1938
1939 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1940
1941 |=(% scope="row" %)**Function code**|=**Name**|=(((
1942 **Setting method**
1943 )))|=(((
1944 **Effective time**
1945 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1946 |=P05-16|(((
1947 Rotation detection
1948
1949 speed threshold
1950 )))|(((
1951 Operation setting
1952 )))|(((
1953 Effective immediately
1954 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1955
1956 Table 6-34 Rotation detection speed threshold parameters
1957
1958 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1959 |=132|(% style="width:247px" %)(((
1960 TGON rotation detection
1961 )))|(% style="width:695px" %)(((
1962 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1963
1964 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1965 )))
1966
1967 Table 6-35 DO rotation detection function code
1968
1969 **Zero-speed signal**
1970
1971 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1972
1973 (% style="text-align:center" %)
1974 (((
1975 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1976 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1977 )))
1978
1979 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1980
1981 |=(% scope="row" %)**Function code**|=**Name**|=(((
1982 **Setting method**
1983 )))|=(((
1984 **Effective time**
1985 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1986 |=P05-19|Zero speed output signal threshold|(((
1987 Operation setting
1988 )))|(((
1989 Effective immediately
1990 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1991
1992 Table 6-36 Zero-speed output signal threshold parameter
1993
1994 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1995 |=133|(((
1996 ZSP zero speed signal
1997 )))|Output this signal indicates that the servo motor is stopping rotation
1998
1999 Table 6-37 DO zero-speed signal function code
2000
2001 **Speed consistent signal**
2002
2003 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
2004
2005 (% style="text-align:center" %)
2006 (((
2007 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2008 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
2009 )))
2010
2011 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
2012
2013 |=(% scope="row" %)**Function code**|=**Name**|=(((
2014 **Setting method**
2015 )))|=(((
2016 **Effective time**
2017 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2018 |=P05-17|Speed consistent signal threshold|(((
2019 Operationsetting
2020 )))|(((
2021 Effective immediately
2022 )))|10|0 to 100|Set speed consistent signal threshold|rpm
2023
2024 Table 6-38 Speed consistent signal threshold parameters
2025
2026 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
2027 |=136|(% style="width:262px" %)(((
2028 V-COIN consistent speed
2029 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
2030
2031 Table 6-39 DO speed consistent function code
2032
2033 **Speed approach signal**
2034
2035 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
2036
2037 (% style="text-align:center" %)
2038 (((
2039 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2040 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
2041 )))
2042
2043 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
2044
2045 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
2046 **Setting method**
2047 )))|=(((
2048 **Effective time**
2049 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2050 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
2051 Operation setting
2052 )))|(((
2053 Effective immediately
2054 )))|100|10 to 6000|Set speed approach signal threshold|rpm
2055
2056 Table 6-40 Speed approaching signal threshold parameters
2057
2058 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2059 |=137|(((
2060 V-NEAR speed approach
2061 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
2062
2063 Table 6-41 DO speed approach function code
2064
2065 = **Torque control mode** =
2066
2067 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
2068
2069 (% style="text-align:center" %)
2070 (((
2071 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2072 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
2073 )))
2074
2075 == **Torque instruction input setting** ==
2076
2077 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
2078
2079 |=(% scope="row" %)**Function code**|=**Name**|=(((
2080 **Setting method**
2081 )))|=(((
2082 **Effective time**
2083 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2084 |=P01-07|Torque instruction source|(((
2085 Shutdown setting
2086 )))|(((
2087 Effective immediately
2088 )))|0|0 to 1|(((
2089 0: internal torque instruction
2090
2091 1: AI_1 analog input(not supported by VD2F and VD2L)
2092 )))|-
2093
2094 Table 6-42 Torque instruction source parameter
2095
2096 **Torque instruction source is internal torque instruction (P01-07=0)**
2097
2098 Torque instruction source is from inside, the value is set by function code P01-08.
2099
2100 |=(% scope="row" %)**Function code**|=**Name**|=(((
2101 **Setting method**
2102 )))|=(((
2103 **Effective time**
2104 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2105 |=P01-08|Torque instruction keyboard set value|(((
2106 Operation setting
2107 )))|(((
2108 Effective immediately
2109 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2110
2111 Table 6-43 Torque instruction keyboard set value
2112
2113 **Torque instruction source is AI_1 analog input (P01-07=1)**
2114
2115 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2116
2117 (% style="text-align:center" %)
2118 (((
2119 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2120 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2121 )))
2122
2123 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2124
2125 (% style="text-align:center" %)
2126 (((
2127 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2128 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2129 )))
2130
2131 Explanation of related terms:
2132
2133 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2134 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2135 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2136
2137 (% style="text-align:center" %)
2138 (((
2139 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2140 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2141 )))
2142
2143 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2144 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2145 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2146 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2147 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2148
2149 Table 6-44 AI_1 parameters
2150
2151 (% class="box infomessage" %)
2152 (((
2153 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2154 )))
2155
2156 == Torque instruction filtering ==
2157
2158 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2159
2160 |=(% scope="row" %)**Function code**|=**Name**|=(((
2161 **Setting method**
2162 )))|=(((
2163 **Effective time**
2164 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2165 |=P04-04|Torque filtering time constant|(((
2166 Operation setting
2167 )))|(((
2168 Effective immediately
2169 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2170
2171 Table 6-45 Torque filtering time constant parameter details
2172
2173 (% class="box infomessage" %)
2174 (((
2175 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2176 )))
2177
2178 (% style="text-align:center" %)
2179 (((
2180 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2181 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2182 )))
2183
2184 == Torque instruction limit ==
2185
2186 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2187
2188 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2189
2190 (% style="text-align:center" %)
2191 (((
2192 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2193 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2194 )))
2195
2196 **Set torque limit source**
2197
2198 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2199
2200 |=(% scope="row" %)**Function code**|=**Name**|=(((
2201 **Setting method**
2202 )))|=(((
2203 **Effective time**
2204 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2205 |=P01-14|(((
2206 Torque limit source
2207 )))|(((
2208 Shutdown setting
2209 )))|(((
2210 Effective immediately
2211 )))|0|0 to 1|(((
2212 0: internal value
2213
2214 1: AI_1 analog input (not supported by VD2F and VD2L)
2215 )))|-
2216
2217 * Torque limit source is internal torque instruction (P01-14=0)
2218
2219 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2220
2221 |=(% scope="row" %)**Function code**|=**Name**|=(((
2222 **Setting method**
2223 )))|=(((
2224 **Effective time**
2225 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2226 |=P01-15|(((
2227 Forward torque limit
2228 )))|(((
2229 Operation setting
2230 )))|(((
2231 Effective immediately
2232 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2233 |=P01-16|(((
2234 Reverse torque limit
2235 )))|(((
2236 Operation setting
2237 )))|(((
