Wiki source code of 06 Operation

Version 116.2 by Iris on 2025/07/22 10:15

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 0: standard setting (CW is forward rotation)
90
91 1: reverse mode (CCW is forward rotation)
92 )))|-
93
94 Table 6-3 Rotation direction parameters** **
95
96 == **Braking resistor** ==
97
98 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
99
100 The basis for judging whether the braking resistor is built-in or external.
101
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
103 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
104
105 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
106 **Setting method**
107 )))|=(% style="width: 126px;" %)(((
108 **Effective time**
109 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
110 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
111 Operation setting
112 )))|(% style="width:126px" %)(((
113 Effective immediately
114 )))|0|0 to 3|(((
115 0: use built-in braking resistor
116
117 1: use external braking resistor and natural cooling
118
119 2: use external braking resistor and forced air cooling; (cannot be set)
120
121 3: No braking resistor is used, it is all absorbed by capacitor.
122 )))|-
123 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G , VD2F-030SA1P-010SA1P and VD2L-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
124 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
125 Operation setting
126 )))|(% style="width:126px" %)(((
127 Effective immediately
128 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
129 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
130 Operation setting
131 )))|(% style="width:126px" %)(((
132 Effective immediately
133 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
134
135 Table 6-4 Braking resistor parameters
136
137 == **Servo operation** ==
138
139 **Set the servo enable (S-ON) to valid (ON)**
140
141 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
142
143 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
144
145 **Input the instruction and the motor rotates**
146
147 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
148
149 **Timing diagram of power on**
150
151 (% style="text-align:center" %)
152 (((
153 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
154 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
155 )))
156
157 == Servo shutdown ==
158
159 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
160
161 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
162 |=(% style="width: 150px;" %)Free stop|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
163 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
164
165 Table 6-5 Comparison of two shutdown modes
166
167 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
168 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
169
170 Table 6-6 Comparison of two shutdown status
171
172 **Servo enable (S-ON) OFF shutdown**
173
174 The related parameters of the servo OFF shutdown mode are shown in the table below.
175
176 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
177 **Setting method**
178 )))|=(% style="width: 134px;" %)(((
179 **Effective time**
180 )))|=(% style="width: 86px;" %)(((
181 **Default value**
182 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
183 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
184 Shutdown
185
186 setting
187 )))|(% style="width:134px" %)(((
188 Effective
189
190 immediately
191 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
192 0: Free stop, and the motor shaft remains free status.
193
194 1: Zero-speed stop, and the motor axis remains free status.
195 )))|-
196
197 Table 6-7 Servo OFF shutdown mode parameters details
198
199 **Emergency shutdown**
200
201 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
202
203 Estop mode 1 (deceleration stop):
204
205 ~1. Configurate DI function code: 8 [ESTOP]
206
207 2. Set P1-5 shutdown deceleration time.
208
209 3. Trigger DI emergency shutdown.
210
211 4. Servo emergency shutdown and deceleration to zero speed.
212
213 Estop mode 2:
214
215 ~1. Configurate DI function code: 1 [Servo enable SON]
216
217 2. Set P1-05 shutdown deceleration time.
218
219 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
220
221 4. Trigger DI to turn off servo enable SON.
222
223 5.Servo enable turns off and stops and decelerates to zero speed.
224
225 |Function code|Name|(((
226 Setting
227
228 method
229 )))|(((
230 Effective
231
232 time
233 )))|Default|Range|Definition|Unit
234 |P01-05|Shutdown deceleration time|(((
235 Shutdown
236
237 setting
238 )))|(((
239 immediately
240
241 Effective
242 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
243
244 **Overtravel shutdown**
245
246 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
247
248 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
249
250 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
251
252 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
253 **Setting method**
254 )))|=(% style="width: 114px;" %)(((
255 **Effective time**
256 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
257 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 0: OFF (not used)
259
260 01: S-ON servo enable
261
262 02: A-CLR fault and Warning Clear
263
264 03: POT forward drive prohibition
265
266 04: NOT Reverse drive prohibition
267
268 05: ZCLAMP Zero speed
269
270 06: CL Clear deviation counter
271
272 07: C-SIGN Inverted instruction
273
274 08: E-STOP Emergency stop
275
276 09: GEAR-SEL Electronic Gear Switch 1
277
278 10: GAIN-SEL gain switch
279
280 11: INH Instruction pulse prohibited input
281
282 12: VSSEL Vibration control switch input
283
284 13: INSPD1 Internal speed instruction selection 1
285
286 14: INSPD2 Internal speed instruction selection 2
287
288 15: INSPD3 Internal speedinstruction selection 3
289
290 16: J-SEL inertia ratio switch (not implemented yet)
291
292 17: MixModesel mixed mode selection
293
294 20: Internal multi-segment position enable signal
295
296 21: Internal multi-segment position selection 1
297
298 22: Internal multi-segment position selection 2
299
300 23: Internal multi-segment position selection 3
301
302 24: Internal multi-segment position selection 4
303 )))|-
304 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
305 Effective immediately
306 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
307 DI port input logic validity function selection.
308
309 0: Normally open input. Low level valid (switch on);
310
311 1: Normally closed input. High level valid (switch off);
312 )))|-
313 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
314 Effective immediately
315 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
316 Select the DI_3 port type to enable
317
318 0: Hardware DI_3 input terminal
319
320 1: Virtual VDI_3 input terminal
321 )))|-
322 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
323 Operation setting
324 )))|(% style="width:114px" %)(((
325 again Power-on
326 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
327 0: OFF (not used)
328
329 01: SON Servo enable
330
331 02: A-CLR Fault and Warning Clear
332
333 03: POT Forward drive prohibition
334
335 04: NOT Reverse drive prohibition
336
337 05: ZCLAMP Zero speed
338
339 06: CL Clear deviation counter
340
341 07: C-SIGN Inverted instruction
342
343 08: E-STOP Emergency shutdown
344
345 09: GEAR-SEL Electronic Gear Switch 1
346
347 10: GAIN-SEL gain switch
348
349 11: INH Instruction pulse prohibited input
350
351 12: VSSEL Vibration control switch input
352
353 13: INSPD1 Internal speed instruction selection 1
354
355 14: INSPD2 Internal speed instruction selection 2
356
357 15: INSPD3 Internal speed instruction selection 3
358
359 16: J-SEL inertia ratio switch (not implemented yet)
360
361 17: MixModesel mixed mode selection
362
363 20: Internal multi-segment position enable signal
364
365 21: Internal multi-segment position selection 1
366
367 22: Internal multi-segment position selection 2
368
369 23: Internal multi-segment position selection 3
370
371 24: Internal multi-segment position selection 4
372 )))|-
373 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
374 Effective immediately
375 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
376 DI port input logic validity function selection.
377
378 0: Normally open input. Low level valid (switch on);
379
380 1: Normally closed input. High level valid (switch off);
381 )))|-
382 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
383 Effective immediately
384 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
385 Select the DI_4 port type to enable
386
387 0: Hardware DI_4 input terminal
388
389 1: Virtual VDI_4 input terminal
390 )))|-
391
392 Table 6-8 DI3 and DI4 channel parameters
393
394 **(4) Malfunction shutdown**
395
396 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
397
398 == Brake device ==
399
400 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
401
402 (% class="warning" %)|(((
403 (% style="text-align:center" %)
404 [[image:image-20220611151617-1.png]]
405 )))
406 |(((
407 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
408
409 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
410
411 ✎The brake coil has no polarity;
412
413 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
414
415 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
416 )))
417
418 **Wiring of brake device**
419
420 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
421
422
423 (% style="text-align:center" %)
424 (((
425 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
426 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
427 )))
428
429 (% class="warning" %)|(((
430 (% style="text-align:center" %)
431 [[image:image-20220611151642-2.png]]
432 )))
433 |(((
434 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
435
436 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
437
438 ✎It is recommended to use cables above 0.5 mm².
439 )))
440
441 **Brake software setting**
442
443 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
444
445 Related function code is as below.
446
447 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
448 **Effective time**
449 )))
450 |=141|(% style="width:241px" %)(((
451 BRK-OFF Brake output
452 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
453
454 Table 6-9 Relevant function codes for brake setting
455
456 |=(% scope="row" %)**Function code**|=**Name**|=(((
457 **Setting method**
458 )))|=(((
459 **Effective time**
460 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
461 |=P1-30|Delay from brake output to instruction reception|(((
462 Operation setting
463 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
464 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
465 Operation setting
466 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
467 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
468 Operation setting
469 )))|Effective immediately|30|0 to 3000|(((
470 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
471
472 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
473 )))|rpm
474 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
475 Operation setting
476 )))|Effective immediately|500|1 to 1000|(((
477 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
478
479 When brake output (BRK-OFF) is not allocated, this function code has no effect.
480 )))|ms
481
482 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
483
484 **Servo drive brake timing in normal state**
485
486 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
487
488 * Brake timing when servo motor is stationary
489
490 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
491
492 (% class="warning" %)|(((
493 (% style="text-align:center" %)
494 [[image:image-20220611151705-3.png]]
495 )))
496 |(((
497 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
498
499 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
500 )))
501
502 (% style="text-align:center" %)
503 (((
504 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
505 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
506 )))
507
508 (% class="box infomessage" %)
509 (((
510 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
511 )))
512
513 * The brake timing when servo motor rotates
514
515 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
516
517 (% class="warning" %)|(((
518 (% style="text-align:center" %)
519 [[image:image-20220611151719-4.png]]
520 )))
521 |(((
522 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
523
524 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
525
526 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
527
528 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
529
530 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
531 )))
532
533 (% style="text-align:center" %)
534 (((
535 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
536 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
537 )))
538
539 **Brake timing when the servo drive fails**
540
541 The brake timing (free shutdown) in the fault status is as follows.
542
543 (% style="text-align:center" %)
544 (((
545 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
546 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
547 )))
548
549 = **Position control mode** =
550
551 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
552
553 (% style="text-align:center" %)
554 (((
555 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
556 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
557 )))
558
559 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
560
561 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
562 **Setting method**
563 )))|=(((
564 **Effective time**
565 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
566 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
567 Operation setting
568 )))|(((
569 immediately Effective
570 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
571 1: position control
572
573 2: speed control
574
575 3: torque control
576
577 4: position/speed mix control
578
579 5: position/torque mix control
580
581 6: speed /torque mix control
582
583 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
584 )))|(% style="width:151px" %)-
585
586 Table 6-10 Control mode parameters
587
588 == Position instruction input setting ==
589
590 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
591
592 |=(% scope="row" %)**Function code**|=**Name**|=(((
593 **Setting method**
594 )))|=(((
595 **Effective time**
596 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
597 |=P01-06|Position instruction source|(((
598 Operation setting
599 )))|(((
600 immediately Effective
601 )))|0|0 to 1|(((
602 0: pulse instruction
603
604 1: internal position instruction
605 )))|-
606
607 Table 6-11 Position instruction source parameter
608
609 **The source of position instruction is pulse instruction (P01-06=0)**
610
611 Low-speed pulse instruction input
612
613 |(% style="text-align:center" %)(((
614 (% class="wikigeneratedid" %)
615 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
616 )))|(% style="text-align:center" %)(((
617 (% class="wikigeneratedid" %)
618 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
619 )))
