Wiki source code of 06 Operation

Version 112.3 by Iris on 2025/07/21 17:36

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 0: standard setting (CW is forward rotation)
90
91 1: reverse mode (CCW is forward rotation)
92 )))|-
93
94 Table 6-3 Rotation direction parameters** **
95
96 == **Braking resistor** ==
97
98 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
99
100 The basis for judging whether the braking resistor is built-in or external.
101
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
103 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
104
105 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
106 **Setting method**
107 )))|=(% style="width: 126px;" %)(((
108 **Effective time**
109 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
110 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
111 Operation setting
112 )))|(% style="width:126px" %)(((
113 Effective immediately
114 )))|0|0 to 3|(((
115 0: use built-in braking resistor
116
117 1: use external braking resistor and natural cooling
118
119 2: use external braking resistor and forced air cooling; (cannot be set)
120
121 3: No braking resistor is used, it is all absorbed by capacitor.
122 )))|-
123 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G , VD2F-030SA1P-010SA1P and VD2L-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
124 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
125 Operation setting
126 )))|(% style="width:126px" %)(((
127 Effective immediately
128 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
129 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
130 Operation setting
131 )))|(% style="width:126px" %)(((
132 Effective immediately
133 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
134
135 Table 6-4 Braking resistor parameters
136
137 == **Servo operation** ==
138
139 **Set the servo enable (S-ON) to valid (ON)**
140
141 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
142
143 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
144
145 **Input the instruction and the motor rotates**
146
147 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
148
149 **Timing diagram of power on**
150
151 (% style="text-align:center" %)
152 (((
153 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
154 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
155 )))
156
157 == Servo shutdown ==
158
159 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
160
161 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
162 |=(% style="width: 150px;" %)Free stop|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
163 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
164
165 Table 6-5 Comparison of two shutdown modes
166
167 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
168 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
169
170 Table 6-6 Comparison of two shutdown status
171
172 **Servo enable (S-ON) OFF shutdown**
173
174 The related parameters of the servo OFF shutdown mode are shown in the table below.
175
176 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
177 **Setting method**
178 )))|=(% style="width: 134px;" %)(((
179 **Effective time**
180 )))|=(% style="width: 86px;" %)(((
181 **Default value**
182 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
183 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
184 Shutdown
185
186 setting
187 )))|(% style="width:134px" %)(((
188 Effective
189
190 immediately
191 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
192 0: Free stop, and the motor shaft remains free status.
193
194 1: Zero-speed stop, and the motor axis remains free status.
195 )))|-
196
197 Table 6-7 Servo OFF shutdown mode parameters details
198
199 **Emergency shutdown**
200
201 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
202
203 Estop mode 1 (deceleration stop):
204
205 ~1. Configurate DI function code: 8 [ESTOP]
206
207 2. Set P1-5 shutdown deceleration time.
208
209 3. Trigger DI emergency shutdown.
210
211 4. Servo emergency shutdown and deceleration to zero speed.
212
213 Estop mode 2:
214
215 ~1. Configurate DI function code: 1 [Servo enable SON]
216
217 2. Set P1-05 shutdown deceleration time.
218
219 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
220
221 4. Trigger DI to turn off servo enable SON.
222
223 5.Servo enable turns off and stops and decelerates to zero speed.
224
225 |Function code|Name|(((
226 Setting
227
228 method
229 )))|(((
230 Effective
231
232 time
233 )))|Default|Range|Definition|Unit
234 |P01-05|Shutdown deceleration time|(((
235 Shutdown
236
237 setting
238 )))|(((
239 immediately
240
241 Effective
242 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
243
244 **Overtravel shutdown**
245
246 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
247
248 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
249
250 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
251
252 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
253 **Setting method**
254 )))|=(% style="width: 114px;" %)(((
255 **Effective time**
256 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
257 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 0: OFF (not used)
259
260 01: S-ON servo enable
261
262 02: A-CLR fault and Warning Clear
263
264 03: POT forward drive prohibition
265
266 04: NOT Reverse drive prohibition
267
268 05: ZCLAMP Zero speed
269
270 06: CL Clear deviation counter
271
272 07: C-SIGN Inverted instruction
273
274 08: E-STOP Emergency stop
275
276 09: GEAR-SEL Electronic Gear Switch 1
277
278 10: GAIN-SEL gain switch
279
280 11: INH Instruction pulse prohibited input
281
282 12: VSSEL Vibration control switch input
283
284 13: INSPD1 Internal speed instruction selection 1
285
286 14: INSPD2 Internal speed instruction selection 2
287
288 15: INSPD3 Internal speedinstruction selection 3
289
290 16: J-SEL inertia ratio switch (not implemented yet)
291
292 17: MixModesel mixed mode selection
293
294 20: Internal multi-segment position enable signal
295
296 21: Internal multi-segment position selection 1
297
298 22: Internal multi-segment position selection 2
299
300 23: Internal multi-segment position selection 3
301
302 24: Internal multi-segment position selection 4
303 )))|-
304 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
305 Effective immediately
306 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
307 DI port input logic validity function selection.
308
309 0: Normally open input. Low level valid (switch on);
310
311 1: Normally closed input. High level valid (switch off);
312 )))|-
313 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
314 Effective immediately
315 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
316 Select the DI_3 port type to enable
317
318 0: Hardware DI_3 input terminal
319
320 1: Virtual VDI_3 input terminal
321 )))|-
322 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
323 Operation setting
324 )))|(% style="width:114px" %)(((
325 again Power-on
326 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
327 0: OFF (not used)
328
329 01: SON Servo enable
330
331 02: A-CLR Fault and Warning Clear
332
333 03: POT Forward drive prohibition
334
335 04: NOT Reverse drive prohibition
336
337 05: ZCLAMP Zero speed
338
339 06: CL Clear deviation counter
340
341 07: C-SIGN Inverted instruction
342
343 08: E-STOP Emergency shutdown
344
345 09: GEAR-SEL Electronic Gear Switch 1
346
347 10: GAIN-SEL gain switch
348
349 11: INH Instruction pulse prohibited input
350
351 12: VSSEL Vibration control switch input
352
353 13: INSPD1 Internal speed instruction selection 1
354
355 14: INSPD2 Internal speed instruction selection 2
356
357 15: INSPD3 Internal speed instruction selection 3
358
359 16: J-SEL inertia ratio switch (not implemented yet)
360
361 17: MixModesel mixed mode selection
362
363 20: Internal multi-segment position enable signal
364
365 21: Internal multi-segment position selection 1
366
367 22: Internal multi-segment position selection 2
368
369 23: Internal multi-segment position selection 3
370
371 24: Internal multi-segment position selection 4
372 )))|-
373 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
374 Effective immediately
375 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
376 DI port input logic validity function selection.
377
378 0: Normally open input. Low level valid (switch on);
379
380 1: Normally closed input. High level valid (switch off);
381 )))|-
382 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
383 Effective immediately
384 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
385 Select the DI_4 port type to enable
386
387 0: Hardware DI_4 input terminal
388
389 1: Virtual VDI_4 input terminal
390 )))|-
391
392 Table 6-8 DI3 and DI4 channel parameters
393
394 **(4) Malfunction shutdown**
395
396 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
397
398 == Brake device ==
399
400 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
401
402 (% class="warning" %)|(((
403 (% style="text-align:center" %)
404 [[image:image-20220611151617-1.png]]
405 )))
406 |(((
407 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
408
409 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
410
411 ✎The brake coil has no polarity;
412
413 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
414
415 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
416 )))
417
418 **Wiring of brake device**
419
420 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
421
422
423 (% style="text-align:center" %)
424 (((
425 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
426 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
427 )))
428
429 (% class="warning" %)|(((
430 (% style="text-align:center" %)
431 [[image:image-20220611151642-2.png]]
432 )))
433 |(((
434 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
435
436 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
437
438 ✎It is recommended to use cables above 0.5 mm².
439 )))
440
441 **Brake software setting**
442
443 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
444
445 Related function code is as below.
446
447 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
448 **Effective time**
449 )))
450 |=141|(% style="width:241px" %)(((
451 BRK-OFF Brake output
452 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
453
454 Table 6-9 Relevant function codes for brake setting
455
456 |=(% scope="row" %)**Function code**|=**Name**|=(((
457 **Setting method**
458 )))|=(((
459 **Effective time**
460 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
461 |=P1-30|Delay from brake output to instruction reception|(((
462 Operation setting
463 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
464 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
465 Operation setting
466 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
467 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
468 Operation setting
469 )))|Effective immediately|30|0 to 3000|(((
470 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
471
472 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
473 )))|rpm
474 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
475 Operation setting
476 )))|Effective immediately|500|1 to 1000|(((
477 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
478
479 When brake output (BRK-OFF) is not allocated, this function code has no effect.
480 )))|ms
481
482 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
483
484 **Servo drive brake timing in normal state**
485
486 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
487
488 * Brake timing when servo motor is stationary
489
490 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
491
492 (% class="warning" %)|(((
493 (% style="text-align:center" %)
494 [[image:image-20220611151705-3.png]]
495 )))
496 |(((
497 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
498
499 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
500 )))
501
502 (% style="text-align:center" %)
503 (((
504 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
505 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
506 )))
507
508 (% class="box infomessage" %)
509 (((
510 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
511 )))
512
513 * The brake timing when servo motor rotates
514
515 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
516
517 (% class="warning" %)|(((
518 (% style="text-align:center" %)
519 [[image:image-20220611151719-4.png]]
520 )))
521 |(((
522 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
523
524 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
525
526 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
527
528 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
529
530 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
531 )))
532
533 (% style="text-align:center" %)
534 (((
535 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
536 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
537 )))
538
539 **Brake timing when the servo drive fails**
540
541 The brake timing (free shutdown) in the fault status is as follows.
542
543 (% style="text-align:center" %)
544 (((
545 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
546 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
547 )))
548
549 = **Position control mode** =
550
551 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
552
553 (% style="text-align:center" %)
554 (((
555 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
556 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
557 )))
558
559 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
560
561 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
562 **Setting method**
563 )))|=(((
564 **Effective time**
565 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
566 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
567 Operation setting
568 )))|(((
569 immediately Effective
570 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
571 1: position control
572
573 2: speed control
574
575 3: torque control
576
577 4: position/speed mix control
578
579 5: position/torque mix control
580
581 6: speed /torque mix control
582
583 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
584 )))|(% style="width:151px" %)-
585
586 Table 6-10 Control mode parameters
587
588 == Position instruction input setting ==
589
590 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
591
592 |=(% scope="row" %)**Function code**|=**Name**|=(((
593 **Setting method**
594 )))|=(((
595 **Effective time**
596 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
597 |=P01-06|Position instruction source|(((
598 Operation setting
599 )))|(((
600 immediately Effective
601 )))|0|0 to 1|(((
602 0: pulse instruction
603
604 1: internal position instruction
605 )))|-
606
607 Table 6-12 Position instruction source parameter
608
609 **The source of position instruction is pulse instruction (P01-06=0)**
610
611 Low-speed pulse instruction input
612
613 |(% style="text-align:center" %)(((
614 (% class="wikigeneratedid" %)
615 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
616 )))|(% style="text-align:center" %)(((
617 (% class="wikigeneratedid" %)
618 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
619 )))
620 |(% colspan="2" %)Figure 6-7 Position instruction input setting
621
622 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
623
624 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
625
626 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
627 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
628 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
629
630 Table 6-13 Pulse input specifications
631
632 * Differential input
633
634 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
635
636 (% style="text-align:center" %)
637 (((
638 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
639 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
640 )))
641
642 (% class="box infomessage" %)
643 (((
644 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
645 )))
646
647 * Open collector input
648
649 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
650
651 (% style="text-align:center" %)
652 (((
653 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
654 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
655 )))
656
657
658 (% class="box infomessage" %)
659 (((
660 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
661 )))
662
663 * Position pulse frequency and anti-interference level
664
665 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
666
667 (% style="text-align:center" %)
668 (((
669 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
670 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
671 )))