2238 Effective immediately
2239 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2240
2241 Table 6-46 Torque limit parameter details
2242
2243 * Torque limit source is external (P01-14=1)
2244
2245 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2246
2247 **Set torque limit DO signal output**
2248
2249 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2250
2251 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2252 |=139|(((
2253 T-LIMIT in torque limit
2254 )))|Output of this signal indicates that the servo motor torque is limited
2255
2256 Table 6-47 DO torque limit function codes
2257
2258 == **Speed limit in torque mode** ==
2259
2260 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2261
2262 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2263
2264 |(((
2265 (% style="text-align:center" %)
2266 (((
2267 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2268 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2269 )))
2270 )))|(((
2271 (% style="text-align:center" %)
2272 (((
2273 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2274 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2275 )))
2276 )))
2277
2278 |=(% scope="row" %)**Function code**|=**Name**|=(((
2279 **Setting method**
2280 )))|=(((
2281 **Effective time**
2282 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2283 |=P01-17|(((
2284 Forward speed
2285
2286 limit in torque mode
2287 )))|(((
2288 Operation setting
2289 )))|(((
2290 Effective immediately
2291 )))|3000|0 to 6000|(((
2292 Forward torque
2293
2294 limit in torque mode
2295 )))|rpm
2296 |=P01-18|(((
2297 Reverse speed
2298
2299 limit in torque mode
2300 )))|(((
2301 Operation setting
2302 )))|(((
2303 Effective immediately
2304 )))|3000|0 to 6000|(((
2305 Reverse torque
2306
2307 limit in torque mode
2308 )))|rpm
2309
2310 Table 6-48 Speed limit parameters in torque mode
2311
2312 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2313
2314 == Torque-related DO output functions ==
2315
2316 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2317
2318 **Torque arrival**
2319
2320 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2321
2322 (% style="text-align:center" %)
2323 (((
2324 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2325 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2326 )))
2327
2328 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2329
2330 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2331 **Setting method**
2332 )))|=(% style="width: 124px;" %)(((
2333 **Effective time**
2334 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2335 |=P05-20|(% style="width:113px" %)(((
2336 Torque arrival
2337
2338 threshold
2339 )))|(% style="width:100px" %)(((
2340 Operation setting
2341 )))|(% style="width:124px" %)(((
2342 Effective immediately
2343 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2344 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2345
2346 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2347
2348 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2349 )))|%
2350 |=P05-21|(% style="width:113px" %)(((
2351 Torque arrival
2352
2353 hysteresis
2354 )))|(% style="width:100px" %)(((
2355 Operation setting
2356 )))|(% style="width:124px" %)(((
2357 Effective immediately
2358 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2359
2360 Table 6-49 Torque arrival parameters
2361
2362 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2363 |=138|(((
2364 T-COIN torque arrival
2365 )))|Used to determine whether the actual torque instruction has reached the set range
2366
2367 Table 6-50 DO Torque Arrival Function Code
2368
2369 = **Mixed control mode** =
2370
2371 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2372
2373 * Position mode⇔ Speed mode
2374 * Position mode ⇔Torque mode
2375 * Speed mode ⇔Torque mode
2376
2377 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2378
2379 |=(% scope="row" %)**Function code**|=**Name**|=(((
2380 **Setting method**
2381 )))|=(((
2382 **Effective time**
2383 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2384 |=P00-01|Control mode|(((
2385 Shutdown setting
2386 )))|(((
2387 Shutdown setting
2388 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2389 1: Position control
2390
2391 2: Speed control
2392
2393 3: Torque control
2394
2395 4: Position/speed mixed control
2396
2397 5: Position/torque mixed control
2398
2399 6: Speed/torque mixed control
2400
2401 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2402 )))|-
2403
2404 Table 6-51 Mixed control mode parameters
2405
2406 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2407
2408 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2409 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2410 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2411 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2412 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2413 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2414 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2415 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2416 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2417 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2418 )))
2419
2420 Table 6-52 Description of DI function codes in control mode
2421
2422 (% class="box infomessage" %)
2423 (((
2424 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2425 )))
2426
2427 = **Absolute system** =
2428
2429 == Overview ==
2430
2431 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2432
2433 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2434
2435 == Single-turn absolute value system ==
2436
2437 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2438
2439 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2440 |A1 (single-turn magnetic encoder)|17|0 to 131071
2441
2442 Table 6-53 Single-turn absolute encoder information
2443
2444 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2445
2446 (% style="text-align:center" %)
2447 (((
2448 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2449 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2450 )))
2451
2452 == Multi-turn absolute value system ==
2453
2454 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2455
2456 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2457 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2458 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2459
2460 Table 6-54 Multi-turn absolute encoder information
2461
2462 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2463
2464 (% style="text-align:center" %)
2465 (((
2466 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2467 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2468 )))
2469
2470 (% class="wikigeneratedid" %)
2471 (((
2472 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2473 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2474 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2475 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2476
2477 |**Function code**|**Name**|(((
2478 **Setting**
2479
2480 **method**
2481 )))|(((
2482 **Effective**
2483
2484 **time**
2485 )))|**Default**|**Range**|**Definition**|**Unit**
2486 |P10-06|Multi-turn absolute encoder reset|(((
2487 Shutdown
2488
2489 setting
2490 )))|Effective immediately|0|0 to 1|(((
2491 0: No operation
2492
2493 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2494
2495 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2496 )))|-
2497
2498 (% style="background-color:#ffffff" %)
2499 |**Function code**|**Name**|(((
2500 **Setting**
2501
2502 **method**
2503 )))|(((
2504 **Effective**
2505
2506 **time**
2507 )))|**Default**|**Range**|**Definition**|**Unit**
2508 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2509 Operation
2510
2511 setting
2512 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2513 )))
2514
2515 == Related functions and parameters ==
2516
2517 **Encoder feedback data**
2518
2519 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2520
2521 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2522 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2523 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2524 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2525
2526 Table 6-55 Encoder feedback data
2527
2528 **Shield multi-turn absolute encoder battery fault**
2529
2530 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2531
2532 |=(% scope="row" %)**Function code**|=**Name**|=(((
2533 **Setting**
2534
2535 **method**
2536 )))|=(((
2537 **Effective**
2538
2539 **time**
2540 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2541 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2542 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2543
2544 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2545 )))|-
2546
2547 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2548
2549 **A93 warning solution**
2550
2551 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2552 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2553