620 |(% colspan="2" %)Figure 6-7 Position instruction input setting
621
622 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
623
624 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
625
626 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
627 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
628 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
629
630 Table 6-12 Pulse input specifications
631
632 * Differential input
633
634 Take VD2A , VD2B and VD2C  drive as examples, the connection of differential input is shown as below.
635
636 (% style="text-align:center" %)
637 (((
638 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
639 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
640 )))
641
642 (% class="box infomessage" %)
643 (((
644 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
645 )))
646
647 * Open collector input
648
649 Take VD2A, VD2B and VD2C drive as examples, the connection of differential input is shown as below.
650
651 (% style="text-align:center" %)
652 (((
653 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
654 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
655 )))
656
657
658 (% class="box infomessage" %)
659 (((
660 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
661 )))
662
663 * Position pulse frequency and anti-interference level
664
665 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
666
667 (% style="text-align:center" %)
668 (((
669 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
670 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
671 )))
672
673 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
674
675 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
676 **Setting method**
677 )))|=(((
678 **Effective time**
679 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
680 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
681 Operation setting
682 )))|(% rowspan="3" %)(((
683 Power-on again
684 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
685 Set the anti-interference level of external pulse instruction.
686
687 0: no filtering;
688
689 1: Filtering time 128ns
690
691 2: Filtering time 256ns
692
693 3: Filtering time 512ns
694
695 4: Filtering time 1.024us
696
697 5: Filtering time 2.048us
698
699 6: Filtering time 4.096us
700
701 7: Filtering time 8.192us
702
703 8: Filtering time 16.384us
704
705 9:
706
707 VD2: Filtering time 32.768us
708
709 VD2F: Filtering time 25.5us
710 )))|(% rowspan="3" %)-
711
712 Table 6-13 Position pulse frequency and anti-interference level parameters
713
714 |**Function code**|**Name**|(((
715 **Setting**
716
717 **method**
718 )))|(((
719 **Effective**
720
721 **time**
722 )))|**Default value**|**Range**|**Definition**|**Unit**
723 |P00-14|Position pulse anti-interference level|(((
724 Operation
725
726 setting
727 )))|(((
728 Power-on
729
730 again
731 )))|2|0 to 8|(((
732 VD2L drive set the anti-interference level of external pulse instruction.
733
734 0: no filtering;
735
736 1: Filtering time 111.1ns
737
738 2: Filtering time 222.2ns
739
740 3: Filtering time 444.4ns
741
742 4: Filtering time 888.8ns
743
744 5: Filtering time 1777.7ns
745
746 6: Filtering time 3555.5ns
747
748 7: Filtering time 7111.7ns
749
750 8: Filtering time 14222.2ns
751
752
753 )))|-
754
755 Table 6-14 VD2L Position pulse frequency and anti-interference level parameters
756
757
758 * Position pulse type selection
759
760 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
761
762 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
763 **Setting method**
764 )))|=(% style="width: 109px;" %)(((
765 **Effective time**
766 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
767 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
768 Operation setting
769 )))|(% style="width:109px" %)(((
770 Power-on again
771 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
772 0: direction + pulse (positive logic)
773
774 1: CW/CCW
775
776 2: A, B phase quadrature pulse (4 times frequency)
777
778 3: Direction + pulse (negative logic)
779
780 4: CW/CCW (negative logic)
781
782 5: A, B phase quadrature pulse (4 times frequency negative logic)
783
784 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
785 )))|-
786
787 Table 6-15 Position pulse type selection parameter
788
789 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
790 |=0|(% style="width:200px" %)(((
791 Direction + pulse
792
793 (Positive logic)
794 )))|(% style="width:161px" %)(((
795 PULSE
796
797 SIGN
798 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
799 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
800 PULSE (CW)
801
802 SIGN (CCW)
803 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
804 |=2|(% style="width:200px" %)(((
805 AB phase orthogonal
806
807 pulse (4 times frequency)
808 )))|(% style="width:161px" %)(((
809 PULSE (Phase A)
810
811 SIGN (Phase B)
812 )))|(((
813
814
815 [[image:image-20220707094358-9.jpeg]]
816
817 Phase A is 90° ahead of Phase B
818 )))|(((
819
820
821 [[image:image-20220707094407-10.jpeg]]
822
823 Phase B is 90° ahead of Phase A
824 )))
825 |=3|(% style="width:200px" %)(((
826 Direction + pulse
827
828 (Negative logic)
829 )))|(% style="width:161px" %)(((
830 PULSE
831
832 SIGN
833 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
834 |=4|(% style="width:200px" %)(((
835 CW/CCW
836
837 (Negative logic)
838 )))|(% style="width:161px" %)(((
839 PULSE (CW)
840
841 SIGN (CCW)
842 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
843 |=5|(% style="width:200px" %)(((
844 AB phase orthogonal
845
846 pulse (4 times frequency negative logic)
847 )))|(% style="width:161px" %)(((
848 PULSE (Phase A)
849
850 SIGN (Phase B)
851 )))|(((
852
853
854 [[image:image-20220707094429-14.jpeg]]
855
856 Phase B is ahead of A phase by 90°
857 )))|(((
858
859
860 [[image:image-20220707094437-15.jpeg]]
861
862 Phase A is ahead of B phase by 90°
863 )))
864
865 Table 6-16 Pulse description
866
867 **The source of position instruction is internal position instruction (P01-06=1)**
868
869 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
870
871 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
872
873 (% style="text-align:center" %)
874 (((
875 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
876 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
877 )))
878
879
880 * Set multi-segment position running mode
881
882 |=(% scope="row" %)**Function code**|=**Name**|=(((
883 **Setting method**
884 )))|=(((
885 **Effective time**
886 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
887 |=P07-01|Multi-segment position running mode|(((
888 Shutdown setting
889 )))|(((
890 Effective immediately
891 )))|0|0 to 2|(((
892 0: Single running
893
894 1: Cycle running
895
896 2: DI switching running
897 )))|-
898 |=P07-02|Start segment number|(((
899 Shutdown setting
900 )))|(((
901 Effective immediately
902 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
903 |=P07-03|End segment number|(((
904 Shutdown setting
905 )))|(((
906 Effective immediately
907 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
908 |=P07-04|Margin processing method|(((
909 Shutdown setting
910 )))|(((
911 Effective immediately
912 )))|0|0 to 1|(((
913 0: Run the remaining segments
914
915 1: Run again from the start segment
916 )))|-
917 |=P07-05|Displacement instruction type|(((
918 Shutdown setting
919 )))|(((
920 Effective immediately
921 )))|0|0 to 1|(((
922 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
923
924 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
925 )))|-
926
927 Table 6-17 multi-segment position running mode parameters
928
929 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
930
931 1. Single running
932
933 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
934
935 (% style="text-align:center" %)
936 (((
937 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
938 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
939 )))
940
941 * 2. Cycle running
942
943 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
944
945 (% style="text-align:center" %)
946 (((
947 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
948 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
949 )))
950
951 (% class="warning" %)|(((
952 (% style="text-align:center" %)
953 [[image:image-20220611151917-5.png]]
954 )))
955 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
956
957 (% start="3" %)
958 1. DI switching running
959
960 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
961
962 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
963 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
964 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
965 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
966 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
967
968 Table 6-18 DI function code
969
970 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
971
972 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
973 |=0|0|0|0|1
974 |=0|0|0|1|2
975 |=0|0|1|0|3
976 |=0|0|1|1|4
977 |=0|1|0|0|5
978 |=0|1|0|1|6
979 |=0|1|1|0|7
980 |=0|1|1|1|8
981 |=1|0|0|0|9
982 |=1|0|0|1|10
983 |=1|0|1|0|11
984 |=1|0|1|1|12
985 |=1|1|0|0|13
986 |=1|1|0|1|14
987 |=1|1|1|0|15
988 |=1|1|1|1|16
989
990 Table 6-19 INPOS corresponds to running segment number
991
992 The operating curve in this running mode is shown in __Figure 6-14__.
993
994 (% style="text-align:center" %)
995 (((
996 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
997 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
998 )))
999
1000 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
1001
1002 **Run the remaining segments**
1003
1004 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
1005
1006 (% style="text-align:center" %)
1007 (((
1008 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1009 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
1010 )))
1011
1012 (% style="text-align:center" %)
1013 (((
1014 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
1015 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
1016 )))
1017
1018 **Run again from the start segment**
1019
1020 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
1021
1022 (% style="text-align:center" %)
1023 (((
1024 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1025 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
1026 )))
1027
1028 (% style="text-align:center" %)
1029 (((
1030 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1031 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
1032 )))
1033
1034 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
1035
1036 * Relative position instruction
1037
1038 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
1039
1040 |(((
1041 (% style="text-align:center" %)
1042 (((
1043 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1044 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
1045 )))
1046 )))|(((
1047 (% style="text-align:center" %)
1048 (((
1049 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1050 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
1051 )))
1052 )))
1053
1054 * Absolute position instruction
1055
1056 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
1057
1058 |(((
1059 (% style="text-align:center" %)
1060 (((
1061 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1062 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
1063 )))
1064 )))|(((
1065 (% style="text-align:center" %)
1066 (((
1067 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1068 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1069 )))
1070 )))
1071
1072 * Multi-segment position running curve setting
1073
1074 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1075
1076 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1077 |=P07-09|(((
1078 1st segment
1079
1080 displacement
1081 )))|(((
1082 Operation setting
1083 )))|(((
1084 Effective immediately
1085 )))|10000|(((
1086 -2147483647 to
1087
1088 2147483646
1089 )))|Position instruction, positive and negative values could be set|-
1090 |=P07-10|Maximum speed of the 1st displacement|(((
1091 Operation setting
1092 )))|(((
1093 Effective immediately
1094 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1095 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1096 Operation setting
1097 )))|(((
1098 Effective immediately
1099 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1100 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1101 Operation setting
1102 )))|(((
1103 Effective immediately
1104 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1105
1106 Table 6-20 The 1st position operation curve parameters table
1107
1108 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1109
1110 (% style="text-align:center" %)
1111 (((
1112 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1113 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1114 )))
1115
1116
1117 * multi-segment position instruction enable
1118
1119 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1120
1121 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1122 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1123 DI port logic invalid: Does not affect the current operation of the servo motor.