672
673 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
674
675 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
676 **Setting method**
677 )))|=(((
678 **Effective time**
679 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
680 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
681 Operation setting
682 )))|(% rowspan="3" %)(((
683 Power-on again
684 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
685 Set the anti-interference level of external pulse instruction.
686
687 0: no filtering;
688
689 1: Filtering time 128ns
690
691 2: Filtering time 256ns
692
693 3: Filtering time 512ns
694
695 4: Filtering time 1.024us
696
697 5: Filtering time 2.048us
698
699 6: Filtering time 4.096us
700
701 7: Filtering time 8.192us
702
703 8: Filtering time 16.384us
704
705 9:
706
707 VD2: Filtering time 32.768us
708
709 VD2F: Filtering time 25.5us
710 )))|(% rowspan="3" %)-
711
712 Table 6-14 Position pulse frequency and anti-interference level parameters
713
714 |**Function code**|**Name**|(((
715 **Setting**
716
717 **method**
718 )))|(((
719 **Effective**
720
721 **time**
722 )))|**Default value**|**Range**|**Definition**|**Unit**
723 |P00-14|Position pulse anti-interference level|(((
724 Operation
725
726 setting
727 )))|(((
728 Power-on
729
730 again
731 )))|2|0 to 8|(((
732 VD2L drive set the anti-interference level of external pulse instruction.
733
734 0: no filtering;
735
736 1: Filtering time 111.1ns
737
738 2: Filtering time 222.2ns
739
740 3: Filtering time 444.4ns
741
742 4: Filtering time 888.8ns
743
744 5: Filtering time 1777.7ns
745
746 6: Filtering time 3555.5ns
747
748 7: Filtering time 7111.7ns
749
750 8: Filtering time 14222.2ns
751
752
753 )))|-
754
755 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
756
757
758 * Position pulse type selection
759
760 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
761
762 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
763 **Setting method**
764 )))|=(% style="width: 109px;" %)(((
765 **Effective time**
766 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
767 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
768 Operation setting
769 )))|(% style="width:109px" %)(((
770 Power-on again
771 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
772 0: direction + pulse (positive logic)
773
774 1: CW/CCW
775
776 2: A, B phase quadrature pulse (4 times frequency)
777
778 3: Direction + pulse (negative logic)
779
780 4: CW/CCW (negative logic)
781
782 5: A, B phase quadrature pulse (4 times frequency negative logic)
783
784 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
785 )))|-
786
787 Table 6-15 Position pulse type selection parameter
788
789 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
790 |=0|(% style="width:200px" %)(((
791 Direction + pulse
792
793 (Positive logic)
794 )))|(% style="width:161px" %)(((
795 PULSE
796
797 SIGN
798 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
799 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
800 PULSE (CW)
801
802 SIGN (CCW)
803 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
804 |=2|(% style="width:200px" %)(((
805 AB phase orthogonal
806
807 pulse (4 times frequency)
808 )))|(% style="width:161px" %)(((
809 PULSE (Phase A)
810
811 SIGN (Phase B)
812 )))|(((
813
814
815 [[image:image-20220707094358-9.jpeg]]
816
817 Phase A is 90° ahead of Phase B
818 )))|(((
819
820
821 [[image:image-20220707094407-10.jpeg]]
822
823 Phase B is 90° ahead of Phase A
824 )))
825 |=3|(% style="width:200px" %)(((
826 Direction + pulse
827
828 (Negative logic)
829 )))|(% style="width:161px" %)(((
830 PULSE
831
832 SIGN
833 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
834 |=4|(% style="width:200px" %)(((
835 CW/CCW
836
837 (Negative logic)
838 )))|(% style="width:161px" %)(((
839 PULSE (CW)
840
841 SIGN (CCW)
842 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
843 |=5|(% style="width:200px" %)(((
844 AB phase orthogonal
845
846 pulse (4 times frequency negative logic)
847 )))|(% style="width:161px" %)(((
848 PULSE (Phase A)
849
850 SIGN (Phase B)
851 )))|(((
852
853
854 [[image:image-20220707094429-14.jpeg]]
855
856 Phase B is ahead of A phase by 90°
857 )))|(((
858
859
860 [[image:image-20220707094437-15.jpeg]]
861
862 Phase A is ahead of B phase by 90°
863 )))
864
865 Table 6-16 Pulse description
866
867 **The source of position instruction is internal position instruction (P01-06=1)**
868
869 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
870
871 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
872
873 (% style="text-align:center" %)
874 (((
875 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
876 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
877 )))
878
879
880 * Set multi-segment position running mode
881
882 |=(% scope="row" %)**Function code**|=**Name**|=(((
883 **Setting method**
884 )))|=(((
885 **Effective time**
886 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
887 |=P07-01|Multi-segment position running mode|(((
888 Shutdown setting
889 )))|(((
890 Effective immediately
891 )))|0|0 to 2|(((
892 0: Single running
893
894 1: Cycle running
895
896 2: DI switching running
897 )))|-
898 |=P07-02|Start segment number|(((
899 Shutdown setting
900 )))|(((
901 Effective immediately
902 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
903 |=P07-03|End segment number|(((
904 Shutdown setting
905 )))|(((
906 Effective immediately
907 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
908 |=P07-04|Margin processing method|(((
909 Shutdown setting
910 )))|(((
911 Effective immediately
912 )))|0|0 to 1|(((
913 0: Run the remaining segments
914
915 1: Run again from the start segment
916 )))|-
917 |=P07-05|Displacement instruction type|(((
918 Shutdown setting
919 )))|(((
920 Effective immediately
921 )))|0|0 to 1|(((
922 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
923
924 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
925 )))|-
926
927 Table 6-17 multi-segment position running mode parameters
928
929 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
930
931 1. Single running
932
933 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
934
935 (% style="text-align:center" %)
936 (((
937 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
938 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
939 )))
940
941 * 2. Cycle running
942
943 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
944
945 (% style="text-align:center" %)
946 (((
947 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
948 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
949 )))
950
951 (% class="warning" %)|(((
952 (% style="text-align:center" %)
953 [[image:image-20220611151917-5.png]]
954 )))
955 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
956
957 (% start="3" %)
958 1. DI switching running
959
960 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
961
962 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
963 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
964 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
965 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
966 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
967
968 Table 6-18 DI function code
969
970 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
971
972 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
973 |=0|0|0|0|1
974 |=0|0|0|1|2
975 |=0|0|1|0|3
976 |=0|0|1|1|4
977 |=0|1|0|0|5
978 |=0|1|0|1|6
979 |=0|1|1|0|7
980 |=0|1|1|1|8
981 |=1|0|0|0|9
982 |=1|0|0|1|10
983 |=1|0|1|0|11
984 |=1|0|1|1|12
985 |=1|1|0|0|13
986 |=1|1|0|1|14
987 |=1|1|1|0|15
988 |=1|1|1|1|16
989
990 Table 6-20 INPOS corresponds to running segment number
991
992 The operating curve in this running mode is shown in __Figure 6-14__.
993
994 (% style="text-align:center" %)
995 (((
996 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
997 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
998 )))
999
1000 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
1001
1002 **Run the remaining segments**
1003
1004 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
1005
1006 (% style="text-align:center" %)
1007 (((
1008 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1009 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
1010 )))
1011
1012 (% style="text-align:center" %)
1013 (((
1014 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
1015 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
1016 )))
1017
1018 **Run again from the start segment**
1019
1020 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
1021
1022 (% style="text-align:center" %)
1023 (((
1024 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1025 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
1026 )))
1027
1028 (% style="text-align:center" %)
1029 (((
1030 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1031 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
1032 )))
1033
1034 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
1035
1036 * Relative position instruction
1037
1038 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
1039
1040 |(((
1041 (% style="text-align:center" %)
1042 (((
1043 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1044 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
1045 )))
1046 )))|(((
1047 (% style="text-align:center" %)
1048 (((
1049 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1050 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
1051 )))
1052 )))
1053
1054 * Absolute position instruction
1055
1056 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
1057
1058 |(((
1059 (% style="text-align:center" %)
1060 (((
1061 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1062 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
1063 )))
1064 )))|(((
1065 (% style="text-align:center" %)
1066 (((
1067 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1068 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1069 )))
1070 )))
1071
1072 * Multi-segment position running curve setting
1073
1074 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1075
1076 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1077 |=P07-09|(((
1078 1st segment
1079
1080 displacement
1081 )))|(((
1082 Operation setting
1083 )))|(((
1084 Effective immediately
1085 )))|10000|(((
1086 -2147483647 to
1087
1088 2147483646
1089 )))|Position instruction, positive and negative values could be set|-
1090 |=P07-10|Maximum speed of the 1st displacement|(((
1091 Operation setting
1092 )))|(((
1093 Effective immediately
1094 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1095 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1096 Operation setting
1097 )))|(((
1098 Effective immediately
1099 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1100 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1101 Operation setting
1102 )))|(((
1103 Effective immediately
1104 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1105
1106 Table 6-21 The 1st position operation curve parameters table
1107
1108 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1109
1110 (% style="text-align:center" %)
1111 (((
1112 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1113 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1114 )))
1115
1116
1117 * multi-segment position instruction enable
1118
1119 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1120
1121 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1122 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1123 DI port logic invalid: Does not affect the current operation of the servo motor.