2554 |**Function code**|**Name**|(((
2555 **Setting**
2556
2557 **method**
2558 )))|(((
2559 **Effective**
2560
2561 **time**
2562 )))|**Default**|**Range**|**Definition**|**Unit**
2563 |P00-31|Encoder read-write check abnormal frequency|(((
2564 Operation
2565
2566 setting
2567 )))|(((
2568 immediately
2569
2570 Effective
2571 )))|20|0 to100|(((
2572 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2573
2574 0: no alarm
2575
2576 Others: When this setting value is exceeded, report A93.
2577 )))|-
2578
2579 (% class="box infomessage" %)
2580 (((
2581 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2582 )))
2583
2584 == Absolute value system encoder battery box use precautions. ==
2585
2586 **Cautions**
2587
2588 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2589
2590 (% style="text-align:center" %)
2591 (((
2592 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2593 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2594 )))
2595
2596 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2597
2598 **Replace the battery**
2599
2600 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2601
2602 The specific replacement method is as follows:
2603
2604 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2605 * Step2 Remove the old battery.
2606 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2607 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2608
2609 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2610
2611 |=(% scope="row" %)**Function code**|=**Name**|=(((
2612 **Setting method**
2613 )))|=(((
2614 **Effective time**
2615 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2616 |=P10-06|Multi-turn absolute encoder reset|(((
2617 Shutdown setting
2618 )))|(((
2619 Effective immediately
2620 )))|0|0 to 1|(((
2621 * 0: No operation
2622 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2623
2624 (% class="box infomessage" %)
2625 (((
2626 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2627 )))
2628 )))|-
2629
2630 Table 6-56 Absolute encoder reset enable parameter
2631
2632 **Battery selection**
2633
2634 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2635 |(% rowspan="4" style="width:361px" %)(((
2636 Nominal Voltage: 3.6V
2637
2638 Nominal capacity: 2700mAh
2639 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2640 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2641 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2642 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2643
2644 Table 6-57 Absolute value encoder battery information
2645
2646 **✎Note: **
2647
2648 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2649
2650 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2651
2652 Correct placement of batteries +, - direction
2653
2654 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2655 1. This battery cannot be charged.
2656 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2657 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2658 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2659
2660 = **Other functions** =
2661
2662 == VDI ==
2663
2664 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2665
2666 (% class="box infomessage" %)
2667 (((
2668 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2669 )))
2670
2671 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2672
2673 (% style="text-align:center" %)
2674 (((
2675 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2676 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2677 )))
2678
2679 |=(% scope="row" %)**Function code**|=**Name**|=(((
2680 **Setting method**
2681 )))|=(((
2682 **Effective time**
2683 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2684 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2685 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2686
2687 VDI_1 input level:
2688
2689 0: Low level
2690
2691 1: High level
2692 )))|-
2693 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2694 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2695
2696 VDI_2 input level:
2697
2698 0: Low level
2699
2700 1: High level
2701 )))|-
2702 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2703 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2704
2705 VDI_3 input level:
2706
2707 0: Low level
2708
2709 1: High level
2710 )))|-
2711 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2712 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2713
2714 VDI_4 input level:
2715
2716 0: Low level
2717
2718 1: High level
2719 )))|-
2720 |=P13-05(((
2721
2722 )))|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2723 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2724
2725 VDI_5 input level:
2726
2727 0: Low level
2728
2729 1: High level
2730 )))|-
2731 |=P13-06(((
2732
2733 )))|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2734 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2735
2736 VDI_6 input level:
2737
2738 0: Low level
2739
2740 1: High level
2741 )))|-
2742 |=P13-07(((
2743
2744 )))|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2745 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2746
2747 VDI_7 input level:
2748
2749 0: Low level
2750
2751 1: High level
2752 )))|-
2753 |=P13-08(((
2754
2755 )))|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2756 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2757
2758 VDI_8 input level:
2759
2760 0: Low level
2761
2762 1: High level
2763 )))|-
2764
2765 Table 6-57 Virtual VDI parameters
2766
2767 (% class="box infomessage" %)
2768 (((
2769 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
2770 )))
2771
2772 == Port filtering time ==
2773
2774 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2775
2776 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2777 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2778 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2779
2780 Table 6-58 DI terminal channel logic selection
2781
2782 == **VDO** ==
2783
2784 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2785
2786 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2787
2788 (% style="text-align:center" %)
2789 (((
2790 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2791 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2792 )))
2793
2794
2795 |=(% scope="row" %)**Function code**|=**Name**|=(((
2796 **Setting method**
2797 )))|=(((
2798 **Effective time**
2799 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2800 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2801 VDO_1 output level:
2802
2803 0: Low level
2804
2805 1: High level
2806 )))|-
2807 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2808 VDO_2 output level:
2809
2810 0: Low level
2811
2812 1: High level
2813 )))|-
2814 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2815 VDO_3 output level:
2816
2817 0: Low level
2818
2819 1: High level
2820 )))|-
2821 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2822 VDO_4 output level:
2823
2824 0: Low level
2825
2826 1: High level
2827 )))|-
2828
2829 Table 6-59 Communication control DO function parameters
2830
2831 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2832 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2833 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2834 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2835 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2836
2837 Table 6-60 VDO function number
2838
2839 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2840
2841 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2842
2843 == Motor overload protection ==
2844
2845 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2846
2847 |=(% scope="row" %)**Function code**|=**Name**|=(((
2848 **Setting method**
2849 )))|=(((
2850 **Effective time**
2851 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2852 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2853 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2854
2855 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2856 )))|%
2857
2858 In the following cases, it could be modified according to the actual heat generation of the motor
2859
2860 1. The motor works in a place with high ambient temperature
2861 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2862
2863 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2864
2865 (% class="box infomessage" %)
2866 (((
2867 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2868 )))
2869
2870
2871 = Homing mode =
2872
2873 The homing mode is used to find the mechanical origin and locate the positional relationship between the mechanical origin and the mechanical zero.