1124
1125 DI port logic valid: Motor runs multi-segment position
1126 )))
1127
1128 (% style="text-align:center" %)
1129 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1130
1131 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1132
1133 == Electronic gear ratio ==
1134
1135 **Definition of electronic gear ratio**
1136
1137 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1138
1139 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1140
1141 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1142
1143 (% style="text-align:center" %)
1144 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1145
1146 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1147
1148 **Setting steps of electronic gear ratio**
1149
1150 (% style="text-align:center" %)
1151 (((
1152 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1153 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1154 )))
1155
1156 **lectronic gear ratio switch setting**
1157
1158 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1159
1160 |=(% scope="row" %)**Function code**|=**Name**|=(((
1161 **Setting method**
1162 )))|=(((
1163 **Effective time**
1164 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1165 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1166 Shutdown setting
1167 )))|(((
1168 Effective immediately
1169 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1170 Instruction pulse
1171
1172 unit
1173 )))
1174 |=P00-17|(((
1175 Electronic gear 1
1176
1177 numerator
1178 )))|Operation setting|(((
1179 Effective immediately
1180 )))|1|1 to 4294967294|(((
1181 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1182
1183 **VD2L: 1-2147483647**
1184 )))|-
1185 |=P00-18|(((
1186 Electronic gear 1
1187
1188 denominator
1189 )))|(((
1190 Operation setting
1191 )))|(((
1192 Effective immediately
1193 )))|1|1 to 4294967294|(((
1194 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1195
1196 **VD2L: 1-2147483647**
1197 )))|-
1198 |=P00-19|(((
1199 Electronic gear 2
1200
1201 numerator
1202 )))|Operation setting|(((
1203 Effective immediately
1204 )))|1|1 to 4294967294|(((
1205 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1206
1207 **VD2L: 1-2147483647**
1208 )))|-
1209 |=P00-20|(((
1210 Electronic gear 2
1211
1212 denominator
1213 )))|Operation setting|(((
1214 Effective immediately
1215 )))|1|1 to 4294967294|(((
1216 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1217
1218 **VD2L: 1-2147483647**
1219 )))|-
1220
1221 Table 6-21 Electronic gear ratio function code
1222
1223 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1224
1225 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1226 |=09|GEAR-SEL electronic gear switch 1|(((
1227 DI port logic invalid: electronic gear ratio 1
1228
1229 DI port logic valid: electronic gear ratio 2
1230 )))
1231
1232 Table 6-22 Switching conditions of electronic gear ratio group
1233
1234 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1235 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1236 (% style="text-align:center" %)
1237 [[image:image-20220707101328-21.png]]
1238 )))
1239 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1240 (% style="text-align:center" %)
1241 [[image:image-20220707101336-22.png]]
1242 )))
1243 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1244 (% style="text-align:center" %)
1245 [[image:image-20220707101341-23.png]]
1246 )))
1247
1248 Table 6-23 Application of electronic gear ratio
1249
1250 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1251
1252 == Position instruction filtering ==
1253
1254 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1255
1256 In the following situations, position instruction filtering should be added.
1257
1258 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1259 1. The pulse instruction frequency is low;
1260 1. When the electronic gear ratio is 10 times or more.
1261
1262 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1263
1264 (% style="text-align:center" %)
1265 (((
1266 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1267 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1268 )))
1269
1270 |=(% scope="row" %)**Function code**|=**Name**|=(((
1271 **Setting method**
1272 )))|=(((
1273 **Effective time**
1274 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1275 |=P04-01|Pulse instruction filtering method|(((
1276 Shutdown setting
1277 )))|(((
1278 Effective immediately
1279 )))|0|0 to 1|(((
1280 0: 1st-order low-pass filtering
1281
1282 1: average filtering
1283 )))|-
1284 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1285 Effective immediately
1286 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1287 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1288 Effective immediately
1289 )))|0|0 to 128|Position instruction average filtering time constant|ms
1290
1291 Table 6-24 Position instruction filter function code
1292
1293 == Clearance of position deviation ==
1294
1295 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1296
1297 Position deviation = (position instruction-position feedback) (encoder unit)
1298
1299 == Position-related DO output function ==
1300
1301 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1302
1303 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1304 **Positioning completion/positioning approach output**
1305
1306 (% class="wikigeneratedid" %)
1307 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1308
1309 (% style="text-align:center" %)
1310 (((
1311 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1312 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1313 )))
1314
1315 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1316
1317 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1318
1319 (% style="text-align:center" %)
1320 (((
1321 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1322 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1323 )))
1324
1325 |=(% scope="row" %)**Function code**|=**Name**|=(((
1326 **Setting method**
1327 )))|=(% style="width: 129px;" %)(((
1328 **Effective time**
1329 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1330 |=P05-12|Positioning completion threshold|(((
1331 Operation setting
1332 )))|(% style="width:129px" %)(((
1333 Effective immediately
1334 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1335 |=P05-13|Positioning approach threshold|(((
1336 Operation setting
1337 )))|(% style="width:129px" %)(((
1338 Effective immediately
1339 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1340 |=P05-14|Position detection window time|(((
1341 Operation setting
1342 )))|(% style="width:129px" %)(((
1343 Effective immediately
1344 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1345 |=P05-15|Positioning signal hold time|(((
1346 Operation setting
1347 )))|(% style="width:129px" %)(((
1348 Effective immediately
1349 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1350
1351 Table 6-25 Function code parameters of positioning completion
1352
1353 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1354 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1355 |=135|(((
1356 P-NEAR positioning close
1357 )))|(((
1358 Output this signal indicates that the servo drive position is close.
1359 )))
1360
1361 Table 6-26 Description of DO rotation detection function code
1362
1363 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1364
1365 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1366
1367 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1368
1369 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1370
1371 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1372
1373 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1374
1375 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1376
1377 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1378
1379
1380 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1381 |DO_2 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1382 |(% colspan="8" %)(((
1383 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1384
1385 |Setting value|DO channel function| |Setting value|DO channel function
1386 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1387 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1388 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1389 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1390 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1391 |133|ZSP (zero speed signal)| |144|N/A
1392 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1393 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1394 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1395 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1396 |138|T-COIN (torque arrival)| | |
1397
1398 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1399
1400 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1401
1402 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1403
1404 Note 2:
1405
1406 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1407
1408 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1409
1410 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1411 )))
1412
1413 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1414 |DO_3 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1415 |(% colspan="8" %)(((
1416 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1417
1418 |Setting value|DO channel function| |Setting value|DO channel function
1419 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1420 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1421 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1422 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1423 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1424 |133|ZSP (zero speed signal)| |144|None
1425 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1426 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1427 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1428 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1429 |138|T-COIN (torque arrival)| | |
1430
1431 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1432
1433 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1434
1435 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1436
1437 **Note 2:**
1438
1439 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1440
1441 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1442
1443 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1444 )))
1445
1446 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1447 |DO_4 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1448 |(% colspan="8" %)(((
1449 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1450
1451 |Setting value|DO channel function| |Setting value|DO channel function
1452 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1453 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1454 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1455 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1456 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1457 |133|ZSP (zero speed signal)| |144|None
1458 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1459 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1460 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1461 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1462 |138|T-COIN (torque arrival)| | |
1463
1464 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1465
1466 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1467
1468 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1469
1470 **Note 2:**
1471
1472 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1473
1474 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1475
1476 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1477 )))
1478
1479 = **Speed control mode** =
1480
1481 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1482
1483 (% style="text-align:center" %)
1484 (((
1485 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1486 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1487 )))
1488
1489 == Speed instruction input setting ==
1490
1491 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1492
1493 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1494 **Setting method**
1495 )))|=(% style="width: 125px;" %)(((
1496 **Effective time**
1497 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1498 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1499 Shutdown setting
1500 )))|(% style="width:125px" %)(((
1501 Effective immediately
1502 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1503 0: internal speed instruction
1504
1505 1: AI_1 analog input (not supported by **VD2F and VD2L**)
1506 )))|-
1507
1508 Table 6-26 Speed instruction source parameter
1509
1510 **Speed instruction source is internal speed instruction (P01-01=0)**
1511
1512 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1513
1514 (% style="width:1141px" %)
1515 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1516 **Setting**
1517
1518 **method**
1519 )))|=(% colspan="2" %)(((
1520 **Effective**
1521
1522 **time**
1523 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1524 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1525 Internal speed
1526
1527 Instruction 0
1528 )))|(% colspan="2" %)(((
1529 Operation
1530
1531 setting
1532 )))|(% colspan="2" %)(((
1533 Effective
1534
1535 immediately
1536 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1537 Internal speed instruction 0
1538
1539 When DI input port:
1540
1541 15-INSPD3: 0
1542
1543 14-INSPD2: 0
1544
1545 13-INSPD1: 0,
1546
1547 select this speed instruction to be effective.
1548 )))|(% colspan="2" %)rpm
1549 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1550 Internal speed
1551
1552 Instruction 1
1553 )))|(% colspan="2" %)(((
1554 Operation
1555
1556 setting
1557 )))|(% colspan="2" %)(((
1558 Effective
1559
1560 immediately
1561 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1562 Internal speed instruction 1
1563
1564 When DI input port:
1565
1566 15-INSPD3: 0
1567
1568 14-INSPD2: 0
1569
1570 13-INSPD1: 1,
1571
1572 Select this speed instruction to be effective.
1573 )))|(% colspan="2" %)rpm
1574 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1575 Internal speed
1576
1577 Instruction 2
1578 )))|(% colspan="2" %)(((
1579 Operation
1580
1581 setting
1582 )))|(% colspan="2" %)(((
1583 Effective
1584
1585 immediately
1586 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1587 Internal speed instruction 2
1588
1589 When DI input port:
1590
1591 15-INSPD3: 0
1592
1593 14-INSPD2: 1
1594
1595 13-INSPD1: 0,
1596
1597 Select this speed instruction to be effective.
1598 )))|(% colspan="2" %)rpm
1599 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1600 Internal speed
1601
1602 Instruction 3
1603 )))|(% colspan="2" %)(((
1604 Operation
1605
1606 setting
1607 )))|(% colspan="2" %)(((
1608 Effective
1609
1610 immediately
1611 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1612 Internal speed instruction 3