1124
1125 DI port logic valid: Motor runs multi-segment position
1126 )))
1127
1128 (% style="text-align:center" %)
1129 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1130
1131 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1132
1133 == Electronic gear ratio ==
1134
1135 **Definition of electronic gear ratio**
1136
1137 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1138
1139 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1140
1141 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1142
1143 (% style="text-align:center" %)
1144 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1145
1146 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1147
1148 **Setting steps of electronic gear ratio**
1149
1150 (% style="text-align:center" %)
1151 (((
1152 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1153 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1154 )))
1155
1156 **lectronic gear ratio switch setting**
1157
1158 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1159
1160 |=(% scope="row" %)**Function code**|=**Name**|=(((
1161 **Setting method**
1162 )))|=(((
1163 **Effective time**
1164 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1165 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1166 Shutdown setting
1167 )))|(((
1168 Effective immediately
1169 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1170 Instruction pulse
1171
1172 unit
1173 )))
1174 |=P00-17|(((
1175 Electronic gear 1
1176
1177 numerator
1178 )))|Operation setting|(((
1179 Effective immediately
1180 )))|1|1 to 4294967294|(((
1181 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1182
1183 **VD2L: 1-2147483647**
1184 )))|-
1185 |=P00-18|(((
1186 Electronic gear 1
1187
1188 denominator
1189 )))|(((
1190 Operation setting
1191 )))|(((
1192 Effective immediately
1193 )))|1|1 to 4294967294|(((
1194 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1195
1196 **VD2L: 1-2147483647**
1197 )))|-
1198 |=P00-19|(((
1199 Electronic gear 2
1200
1201 numerator
1202 )))|Operation setting|(((
1203 Effective immediately
1204 )))|1|1 to 4294967294|(((
1205 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1206
1207 **VD2L: 1-2147483647**
1208 )))|-
1209 |=P00-20|(((
1210 Electronic gear 2
1211
1212 denominator
1213 )))|Operation setting|(((
1214 Effective immediately
1215 )))|1|1 to 4294967294|(((
1216 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1217
1218 **VD2L: 1-2147483647**
1219 )))|-
1220
1221 Table 6-20 Electronic gear ratio function code
1222
1223 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1224
1225 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1226 |=09|GEAR-SEL electronic gear switch 1|(((
1227 DI port logic invalid: electronic gear ratio 1
1228
1229 DI port logic valid: electronic gear ratio 2
1230 )))
1231
1232 Table 6-21 Switching conditions of electronic gear ratio group
1233
1234 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1235 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1236 (% style="text-align:center" %)
1237 [[image:image-20220707101328-21.png]]
1238 )))
1239 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1240 (% style="text-align:center" %)
1241 [[image:image-20220707101336-22.png]]
1242 )))
1243 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1244 (% style="text-align:center" %)
1245 [[image:image-20220707101341-23.png]]
1246 )))
1247
1248 Table 6-22 Application of electronic gear ratio
1249
1250 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1251
1252 == Position instruction filtering ==
1253
1254 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1255
1256 In the following situations, position instruction filtering should be added.
1257
1258 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1259 1. The pulse instruction frequency is low;
1260 1. When the electronic gear ratio is 10 times or more.
1261
1262 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1263
1264 (% style="text-align:center" %)
1265 (((
1266 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1267 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1268 )))
1269
1270 |=(% scope="row" %)**Function code**|=**Name**|=(((
1271 **Setting method**
1272 )))|=(((
1273 **Effective time**
1274 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1275 |=P04-01|Pulse instruction filtering method|(((
1276 Shutdown setting
1277 )))|(((
1278 Effective immediately
1279 )))|0|0 to 1|(((
1280 0: 1st-order low-pass filtering
1281
1282 1: average filtering
1283 )))|-
1284 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1285 Effective immediately
1286 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1287 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1288 Effective immediately
1289 )))|0|0 to 128|Position instruction average filtering time constant|ms
1290
1291 Table 6-25 Position instruction filter function code
1292
1293 == Clearance of position deviation ==
1294
1295 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1296
1297 Position deviation = (position instruction-position feedback) (encoder unit)
1298
1299 == Position-related DO output function ==
1300
1301 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1302
1303 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1304 **Positioning completion/positioning approach output**
1305
1306 (% class="wikigeneratedid" %)
1307 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1308
1309 (% style="text-align:center" %)
1310 (((
1311 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1312 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1313 )))
1314
1315 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1316
1317 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1318
1319 (% style="text-align:center" %)
1320 (((
1321 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1322 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1323 )))
1324
1325 |=(% scope="row" %)**Function code**|=**Name**|=(((
1326 **Setting method**
1327 )))|=(% style="width: 129px;" %)(((
1328 **Effective time**
1329 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1330 |=P05-12|Positioning completion threshold|(((
1331 Operation setting
1332 )))|(% style="width:129px" %)(((
1333 Effective immediately
1334 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1335 |=P05-13|Positioning approach threshold|(((
1336 Operation setting
1337 )))|(% style="width:129px" %)(((
1338 Effective immediately
1339 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1340 |=P05-14|Position detection window time|(((
1341 Operation setting
1342 )))|(% style="width:129px" %)(((
1343 Effective immediately
1344 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1345 |=P05-15|Positioning signal hold time|(((
1346 Operation setting
1347 )))|(% style="width:129px" %)(((
1348 Effective immediately
1349 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1350
1351 Table 6-26 Function code parameters of positioning completion
1352
1353 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1354 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1355 |=135|(((
1356 P-NEAR positioning close
1357 )))|(((
1358 Output this signal indicates that the servo drive position is close.
1359 )))
1360
1361 Table 6-27 Description of DO rotation detection function code
1362
1363 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1364
1365 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1366
1367 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1368
1369 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1370
1371 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1372
1373 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1374
1375 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1376
1377 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1378
1379
1380 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1381 |DO_2 channel function selection|Operation setting|Effective immediately|130|128-149|DI/DO|-
1382 |(% colspan="8" %)(((
1383 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1384
1385 |Setting value|DO channel function| |Setting value|DO channel function
1386 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1387 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1388 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1389 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1390 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1391 |133|ZSP (zero speed signal)| |144|N/A
1392 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1393 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1394 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1395 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1396 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1397
1398 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1399
1400 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1401
1402 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1403
1404 Note 2:
1405
1406 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1407
1408 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1409
1410 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1411
1412 ④VD2L does not support function code 149.
1413 )))
1414
1415 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1416 |DO_3 channel function selection|Operation setting|Effective immediately|129|128-149|DI/DO|-
1417 |(% colspan="8" %)(((
1418 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1419
1420 |Setting value|DO channel function| |Setting value|DO channel function
1421 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1422 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1423 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1424 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1425 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1426 |133|ZSP (zero speed signal)| |144|None
1427 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1428 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1429 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1430 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1431 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1432
1433 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1434
1435 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1436
1437 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1438
1439 **Note 2:**
1440
1441 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1442
1443 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1444
1445 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1446
1447 ④VD2L does not support function code 149.
1448 )))
1449
1450 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1451 |DO_4 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1452 |(% colspan="8" %)(((
1453 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1454
1455 |Setting value|DO channel function| |Setting value|DO channel function
1456 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1457 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1458 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1459 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1460 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1461 |133|ZSP (zero speed signal)| |144|None
1462 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1463 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1464 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1465 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1466 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1467
1468 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1469
1470 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1471
1472 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1473
1474 **Note 2:**
1475
1476 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1477
1478 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1479
1480 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1481
1482 ④VD2L does not support function code 149.
1483 )))
1484
1485 = **Speed control mode** =
1486
1487 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1488
1489 (% style="text-align:center" %)
1490 (((
1491 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1492 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1493 )))
1494
1495 == Speed instruction input setting ==
1496
1497 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1498
1499 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1500 **Setting method**
1501 )))|=(% style="width: 125px;" %)(((
1502 **Effective time**
1503 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1504 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1505 Shutdown setting
1506 )))|(% style="width:125px" %)(((
1507 Effective immediately
1508 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1509 0: internal speed instruction
1510
1511 1: AI_1 analog input (not supported by **VD2F and VD2L**)
1512 )))|-
1513
1514 Table 6-26 Speed instruction source parameter
1515
1516 **Speed instruction source is internal speed instruction (P01-01=0)**
1517
1518 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1519
1520 (% style="width:1141px" %)
1521 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1522 **Setting**
1523
1524 **method**
1525 )))|=(% colspan="2" %)(((
1526 **Effective**
1527
1528 **time**
1529 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1530 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1531 Internal speed
1532
1533 Instruction 0
1534 )))|(% colspan="2" %)(((
1535 Operation
1536
1537 setting
1538 )))|(% colspan="2" %)(((
1539 Effective
1540
1541 immediately
1542 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1543 Internal speed instruction 0
1544
1545 When DI input port:
1546
1547 15-INSPD3: 0
1548
1549 14-INSPD2: 0
1550
1551 13-INSPD1: 0,
1552
1553 select this speed instruction to be effective.
1554 )))|(% colspan="2" %)rpm
1555 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1556 Internal speed
1557
1558 Instruction 1
1559 )))|(% colspan="2" %)(((
1560 Operation
1561
1562 setting
1563 )))|(% colspan="2" %)(((
1564 Effective
1565
1566 immediately
1567 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1568 Internal speed instruction 1
1569
1570 When DI input port:
1571
1572 15-INSPD3: 0
1573
1574 14-INSPD2: 0
1575
1576 13-INSPD1: 1,
1577
1578 Select this speed instruction to be effective.
1579 )))|(% colspan="2" %)rpm
1580 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1581 Internal speed
1582
1583 Instruction 2
1584 )))|(% colspan="2" %)(((
1585 Operation
1586
1587 setting
1588 )))|(% colspan="2" %)(((
1589 Effective
1590
1591 immediately
1592 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1593 Internal speed instruction 2
1594
1595 When DI input port:
1596
1597 15-INSPD3: 0
1598
1599 14-INSPD2: 1
1600
1601 13-INSPD1: 0,
1602
1603 Select this speed instruction to be effective.
1604 )))|(% colspan="2" %)rpm
1605 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1606 Internal speed
1607
1608 Instruction 3
1609 )))|(% colspan="2" %)(((
1610 Operation
1611
1612 setting
1613 )))|(% colspan="2" %)(((
1614 Effective
1615
1616 immediately
1617 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1618 Internal speed instruction 3
1619
1620 When DI input port:
1621
1622 15-INSPD3: 0
1623
1624 14-INSPD2: 1
1625
1626 13-INSPD1: 1,
1627
1628 Select this speed instruction to be effective.
1629 )))|(% colspan="2" %)rpm
1630 |=P01-26|(% colspan="2" %)(((
1631 Internal speed
1632
1633 Instruction 4
1634 )))|(% colspan="2" %)(((
1635 Operation
1636
1637 setting
1638 )))|(% colspan="2" %)(((
1639 Effective
1640
1641 immediately
1642 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1643 Internal speed instruction 4
1644
1645 When DI input port:
1646
1647 15-INSPD3: 1
1648
1649 14-INSPD2: 0
1650
1651 13-INSPD1: 0,
1652
1653 Select this speed instruction to be effective.
1654 )))|(% colspan="1" %)rpm
1655 |=P01-27|(% colspan="2" %)(((
1656 Internal speed
1657
1658 Instruction 5
1659 )))|(% colspan="2" %)(((
1660 Operation
1661
1662 setting
1663 )))|(% colspan="2" %)(((
1664 Effective
1665
1666 immediately
1667 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1668 Internal speed instruction 5