2874
2875 Mechanical homing: A mechanically fixed position may correspond to a certain defined homing switch, or may correspond to the motor Z signal.
2876
2877 Mechanical zero point: Mechanically absolute 0 position.
2878
2879 After the homing, the stop position of the motor is the mechanical homing. By setting P10-08, the relationship between the mechanical homing and the mechanical zero can be set:
2880
2881 Mechanical homing = Mechanical zero +P10-08 (homing offset)
2882
2883 When P10-08=0, the mechanical homing coincides with the mechanical zero.
2884
2885 == Control block diagram ==
2886
2887
2888 === Homing mode related function codes ===
2889
2890 |Function code|Name|(((
2891 Setting
2892
2893 method
2894 )))|(((
2895 Effective
2896
2897 time
2898 )))|Default|Range|Definition|Unit
2899 |P01-39|Homing start mode|(((
2900 Stop
2901
2902 settings
2903 )))|(((
2904 Immediately
2905
2906 effective
2907 )))|0|0 to 2|(((
2908 0: Close
2909
2910 1: The servo is powered ON and started after the first ON
2911
2912 2: DI enable
2913 )))|-
2914
2915 |Function code|Name|(((
2916 Setting
2917
2918 method
2919 )))|(((
2920 Effective
2921
2922 time
2923 )))|Default|Range|Definition|Unit
2924 |P01-40|Homing mode|(((
2925 Stop
2926
2927 settings
2928 )))|(((
2929 Immediately
2930
2931 effective
2932 )))|0|0 to 35|(((
2933 0 ~~ 35 Homing mode;
2934
2935 ✎Note: VD2 currently does not support 15, 16, 31, 32 modes
2936 )))|-
2937
2938 |Function code|Name|(((
2939 Setting
2940
2941 method
2942 )))|(((
2943 Effective
2944
2945 time
2946 )))|Default|Range|Definition|Unit
2947 |P01-41|High-speed search deceleration point signal velocity|(((
2948 Running
2949
2950 settings
2951 )))|(((
2952 Immediately
2953
2954 effective
2955 )))|300|1 to 3000|High-speed search deceleration point signal velocity in homing mode|rpm
2956
2957 |Function code|Name|(((
2958 Setting
2959
2960 method
2961 )))|(((
2962 Effective
2963
2964 time
2965 )))|Default|Range|Definition|Unit
2966 |P01-42〇|Low speed search homing signal speed|(((
2967 Running
2968
2969 settings
2970 )))|(((
2971 Immediately
2972
2973 effective
2974 )))|60|1 to 300|Low-speed search origin signal velocity in homing mode|rpm
2975
2976 |Function code|Name|(((
2977 Setting
2978
2979 method
2980 )))|(((
2981 Effective
2982
2983 time
2984 )))|Default|Range|Definition|Unit
2985 |P01-43〇|Homing acceleration and deceleration|(((
2986 Running
2987
2988 settings
2989 )))|(((
2990 Immediately
2991
2992 effective
2993 )))|50|1to1000|(((
2994 Acceleration and deceleration in homing mode
2995
2996 Time for speed acceleration from 0 to 1000rpm
2997 )))|ms
2998
2999 |Function code|Name|(((
3000 Setting
3001
3002 method
3003 )))|(((
3004 Effective
3005
3006 time
3007 )))|Default|Range|Definition|Unit
3008 |P01-44〇|Homing timeout limited time|(((
3009 Running
3010
3011 settings
3012 )))|(((
3013 Immediately
3014
3015 effective
3016 )))|65535|100 to 65535|Homing timeout limited time|ms
3017
3018 |Function code|Name|(((
3019 Setting
3020
3021 method
3022 )))|(((
3023 Effective
3024
3025 time
3026 )))|Default|Range|Definition|Unit
3027 |P10-08〇|Multi-turn absolute encoder homing offset compensation|(((
3028 Running
3029
3030 settings
3031 )))|(((
3032 Immediately
3033
3034 effective
3035 )))|0|(((
3036 -2147483647~~
3037
3038 2147483646
3039 )))|(((
3040 P10-08 multi-turn absolute encoder homing offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position.
3041
3042 When P10-6 is set to 1, the value of U0-56 is updated to P10-8.
3043 )))|-
3044
3045 == Introduction to homing mode ==
3046
3047 In the following figure, "H" represents P01-41 (high-speed search deceleration point signal speed), and "L" represents P01-42 (low-speed search homing signal speed).
3048
3049
3050 (1) P01-40 =1
3051
3052 Mechanical homing: Motor Z signal
3053
3054 Deceleration point: Reverse limit switch (NOT)
3055
3056 ① The deceleration point signal is invalid when starting homing
3057
3058 (% style="text-align:center" %)
3059 [[image:1748221916083-747.jpg||height="347" width="600"]]
3060
3061 When it starts to homing, NOT=0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.
3062
3063
3064 ② The deceleration point signal is valid when starting homing
3065
3066 (% style="text-align:center" %)
3067 [[image:1748222134730-241.jpg||height="341" width="600"]]
3068
3069 When starting to homing, NOT=1, it starts to homing at a direct forward low speed, and stops at the first Z signal after encountering the falling edge of NOT.
3070
3071
3072
3073
3074
3075
3076 (2) P01-40=2
3077
3078 Mechanical homing: Motor Z signal
3079
3080 Deceleration point: Positive Limit Switch (POT)
3081
3082 ① The deceleration point signal is invalid when starting homing
3083
3084 (% style="text-align:center" %)
3085 [[image:1748222168627-745.jpg||height="334" width="600"]]
3086
3087
3088 When it starts to homing, POT = 0, and it starts to homing at a forward high speed. After encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of POT.