1613
1614 When DI input port:
1615
1616 15-INSPD3: 0
1617
1618 14-INSPD2: 1
1619
1620 13-INSPD1: 1,
1621
1622 Select this speed instruction to be effective.
1623 )))|(% colspan="2" %)rpm
1624 |=P01-26|(% colspan="2" %)(((
1625 Internal speed
1626
1627 Instruction 4
1628 )))|(% colspan="2" %)(((
1629 Operation
1630
1631 setting
1632 )))|(% colspan="2" %)(((
1633 Effective
1634
1635 immediately
1636 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1637 Internal speed instruction 4
1638
1639 When DI input port:
1640
1641 15-INSPD3: 1
1642
1643 14-INSPD2: 0
1644
1645 13-INSPD1: 0,
1646
1647 Select this speed instruction to be effective.
1648 )))|(% colspan="1" %)rpm
1649 |=P01-27|(% colspan="2" %)(((
1650 Internal speed
1651
1652 Instruction 5
1653 )))|(% colspan="2" %)(((
1654 Operation
1655
1656 setting
1657 )))|(% colspan="2" %)(((
1658 Effective
1659
1660 immediately
1661 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1662 Internal speed instruction 5
1663
1664 When DI input port:
1665
1666 15-INSPD3: 1
1667
1668 14-INSPD2: 0
1669
1670 13-INSPD1: 1,
1671
1672 Select this speed instruction to be effective.
1673 )))|(% colspan="1" %)rpm
1674 |=P01-28|(% colspan="2" %)(((
1675 Internal speed
1676
1677 Instruction 6
1678 )))|(% colspan="2" %)(((
1679 Operation
1680
1681 setting
1682 )))|(% colspan="2" %)(((
1683 Effective
1684
1685 immediately
1686 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1687 Internal speed instruction 6
1688
1689 When DI input port:
1690
1691 15-INSPD3: 1
1692
1693 14-INSPD2: 1
1694
1695 13-INSPD1: 0,
1696
1697 Select this speed instruction to be effective.
1698 )))|(% colspan="1" %)rpm
1699 |=P01-29|(% colspan="2" %)(((
1700 Internal speed
1701
1702 Instruction 7
1703 )))|(% colspan="2" %)(((
1704 Operation
1705
1706 setting
1707 )))|(% colspan="2" %)(((
1708 Effective
1709
1710 immediately
1711 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1712 Internal speed instruction 7
1713
1714 When DI input port:
1715
1716 15-INSPD3: 1
1717
1718 14-INSPD2: 1
1719
1720 13-INSPD1: 1,
1721
1722 Select this speed instruction to be effective.
1723 )))|(% colspan="1" %)rpm
1724
1725 Table 6-27 Internal speed instruction parameters
1726
1727 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1728 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1729 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1730 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1731
1732 Table 6-28 DI multi-speed function code description
1733
1734 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1735
1736
1737 (% style="margin-left:auto; margin-right:auto" %)
1738 |=(% style="text-align: center; vertical-align: middle;" %)**INSPD3**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD2**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD1**|=(% style="text-align: center; vertical-align: middle;" %)**Running segment number**|=(% style="text-align: center; vertical-align: middle;" %)**Internal speed instruction number**
1739 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1740 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1741 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1742 |(% colspan="5" style="text-align:center; vertical-align:middle" %)......
1743 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1744
1745 Table 6-29 Correspondence between INSPD bits and segment numbers
1746
1747 (% style="text-align:center" %)
1748 (((
1749 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1750 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1751 )))
1752
1753 **Speed instruction source is internal speed instruction (P01-01=1)**
1754
1755 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1756
1757 (% style="text-align:center" %)
1758 (((
1759 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1760 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1761 )))
1762
1763 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1764
1765 (% style="text-align:center" %)
1766 (((
1767 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1768 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1769 )))
1770
1771 Explanation of related terms:
1772
1773 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1774 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1775 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1776
1777 (% style="text-align:center" %)
1778 (((
1779 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1780 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1781 )))
1782
1783 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1784 |=P05-01(((
1785
1786 )))|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1787 |=P05-02(((
1788
1789 )))|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1790 |=P05-03(((
1791
1792 )))|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1793 |=P05-04(((
1794
1795 )))|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1796
1797 (% class="box infomessage" %)
1798 (((
1799 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
1800 )))
1801
1802 == Acceleration and deceleration time setting ==
1803
1804 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1805
1806 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1807
1808 (% style="text-align:center" %)
1809 (((
1810 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1811 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1812 )))
1813
1814 (% style="text-align:center" %)
1815 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1816
1817 |=(% scope="row" %)**Function code**|=**Name**|=(((
1818 **Setting method**
1819 )))|=(((
1820 **Effective time**
1821 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1822 |=P01-03|Acceleration time|(((
1823 Operation setting
1824 )))|(((
1825 Effective immediately
1826 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1827 |=P01-04|Deceleration time|(((
1828 Operation setting
1829 )))|(((
1830 Effective immediately
1831 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1832
1833 Table 6-31 Acceleration and deceleration time parameters
1834
1835 == Speed instruction limit ==
1836
1837 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1838
1839 1. P01-10: Set the maximum speed limit value
1840 1. P01-12: Set forward speed limit value
1841 1. P01-13: Set reverse speed limit value
1842 1. The maximum speed of the motor: determined by motor model
1843
1844 The actual motor speed limit interval satisfies the following relationship:
1845
1846 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1847
1848 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1849
1850 |=(% scope="row" %)**Function code**|=**Name**|=(((
1851 **Setting method**
1852 )))|=(((
1853 **Effective time**
1854 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1855 |=P01-10|Maximum speed threshold|(((
1856 Operation setting
1857 )))|(((
1858 Effective immediately
1859 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1860 |=P01-12|Forward speed threshold|(((
1861 Operation setting
1862 )))|(((
1863 Effective immediately
1864 )))|3000|0 to 5000|Set forward speed limit value|rpm
1865 |=P01-13|Reverse speed threshold|(((
1866 Operation setting
1867 )))|(((
1868 Effective immediately
1869 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1870
1871 Table 6-32 Rotation speed related function codes
1872
1873 == Zero-speed clamp function ==
1874
1875 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1876
1877 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1878
1879 |=(% scope="row" %)**Function code**|=**Name**|=(((
1880 **Setting method**
1881 )))|=(((
1882 **Effective time**
1883 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1884 |=P01-21|(((
1885 Zero-speed clamp function selection
1886 )))|(((
1887 Operation setting
1888 )))|(((
1889 Effective immediately
1890 )))|0|0 to 3|(((
1891 Set the zero-speed clamp function. In speed mode:
1892
1893 0: Force the speed to 0;
1894
1895 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1896
1897 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1898
1899 3: Invalid, ignore zero-speed clamp input
1900 )))|-
1901 |=P01-22|(((
1902 Zero-speed clamp speed threshold
1903 )))|(((
1904 Operation setting
1905 )))|(((
1906 Effective immediately
1907 )))|20|0 to 6000|Set the speed threshold of zero-speed clamp function|rpm
1908
1909 Table 6-33 Zero-speed clamp related parameters
1910
1911 (% style="text-align:center" %)
1912 (((
1913 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1914 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1915 )))
1916
1917 == Speed-related DO output function ==
1918
1919 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1920
1921 **Rotation detection signal**
1922
1923 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1924
1925 (% style="text-align:center" %)
1926 (((
1927 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1928 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1929 )))
1930
1931 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1932
1933 |=(% scope="row" %)**Function code**|=**Name**|=(((
1934 **Setting method**
1935 )))|=(((
1936 **Effective time**
1937 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1938 |=P05-16|(((
1939 Rotation detection
1940
1941 speed threshold
1942 )))|(((
1943 Operation setting
1944 )))|(((
1945 Effective immediately
1946 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1947
1948 Table 6-34 Rotation detection speed threshold parameters
1949
1950 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1951 |=132|(% style="width:247px" %)(((
1952 TGON rotation detection
1953 )))|(% style="width:695px" %)(((
1954 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1955
1956 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1957 )))
1958
1959 Table 6-35 DO rotation detection function code
1960
1961 **Zero-speed signal**
1962
1963 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1964
1965 (% style="text-align:center" %)
1966 (((
1967 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1968 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1969 )))
1970
1971 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1972
1973 |=(% scope="row" %)**Function code**|=**Name**|=(((
1974 **Setting method**
1975 )))|=(((
1976 **Effective time**
1977 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1978 |=P05-19|Zero speed output signal threshold|(((
1979 Operation setting
1980 )))|(((
1981 Effective immediately
1982 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1983
1984 Table 6-36 Zero-speed output signal threshold parameter
1985
1986 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1987 |=133|(((
1988 ZSP zero speed signal
1989 )))|Output this signal indicates that the servo motor is stopping rotation
1990
1991 Table 6-37 DO zero-speed signal function code
1992
1993 **Speed consistent signal**
1994
1995 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1996
1997 (% style="text-align:center" %)
1998 (((
1999 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2000 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
2001 )))
2002
2003 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
2004
2005 |=(% scope="row" %)**Function code**|=**Name**|=(((
2006 **Setting method**
2007 )))|=(((
2008 **Effective time**
2009 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2010 |=P05-17|Speed consistent signal threshold|(((
2011 Operationsetting
2012 )))|(((
2013 Effective immediately
2014 )))|10|0 to 100|Set speed consistent signal threshold|rpm
2015
2016 Table 6-38 Speed consistent signal threshold parameters
2017
2018 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
2019 |=136|(% style="width:262px" %)(((
2020 V-COIN consistent speed
2021 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
2022
2023 Table 6-39 DO speed consistent function code
2024
2025 **Speed approach signal**
2026
2027 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
2028
2029 (% style="text-align:center" %)
2030 (((
2031 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2032 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
2033 )))
2034
2035 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
2036
2037 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
2038 **Setting method**
2039 )))|=(((
2040 **Effective time**
2041 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2042 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
2043 Operation setting
2044 )))|(((
2045 Effective immediately
2046 )))|100|10 to 6000|Set speed approach signal threshold|rpm
2047
2048 Table 6-40 Speed approaching signal threshold parameters
2049
2050 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2051 |=137|(((
2052 V-NEAR speed approach
2053 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
2054
2055 Table 6-41 DO speed approach function code
2056
2057 = **Torque control mode** =
2058
2059 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
2060
2061 (% style="text-align:center" %)
2062 (((
2063 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2064 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
2065 )))
2066
2067 == **Torque instruction input setting** ==
2068
2069 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
2070
2071 |=(% scope="row" %)**Function code**|=**Name**|=(((
2072 **Setting method**
2073 )))|=(((
2074 **Effective time**
2075 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2076 |=P01-07|Torque instruction source|(((
2077 Shutdown setting
2078 )))|(((
2079 Effective immediately
2080 )))|0|0 to 1|(((
2081 0: internal torque instruction
2082
2083 1: AI_1 analog input(not supported by VD2F and VD2L)