1669
1670 When DI input port:
1671
1672 15-INSPD3: 1
1673
1674 14-INSPD2: 0
1675
1676 13-INSPD1: 1,
1677
1678 Select this speed instruction to be effective.
1679 )))|(% colspan="1" %)rpm
1680 |=P01-28|(% colspan="2" %)(((
1681 Internal speed
1682
1683 Instruction 6
1684 )))|(% colspan="2" %)(((
1685 Operation
1686
1687 setting
1688 )))|(% colspan="2" %)(((
1689 Effective
1690
1691 immediately
1692 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1693 Internal speed instruction 6
1694
1695 When DI input port:
1696
1697 15-INSPD3: 1
1698
1699 14-INSPD2: 1
1700
1701 13-INSPD1: 0,
1702
1703 Select this speed instruction to be effective.
1704 )))|(% colspan="1" %)rpm
1705 |=P01-29|(% colspan="2" %)(((
1706 Internal speed
1707
1708 Instruction 7
1709 )))|(% colspan="2" %)(((
1710 Operation
1711
1712 setting
1713 )))|(% colspan="2" %)(((
1714 Effective
1715
1716 immediately
1717 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1718 Internal speed instruction 7
1719
1720 When DI input port:
1721
1722 15-INSPD3: 1
1723
1724 14-INSPD2: 1
1725
1726 13-INSPD1: 1,
1727
1728 Select this speed instruction to be effective.
1729 )))|(% colspan="1" %)rpm
1730
1731 Table 6-27 Internal speed instruction parameters
1732
1733 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1734 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1735 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1736 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1737
1738 Table 6-28 DI multi-speed function code description
1739
1740 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1741
1742
1743 (% style="margin-left:auto; margin-right:auto" %)
1744 |=(% style="text-align: center; vertical-align: middle;" %)**INSPD3**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD2**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD1**|=(% style="text-align: center; vertical-align: middle;" %)**Running segment number**|=(% style="text-align: center; vertical-align: middle;" %)**Internal speed instruction number**
1745 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1746 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1747 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1748 |(% colspan="5" style="text-align:center; vertical-align:middle" %)......
1749 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1750
1751 Table 6-29 Correspondence between INSPD bits and segment numbers
1752
1753 (% style="text-align:center" %)
1754 (((
1755 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1756 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1757 )))
1758
1759 **Speed instruction source is internal speed instruction (P01-01=1)**
1760
1761 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1762
1763 (% style="text-align:center" %)
1764 (((
1765 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1766 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1767 )))
1768
1769 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1770
1771 (% style="text-align:center" %)
1772 (((
1773 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1774 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1775 )))
1776
1777 Explanation of related terms:
1778
1779 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1780 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1781 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1782
1783 (% style="text-align:center" %)
1784 (((
1785 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1786 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1787 )))
1788
1789 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1790 |=P05-01(((
1791
1792 )))|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1793 |=P05-02(((
1794
1795 )))|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1796 |=P05-03(((
1797
1798 )))|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1799 |=P05-04(((
1800
1801 )))|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1802
1803 (% class="box infomessage" %)
1804 (((
1805 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
1806 )))
1807
1808 == Acceleration and deceleration time setting ==
1809
1810 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1811
1812 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1813
1814 (% style="text-align:center" %)
1815 (((
1816 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1817 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1818 )))
1819
1820 (% style="text-align:center" %)
1821 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1822
1823 |=(% scope="row" %)**Function code**|=**Name**|=(((
1824 **Setting method**
1825 )))|=(((
1826 **Effective time**
1827 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1828 |=P01-03|Acceleration time|(((
1829 Operation setting
1830 )))|(((
1831 Effective immediately
1832 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1833 |=P01-04|Deceleration time|(((
1834 Operation setting
1835 )))|(((
1836 Effective immediately
1837 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1838
1839 Table 6-31 Acceleration and deceleration time parameters
1840
1841 == Speed instruction limit ==
1842
1843 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1844
1845 1. P01-10: Set the maximum speed limit value
1846 1. P01-12: Set forward speed limit value
1847 1. P01-13: Set reverse speed limit value
1848 1. The maximum speed of the motor: determined by motor model
1849
1850 The actual motor speed limit interval satisfies the following relationship:
1851
1852 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1853
1854 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1855
1856 |=(% scope="row" %)**Function code**|=**Name**|=(((
1857 **Setting method**
1858 )))|=(((
1859 **Effective time**
1860 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1861 |=P01-10|Maximum speed threshold|(((
1862 Operation setting
1863 )))|(((
1864 Effective immediately
1865 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1866 |=P01-12|Forward speed threshold|(((
1867 Operation setting
1868 )))|(((
1869 Effective immediately
1870 )))|3000|0 to 5000|Set forward speed limit value|rpm
1871 |=P01-13|Reverse speed threshold|(((
1872 Operation setting
1873 )))|(((
1874 Effective immediately
1875 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1876
1877 Table 6-32 Rotation speed related function codes
1878
1879 == Zero-speed clamp function ==
1880
1881 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1882
1883 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1884
1885 |=(% scope="row" %)**Function code**|=**Name**|=(((
1886 **Setting method**
1887 )))|=(((
1888 **Effective time**
1889 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1890 |=P01-21|(((
1891 Zero-speed clamp function selection
1892 )))|(((
1893 Operation setting
1894 )))|(((
1895 Effective immediately
1896 )))|0|0 to 3|(((
1897 Set the zero-speed clamp function. In speed mode:
1898
1899 0: Force the speed to 0;
1900
1901 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1902
1903 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1904
1905 3: Invalid, ignore zero-speed clamp input
1906 )))|-
1907 |=P01-22|(((
1908 Zero-speed clamp speed threshold
1909 )))|(((
1910 Operation setting
1911 )))|(((
1912 Effective immediately
1913 )))|20|0 to 6000|Set the speed threshold of zero-speed clamp function|rpm
1914
1915 Table 6-33 Zero-speed clamp related parameters
1916
1917 (% style="text-align:center" %)
1918 (((
1919 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1920 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1921 )))
1922
1923 == Speed-related DO output function ==
1924
1925 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1926
1927 **Rotation detection signal**
1928
1929 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1930
1931 (% style="text-align:center" %)
1932 (((
1933 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1934 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1935 )))
1936
1937 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1938
1939 |=(% scope="row" %)**Function code**|=**Name**|=(((
1940 **Setting method**
1941 )))|=(((
1942 **Effective time**
1943 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1944 |=P05-16|(((
1945 Rotation detection
1946
1947 speed threshold
1948 )))|(((
1949 Operation setting
1950 )))|(((
1951 Effective immediately
1952 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1953
1954 Table 6-34 Rotation detection speed threshold parameters
1955
1956 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1957 |=132|(% style="width:247px" %)(((
1958 TGON rotation detection
1959 )))|(% style="width:695px" %)(((
1960 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1961
1962 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1963 )))
1964
1965 Table 6-35 DO rotation detection function code
1966
1967 **Zero-speed signal**
1968
1969 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1970
1971 (% style="text-align:center" %)
1972 (((
1973 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1974 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1975 )))
1976
1977 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1978
1979 |=(% scope="row" %)**Function code**|=**Name**|=(((
1980 **Setting method**
1981 )))|=(((
1982 **Effective time**
1983 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1984 |=P05-19|Zero speed output signal threshold|(((
1985 Operation setting
1986 )))|(((
1987 Effective immediately
1988 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1989
1990 Table 6-36 Zero-speed output signal threshold parameter
1991
1992 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1993 |=133|(((
1994 ZSP zero speed signal
1995 )))|Output this signal indicates that the servo motor is stopping rotation
1996
1997 Table 6-37 DO zero-speed signal function code
1998
1999 **Speed consistent signal**
2000
2001 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
2002
2003 (% style="text-align:center" %)
2004 (((
2005 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2006 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
2007 )))
2008
2009 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
2010
2011 |=(% scope="row" %)**Function code**|=**Name**|=(((
2012 **Setting method**
2013 )))|=(((
2014 **Effective time**
2015 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2016 |=P05-17|Speed consistent signal threshold|(((
2017 Operationsetting
2018 )))|(((
2019 Effective immediately
2020 )))|10|0 to 100|Set speed consistent signal threshold|rpm
2021
2022 Table 6-38 Speed consistent signal threshold parameters
2023
2024 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
2025 |=136|(% style="width:262px" %)(((
2026 V-COIN consistent speed
2027 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
2028
2029 Table 6-39 DO speed consistent function code
2030
2031 **Speed approach signal**
2032
2033 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
2034
2035 (% style="text-align:center" %)
2036 (((
2037 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2038 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
2039 )))
2040
2041 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
2042
2043 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
2044 **Setting method**
2045 )))|=(((
2046 **Effective time**
2047 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2048 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
2049 Operation setting
2050 )))|(((
2051 Effective immediately
2052 )))|100|10 to 6000|Set speed approach signal threshold|rpm
2053
2054 Table 6-40 Speed approaching signal threshold parameters
2055
2056 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2057 |=137|(((
2058 V-NEAR speed approach
2059 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
2060
2061 Table 6-41 DO speed approach function code
2062
2063 = **Torque control mode** =
2064
2065 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
2066
2067 (% style="text-align:center" %)
2068 (((
2069 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2070 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
2071 )))
2072
2073 == **Torque instruction input setting** ==
2074
2075 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
2076
2077 |=(% scope="row" %)**Function code**|=**Name**|=(((
2078 **Setting method**
2079 )))|=(((
2080 **Effective time**
2081 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2082 |=P01-07|Torque instruction source|(((
2083 Shutdown setting
2084 )))|(((
2085 Effective immediately
2086 )))|0|0 to 1|(((
2087 0: internal torque instruction
2088
2089 1: AI_1 analog input(not supported by VD2F and VD2L)