3089
3090
3091 ② The deceleration point signal is valid when starting homing
3092
3093 (% style="text-align:center" %)
3094 [[image:1748222190794-857.jpg||height="337" width="600"]]
3095
3096 POT=1 when start homing, run at low speed directly in the reverse direction, and stops at the first Z signal after the falling edge of POT.
3097
3098
3099
3100 (3) P01-40=3
3101
3102 Mechanical homing: Motor Z signal
3103
3104 Deceleration point: Home switch (HW)
3105
3106 ① The deceleration point signal is invalid when starting homing
3107
3108 (% style="text-align:center" %)
3109 [[image:1748226127686-390.jpg||height="337" width="600"]]
3110
3111
3112 When it starts to homing, HW=0. It starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction. It runs at a reverse low speed. After encountering the falling edge of HW, it continues to run, and then stops when encountering the first Z signal.
3113
3114
3115 ② The deceleration point signal is valid when starting homing
3116
3117 (% style="text-align:center" %)
3118 [[image:1748226169150-834.jpg||height="337" width="600"]]
3119
3120 When starting homing, HW=1, start homing at low speed in reverse directly, and stop at the first Z signal after encountering the falling edge of HW;
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134 (4) P01-40=4
3135
3136 Mechanical homing: Motor Z signal
3137
3138 Deceleration point: Home switch (HW)
3139
3140 ① The deceleration point signal is invalid when starting homing
3141
3142 (% style="text-align:center" %)
3143 [[image:1748226182842-731.jpg||height="337" width="600"]]
3144
3145 HW=0 when starting to homing, directly start to homing at low speed, and stop at the first Z signal after encountering the rising edge of HW;
3146
3147
3148 ② The deceleration point signal is valid when starting homing
3149
3150 (% style="text-align:center" %)
3151 [[image:1748226201716-810.jpg||height="338" width="600"]]
3152
3153
3154 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, decelerate and reverse, run at a low speed in the forward direction, and stop at the first Z signal after encountering the rising edge of HW.
3155
3156
3157
3158
3159
3160 (5) P01-40=5
3161
3162 Mechanical homing: Motor Z signal
3163
3164 Deceleration point: Home switch (HW)
3165
3166 ① The deceleration point signal is invalid when starting homing
3167
3168 (% style="text-align:center" %)
3169 [[image:1748226251451-548.jpg||height="337" width="600"]]
3170
3171 When it starts to homing, HW = 0, and it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3172
3173
3174 ② The deceleration point signal is valid when starting homing
3175
3176 (% style="text-align:center" %)
3177 [[image:1748226264724-999.jpg||height="337" width="600"]]
3178
3179 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3180
3181
3182
3183
3184
3185 (6) P01-40=6
3186
3187 Mechanical homing: Motor Z signal
3188
3189 Deceleration point: Home switch (HW)
3190
3191 ① The deceleration point signal is invalid when starting homing
3192
3193 (% style="text-align:center" %)
3194 [[image:1748226277996-278.jpg||height="337" width="600"]]
3195
3196 When starting to homing, HW=0, directly reverse low speed starts to homing, and the first Z signal stops after encountering the rising edge of HW;
3197
3198
3199 ② The deceleration point signal is valid when starting homing
3200
3201 (% style="text-align:center" %)
3202 [[image:1748226309059-457.jpg||height="337" width="600"]]
3203
3204 When starting to homing, HW = 1, start to homing at a forward high speed, after encountering the falling edge of HW, decelerate and reverse, run at a reverse low speed, and stop at the first Z signal after encountering the rising edge of HW.
3205
3206
3207
3208
3209
3210 (7) P01-40=7
3211
3212 Mechanical homing: Motor Z signal
3213
3214 Deceleration point: Home switch (HW)
3215
3216 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3217
3218 (% style="text-align:center" %)
3219 [[image:1748226329690-925.jpg||height="405" width="600"]]
3220
3221 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, and runs at a reverse low speed. The first Z signal after encountering the falling edge of HW stops.
3222
3223
3224 ②When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3225
3226 (% style="text-align:center" %)
3227 [[image:1748226347085-250.jpg||height="482" width="600"]]
3228
3229 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and continue to run at a reverse low speed. The first Z signal after the falling edge of HW will stop.
3230
3231
3232 ③ The deceleration point signal is valid when starting homing
3233
3234 (% style="text-align:center" %)
3235 [[image:1748226362415-253.jpg||height="406" width="600"]]
3236
3237 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3238
3239
3240 (8) P01-40=8
3241
3242 Mechanical homing: Motor Z signal
3243
3244 Deceleration point: Home switch (HW)
3245
3246 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3247
3248 (% style="text-align:center" %)
3249 [[image:1748226377919-294.jpg||height="425" width="600"]]
3250
3251 When it starts to homing, HM-0 starts to homing at a forward high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and reverse, and run at a reverse low speed. After encountering the falling edge of HW, reverse, run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3252
3253
3254 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3255
3256 (% style="text-align:center" %)
3257 [[image:1748226441814-616.jpg||height="460" width="600"]]
3258
3259 When it starts to homing, HW = 0, and it starts to homing at forward high speed. If it encounters a limit switch, it will automatically reverse and run at reverse high speed; After encountering the rising edge of HW, slow down and run at a reverse low speed; After encountering the falling edge of HW, reverse the direction, run at a forward low speed, and stop the first Z signal after encountering the rising edge of HW.
3260
3261
3262 ③ The deceleration point signal is valid when starting homing
3263
3264 (% style="text-align:center" %)
3265 [[image:1748226458987-236.jpg||height="403" width="600"]]
3266
3267 When starting to homing, HM-1 will directly reverse and start to return to zero at low speed. After encountering the falling edge of HW, it will reverse and run at forward low speed. The first Z signal after encountering the rising edge of HW will stop.
3268
3269
3270
3271 (9) P01-40=9
3272
3273 Mechanical homing: Motor Z signal
3274
3275 Deceleration point: Home switch (HW)
3276
3277 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3278
3279 (% style="text-align:center" %)
3280 [[image:1748226475073-462.jpg||height="407" width="600"]]
3281
3282 When it starts to homing, HW=0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed; After encountering the falling edge of HW, reverse, run at a low speed in the reverse direction, and stop at the first Z signal after encountering the rising edge of HW.