2084 )))|-
2085
2086 Table 6-42 Torque instruction source parameter
2087
2088 **Torque instruction source is internal torque instruction (P01-07=0)**
2089
2090 Torque instruction source is from inside, the value is set by function code P01-08.
2091
2092 |=(% scope="row" %)**Function code**|=**Name**|=(((
2093 **Setting method**
2094 )))|=(((
2095 **Effective time**
2096 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2097 |=P01-08|Torque instruction keyboard set value|(((
2098 Operation setting
2099 )))|(((
2100 Effective immediately
2101 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2102
2103 Table 6-43 Torque instruction keyboard set value
2104
2105 **Torque instruction source is AI_1 analog input (P01-07=1)**
2106
2107 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2108
2109 (% style="text-align:center" %)
2110 (((
2111 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2112 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2113 )))
2114
2115 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2116
2117 (% style="text-align:center" %)
2118 (((
2119 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2120 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2121 )))
2122
2123 Explanation of related terms:
2124
2125 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2126 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2127 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2128
2129 (% style="text-align:center" %)
2130 (((
2131 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2132 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2133 )))
2134
2135 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2136 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2137 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2138 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2139 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2140
2141 Table 6-44 AI_1 parameters
2142
2143 (% class="box infomessage" %)
2144 (((
2145 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2146 )))
2147
2148 == Torque instruction filtering ==
2149
2150 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2151
2152 |=(% scope="row" %)**Function code**|=**Name**|=(((
2153 **Setting method**
2154 )))|=(((
2155 **Effective time**
2156 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2157 |=P04-04|Torque filtering time constant|(((
2158 Operation setting
2159 )))|(((
2160 Effective immediately
2161 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2162
2163 Table 6-45 Torque filtering time constant parameter details
2164
2165 (% class="box infomessage" %)
2166 (((
2167 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2168 )))
2169
2170 (% style="text-align:center" %)
2171 (((
2172 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2173 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2174 )))
2175
2176 == Torque instruction limit ==
2177
2178 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2179
2180 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2181
2182 (% style="text-align:center" %)
2183 (((
2184 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2185 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2186 )))
2187
2188 **Set torque limit source**
2189
2190 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2191
2192 |=(% scope="row" %)**Function code**|=**Name**|=(((
2193 **Setting method**
2194 )))|=(((
2195 **Effective time**
2196 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2197 |=P01-14|(((
2198 Torque limit source
2199 )))|(((
2200 Shutdown setting
2201 )))|(((
2202 Effective immediately
2203 )))|0|0 to 1|(((
2204 0: internal value
2205
2206 1: AI_1 analog input (not supported by VD2F and VD2L)
2207 )))|-
2208
2209 * Torque limit source is internal torque instruction (P01-14=0)
2210
2211 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2212
2213 |=(% scope="row" %)**Function code**|=**Name**|=(((
2214 **Setting method**
2215 )))|=(((
2216 **Effective time**
2217 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2218 |=P01-15|(((
2219 Forward torque limit
2220 )))|(((
2221 Operation setting
2222 )))|(((
2223 Effective immediately
2224 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2225 |=P01-16|(((
2226 Reverse torque limit
2227 )))|(((
2228 Operation setting
2229 )))|(((
2230 Effective immediately
2231 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2232
2233 Table 6-46 Torque limit parameter details
2234
2235 * Torque limit source is external (P01-14=1)
2236
2237 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2238
2239 **Set torque limit DO signal output**
2240
2241 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2242
2243 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2244 |=139|(((
2245 T-LIMIT in torque limit
2246 )))|Output of this signal indicates that the servo motor torque is limited
2247
2248 Table 6-47 DO torque limit function codes
2249
2250 == **Speed limit in torque mode** ==
2251
2252 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2253
2254 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2255
2256 |(((
2257 (% style="text-align:center" %)
2258 (((
2259 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2260 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2261 )))
2262 )))|(((
2263 (% style="text-align:center" %)
2264 (((
2265 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2266 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2267 )))
2268 )))
2269
2270 |=(% scope="row" %)**Function code**|=**Name**|=(((
2271 **Setting method**
2272 )))|=(((
2273 **Effective time**
2274 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2275 |=P01-17|(((
2276 Forward speed
2277
2278 limit in torque mode
2279 )))|(((
2280 Operation setting
2281 )))|(((
2282 Effective immediately
2283 )))|3000|0 to 6000|(((
2284 Forward torque
2285
2286 limit in torque mode
2287 )))|rpm
2288 |=P01-18|(((
2289 Reverse speed
2290
2291 limit in torque mode
2292 )))|(((
2293 Operation setting
2294 )))|(((
2295 Effective immediately
2296 )))|3000|0 to 6000|(((
2297 Reverse torque
2298
2299 limit in torque mode
2300 )))|rpm
2301
2302 Table 6-48 Speed limit parameters in torque mode
2303
2304 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2305
2306 == Torque-related DO output functions ==
2307
2308 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2309
2310 **Torque arrival**
2311
2312 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2313
2314 (% style="text-align:center" %)
2315 (((
2316 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2317 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2318 )))
2319
2320 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2321
2322 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2323 **Setting method**
2324 )))|=(% style="width: 124px;" %)(((
2325 **Effective time**
2326 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2327 |=P05-20|(% style="width:113px" %)(((
2328 Torque arrival
2329
2330 threshold
2331 )))|(% style="width:100px" %)(((
2332 Operation setting
2333 )))|(% style="width:124px" %)(((
2334 Effective immediately
2335 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2336 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2337
2338 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2339
2340 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2341 )))|%
2342 |=P05-21|(% style="width:113px" %)(((
2343 Torque arrival
2344
2345 hysteresis
2346 )))|(% style="width:100px" %)(((
2347 Operation setting
2348 )))|(% style="width:124px" %)(((
2349 Effective immediately
2350 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2351
2352 Table 6-49 Torque arrival parameters
2353
2354 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2355 |=138|(((
2356 T-COIN torque arrival
2357 )))|Used to determine whether the actual torque instruction has reached the set range
2358
2359 Table 6-50 DO Torque Arrival Function Code
2360
2361 = **Mixed control mode** =
2362
2363 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2364
2365 * Position mode⇔ Speed mode
2366 * Position mode ⇔Torque mode
2367 * Speed mode ⇔Torque mode
2368
2369 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2370
2371 |=(% scope="row" %)**Function code**|=**Name**|=(((
2372 **Setting method**
2373 )))|=(((
2374 **Effective time**
2375 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2376 |=P00-01|Control mode|(((
2377 Shutdown setting
2378 )))|(((
2379 Shutdown setting
2380 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2381 1: Position control
2382
2383 2: Speed control
2384
2385 3: Torque control
2386
2387 4: Position/speed mixed control
2388
2389 5: Position/torque mixed control
2390
2391 6: Speed/torque mixed control
2392
2393 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2394 )))|-
2395
2396 Table 6-51 Mixed control mode parameters
2397
2398 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2399
2400 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2401 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2402 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2403 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2404 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2405 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2406 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2407 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2408 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2409 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2410 )))
2411
2412 Table 6-52 Description of DI function codes in control mode
2413
2414 (% class="box infomessage" %)
2415 (((
2416 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2417 )))
2418
2419 = **Absolute system** =
2420
2421 == Overview ==
2422
2423 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2424
2425 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2426
2427 == Single-turn absolute value system ==
2428
2429 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2430
2431 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2432 |A1 (single-turn magnetic encoder)|17|0 to 131071
2433
2434 Table 6-53 Single-turn absolute encoder information
2435
2436 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2437
2438 (% style="text-align:center" %)
2439 (((
2440 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2441 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2442 )))
2443
2444 == Multi-turn absolute value system ==
2445
2446 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2447
2448 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2449 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2450 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2451
2452 Table 6-54 Multi-turn absolute encoder information
2453
2454 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2455
2456 (% style="text-align:center" %)
2457 (((
2458 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2459 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2460 )))
2461
2462 (% class="wikigeneratedid" %)
2463 (((
2464 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2465 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2466 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2467 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2468
2469 |**Function code**|**Name**|(((
2470 **Setting**
2471
2472 **method**
2473 )))|(((
2474 **Effective**
2475
2476 **time**
2477 )))|**Default**|**Range**|**Definition**|**Unit**
2478 |P10-06|Multi-turn absolute encoder reset|(((
2479 Shutdown
2480
2481 setting
2482 )))|Effective immediately|0|0 to 1|(((
2483 0: No operation
2484
2485 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2486
2487 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2488 )))|-
2489
2490 (% style="background-color:#ffffff" %)
2491 |**Function code**|**Name**|(((
2492 **Setting**
2493
2494 **method**
2495 )))|(((
2496 **Effective**
2497
2498 **time**
2499 )))|**Default**|**Range**|**Definition**|**Unit**
2500 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2501 Operation
2502
2503 setting
2504 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2505 )))
2506
2507 == Related functions and parameters ==
2508
2509 **Encoder feedback data**
2510
2511 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2512
2513 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2514 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2515 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2516 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2517
2518 Table 6-55 Encoder feedback data
2519
2520 **Shield multi-turn absolute encoder battery fault**
2521
2522 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2523
2524 |=(% scope="row" %)**Function code**|=**Name**|=(((
2525 **Setting**
2526
2527 **method**
2528 )))|=(((
2529 **Effective**
2530
2531 **time**
2532 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2533 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2534 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2535
2536 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2537 )))|-
2538
2539 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2540
2541 **A93 warning solution**
2542
2543 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2544 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2545
2546 |**Function code**|**Name**|(((
2547 **Setting**
2548
2549 **method**
2550 )))|(((
2551 **Effective**
2552
2553 **time**
2554 )))|**Default**|**Range**|**Definition**|**Unit**
2555 |P00-31|Encoder read-write check abnormal frequency|(((
2556 Operation
2557
2558 setting
2559 )))|(((
2560 immediately
2561
2562 Effective
2563 )))|20|0 to100|(((
2564 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2565
2566 0: no alarm
2567
2568 Others: When this setting value is exceeded, report A93.
2569 )))|-
2570
2571 (% class="box infomessage" %)
2572 (((
2573 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2574 )))
2575
2576 == Absolute value system encoder battery box use precautions. ==
2577
2578 **Cautions**
2579
2580 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2581
2582 (% style="text-align:center" %)
2583 (((
2584 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2585 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2586 )))
2587
2588 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2589
2590 **Replace the battery**
2591
2592 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2593
2594 The specific replacement method is as follows:
2595
2596 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2597 * Step2 Remove the old battery.