2090 )))|-
2091
2092 Table 6-42 Torque instruction source parameter
2093
2094 **Torque instruction source is internal torque instruction (P01-07=0)**
2095
2096 Torque instruction source is from inside, the value is set by function code P01-08.
2097
2098 |=(% scope="row" %)**Function code**|=**Name**|=(((
2099 **Setting method**
2100 )))|=(((
2101 **Effective time**
2102 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2103 |=P01-08|Torque instruction keyboard set value|(((
2104 Operation setting
2105 )))|(((
2106 Effective immediately
2107 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2108
2109 Table 6-43 Torque instruction keyboard set value
2110
2111 **Torque instruction source is AI_1 analog input (P01-07=1)**
2112
2113 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2114
2115 (% style="text-align:center" %)
2116 (((
2117 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2118 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2119 )))
2120
2121 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2122
2123 (% style="text-align:center" %)
2124 (((
2125 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2126 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2127 )))
2128
2129 Explanation of related terms:
2130
2131 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2132 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2133 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2134
2135 (% style="text-align:center" %)
2136 (((
2137 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2138 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2139 )))
2140
2141 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2142 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2143 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2144 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2145 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2146
2147 Table 6-44 AI_1 parameters
2148
2149 (% class="box infomessage" %)
2150 (((
2151 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2152 )))
2153
2154 == Torque instruction filtering ==
2155
2156 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2157
2158 |=(% scope="row" %)**Function code**|=**Name**|=(((
2159 **Setting method**
2160 )))|=(((
2161 **Effective time**
2162 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2163 |=P04-04|Torque filtering time constant|(((
2164 Operation setting
2165 )))|(((
2166 Effective immediately
2167 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2168
2169 Table 6-45 Torque filtering time constant parameter details
2170
2171 (% class="box infomessage" %)
2172 (((
2173 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2174 )))
2175
2176 (% style="text-align:center" %)
2177 (((
2178 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2179 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2180 )))
2181
2182 == Torque instruction limit ==
2183
2184 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2185
2186 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2187
2188 (% style="text-align:center" %)
2189 (((
2190 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2191 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2192 )))
2193
2194 **Set torque limit source**
2195
2196 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2197
2198 |=(% scope="row" %)**Function code**|=**Name**|=(((
2199 **Setting method**
2200 )))|=(((
2201 **Effective time**
2202 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2203 |=P01-14|(((
2204 Torque limit source
2205 )))|(((
2206 Shutdown setting
2207 )))|(((
2208 Effective immediately
2209 )))|0|0 to 1|(((
2210 0: internal value
2211
2212 1: AI_1 analog input (not supported by VD2F and VD2L)
2213 )))|-
2214
2215 * Torque limit source is internal torque instruction (P01-14=0)
2216
2217 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2218
2219 |=(% scope="row" %)**Function code**|=**Name**|=(((
2220 **Setting method**
2221 )))|=(((
2222 **Effective time**
2223 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2224 |=P01-15|(((
2225 Forward torque limit
2226 )))|(((
2227 Operation setting
2228 )))|(((
2229 Effective immediately
2230 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2231 |=P01-16|(((
2232 Reverse torque limit
2233 )))|(((
2234 Operation setting
2235 )))|(((
2236 Effective immediately
2237 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2238
2239 Table 6-46 Torque limit parameter details
2240
2241 * Torque limit source is external (P01-14=1)
2242
2243 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2244
2245 **Set torque limit DO signal output**
2246
2247 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2248
2249 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2250 |=139|(((
2251 T-LIMIT in torque limit
2252 )))|Output of this signal indicates that the servo motor torque is limited
2253
2254 Table 6-47 DO torque limit function codes
2255
2256 == **Speed limit in torque mode** ==
2257
2258 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2259
2260 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2261
2262 |(((
2263 (% style="text-align:center" %)
2264 (((
2265 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2266 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2267 )))
2268 )))|(((
2269 (% style="text-align:center" %)
2270 (((
2271 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2272 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2273 )))
2274 )))
2275
2276 |=(% scope="row" %)**Function code**|=**Name**|=(((
2277 **Setting method**
2278 )))|=(((
2279 **Effective time**
2280 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2281 |=P01-17|(((
2282 Forward speed
2283
2284 limit in torque mode
2285 )))|(((
2286 Operation setting
2287 )))|(((
2288 Effective immediately
2289 )))|3000|0 to 6000|(((
2290 Forward torque
2291
2292 limit in torque mode
2293 )))|rpm
2294 |=P01-18|(((
2295 Reverse speed
2296
2297 limit in torque mode
2298 )))|(((
2299 Operation setting
2300 )))|(((
2301 Effective immediately
2302 )))|3000|0 to 6000|(((
2303 Reverse torque
2304
2305 limit in torque mode
2306 )))|rpm
2307
2308 Table 6-48 Speed limit parameters in torque mode
2309
2310 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2311
2312 == Torque-related DO output functions ==
2313
2314 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2315
2316 **Torque arrival**
2317
2318 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2319
2320 (% style="text-align:center" %)
2321 (((
2322 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2323 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2324 )))
2325
2326 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2327
2328 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2329 **Setting method**
2330 )))|=(% style="width: 124px;" %)(((
2331 **Effective time**
2332 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2333 |=P05-20|(% style="width:113px" %)(((
2334 Torque arrival
2335
2336 threshold
2337 )))|(% style="width:100px" %)(((
2338 Operation setting
2339 )))|(% style="width:124px" %)(((
2340 Effective immediately
2341 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2342 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2343
2344 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2345
2346 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2347 )))|%
2348 |=P05-21|(% style="width:113px" %)(((
2349 Torque arrival
2350
2351 hysteresis
2352 )))|(% style="width:100px" %)(((
2353 Operation setting
2354 )))|(% style="width:124px" %)(((
2355 Effective immediately
2356 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2357
2358 Table 6-49 Torque arrival parameters
2359
2360 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2361 |=138|(((
2362 T-COIN torque arrival
2363 )))|Used to determine whether the actual torque instruction has reached the set range
2364
2365 Table 6-50 DO Torque Arrival Function Code
2366
2367 = **Mixed control mode** =
2368
2369 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2370
2371 * Position mode⇔ Speed mode
2372 * Position mode ⇔Torque mode
2373 * Speed mode ⇔Torque mode
2374
2375 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2376
2377 |=(% scope="row" %)**Function code**|=**Name**|=(((
2378 **Setting method**
2379 )))|=(((
2380 **Effective time**
2381 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2382 |=P00-01|Control mode|(((
2383 Shutdown setting
2384 )))|(((
2385 Shutdown setting
2386 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2387 1: Position control
2388
2389 2: Speed control
2390
2391 3: Torque control
2392
2393 4: Position/speed mixed control
2394
2395 5: Position/torque mixed control
2396
2397 6: Speed/torque mixed control
2398
2399 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2400 )))|-
2401
2402 Table 6-51 Mixed control mode parameters
2403
2404 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2405
2406 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2407 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2408 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2409 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2410 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2411 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2412 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2413 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2414 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2415 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2416 )))
2417
2418 Table 6-52 Description of DI function codes in control mode
2419
2420 (% class="box infomessage" %)
2421 (((
2422 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2423 )))
2424
2425 = **Absolute system** =
2426
2427 == Overview ==
2428
2429 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2430
2431 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2432
2433 == Single-turn absolute value system ==
2434
2435 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2436
2437 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2438 |A1 (single-turn magnetic encoder)|17|0 to 131071
2439
2440 Table 6-53 Single-turn absolute encoder information
2441
2442 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2443
2444 (% style="text-align:center" %)
2445 (((
2446 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2447 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2448 )))
2449
2450 == Multi-turn absolute value system ==
2451
2452 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2453
2454 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2455 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2456 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2457
2458 Table 6-54 Multi-turn absolute encoder information
2459
2460 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2461
2462 (% style="text-align:center" %)
2463 (((
2464 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2465 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2466 )))
2467
2468 (% class="wikigeneratedid" %)
2469 (((
2470 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2471 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2472 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2473 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2474
2475 |**Function code**|**Name**|(((
2476 **Setting**
2477
2478 **method**
2479 )))|(((
2480 **Effective**
2481
2482 **time**
2483 )))|**Default**|**Range**|**Definition**|**Unit**
2484 |P10-06|Multi-turn absolute encoder reset|(((
2485 Shutdown
2486
2487 setting
2488 )))|Effective immediately|0|0 to 1|(((
2489 0: No operation
2490
2491 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2492
2493 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2494 )))|-
2495
2496 (% style="background-color:#ffffff" %)
2497 |**Function code**|**Name**|(((
2498 **Setting**
2499
2500 **method**
2501 )))|(((
2502 **Effective**
2503
2504 **time**
2505 )))|**Default**|**Range**|**Definition**|**Unit**
2506 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2507 Operation
2508
2509 setting
2510 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2511 )))
2512
2513 == Related functions and parameters ==
2514
2515 **Encoder feedback data**
2516
2517 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2518
2519 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2520 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2521 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2522 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2523
2524 Table 6-55 Encoder feedback data
2525
2526 **Shield multi-turn absolute encoder battery fault**
2527
2528 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2529
2530 |=(% scope="row" %)**Function code**|=**Name**|=(((
2531 **Setting**
2532
2533 **method**
2534 )))|=(((
2535 **Effective**
2536
2537 **time**
2538 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2539 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2540 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2541
2542 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2543 )))|-
2544
2545 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2546
2547 **A93 warning solution**
2548
2549 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2550 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2551
2552 |**Function code**|**Name**|(((
2553 **Setting**
2554
2555 **method**
2556 )))|(((
2557 **Effective**
2558
2559 **time**
2560 )))|**Default**|**Range**|**Definition**|**Unit**
2561 |P00-31|Encoder read-write check abnormal frequency|(((
2562 Operation
2563
2564 setting
2565 )))|(((
2566 immediately
2567
2568 Effective
2569 )))|20|0 to100|(((
2570 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2571
2572 0: no alarm
2573
2574 Others: When this setting value is exceeded, report A93.
2575 )))|-
2576
2577 (% class="box infomessage" %)
2578 (((
2579 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2580 )))
2581
2582 == Absolute value system encoder battery box use precautions. ==
2583
2584 **Cautions**
2585
2586 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2587
2588 (% style="text-align:center" %)
2589 (((
2590 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2591 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2592 )))
2593
2594 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2595
2596 **Replace the battery**
2597
2598 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2599
2600 The specific replacement method is as follows:
2601
2602 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2603 * Step2 Remove the old battery.
2604 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2605 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2606
2607 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2608
2609 |=(% scope="row" %)**Function code**|=**Name**|=(((
2610 **Setting method**
2611 )))|=(((
2612 **Effective time**
2613 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2614 |=P10-06|Multi-turn absolute encoder reset|(((
2615 Shutdown setting
2616 )))|(((
2617 Effective immediately
2618 )))|0|0 to 1|(((
2619 * 0: No operation
2620 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2621
2622 (% class="box infomessage" %)
2623 (((
2624 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2625 )))
2626 )))|-
2627
2628 Table 6-56 Absolute encoder reset enable parameter
2629
2630 **Battery selection**
2631
2632 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2633 |(% rowspan="4" style="width:361px" %)(((
2634 Nominal Voltage: 3.6V
2635
2636 Nominal capacity: 2700mAh
2637 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2638 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2639 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2640 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2641
2642 Table 6-57 Absolute value encoder battery information
2643
2644 **✎Note: **
2645
2646 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2647
2648 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2649
2650 Correct placement of batteries +, - direction
2651
2652 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2653 1. This battery cannot be charged.