3283
3284
3285 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3286
3287 (% style="text-align:center" %)
3288 [[image:1748226491294-972.jpg||height="473" width="600"]]
3289
3290 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering a rising edge of HW, it will slow down and reverse to resume forward operation. Running at a forward low speed, after encountering a falling edge of HW, it will reverse. During reverse low speed operation, the first Z signal after encountering a rising edge of HW will stop.
3291
3292 ③ The deceleration point signal is valid when starting homing
3293
3294 (% style="text-align:center" %)
3295 [[image:1748226509824-146.jpg||height="406" width="600"]]
3296
3297 When starting homing, HW=1 starts homing directly at forward low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and reverse low speed operation;
3298
3299
3300 (10) P01-40=10
3301
3302 Mechanical homing: Motor Z signal
3303
3304 Deceleration point: Home switch (HW)
3305
3306 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3307
3308 (% style="text-align:center" %)
3309 [[image:1748226583138-561.jpg||height="403" width="600"]]
3310
3311 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, slow down and run at a forward low speed. After encountering the falling edge of HW, continue to run at a forward low speed, and then the first Z signal encountered stops.
3312
3313 ② When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3314
3315 (% style="text-align:center" %)
3316 [[image:1748226640407-712.jpg||height="474" width="600"]]
3317
3318 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and reverse to resume forward operation. The first Z signal after the low speed encounters the falling edge of HW will stop.
3319
3320
3321 ③ The deceleration point signal is valid when starting homing
3322
3323 (% style="text-align:center" %)
3324 [[image:1748226662455-861.jpg||height="392" width="600"]]
3325
3326 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3327
3328
3329 (11) P01-40=11
3330
3331 Mechanical homing: Motor Z signal
3332
3333 Deceleration point: Home switch (HW)
3334
3335 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3336
3337 (% style="text-align:center" %)
3338 [[image:1748226681272-116.jpg||height="406" width="600"]]
3339
3340 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3341
3342
3343 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3344
3345 (% style="text-align:center" %)
3346 [[image:1748226729793-833.jpg||height="484" width="600"]]
3347
3348 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it encounters a limit switch, it will automatically reverse and run at a forward high speed. After encountering a rising edge of HW, slow down and continue to run at a forward low speed. When encountering a falling edge of HW, the first Z signal after the edge stops.
3349
3350 ③ The deceleration point signal is valid when starting homing
3351
3352 (% style="text-align:center" %)
3353 [[image:1748226803530-631.jpg||height="414" width="600"]]
3354
3355 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3356
3357
3358 (12) P01-40=12
3359
3360 Mechanical homing: Motor Z signal
3361
3362 Deceleration point: Home switch (HW)
3363
3364 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3365
3366 (% style="text-align:center" %)
3367 [[image:1748226829420-255.jpg||height="406" width="600"]]
3368
3369
3370 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3371
3372
3373
3374 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3375
3376 (% style="text-align:center" %)
3377 [[image:1748226863974-673.jpg||height="484" width="600"]]
3378
3379 When it starts to homing, HW=0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates, runs at a forward low speed, encounters a falling edge of HW, reverses, runs at a reverse low speed, and stops at the first Z signal after encountering a rising edge of HW.
3380
3381
3382
3383 ③ The deceleration point signal is valid when starting homing
3384
3385 (% style="text-align:center" %)
3386 [[image:1748226879060-830.jpg||height="414" width="600"]]
3387
3388 When starting to homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. The first Z signal after encountering the rising edge of HW will stop.
3389
3390 (13) P01-40=13
3391
3392 Mechanical homing: Motor Z signal
3393
3394 Deceleration point: Home switch (HW)
3395
3396 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3397
3398 [[image:1748226908598-664.jpg]]
3399
3400 (% style="text-align:center" %)
3401 [[image:1748227007116-603.jpg||height="443" width="600"]]
3402
3403 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and run at a reverse low speed. After encountering the falling edge of HW, reverse and run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3404
3405
3406 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3407
3408 (% style="text-align:center" %)
3409 [[image:1748227023585-740.jpg||height="472" width="600"]]
3410
3411 When it starts to homing, HW=0, it starts to homing at reverse high speed, encounters the limit switch, automatically reverses, runs at forward high speed, after encountering the rising edge of HW, decelerates and runs in reverse low speed, and encounters the falling edge of HW when running at reverse low speed, the first Z signal after encountering the rising edge of HW stops.
3412
3413 ③ The deceleration point signal is valid when starting homing
3414
3415 (% style="text-align:center" %)
3416 [[image:1748227043041-279.jpg||height="414" width="600"]]
3417
3418 When starting homing, HW=1 starts homing directly at reverse low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and forward low speed operation;
3419
3420
3421 (14) P01-40=14
3422
3423 Mechanical homing: Motor Z signal
3424
3425 Deceleration point: Home switch (HW)
3426
3427 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3428
3429 (% style="text-align:center" %)
3430 [[image:1748227060842-543.jpg||height="416" width="600"]]
3431
3432 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates and runs at reverse low speed. After encountering the falling edge of HW, it continues to run at reverse low speed, and then the first Z signal encountered stops.
3433
3434
3435 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3436
3437 (% style="text-align:center" %)
3438 [[image:1748227079908-302.jpg||height="445" width="600"]]
3439
3440 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates and runs in a reverse direction, and stops the first Z signal after encountering a falling edge of HW at a reverse low speed.
3441
3442
3443 ③ The deceleration point signal is valid when starting homing
3444
3445 (% style="text-align:center" %)
3446 [[image:1748227101511-101.jpg||height="414" width="600"]]
3447
3448 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3449
3450
3451 (15) P01-40=17
3452
3453 Mechanical homing: Negative overrun switch (NOT)
3454
3455 Deceleration point: Negative overrun switch (NOT)
3456
3457 ① The deceleration point signal is invalid when starting homing
3458
3459 (% style="text-align:center" %)
3460 [[image:1748227125161-655.jpg||height="295" width="600"]]
3461
3462 When it starts to homing, NOT = 0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops after encountering the falling edge of NOT.