2598 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2599 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2600
2601 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2602
2603 |=(% scope="row" %)**Function code**|=**Name**|=(((
2604 **Setting method**
2605 )))|=(((
2606 **Effective time**
2607 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2608 |=P10-06|Multi-turn absolute encoder reset|(((
2609 Shutdown setting
2610 )))|(((
2611 Effective immediately
2612 )))|0|0 to 1|(((
2613 * 0: No operation
2614 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2615
2616 (% class="box infomessage" %)
2617 (((
2618 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2619 )))
2620 )))|-
2621
2622 Table 6-56 Absolute encoder reset enable parameter
2623
2624 **Battery selection**
2625
2626 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2627 |(% rowspan="4" style="width:361px" %)(((
2628 Nominal Voltage: 3.6V
2629
2630 Nominal capacity: 2700mAh
2631 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2632 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2633 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2634 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2635
2636 Table 6-57 Absolute value encoder battery information
2637
2638 **✎Note: **
2639
2640 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2641
2642 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2643
2644 Correct placement of batteries +, - direction
2645
2646 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2647 1. This battery cannot be charged.
2648 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2649 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2650 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2651
2652 = **Other functions** =
2653
2654 == VDI ==
2655
2656 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2657
2658 (% class="box infomessage" %)
2659 (((
2660 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2661 )))
2662
2663 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2664
2665 (% style="text-align:center" %)
2666 (((
2667 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2668 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2669 )))
2670
2671 |=(% scope="row" %)**Function code**|=**Name**|=(((
2672 **Setting method**
2673 )))|=(((
2674 **Effective time**
2675 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2676 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2677 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2678
2679 VDI_1 input level:
2680
2681 0: Low level
2682
2683 1: High level
2684 )))|-
2685 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2686 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2687
2688 VDI_2 input level:
2689
2690 0: Low level
2691
2692 1: High level
2693 )))|-
2694 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2695 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2696
2697 VDI_3 input level:
2698
2699 0: Low level
2700
2701 1: High level
2702 )))|-
2703 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2704 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2705
2706 VDI_4 input level:
2707
2708 0: Low level
2709
2710 1: High level
2711 )))|-
2712 |=P13-05(((
2713
2714 )))|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2715 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2716
2717 VDI_5 input level:
2718
2719 0: Low level
2720
2721 1: High level
2722 )))|-
2723 |=P13-06(((
2724
2725 )))|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2726 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2727
2728 VDI_6 input level:
2729
2730 0: Low level
2731
2732 1: High level
2733 )))|-
2734 |=P13-07(((
2735
2736 )))|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2737 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2738
2739 VDI_7 input level:
2740
2741 0: Low level
2742
2743 1: High level
2744 )))|-
2745 |=P13-08(((
2746
2747 )))|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2748 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2749
2750 VDI_8 input level:
2751
2752 0: Low level
2753
2754 1: High level
2755 )))|-
2756
2757 Table 6-57 Virtual VDI parameters
2758
2759 (% class="box infomessage" %)
2760 (((
2761 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
2762 )))
2763
2764 == Port filtering time ==
2765
2766 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2767
2768 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2769 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2770 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2771
2772 Table 6-58 DI terminal channel logic selection
2773
2774 == **VDO** ==
2775
2776 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2777
2778 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2779
2780 (% style="text-align:center" %)
2781 (((
2782 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2783 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2784 )))
2785
2786
2787 |=(% scope="row" %)**Function code**|=**Name**|=(((
2788 **Setting method**
2789 )))|=(((
2790 **Effective time**
2791 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2792 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2793 VDO_1 output level:
2794
2795 0: Low level
2796
2797 1: High level
2798 )))|-
2799 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2800 VDO_2 output level:
2801
2802 0: Low level
2803
2804 1: High level
2805 )))|-
2806 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2807 VDO_3 output level:
2808
2809 0: Low level
2810
2811 1: High level
2812 )))|-
2813 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2814 VDO_4 output level:
2815
2816 0: Low level
2817
2818 1: High level
2819 )))|-
2820
2821 Table 6-59 Communication control DO function parameters
2822
2823 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2824 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2825 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2826 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2827 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2828
2829 Table 6-60 VDO function number
2830
2831 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2832
2833 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2834
2835 == Motor overload protection ==
2836
2837 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2838
2839 |=(% scope="row" %)**Function code**|=**Name**|=(((
2840 **Setting method**
2841 )))|=(((
2842 **Effective time**
2843 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2844 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2845 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2846
2847 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2848 )))|%
2849
2850 In the following cases, it could be modified according to the actual heat generation of the motor
2851
2852 1. The motor works in a place with high ambient temperature
2853 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2854
2855 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2856
2857 (% class="box infomessage" %)
2858 (((
2859 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2860 )))
2861
2862
2863 = Homing mode =
2864
2865 The homing mode is used to find the mechanical origin and locate the positional relationship between the mechanical origin and the mechanical zero.
2866
2867 Mechanical homing: A mechanically fixed position may correspond to a certain defined homing switch, or may correspond to the motor Z signal.
2868
2869 Mechanical zero point: Mechanically absolute 0 position.
2870
2871 After the homing, the stop position of the motor is the mechanical homing. By setting P10-08, the relationship between the mechanical homing and the mechanical zero can be set:
2872
2873 Mechanical homing = Mechanical zero +P10-08 (homing offset)
2874
2875 When P10-08=0, the mechanical homing coincides with the mechanical zero.
2876
2877 == Control block diagram ==
2878
2879
2880 === Homing mode related function codes ===
2881
2882 |Function code|Name|(((
2883 Setting
2884
2885 method
2886 )))|(((
2887 Effective
2888
2889 time
2890 )))|Default|Range|Definition|Unit
2891 |P01-39|Homing start mode|(((
2892 Stop
2893
2894 settings
2895 )))|(((
2896 Immediately
2897
2898 effective
2899 )))|0|0 to 2|(((
2900 0: Close
2901
2902 1: The servo is powered ON and started after the first ON
2903
2904 2: DI enable
2905 )))|-
2906
2907 |Function code|Name|(((
2908 Setting
2909
2910 method
2911 )))|(((
2912 Effective
2913
2914 time
2915 )))|Default|Range|Definition|Unit
2916 |P01-40|Homing mode|(((
2917 Stop
2918
2919 settings
2920 )))|(((
2921 Immediately
2922
2923 effective
2924 )))|0|0 to 35|(((
2925 0 ~~ 35 Homing mode;
2926
2927 ✎Note: VD2 currently does not support 15, 16, 31, 32 modes
2928 )))|-
2929
2930 |Function code|Name|(((
2931 Setting
2932
2933 method
2934 )))|(((
2935 Effective
2936
2937 time
2938 )))|Default|Range|Definition|Unit
2939 |P01-41|High-speed search deceleration point signal velocity|(((
2940 Running
2941
2942 settings
2943 )))|(((
2944 Immediately
2945
2946 effective
2947 )))|300|1 to 3000|High-speed search deceleration point signal velocity in homing mode|rpm
2948
2949 |Function code|Name|(((
2950 Setting
2951
2952 method
2953 )))|(((
2954 Effective
2955
2956 time
2957 )))|Default|Range|Definition|Unit
2958 |P01-42〇|Low speed search homing signal speed|(((
2959 Running
2960
2961 settings
2962 )))|(((
2963 Immediately
2964
2965 effective
2966 )))|60|1 to 300|Low-speed search origin signal velocity in homing mode|rpm
2967
2968 |Function code|Name|(((
2969 Setting
2970
2971 method
2972 )))|(((
2973 Effective
2974
2975 time
2976 )))|Default|Range|Definition|Unit
2977 |P01-43〇|Homing acceleration and deceleration|(((
2978 Running
2979
2980 settings
2981 )))|(((
2982 Immediately
2983
2984 effective
2985 )))|50|1to1000|(((
2986 Acceleration and deceleration in homing mode
2987
2988 Time for speed acceleration from 0 to 1000rpm
2989 )))|ms
2990
2991 |Function code|Name|(((
2992 Setting
2993
2994 method
2995 )))|(((
2996 Effective
2997
2998 time
2999 )))|Default|Range|Definition|Unit
3000 |P01-44〇|Homing timeout limited time|(((
3001 Running
3002
3003 settings
3004 )))|(((
3005 Immediately
3006
3007 effective
3008 )))|65535|100 to 65535|Homing timeout limited time|ms
3009
3010 |Function code|Name|(((
3011 Setting
3012
3013 method
3014 )))|(((
3015 Effective
3016
3017 time
3018 )))|Default|Range|Definition|Unit
3019 |P10-08〇|Multi-turn absolute encoder homing offset compensation|(((
3020 Running
3021
3022 settings
3023 )))|(((
3024 Immediately
3025
3026 effective
3027 )))|0|(((
3028 -2147483647~~
3029
3030 2147483646
3031 )))|(((
3032 P10-08 multi-turn absolute encoder homing offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position.
3033
3034 When P10-6 is set to 1, the value of U0-56 is updated to P10-8.
3035 )))|-
3036
3037 == Introduction to homing mode ==
3038
3039 In the following figure, "H" represents P01-41 (high-speed search deceleration point signal speed), and "L" represents P01-42 (low-speed search homing signal speed).
3040
3041
3042 (1) P01-40 =1
3043
3044 Mechanical homing: Motor Z signal
3045
3046 Deceleration point: Reverse limit switch (NOT)
3047
3048 ① The deceleration point signal is invalid when starting homing
3049
3050 (% style="text-align:center" %)
3051 [[image:1748221916083-747.jpg||height="347" width="600"]]
3052
3053 When it starts to homing, NOT=0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.
3054
3055
3056 ② The deceleration point signal is valid when starting homing
3057
3058 (% style="text-align:center" %)
3059 [[image:1748222134730-241.jpg||height="341" width="600"]]
3060
3061 When starting to homing, NOT=1, it starts to homing at a direct forward low speed, and stops at the first Z signal after encountering the falling edge of NOT.
3062
3063
3064
3065
3066
3067
3068 (2) P01-40=2
3069
3070 Mechanical homing: Motor Z signal
3071
3072 Deceleration point: Positive Limit Switch (POT)
3073
3074 ① The deceleration point signal is invalid when starting homing
3075
3076 (% style="text-align:center" %)
3077 [[image:1748222168627-745.jpg||height="334" width="600"]]
3078
3079
3080 When it starts to homing, POT = 0, and it starts to homing at a forward high speed. After encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of POT.
3081
3082
3083 ② The deceleration point signal is valid when starting homing
3084
3085 (% style="text-align:center" %)
3086 [[image:1748222190794-857.jpg||height="337" width="600"]]
3087
3088 POT=1 when start homing, run at low speed directly in the reverse direction, and stops at the first Z signal after the falling edge of POT.
3089
3090
3091
3092 (3) P01-40=3
3093
3094 Mechanical homing: Motor Z signal
3095
3096 Deceleration point: Home switch (HW)
3097
3098 ① The deceleration point signal is invalid when starting homing
3099
3100 (% style="text-align:center" %)
3101 [[image:1748226127686-390.jpg||height="337" width="600"]]
3102
3103
3104 When it starts to homing, HW=0. It starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction. It runs at a reverse low speed. After encountering the falling edge of HW, it continues to run, and then stops when encountering the first Z signal.