2654 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2655 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2656 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2657
2658 = **Other functions** =
2659
2660 == VDI ==
2661
2662 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2663
2664 (% class="box infomessage" %)
2665 (((
2666 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2667 )))
2668
2669 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2670
2671 (% style="text-align:center" %)
2672 (((
2673 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2674 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2675 )))
2676
2677 |=(% scope="row" %)**Function code**|=**Name**|=(((
2678 **Setting method**
2679 )))|=(((
2680 **Effective time**
2681 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2682 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2683 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2684
2685 VDI_1 input level:
2686
2687 0: Low level
2688
2689 1: High level
2690 )))|-
2691 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2692 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2693
2694 VDI_2 input level:
2695
2696 0: Low level
2697
2698 1: High level
2699 )))|-
2700 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2701 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2702
2703 VDI_3 input level:
2704
2705 0: Low level
2706
2707 1: High level
2708 )))|-
2709 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2710 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2711
2712 VDI_4 input level:
2713
2714 0: Low level
2715
2716 1: High level
2717 )))|-
2718 |=P13-05(((
2719
2720 )))|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2721 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2722
2723 VDI_5 input level:
2724
2725 0: Low level
2726
2727 1: High level
2728 )))|-
2729 |=P13-06(((
2730
2731 )))|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2732 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2733
2734 VDI_6 input level:
2735
2736 0: Low level
2737
2738 1: High level
2739 )))|-
2740 |=P13-07(((
2741
2742 )))|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2743 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2744
2745 VDI_7 input level:
2746
2747 0: Low level
2748
2749 1: High level
2750 )))|-
2751 |=P13-08(((
2752
2753 )))|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2754 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2755
2756 VDI_8 input level:
2757
2758 0: Low level
2759
2760 1: High level
2761 )))|-
2762
2763 Table 6-57 Virtual VDI parameters
2764
2765 (% class="box infomessage" %)
2766 (((
2767 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
2768 )))
2769
2770 == Port filtering time ==
2771
2772 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2773
2774 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2775 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2776 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2777
2778 Table 6-58 DI terminal channel logic selection
2779
2780 == **VDO** ==
2781
2782 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2783
2784 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2785
2786 (% style="text-align:center" %)
2787 (((
2788 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2789 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2790 )))
2791
2792
2793 |=(% scope="row" %)**Function code**|=**Name**|=(((
2794 **Setting method**
2795 )))|=(((
2796 **Effective time**
2797 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2798 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2799 VDO_1 output level:
2800
2801 0: Low level
2802
2803 1: High level
2804 )))|-
2805 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2806 VDO_2 output level:
2807
2808 0: Low level
2809
2810 1: High level
2811 )))|-
2812 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2813 VDO_3 output level:
2814
2815 0: Low level
2816
2817 1: High level
2818 )))|-
2819 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2820 VDO_4 output level:
2821
2822 0: Low level
2823
2824 1: High level
2825 )))|-
2826
2827 Table 6-59 Communication control DO function parameters
2828
2829 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2830 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2831 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2832 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2833 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2834
2835 Table 6-60 VDO function number
2836
2837 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2838
2839 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2840
2841 == Motor overload protection ==
2842
2843 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2844
2845 |=(% scope="row" %)**Function code**|=**Name**|=(((
2846 **Setting method**
2847 )))|=(((
2848 **Effective time**
2849 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2850 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2851 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2852
2853 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2854 )))|%
2855
2856 In the following cases, it could be modified according to the actual heat generation of the motor
2857
2858 1. The motor works in a place with high ambient temperature
2859 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2860
2861 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2862
2863 (% class="box infomessage" %)
2864 (((
2865 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2866 )))
2867
2868
2869 = Homing mode =
2870
2871 The homing mode is used to find the mechanical origin and locate the positional relationship between the mechanical origin and the mechanical zero.
2872
2873 Mechanical homing: A mechanically fixed position may correspond to a certain defined homing switch, or may correspond to the motor Z signal.
2874
2875 Mechanical zero point: Mechanically absolute 0 position.
2876
2877 After the homing, the stop position of the motor is the mechanical homing. By setting P10-08, the relationship between the mechanical homing and the mechanical zero can be set:
2878
2879 Mechanical homing = Mechanical zero +P10-08 (homing offset)
2880
2881 When P10-08=0, the mechanical homing coincides with the mechanical zero.
2882
2883 == Control block diagram ==
2884
2885
2886 === Homing mode related function codes ===
2887
2888 |Function code|Name|(((
2889 Setting
2890
2891 method
2892 )))|(((
2893 Effective
2894
2895 time
2896 )))|Default|Range|Definition|Unit
2897 |P01-39|Homing start mode|(((
2898 Stop
2899
2900 settings
2901 )))|(((
2902 Immediately
2903
2904 effective
2905 )))|0|0 to 2|(((
2906 0: Close
2907
2908 1: The servo is powered ON and started after the first ON
2909
2910 2: DI enable
2911 )))|-
2912
2913 |Function code|Name|(((
2914 Setting
2915
2916 method
2917 )))|(((
2918 Effective
2919
2920 time
2921 )))|Default|Range|Definition|Unit
2922 |P01-40|Homing mode|(((
2923 Stop
2924
2925 settings
2926 )))|(((
2927 Immediately
2928
2929 effective
2930 )))|0|0 to 35|(((
2931 0 ~~ 35 Homing mode;
2932
2933 ✎Note: VD2 currently does not support 15, 16, 31, 32 modes
2934 )))|-
2935
2936 |Function code|Name|(((
2937 Setting
2938
2939 method
2940 )))|(((
2941 Effective
2942
2943 time
2944 )))|Default|Range|Definition|Unit
2945 |P01-41|High-speed search deceleration point signal velocity|(((
2946 Running
2947
2948 settings
2949 )))|(((
2950 Immediately
2951
2952 effective
2953 )))|300|1 to 3000|High-speed search deceleration point signal velocity in homing mode|rpm
2954
2955 |Function code|Name|(((
2956 Setting
2957
2958 method
2959 )))|(((
2960 Effective
2961
2962 time
2963 )))|Default|Range|Definition|Unit
2964 |P01-42〇|Low speed search homing signal speed|(((
2965 Running
2966
2967 settings
2968 )))|(((
2969 Immediately
2970
2971 effective
2972 )))|60|1 to 300|Low-speed search origin signal velocity in homing mode|rpm
2973
2974 |Function code|Name|(((
2975 Setting
2976
2977 method
2978 )))|(((
2979 Effective
2980
2981 time
2982 )))|Default|Range|Definition|Unit
2983 |P01-43〇|Homing acceleration and deceleration|(((
2984 Running
2985
2986 settings
2987 )))|(((
2988 Immediately
2989
2990 effective
2991 )))|50|1to1000|(((
2992 Acceleration and deceleration in homing mode
2993
2994 Time for speed acceleration from 0 to 1000rpm
2995 )))|ms
2996
2997 |Function code|Name|(((
2998 Setting
2999
3000 method
3001 )))|(((
3002 Effective
3003
3004 time
3005 )))|Default|Range|Definition|Unit
3006 |P01-44〇|Homing timeout limited time|(((
3007 Running
3008
3009 settings
3010 )))|(((
3011 Immediately
3012
3013 effective
3014 )))|65535|100 to 65535|Homing timeout limited time|ms
3015
3016 |Function code|Name|(((
3017 Setting
3018
3019 method
3020 )))|(((
3021 Effective
3022
3023 time
3024 )))|Default|Range|Definition|Unit
3025 |P10-08〇|Multi-turn absolute encoder homing offset compensation|(((
3026 Running
3027
3028 settings
3029 )))|(((
3030 Immediately
3031
3032 effective
3033 )))|0|(((
3034 -2147483647~~
3035
3036 2147483646
3037 )))|(((
3038 P10-08 multi-turn absolute encoder homing offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position.
3039
3040 When P10-6 is set to 1, the value of U0-56 is updated to P10-8.
3041 )))|-
3042
3043 == Introduction to homing mode ==
3044
3045 In the following figure, "H" represents P01-41 (high-speed search deceleration point signal speed), and "L" represents P01-42 (low-speed search homing signal speed).
3046
3047
3048 (1) P01-40 =1
3049
3050 Mechanical homing: Motor Z signal
3051
3052 Deceleration point: Reverse limit switch (NOT)
3053
3054 ① The deceleration point signal is invalid when starting homing
3055
3056 (% style="text-align:center" %)
3057 [[image:1748221916083-747.jpg||height="347" width="600"]]
3058
3059 When it starts to homing, NOT=0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.
3060
3061
3062 ② The deceleration point signal is valid when starting homing
3063
3064 (% style="text-align:center" %)
3065 [[image:1748222134730-241.jpg||height="341" width="600"]]
3066
3067 When starting to homing, NOT=1, it starts to homing at a direct forward low speed, and stops at the first Z signal after encountering the falling edge of NOT.
3068
3069
3070
3071
3072
3073
3074 (2) P01-40=2
3075
3076 Mechanical homing: Motor Z signal
3077
3078 Deceleration point: Positive Limit Switch (POT)
3079
3080 ① The deceleration point signal is invalid when starting homing
3081
3082 (% style="text-align:center" %)
3083 [[image:1748222168627-745.jpg||height="334" width="600"]]
3084
3085
3086 When it starts to homing, POT = 0, and it starts to homing at a forward high speed. After encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of POT.
3087
3088
3089 ② The deceleration point signal is valid when starting homing
3090
3091 (% style="text-align:center" %)
3092 [[image:1748222190794-857.jpg||height="337" width="600"]]
3093
3094 POT=1 when start homing, run at low speed directly in the reverse direction, and stops at the first Z signal after the falling edge of POT.
3095
3096
3097
3098 (3) P01-40=3
3099
3100 Mechanical homing: Motor Z signal
3101
3102 Deceleration point: Home switch (HW)
3103
3104 ① The deceleration point signal is invalid when starting homing
3105
3106 (% style="text-align:center" %)
3107 [[image:1748226127686-390.jpg||height="337" width="600"]]
3108
3109
3110 When it starts to homing, HW=0. It starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction. It runs at a reverse low speed. After encountering the falling edge of HW, it continues to run, and then stops when encountering the first Z signal.
3111
3112
3113 ② The deceleration point signal is valid when starting homing
3114
3115 (% style="text-align:center" %)
3116 [[image:1748226169150-834.jpg||height="337" width="600"]]
3117
3118 When starting homing, HW=1, start homing at low speed in reverse directly, and stop at the first Z signal after encountering the falling edge of HW;
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132 (4) P01-40=4
3133
3134 Mechanical homing: Motor Z signal
3135
3136 Deceleration point: Home switch (HW)
3137
3138 ① The deceleration point signal is invalid when starting homing
3139
3140 (% style="text-align:center" %)
3141 [[image:1748226182842-731.jpg||height="337" width="600"]]
3142
3143 HW=0 when starting to homing, directly start to homing at low speed, and stop at the first Z signal after encountering the rising edge of HW;
3144
3145
3146 ② The deceleration point signal is valid when starting homing
3147
3148 (% style="text-align:center" %)
3149 [[image:1748226201716-810.jpg||height="338" width="600"]]
3150
3151
3152 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, decelerate and reverse, run at a low speed in the forward direction, and stop at the first Z signal after encountering the rising edge of HW.