3463
3464
3465 ② The deceleration point signal is valid when starting homing
3466
3467 (% style="text-align:center" %)
3468 [[image:1748227138852-942.jpg||height="324" width="600"]]
3469
3470 When starting homing, NOT=1, start homing directly at low speed, and stop after encountering the falling edge of NOT.
3471
3472
3473 (16) P01-40=18
3474
3475 Mechanical homing: Positive overrun switch (POT)
3476
3477 Deceleration point: Positive overrun switch (POT)
3478
3479 ① The deceleration point signal is invalid when starting homing
3480
3481 (% style="text-align:center" %)
3482 [[image:1748227153999-626.jpg||height="300" width="600"]]
3483
3484 When it starts to return to zero, POT=0, it starts to homing at a forward high speed, after encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops after encountering the falling edge of POT.
3485
3486
3487 ② The deceleration point signal is valid when starting homing
3488
3489 (% style="text-align:center" %)
3490 [[image:1748227169369-310.jpg||height="267" width="600"]]
3491
3492 When starting homing, POT=1, start homing at low speed in reverse directly, and stop when encountering POT falling edge;
3493
3494
3495
3496 (17) P01-40=19
3497
3498 Mechanical homing: Home switch (HW)
3499
3500 Deceleration point: Home switch (HW)
3501
3502 ① The deceleration point signal is invalid when starting homing
3503
3504 (% style="text-align:center" %)
3505 [[image:1748227186962-656.jpg||height="313" width="600"]]
3506
3507 When it starts to homing, HW=0, and it starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3508
3509
3510 ② The deceleration point signal is valid when starting homing
3511
3512 (% style="text-align:center" %)
3513 [[image:1748227202174-768.jpg||height="313" width="600"]]
3514
3515 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3516
3517
3518 (18) P01-40=20
3519
3520 Mechanical homing: Home switch (HW)
3521
3522 Deceleration point: Home switch (HW)
3523
3524 ① The deceleration point signal is invalid when starting homing
3525
3526 (% style="text-align:center" %)
3527 [[image:1748227247408-755.jpg||height="314" width="600"]]
3528
3529 When starting to homing, HW=0, directly start to homing at low speed, and stop after encountering the rising edge of HW;
3530
3531
3532 ② The deceleration point signal is valid when starting homing
3533
3534 (% style="text-align:center" %)
3535 [[image:1748227263354-495.jpg||height="313" width="600"]]
3536
3537 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, slow down and reverse the direction, run at a low speed in the forward direction, and stop when encountering the rising edge of HW.
3538
3539
3540 (19) P01-40=21
3541
3542 Mechanical homing: Home switch (HW)
3543
3544 Deceleration point: Home switch (HW)
3545
3546 ① The deceleration point signal is invalid when starting homing
3547
3548 (% style="text-align:center" %)
3549 [[image:1748227279599-847.jpg||height="314" width="600"]]
3550
3551 When it starts to homing, HW=0, it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3552
3553
3554 ② The deceleration point signal is valid when starting homing
3555
3556 (% style="text-align:center" %)
3557 [[image:1748227292762-413.jpg||height="313" width="600"]]
3558
3559 When starting back to zero, HW=1, it will start homing directly at low speed, and stop after encountering the falling edge of HW;
3560
3561
3562 (20) P01-40=22
3563
3564 Mechanical homing: Home switch (HW)
3565
3566 Deceleration point: Home switch (HW)
3567
3568 ① The deceleration point signal is invalid when starting homing
3569
3570 (% style="text-align:center" %)
3571 [[image:1748227358104-464.jpg||height="314" width="600"]]
3572
3573 When starting to homing, HW=0, directly reverse low speed starts to homing, and stops when encountering HW rising edge;
3574
3575
3576 Deceleration point signal is valid when homing start
3577
3578 (% style="text-align:center" %)
3579 [[image:1748227380961-172.jpg||height="343" width="600"]]
3580
3581 When starting to homing, HW=1, start to homing at a forward high speed, after encountering the falling edge of HW, slow down and reverse, run at a reverse low speed, and stop when encountering the rising edge of HW.
3582
3583
3584 (21) P01-40=23
3585
3586 Mechanical homing: Home switch (HW)
3587
3588 Deceleration point: Home switch (HW)
3589
3590 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3591
3592 (% style="text-align:center" %)
3593 [[image:1748227395851-339.jpg||height="387" width="600"]]
3594
3595 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3596
3597
3598 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3599
3600 (% style="text-align:center" %)
3601 [[image:1748227414217-295.jpg||height="385" width="600"]]
3602
3603 When you start homing, HW = 0, start homing at a forward high speed. When encountering the limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, slow down, continue to run at reverse low speed, and stop when encountering the HW falling edge.
3604
3605
3606
3607 ③ The deceleration point signal is valid when starting homing
3608
3609 (% style="text-align:center" %)
3610 [[image:1748227429391-234.jpg||height="385" width="600"]]
3611
3612 When it starts to homing, HW=1, it starts to homing at a reverse low speed, and stops when it encounters the falling edge of HW.
3613
3614
3615 (22) P01-40=24
3616
3617 Mechanical homing: Home switch (HW)
3618
3619 Deceleration point: Home switch (HW)
3620
3621 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3622
3623 (% style="text-align:center" %)
3624 [[image:1748227484547-328.jpg||height="385" width="600"]]
3625
3626 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3627
3628
3629 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3630
3631 (% style="text-align:center" %)
3632 [[image:1748227532124-334.jpg||height="385" width="600"]]
3633
3634 When it starts to homing, HW = 0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, runs at reverse high speed, encounters the rising edge of HW, decelerates and runs at reverse low speed, encounters the falling edge of HW, reverses, runs at forward low speed, and stops when encountering the rising edge of HW.
3635
3636
3637 ③ The deceleration point signal is valid when starting homing
3638
3639 (% style="text-align:center" %)
3640 [[image:1748227548455-494.jpg||height="387" width="600"]]
3641
3642 When starting with homing, HW = 1, it will directly reverse the low speed and start to homing. After encountering the falling edge of HW, it will reverse the direction and run at a forward low speed, and stop when encountering the rising edge of HW.