3105
3106
3107 ② The deceleration point signal is valid when starting homing
3108
3109 (% style="text-align:center" %)
3110 [[image:1748226169150-834.jpg||height="337" width="600"]]
3111
3112 When starting homing, HW=1, start homing at low speed in reverse directly, and stop at the first Z signal after encountering the falling edge of HW;
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126 (4) P01-40=4
3127
3128 Mechanical homing: Motor Z signal
3129
3130 Deceleration point: Home switch (HW)
3131
3132 ① The deceleration point signal is invalid when starting homing
3133
3134 (% style="text-align:center" %)
3135 [[image:1748226182842-731.jpg||height="337" width="600"]]
3136
3137 HW=0 when starting to homing, directly start to homing at low speed, and stop at the first Z signal after encountering the rising edge of HW;
3138
3139
3140 ② The deceleration point signal is valid when starting homing
3141
3142 (% style="text-align:center" %)
3143 [[image:1748226201716-810.jpg||height="338" width="600"]]
3144
3145
3146 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, decelerate and reverse, run at a low speed in the forward direction, and stop at the first Z signal after encountering the rising edge of HW.
3147
3148
3149
3150
3151
3152 (5) P01-40=5
3153
3154 Mechanical homing: Motor Z signal
3155
3156 Deceleration point: Home switch (HW)
3157
3158 ① The deceleration point signal is invalid when starting homing
3159
3160 (% style="text-align:center" %)
3161 [[image:1748226251451-548.jpg||height="337" width="600"]]
3162
3163 When it starts to homing, HW = 0, and it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3164
3165
3166 ② The deceleration point signal is valid when starting homing
3167
3168 (% style="text-align:center" %)
3169 [[image:1748226264724-999.jpg||height="337" width="600"]]
3170
3171 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3172
3173
3174
3175
3176
3177 (6) P01-40=6
3178
3179 Mechanical homing: Motor Z signal
3180
3181 Deceleration point: Home switch (HW)
3182
3183 ① The deceleration point signal is invalid when starting homing
3184
3185 (% style="text-align:center" %)
3186 [[image:1748226277996-278.jpg||height="337" width="600"]]
3187
3188 When starting to homing, HW=0, directly reverse low speed starts to homing, and the first Z signal stops after encountering the rising edge of HW;
3189
3190
3191 ② The deceleration point signal is valid when starting homing
3192
3193 (% style="text-align:center" %)
3194 [[image:1748226309059-457.jpg||height="337" width="600"]]
3195
3196 When starting to homing, HW = 1, start to homing at a forward high speed, after encountering the falling edge of HW, decelerate and reverse, run at a reverse low speed, and stop at the first Z signal after encountering the rising edge of HW.
3197
3198
3199
3200
3201
3202 (7) P01-40=7
3203
3204 Mechanical homing: Motor Z signal
3205
3206 Deceleration point: Home switch (HW)
3207
3208 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3209
3210 (% style="text-align:center" %)
3211 [[image:1748226329690-925.jpg||height="405" width="600"]]
3212
3213 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, and runs at a reverse low speed. The first Z signal after encountering the falling edge of HW stops.
3214
3215
3216 ②When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3217
3218 (% style="text-align:center" %)
3219 [[image:1748226347085-250.jpg||height="482" width="600"]]
3220
3221 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and continue to run at a reverse low speed. The first Z signal after the falling edge of HW will stop.
3222
3223
3224 ③ The deceleration point signal is valid when starting homing
3225
3226 (% style="text-align:center" %)
3227 [[image:1748226362415-253.jpg||height="406" width="600"]]
3228
3229 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3230
3231
3232 (8) P01-40=8
3233
3234 Mechanical homing: Motor Z signal
3235
3236 Deceleration point: Home switch (HW)
3237
3238 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3239
3240 (% style="text-align:center" %)
3241 [[image:1748226377919-294.jpg||height="425" width="600"]]
3242
3243 When it starts to homing, HM-0 starts to homing at a forward high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and reverse, and run at a reverse low speed. After encountering the falling edge of HW, reverse, run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3244
3245
3246 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3247
3248 (% style="text-align:center" %)
3249 [[image:1748226441814-616.jpg||height="460" width="600"]]
3250
3251 When it starts to homing, HW = 0, and it starts to homing at forward high speed. If it encounters a limit switch, it will automatically reverse and run at reverse high speed; After encountering the rising edge of HW, slow down and run at a reverse low speed; After encountering the falling edge of HW, reverse the direction, run at a forward low speed, and stop the first Z signal after encountering the rising edge of HW.
3252
3253
3254 ③ The deceleration point signal is valid when starting homing
3255
3256 (% style="text-align:center" %)
3257 [[image:1748226458987-236.jpg||height="403" width="600"]]
3258
3259 When starting to homing, HM-1 will directly reverse and start to return to zero at low speed. After encountering the falling edge of HW, it will reverse and run at forward low speed. The first Z signal after encountering the rising edge of HW will stop.
3260
3261
3262
3263 (9) P01-40=9
3264
3265 Mechanical homing: Motor Z signal
3266
3267 Deceleration point: Home switch (HW)
3268
3269 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3270
3271 (% style="text-align:center" %)
3272 [[image:1748226475073-462.jpg||height="407" width="600"]]
3273
3274 When it starts to homing, HW=0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed; After encountering the falling edge of HW, reverse, run at a low speed in the reverse direction, and stop at the first Z signal after encountering the rising edge of HW.
3275
3276
3277 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3278
3279 (% style="text-align:center" %)
3280 [[image:1748226491294-972.jpg||height="473" width="600"]]
3281
3282 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering a rising edge of HW, it will slow down and reverse to resume forward operation. Running at a forward low speed, after encountering a falling edge of HW, it will reverse. During reverse low speed operation, the first Z signal after encountering a rising edge of HW will stop.
3283
3284 ③ The deceleration point signal is valid when starting homing
3285
3286 (% style="text-align:center" %)
3287 [[image:1748226509824-146.jpg||height="406" width="600"]]
3288
3289 When starting homing, HW=1 starts homing directly at forward low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and reverse low speed operation;
3290
3291
3292 (10) P01-40=10
3293
3294 Mechanical homing: Motor Z signal
3295
3296 Deceleration point: Home switch (HW)
3297
3298 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3299
3300 (% style="text-align:center" %)
3301 [[image:1748226583138-561.jpg||height="403" width="600"]]
3302
3303 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, slow down and run at a forward low speed. After encountering the falling edge of HW, continue to run at a forward low speed, and then the first Z signal encountered stops.
3304
3305 ② When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3306
3307 (% style="text-align:center" %)
3308 [[image:1748226640407-712.jpg||height="474" width="600"]]
3309
3310 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and reverse to resume forward operation. The first Z signal after the low speed encounters the falling edge of HW will stop.
3311
3312
3313 ③ The deceleration point signal is valid when starting homing
3314
3315 (% style="text-align:center" %)
3316 [[image:1748226662455-861.jpg||height="392" width="600"]]
3317
3318 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3319
3320
3321 (11) P01-40=11
3322
3323 Mechanical homing: Motor Z signal
3324
3325 Deceleration point: Home switch (HW)
3326
3327 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3328
3329 (% style="text-align:center" %)
3330 [[image:1748226681272-116.jpg||height="406" width="600"]]
3331
3332 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3333
3334
3335 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3336
3337 (% style="text-align:center" %)
3338 [[image:1748226729793-833.jpg||height="484" width="600"]]
3339
3340 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it encounters a limit switch, it will automatically reverse and run at a forward high speed. After encountering a rising edge of HW, slow down and continue to run at a forward low speed. When encountering a falling edge of HW, the first Z signal after the edge stops.
3341
3342 ③ The deceleration point signal is valid when starting homing
3343
3344 (% style="text-align:center" %)
3345 [[image:1748226803530-631.jpg||height="414" width="600"]]
3346
3347 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3348
3349
3350 (12) P01-40=12
3351
3352 Mechanical homing: Motor Z signal
3353
3354 Deceleration point: Home switch (HW)
3355
3356 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3357
3358 (% style="text-align:center" %)
3359 [[image:1748226829420-255.jpg||height="406" width="600"]]
3360
3361
3362 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3363
3364
3365
3366 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3367
3368 (% style="text-align:center" %)
3369 [[image:1748226863974-673.jpg||height="484" width="600"]]
3370
3371 When it starts to homing, HW=0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates, runs at a forward low speed, encounters a falling edge of HW, reverses, runs at a reverse low speed, and stops at the first Z signal after encountering a rising edge of HW.
3372
3373
3374
3375 ③ The deceleration point signal is valid when starting homing
3376
3377 (% style="text-align:center" %)
3378 [[image:1748226879060-830.jpg||height="414" width="600"]]
3379
3380 When starting to homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. The first Z signal after encountering the rising edge of HW will stop.
3381
3382 (13) P01-40=13
3383
3384 Mechanical homing: Motor Z signal
3385
3386 Deceleration point: Home switch (HW)
3387
3388 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3389
3390 [[image:1748226908598-664.jpg]]
3391
3392 (% style="text-align:center" %)
3393 [[image:1748227007116-603.jpg||height="443" width="600"]]
3394
3395 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and run at a reverse low speed. After encountering the falling edge of HW, reverse and run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3396
3397
3398 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3399
3400 (% style="text-align:center" %)
3401 [[image:1748227023585-740.jpg||height="472" width="600"]]
3402
3403 When it starts to homing, HW=0, it starts to homing at reverse high speed, encounters the limit switch, automatically reverses, runs at forward high speed, after encountering the rising edge of HW, decelerates and runs in reverse low speed, and encounters the falling edge of HW when running at reverse low speed, the first Z signal after encountering the rising edge of HW stops.
3404
3405 ③ The deceleration point signal is valid when starting homing
3406
3407 (% style="text-align:center" %)
3408 [[image:1748227043041-279.jpg||height="414" width="600"]]
3409
3410 When starting homing, HW=1 starts homing directly at reverse low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and forward low speed operation;
3411
3412
3413 (14) P01-40=14
3414
3415 Mechanical homing: Motor Z signal
3416
3417 Deceleration point: Home switch (HW)
3418
3419 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3420
3421 (% style="text-align:center" %)
3422 [[image:1748227060842-543.jpg||height="416" width="600"]]
3423
3424 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates and runs at reverse low speed. After encountering the falling edge of HW, it continues to run at reverse low speed, and then the first Z signal encountered stops.