3153
3154
3155
3156
3157
3158 (5) P01-40=5
3159
3160 Mechanical homing: Motor Z signal
3161
3162 Deceleration point: Home switch (HW)
3163
3164 ① The deceleration point signal is invalid when starting homing
3165
3166 (% style="text-align:center" %)
3167 [[image:1748226251451-548.jpg||height="337" width="600"]]
3168
3169 When it starts to homing, HW = 0, and it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3170
3171
3172 ② The deceleration point signal is valid when starting homing
3173
3174 (% style="text-align:center" %)
3175 [[image:1748226264724-999.jpg||height="337" width="600"]]
3176
3177 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3178
3179
3180
3181
3182
3183 (6) P01-40=6
3184
3185 Mechanical homing: Motor Z signal
3186
3187 Deceleration point: Home switch (HW)
3188
3189 ① The deceleration point signal is invalid when starting homing
3190
3191 (% style="text-align:center" %)
3192 [[image:1748226277996-278.jpg||height="337" width="600"]]
3193
3194 When starting to homing, HW=0, directly reverse low speed starts to homing, and the first Z signal stops after encountering the rising edge of HW;
3195
3196
3197 ② The deceleration point signal is valid when starting homing
3198
3199 (% style="text-align:center" %)
3200 [[image:1748226309059-457.jpg||height="337" width="600"]]
3201
3202 When starting to homing, HW = 1, start to homing at a forward high speed, after encountering the falling edge of HW, decelerate and reverse, run at a reverse low speed, and stop at the first Z signal after encountering the rising edge of HW.
3203
3204
3205
3206
3207
3208 (7) P01-40=7
3209
3210 Mechanical homing: Motor Z signal
3211
3212 Deceleration point: Home switch (HW)
3213
3214 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3215
3216 (% style="text-align:center" %)
3217 [[image:1748226329690-925.jpg||height="405" width="600"]]
3218
3219 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, and runs at a reverse low speed. The first Z signal after encountering the falling edge of HW stops.
3220
3221
3222 ②When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3223
3224 (% style="text-align:center" %)
3225 [[image:1748226347085-250.jpg||height="482" width="600"]]
3226
3227 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and continue to run at a reverse low speed. The first Z signal after the falling edge of HW will stop.
3228
3229
3230 ③ The deceleration point signal is valid when starting homing
3231
3232 (% style="text-align:center" %)
3233 [[image:1748226362415-253.jpg||height="406" width="600"]]
3234
3235 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3236
3237
3238 (8) P01-40=8
3239
3240 Mechanical homing: Motor Z signal
3241
3242 Deceleration point: Home switch (HW)
3243
3244 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3245
3246 (% style="text-align:center" %)
3247 [[image:1748226377919-294.jpg||height="425" width="600"]]
3248
3249 When it starts to homing, HM-0 starts to homing at a forward high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and reverse, and run at a reverse low speed. After encountering the falling edge of HW, reverse, run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3250
3251
3252 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3253
3254 (% style="text-align:center" %)
3255 [[image:1748226441814-616.jpg||height="460" width="600"]]
3256
3257 When it starts to homing, HW = 0, and it starts to homing at forward high speed. If it encounters a limit switch, it will automatically reverse and run at reverse high speed; After encountering the rising edge of HW, slow down and run at a reverse low speed; After encountering the falling edge of HW, reverse the direction, run at a forward low speed, and stop the first Z signal after encountering the rising edge of HW.
3258
3259
3260 ③ The deceleration point signal is valid when starting homing
3261
3262 (% style="text-align:center" %)
3263 [[image:1748226458987-236.jpg||height="403" width="600"]]
3264
3265 When starting to homing, HM-1 will directly reverse and start to return to zero at low speed. After encountering the falling edge of HW, it will reverse and run at forward low speed. The first Z signal after encountering the rising edge of HW will stop.
3266
3267
3268
3269 (9) P01-40=9
3270
3271 Mechanical homing: Motor Z signal
3272
3273 Deceleration point: Home switch (HW)
3274
3275 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3276
3277 (% style="text-align:center" %)
3278 [[image:1748226475073-462.jpg||height="407" width="600"]]
3279
3280 When it starts to homing, HW=0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed; After encountering the falling edge of HW, reverse, run at a low speed in the reverse direction, and stop at the first Z signal after encountering the rising edge of HW.
3281
3282
3283 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3284
3285 (% style="text-align:center" %)
3286 [[image:1748226491294-972.jpg||height="473" width="600"]]
3287
3288 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering a rising edge of HW, it will slow down and reverse to resume forward operation. Running at a forward low speed, after encountering a falling edge of HW, it will reverse. During reverse low speed operation, the first Z signal after encountering a rising edge of HW will stop.
3289
3290 ③ The deceleration point signal is valid when starting homing
3291
3292 (% style="text-align:center" %)
3293 [[image:1748226509824-146.jpg||height="406" width="600"]]
3294
3295 When starting homing, HW=1 starts homing directly at forward low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and reverse low speed operation;
3296
3297
3298 (10) P01-40=10
3299
3300 Mechanical homing: Motor Z signal
3301
3302 Deceleration point: Home switch (HW)
3303
3304 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3305
3306 (% style="text-align:center" %)
3307 [[image:1748226583138-561.jpg||height="403" width="600"]]
3308
3309 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, slow down and run at a forward low speed. After encountering the falling edge of HW, continue to run at a forward low speed, and then the first Z signal encountered stops.
3310
3311 ② When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3312
3313 (% style="text-align:center" %)
3314 [[image:1748226640407-712.jpg||height="474" width="600"]]
3315
3316 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and reverse to resume forward operation. The first Z signal after the low speed encounters the falling edge of HW will stop.
3317
3318
3319 ③ The deceleration point signal is valid when starting homing
3320
3321 (% style="text-align:center" %)
3322 [[image:1748226662455-861.jpg||height="392" width="600"]]
3323
3324 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3325
3326
3327 (11) P01-40=11
3328
3329 Mechanical homing: Motor Z signal
3330
3331 Deceleration point: Home switch (HW)
3332
3333 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3334
3335 (% style="text-align:center" %)
3336 [[image:1748226681272-116.jpg||height="406" width="600"]]
3337
3338 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3339
3340
3341 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3342
3343 (% style="text-align:center" %)
3344 [[image:1748226729793-833.jpg||height="484" width="600"]]
3345
3346 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it encounters a limit switch, it will automatically reverse and run at a forward high speed. After encountering a rising edge of HW, slow down and continue to run at a forward low speed. When encountering a falling edge of HW, the first Z signal after the edge stops.
3347
3348 ③ The deceleration point signal is valid when starting homing
3349
3350 (% style="text-align:center" %)
3351 [[image:1748226803530-631.jpg||height="414" width="600"]]
3352
3353 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3354
3355
3356 (12) P01-40=12
3357
3358 Mechanical homing: Motor Z signal
3359
3360 Deceleration point: Home switch (HW)
3361
3362 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3363
3364 (% style="text-align:center" %)
3365 [[image:1748226829420-255.jpg||height="406" width="600"]]
3366
3367
3368 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3369
3370
3371
3372 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3373
3374 (% style="text-align:center" %)
3375 [[image:1748226863974-673.jpg||height="484" width="600"]]
3376
3377 When it starts to homing, HW=0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates, runs at a forward low speed, encounters a falling edge of HW, reverses, runs at a reverse low speed, and stops at the first Z signal after encountering a rising edge of HW.
3378
3379
3380
3381 ③ The deceleration point signal is valid when starting homing
3382
3383 (% style="text-align:center" %)
3384 [[image:1748226879060-830.jpg||height="414" width="600"]]
3385
3386 When starting to homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. The first Z signal after encountering the rising edge of HW will stop.
3387
3388 (13) P01-40=13
3389
3390 Mechanical homing: Motor Z signal
3391
3392 Deceleration point: Home switch (HW)
3393
3394 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3395
3396 [[image:1748226908598-664.jpg]]
3397
3398 (% style="text-align:center" %)
3399 [[image:1748227007116-603.jpg||height="443" width="600"]]
3400
3401 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and run at a reverse low speed. After encountering the falling edge of HW, reverse and run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3402
3403
3404 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3405
3406 (% style="text-align:center" %)
3407 [[image:1748227023585-740.jpg||height="472" width="600"]]
3408
3409 When it starts to homing, HW=0, it starts to homing at reverse high speed, encounters the limit switch, automatically reverses, runs at forward high speed, after encountering the rising edge of HW, decelerates and runs in reverse low speed, and encounters the falling edge of HW when running at reverse low speed, the first Z signal after encountering the rising edge of HW stops.
3410
3411 ③ The deceleration point signal is valid when starting homing
3412
3413 (% style="text-align:center" %)
3414 [[image:1748227043041-279.jpg||height="414" width="600"]]
3415
3416 When starting homing, HW=1 starts homing directly at reverse low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and forward low speed operation;
3417
3418
3419 (14) P01-40=14
3420
3421 Mechanical homing: Motor Z signal
3422
3423 Deceleration point: Home switch (HW)
3424
3425 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3426
3427 (% style="text-align:center" %)
3428 [[image:1748227060842-543.jpg||height="416" width="600"]]
3429
3430 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates and runs at reverse low speed. After encountering the falling edge of HW, it continues to run at reverse low speed, and then the first Z signal encountered stops.
3431
3432
3433 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3434
3435 (% style="text-align:center" %)
3436 [[image:1748227079908-302.jpg||height="445" width="600"]]
3437
3438 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates and runs in a reverse direction, and stops the first Z signal after encountering a falling edge of HW at a reverse low speed.
3439
3440
3441 ③ The deceleration point signal is valid when starting homing
3442
3443 (% style="text-align:center" %)
3444 [[image:1748227101511-101.jpg||height="414" width="600"]]
3445
3446 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3447
3448
3449 (15) P01-40=17
3450
3451 Mechanical homing: Negative overrun switch (NOT)
3452
3453 Deceleration point: Negative overrun switch (NOT)
3454
3455 ① The deceleration point signal is invalid when starting homing
3456
3457 (% style="text-align:center" %)
3458 [[image:1748227125161-655.jpg||height="295" width="600"]]
3459
3460 When it starts to homing, NOT = 0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops after encountering the falling edge of NOT.
3461
3462
3463 ② The deceleration point signal is valid when starting homing
3464
3465 (% style="text-align:center" %)
3466 [[image:1748227138852-942.jpg||height="324" width="600"]]
3467
3468 When starting homing, NOT=1, start homing directly at low speed, and stop after encountering the falling edge of NOT.
3469
3470
3471 (16) P01-40=18
3472
3473 Mechanical homing: Positive overrun switch (POT)
3474
3475 Deceleration point: Positive overrun switch (POT)
3476
3477 ① The deceleration point signal is invalid when starting homing
3478
3479 (% style="text-align:center" %)
3480 [[image:1748227153999-626.jpg||height="300" width="600"]]
3481
3482 When it starts to return to zero, POT=0, it starts to homing at a forward high speed, after encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops after encountering the falling edge of POT.