3643
3644
3645 (23) P01-40=25
3646
3647 Mechanical homing: Home switch (HW)
3648
3649 Deceleration point: Home switch (HW)
3650
3651 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3652
3653 (% style="text-align:center" %)
3654 [[image:1748227564603-199.jpg||height="385" width="600"]]
3655
3656 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3657
3658
3659 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3660
3661 (% style="text-align:center" %)
3662 [[image:1748227581797-586.jpg||height="385" width="600"]]
3663
3664 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerate and reverse to resume forward operation. After encountering the falling edge of HW at forward low speed, reverse. When running at reverse low speed, stop when encountering the rising edge of HW.
3665
3666
3667 ③ The deceleration point signal is valid when starting homing
3668
3669 (% style="text-align:center" %)
3670 [[image:1748227596969-949.jpg||height="385" width="600"]]
3671
3672 When starting homing, when HW=1, it starts to homing directly at low speed in the forward direction. After encountering the falling edge of HW, it stops at the rising edge of HW in the reverse low speed operation
3673
3674
3675 (24) P01-40=26
3676
3677 Mechanical homing: Home switch (HW)
3678
3679 Deceleration point: Home switch (HW)
3680
3681 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3682
3683 (% style="text-align:center" %)
3684 [[image:1748227611517-496.jpg||height="349" width="600"]]
3685
3686 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates, runs at a forward low speed, and stops when encountering the falling edge of HW.
3687
3688
3689 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3690
3691 (% style="text-align:center" %)
3692 [[image:1748227628144-968.jpg||height="385" width="600"]]
3693
3694 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerates and reverses to resume forward operation, and stops when encountering the falling edge of HW at forward low speed.
3695
3696
3697 ③ The deceleration point signal is valid when starting homing
3698
3699 (% style="text-align:center" %)
3700 [[image:1748227641046-963.jpg||height="343" width="600"]]
3701
3702 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3703
3704
3705 (25) P01-40=27
3706
3707 Mechanical homing: Home switch (HW)
3708
3709 Deceleration point: Home switch (HW)
3710
3711 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3712
3713 (% style="text-align:center" %)
3714 [[image:1748227660426-173.jpg||height="362" width="600"]]
3715
3716 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3717
3718
3719 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3720
3721 (% style="text-align:center" %)
3722 [[image:1748227698028-549.jpg||height="392" width="600"]]
3723
3724 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and continues to run at a forward low speed. When it encounters a falling edge of HW, it stops.
3725
3726
3727 ③ The deceleration point signal is valid when starting homing
3728
3729 (% style="text-align:center" %)
3730 [[image:1748227728238-666.jpg||height="394" width="600"]]
3731
3732 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3733
3734
3735 (26) P01-40=28
3736
3737 Mechanical homing: Home switch (HW)
3738
3739 Deceleration point: Home switch (HW)
3740
3741 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3742
3743 (% style="text-align:center" %)
3744 [[image:1748227742531-619.jpg||height="437" width="600"]]
3745
3746 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3747
3748
3749 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3750
3751 (% style="text-align:center" %)
3752 [[image:1751361620036-469.png||height="389" width="600"]]
3753
3754 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When encountering a limit switch, it automatically reverses and runs at a forward high speed. When encountering a rising edge of HW, it decelerates and runs at a forward low speed. When encountering a falling edge of HW, it reverses and runs at a reverse low speed. When encountering a rising edge of HW, it stops.
3755
3756
3757 ③ The deceleration point signal is valid when starting homing
3758
3759 (% style="text-align:center" %)
3760 [[image:1748227779034-947.jpg||height="394" width="600"]]
3761
3762 When starting with homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. When encountering the rising edge of HW, it will stop.
3763
3764
3765 (27) P01-40=29
3766
3767 Mechanical homing: Home switch (HW)
3768
3769 Deceleration point: Home switch (HW)
3770
3771 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3772
3773 (% style="text-align:center" %)
3774 [[image:1748227795620-564.jpg||height="432" width="600"]]
3775
3776 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3777
3778
3779 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3780
3781 (% style="text-align:center" %)
3782 [[image:1748227810884-219.jpg||height="395" width="600"]]
3783
3784 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. After encountering a rising edge of HW, it decelerates and runs in a reverse low speed. After encountering a falling edge of HW, it reverses. When running at a forward low speed, it stops when it encounters a rising edge of HW.
3785
3786 ③ The deceleration point signal is valid when starting homing
3787
3788 (% style="text-align:center" %)
3789 [[image:1748227826652-200.jpg||height="392" width="600"]]
3790
3791 When starting homing, when HW=1, it starts to homing directly at low speed in reverse direction. After encountering the falling edge of HW, it stops when running at low speed in reverse direction and forward direction and encountering the rising edge of HW
3792
3793
3794 (28) P01-40=30
3795
3796 Mechanical homing: Home switch (HW)
3797
3798 Deceleration point: Home switch (HW)
3799
3800 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3801
3802 (% style="text-align:center" %)
3803 [[image:1748227844268-953.jpg||height="437" width="600"]]
3804
3805 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates, runs at reverse low speed, and stops when encountering the falling edge of HW.
3806
3807
3808 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3809
3810 (% style="text-align:center" %)
3811 [[image:1748227859385-295.jpg||height="394" width="600"]]
3812
3813 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and runs in a reverse low speed. When it encounters a falling edge of HW, it stops.
3814
3815
3816 ③ The deceleration point signal is valid when starting homing
3817
3818 (% style="text-align:center" %)
3819 [[image:1748227876370-835.jpg||height="395" width="600"]]
3820
3821 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3822
3823
3824 (29) P01-40=33 and P01-40=34
3825
3826 Mechanical homing: Z signal.
3827
3828 Deceleration point: None
3829
3830 Homing mode 33: Reverse low speed operation, stop the first Z signal encountered
3831
3832 Homing mode 34: running at low speed in forward direction, stopping the first Z signal encountered
3833
3834 (% style="text-align:center" %)
3835 [[image:1748227893108-875.jpg||height="161" width="600"]]
3836
3837
3838 (30) P01-40=35
3839
3840 Homing mode 35, taking the current position as the mechanical homing, after triggering the homing (P01-39: 0x00→0x01/0x00 → 0x02);
3841
3842 After the homing is completed, according to the set value of P10-08 (homing bias compensation), P10-06 (encoder multi-turn reset operation) is executed.
3843
3844
3845