3483
3484
3485 ② The deceleration point signal is valid when starting homing
3486
3487 (% style="text-align:center" %)
3488 [[image:1748227169369-310.jpg||height="267" width="600"]]
3489
3490 When starting homing, POT=1, start homing at low speed in reverse directly, and stop when encountering POT falling edge;
3491
3492
3493
3494 (17) P01-40=19
3495
3496 Mechanical homing: Home switch (HW)
3497
3498 Deceleration point: Home switch (HW)
3499
3500 ① The deceleration point signal is invalid when starting homing
3501
3502 (% style="text-align:center" %)
3503 [[image:1748227186962-656.jpg||height="313" width="600"]]
3504
3505 When it starts to homing, HW=0, and it starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3506
3507
3508 ② The deceleration point signal is valid when starting homing
3509
3510 (% style="text-align:center" %)
3511 [[image:1748227202174-768.jpg||height="313" width="600"]]
3512
3513 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3514
3515
3516 (18) P01-40=20
3517
3518 Mechanical homing: Home switch (HW)
3519
3520 Deceleration point: Home switch (HW)
3521
3522 ① The deceleration point signal is invalid when starting homing
3523
3524 (% style="text-align:center" %)
3525 [[image:1748227247408-755.jpg||height="314" width="600"]]
3526
3527 When starting to homing, HW=0, directly start to homing at low speed, and stop after encountering the rising edge of HW;
3528
3529
3530 ② The deceleration point signal is valid when starting homing
3531
3532 (% style="text-align:center" %)
3533 [[image:1748227263354-495.jpg||height="313" width="600"]]
3534
3535 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, slow down and reverse the direction, run at a low speed in the forward direction, and stop when encountering the rising edge of HW.
3536
3537
3538 (19) P01-40=21
3539
3540 Mechanical homing: Home switch (HW)
3541
3542 Deceleration point: Home switch (HW)
3543
3544 ① The deceleration point signal is invalid when starting homing
3545
3546 (% style="text-align:center" %)
3547 [[image:1748227279599-847.jpg||height="314" width="600"]]
3548
3549 When it starts to homing, HW=0, it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3550
3551
3552 ② The deceleration point signal is valid when starting homing
3553
3554 (% style="text-align:center" %)
3555 [[image:1748227292762-413.jpg||height="313" width="600"]]
3556
3557 When starting back to zero, HW=1, it will start homing directly at low speed, and stop after encountering the falling edge of HW;
3558
3559
3560 (20) P01-40=22
3561
3562 Mechanical homing: Home switch (HW)
3563
3564 Deceleration point: Home switch (HW)
3565
3566 ① The deceleration point signal is invalid when starting homing
3567
3568 (% style="text-align:center" %)
3569 [[image:1748227358104-464.jpg||height="314" width="600"]]
3570
3571 When starting to homing, HW=0, directly reverse low speed starts to homing, and stops when encountering HW rising edge;
3572
3573
3574 Deceleration point signal is valid when homing start
3575
3576 (% style="text-align:center" %)
3577 [[image:1748227380961-172.jpg||height="343" width="600"]]
3578
3579 When starting to homing, HW=1, start to homing at a forward high speed, after encountering the falling edge of HW, slow down and reverse, run at a reverse low speed, and stop when encountering the rising edge of HW.
3580
3581
3582 (21) P01-40=23
3583
3584 Mechanical homing: Home switch (HW)
3585
3586 Deceleration point: Home switch (HW)
3587
3588 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3589
3590 (% style="text-align:center" %)
3591 [[image:1748227395851-339.jpg||height="387" width="600"]]
3592
3593 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3594
3595
3596 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3597
3598 (% style="text-align:center" %)
3599 [[image:1748227414217-295.jpg||height="385" width="600"]]
3600
3601 When you start homing, HW = 0, start homing at a forward high speed. When encountering the limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, slow down, continue to run at reverse low speed, and stop when encountering the HW falling edge.
3602
3603
3604
3605 ③ The deceleration point signal is valid when starting homing
3606
3607 (% style="text-align:center" %)
3608 [[image:1748227429391-234.jpg||height="385" width="600"]]
3609
3610 When it starts to homing, HW=1, it starts to homing at a reverse low speed, and stops when it encounters the falling edge of HW.
3611
3612
3613 (22) P01-40=24
3614
3615 Mechanical homing: Home switch (HW)
3616
3617 Deceleration point: Home switch (HW)
3618
3619 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3620
3621 (% style="text-align:center" %)
3622 [[image:1748227484547-328.jpg||height="385" width="600"]]
3623
3624 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3625
3626
3627 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3628
3629 (% style="text-align:center" %)
3630 [[image:1748227532124-334.jpg||height="385" width="600"]]
3631
3632 When it starts to homing, HW = 0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, runs at reverse high speed, encounters the rising edge of HW, decelerates and runs at reverse low speed, encounters the falling edge of HW, reverses, runs at forward low speed, and stops when encountering the rising edge of HW.
3633
3634
3635 ③ The deceleration point signal is valid when starting homing
3636
3637 (% style="text-align:center" %)
3638 [[image:1748227548455-494.jpg||height="387" width="600"]]
3639
3640 When starting with homing, HW = 1, it will directly reverse the low speed and start to homing. After encountering the falling edge of HW, it will reverse the direction and run at a forward low speed, and stop when encountering the rising edge of HW.
3641
3642
3643 (23) P01-40=25
3644
3645 Mechanical homing: Home switch (HW)
3646
3647 Deceleration point: Home switch (HW)
3648
3649 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3650
3651 (% style="text-align:center" %)
3652 [[image:1748227564603-199.jpg||height="385" width="600"]]
3653
3654 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3655
3656
3657 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3658
3659 (% style="text-align:center" %)
3660 [[image:1748227581797-586.jpg||height="385" width="600"]]
3661
3662 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerate and reverse to resume forward operation. After encountering the falling edge of HW at forward low speed, reverse. When running at reverse low speed, stop when encountering the rising edge of HW.
3663
3664
3665 ③ The deceleration point signal is valid when starting homing
3666
3667 (% style="text-align:center" %)
3668 [[image:1748227596969-949.jpg||height="385" width="600"]]
3669
3670 When starting homing, when HW=1, it starts to homing directly at low speed in the forward direction. After encountering the falling edge of HW, it stops at the rising edge of HW in the reverse low speed operation
3671
3672
3673 (24) P01-40=26
3674
3675 Mechanical homing: Home switch (HW)
3676
3677 Deceleration point: Home switch (HW)
3678
3679 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3680
3681 (% style="text-align:center" %)
3682 [[image:1748227611517-496.jpg||height="349" width="600"]]
3683
3684 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates, runs at a forward low speed, and stops when encountering the falling edge of HW.
3685
3686
3687 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3688
3689 (% style="text-align:center" %)
3690 [[image:1748227628144-968.jpg||height="385" width="600"]]
3691
3692 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerates and reverses to resume forward operation, and stops when encountering the falling edge of HW at forward low speed.
3693
3694
3695 ③ The deceleration point signal is valid when starting homing
3696
3697 (% style="text-align:center" %)
3698 [[image:1748227641046-963.jpg||height="343" width="600"]]
3699
3700 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3701
3702
3703 (25) P01-40=27
3704
3705 Mechanical homing: Home switch (HW)
3706
3707 Deceleration point: Home switch (HW)
3708
3709 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3710
3711 (% style="text-align:center" %)
3712 [[image:1748227660426-173.jpg||height="362" width="600"]]
3713
3714 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3715
3716
3717 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3718
3719 (% style="text-align:center" %)
3720 [[image:1748227698028-549.jpg||height="392" width="600"]]
3721
3722 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and continues to run at a forward low speed. When it encounters a falling edge of HW, it stops.
3723
3724
3725 ③ The deceleration point signal is valid when starting homing
3726
3727 (% style="text-align:center" %)
3728 [[image:1748227728238-666.jpg||height="394" width="600"]]
3729
3730 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3731
3732
3733 (26) P01-40=28
3734
3735 Mechanical homing: Home switch (HW)
3736
3737 Deceleration point: Home switch (HW)
3738
3739 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3740
3741 (% style="text-align:center" %)
3742 [[image:1748227742531-619.jpg||height="437" width="600"]]
3743
3744 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3745
3746
3747 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3748
3749 (% style="text-align:center" %)
3750 [[image:1751361620036-469.png||height="389" width="600"]]
3751
3752 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When encountering a limit switch, it automatically reverses and runs at a forward high speed. When encountering a rising edge of HW, it decelerates and runs at a forward low speed. When encountering a falling edge of HW, it reverses and runs at a reverse low speed. When encountering a rising edge of HW, it stops.
3753
3754
3755 ③ The deceleration point signal is valid when starting homing
3756
3757 (% style="text-align:center" %)
3758 [[image:1748227779034-947.jpg||height="394" width="600"]]
3759
3760 When starting with homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. When encountering the rising edge of HW, it will stop.
3761
3762
3763 (27) P01-40=29
3764
3765 Mechanical homing: Home switch (HW)
3766
3767 Deceleration point: Home switch (HW)
3768
3769 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3770
3771 (% style="text-align:center" %)
3772 [[image:1748227795620-564.jpg||height="432" width="600"]]
3773
3774 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3775
3776
3777 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3778
3779 (% style="text-align:center" %)
3780 [[image:1748227810884-219.jpg||height="395" width="600"]]
3781
3782 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. After encountering a rising edge of HW, it decelerates and runs in a reverse low speed. After encountering a falling edge of HW, it reverses. When running at a forward low speed, it stops when it encounters a rising edge of HW.
3783
3784 ③ The deceleration point signal is valid when starting homing
3785
3786 (% style="text-align:center" %)
3787 [[image:1748227826652-200.jpg||height="392" width="600"]]
3788
3789 When starting homing, when HW=1, it starts to homing directly at low speed in reverse direction. After encountering the falling edge of HW, it stops when running at low speed in reverse direction and forward direction and encountering the rising edge of HW
3790
3791
3792 (28) P01-40=30
3793
3794 Mechanical homing: Home switch (HW)
3795
3796 Deceleration point: Home switch (HW)
3797
3798 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3799
3800 (% style="text-align:center" %)
3801 [[image:1748227844268-953.jpg||height="437" width="600"]]
3802
3803 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates, runs at reverse low speed, and stops when encountering the falling edge of HW.
3804
3805
3806 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3807
3808 (% style="text-align:center" %)
3809 [[image:1748227859385-295.jpg||height="394" width="600"]]
3810
3811 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and runs in a reverse low speed. When it encounters a falling edge of HW, it stops.
3812
3813
3814 ③ The deceleration point signal is valid when starting homing
3815
3816 (% style="text-align:center" %)
3817 [[image:1748227876370-835.jpg||height="395" width="600"]]
3818
3819 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3820
3821
3822 (29) P01-40=33 and P01-40=34
3823
3824 Mechanical homing: Z signal.
3825
3826 Deceleration point: None
3827
3828 Homing mode 33: Reverse low speed operation, stop the first Z signal encountered
3829
3830 Homing mode 34: running at low speed in forward direction, stopping the first Z signal encountered
3831
3832 (% style="text-align:center" %)
3833 [[image:1748227893108-875.jpg||height="161" width="600"]]
3834
3835
3836 (30) P01-40=35
3837
3838 Homing mode 35, taking the current position as the mechanical homing, after triggering the homing (P01-39: 0x00→0x01/0x00 → 0x02);
3839
3840 After the homing is completed, according to the set value of P10-08 (homing bias compensation), P10-06 (encoder multi-turn reset operation) is executed.
3841
3842
3843