3425
3426
3427 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3428
3429 (% style="text-align:center" %)
3430 [[image:1748227079908-302.jpg||height="445" width="600"]]
3431
3432 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates and runs in a reverse direction, and stops the first Z signal after encountering a falling edge of HW at a reverse low speed.
3433
3434
3435 ③ The deceleration point signal is valid when starting homing
3436
3437 (% style="text-align:center" %)
3438 [[image:1748227101511-101.jpg||height="414" width="600"]]
3439
3440 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3441
3442
3443 (15) P01-40=17
3444
3445 Mechanical homing: Negative overrun switch (NOT)
3446
3447 Deceleration point: Negative overrun switch (NOT)
3448
3449 ① The deceleration point signal is invalid when starting homing
3450
3451 (% style="text-align:center" %)
3452 [[image:1748227125161-655.jpg||height="295" width="600"]]
3453
3454 When it starts to homing, NOT = 0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops after encountering the falling edge of NOT.
3455
3456
3457 ② The deceleration point signal is valid when starting homing
3458
3459 (% style="text-align:center" %)
3460 [[image:1748227138852-942.jpg||height="324" width="600"]]
3461
3462 When starting homing, NOT=1, start homing directly at low speed, and stop after encountering the falling edge of NOT.
3463
3464
3465 (16) P01-40=18
3466
3467 Mechanical homing: Positive overrun switch (POT)
3468
3469 Deceleration point: Positive overrun switch (POT)
3470
3471 ① The deceleration point signal is invalid when starting homing
3472
3473 (% style="text-align:center" %)
3474 [[image:1748227153999-626.jpg||height="300" width="600"]]
3475
3476 When it starts to return to zero, POT=0, it starts to homing at a forward high speed, after encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops after encountering the falling edge of POT.
3477
3478
3479 ② The deceleration point signal is valid when starting homing
3480
3481 (% style="text-align:center" %)
3482 [[image:1748227169369-310.jpg||height="267" width="600"]]
3483
3484 When starting homing, POT=1, start homing at low speed in reverse directly, and stop when encountering POT falling edge;
3485
3486
3487
3488 (17) P01-40=19
3489
3490 Mechanical homing: Home switch (HW)
3491
3492 Deceleration point: Home switch (HW)
3493
3494 ① The deceleration point signal is invalid when starting homing
3495
3496 (% style="text-align:center" %)
3497 [[image:1748227186962-656.jpg||height="313" width="600"]]
3498
3499 When it starts to homing, HW=0, and it starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3500
3501
3502 ② The deceleration point signal is valid when starting homing
3503
3504 (% style="text-align:center" %)
3505 [[image:1748227202174-768.jpg||height="313" width="600"]]
3506
3507 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3508
3509
3510 (18) P01-40=20
3511
3512 Mechanical homing: Home switch (HW)
3513
3514 Deceleration point: Home switch (HW)
3515
3516 ① The deceleration point signal is invalid when starting homing
3517
3518 (% style="text-align:center" %)
3519 [[image:1748227247408-755.jpg||height="314" width="600"]]
3520
3521 When starting to homing, HW=0, directly start to homing at low speed, and stop after encountering the rising edge of HW;
3522
3523
3524 ② The deceleration point signal is valid when starting homing
3525
3526 (% style="text-align:center" %)
3527 [[image:1748227263354-495.jpg||height="313" width="600"]]
3528
3529 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, slow down and reverse the direction, run at a low speed in the forward direction, and stop when encountering the rising edge of HW.
3530
3531
3532 (19) P01-40=21
3533
3534 Mechanical homing: Home switch (HW)
3535
3536 Deceleration point: Home switch (HW)
3537
3538 ① The deceleration point signal is invalid when starting homing
3539
3540 (% style="text-align:center" %)
3541 [[image:1748227279599-847.jpg||height="314" width="600"]]
3542
3543 When it starts to homing, HW=0, it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3544
3545
3546 ② The deceleration point signal is valid when starting homing
3547
3548 (% style="text-align:center" %)
3549 [[image:1748227292762-413.jpg||height="313" width="600"]]
3550
3551 When starting back to zero, HW=1, it will start homing directly at low speed, and stop after encountering the falling edge of HW;
3552
3553
3554 (20) P01-40=22
3555
3556 Mechanical homing: Home switch (HW)
3557
3558 Deceleration point: Home switch (HW)
3559
3560 ① The deceleration point signal is invalid when starting homing
3561
3562 (% style="text-align:center" %)
3563 [[image:1748227358104-464.jpg||height="314" width="600"]]
3564
3565 When starting to homing, HW=0, directly reverse low speed starts to homing, and stops when encountering HW rising edge;
3566
3567
3568 Deceleration point signal is valid when homing start
3569
3570 (% style="text-align:center" %)
3571 [[image:1748227380961-172.jpg||height="343" width="600"]]
3572
3573 When starting to homing, HW=1, start to homing at a forward high speed, after encountering the falling edge of HW, slow down and reverse, run at a reverse low speed, and stop when encountering the rising edge of HW.
3574
3575
3576 (21) P01-40=23
3577
3578 Mechanical homing: Home switch (HW)
3579
3580 Deceleration point: Home switch (HW)
3581
3582 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3583
3584 (% style="text-align:center" %)
3585 [[image:1748227395851-339.jpg||height="387" width="600"]]
3586
3587 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3588
3589
3590 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3591
3592 (% style="text-align:center" %)
3593 [[image:1748227414217-295.jpg||height="385" width="600"]]
3594
3595 When you start homing, HW = 0, start homing at a forward high speed. When encountering the limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, slow down, continue to run at reverse low speed, and stop when encountering the HW falling edge.
3596
3597
3598
3599 ③ The deceleration point signal is valid when starting homing
3600
3601 (% style="text-align:center" %)
3602 [[image:1748227429391-234.jpg||height="385" width="600"]]
3603
3604 When it starts to homing, HW=1, it starts to homing at a reverse low speed, and stops when it encounters the falling edge of HW.
3605
3606
3607 (22) P01-40=24
3608
3609 Mechanical homing: Home switch (HW)
3610
3611 Deceleration point: Home switch (HW)
3612
3613 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3614
3615 (% style="text-align:center" %)
3616 [[image:1748227484547-328.jpg||height="385" width="600"]]
3617
3618 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3619
3620
3621 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3622
3623 (% style="text-align:center" %)
3624 [[image:1748227532124-334.jpg||height="385" width="600"]]
3625
3626 When it starts to homing, HW = 0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, runs at reverse high speed, encounters the rising edge of HW, decelerates and runs at reverse low speed, encounters the falling edge of HW, reverses, runs at forward low speed, and stops when encountering the rising edge of HW.
3627
3628
3629 ③ The deceleration point signal is valid when starting homing
3630
3631 (% style="text-align:center" %)
3632 [[image:1748227548455-494.jpg||height="387" width="600"]]
3633
3634 When starting with homing, HW = 1, it will directly reverse the low speed and start to homing. After encountering the falling edge of HW, it will reverse the direction and run at a forward low speed, and stop when encountering the rising edge of HW.
3635
3636
3637 (23) P01-40=25
3638
3639 Mechanical homing: Home switch (HW)
3640
3641 Deceleration point: Home switch (HW)
3642
3643 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3644
3645 (% style="text-align:center" %)
3646 [[image:1748227564603-199.jpg||height="385" width="600"]]
3647
3648 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3649
3650
3651 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3652
3653 (% style="text-align:center" %)
3654 [[image:1748227581797-586.jpg||height="385" width="600"]]
3655
3656 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerate and reverse to resume forward operation. After encountering the falling edge of HW at forward low speed, reverse. When running at reverse low speed, stop when encountering the rising edge of HW.
3657
3658
3659 ③ The deceleration point signal is valid when starting homing
3660
3661 (% style="text-align:center" %)
3662 [[image:1748227596969-949.jpg||height="385" width="600"]]
3663
3664 When starting homing, when HW=1, it starts to homing directly at low speed in the forward direction. After encountering the falling edge of HW, it stops at the rising edge of HW in the reverse low speed operation
3665
3666
3667 (24) P01-40=26
3668
3669 Mechanical homing: Home switch (HW)
3670
3671 Deceleration point: Home switch (HW)
3672
3673 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3674
3675 (% style="text-align:center" %)
3676 [[image:1748227611517-496.jpg||height="349" width="600"]]
3677
3678 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates, runs at a forward low speed, and stops when encountering the falling edge of HW.
3679
3680
3681 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3682
3683 (% style="text-align:center" %)
3684 [[image:1748227628144-968.jpg||height="385" width="600"]]
3685
3686 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerates and reverses to resume forward operation, and stops when encountering the falling edge of HW at forward low speed.
3687
3688
3689 ③ The deceleration point signal is valid when starting homing
3690
3691 (% style="text-align:center" %)
3692 [[image:1748227641046-963.jpg||height="343" width="600"]]
3693
3694 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3695
3696
3697 (25) P01-40=27
3698
3699 Mechanical homing: Home switch (HW)
3700
3701 Deceleration point: Home switch (HW)
3702
3703 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3704
3705 (% style="text-align:center" %)
3706 [[image:1748227660426-173.jpg||height="362" width="600"]]
3707
3708 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3709
3710
3711 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3712
3713 (% style="text-align:center" %)
3714 [[image:1748227698028-549.jpg||height="392" width="600"]]
3715
3716 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and continues to run at a forward low speed. When it encounters a falling edge of HW, it stops.
3717
3718
3719 ③ The deceleration point signal is valid when starting homing
3720
3721 (% style="text-align:center" %)
3722 [[image:1748227728238-666.jpg||height="394" width="600"]]
3723
3724 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3725
3726
3727 (26) P01-40=28
3728
3729 Mechanical homing: Home switch (HW)
3730
3731 Deceleration point: Home switch (HW)
3732
3733 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3734
3735 (% style="text-align:center" %)
3736 [[image:1748227742531-619.jpg||height="437" width="600"]]
3737
3738 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3739
3740
3741 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3742
3743 (% style="text-align:center" %)
3744 [[image:1751361620036-469.png||height="389" width="600"]]
3745
3746 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When encountering a limit switch, it automatically reverses and runs at a forward high speed. When encountering a rising edge of HW, it decelerates and runs at a forward low speed. When encountering a falling edge of HW, it reverses and runs at a reverse low speed. When encountering a rising edge of HW, it stops.
3747
3748
3749 ③ The deceleration point signal is valid when starting homing
3750
3751 (% style="text-align:center" %)
3752 [[image:1748227779034-947.jpg||height="394" width="600"]]
3753
3754 When starting with homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. When encountering the rising edge of HW, it will stop.
3755
3756
3757 (27) P01-40=29
3758
3759 Mechanical homing: Home switch (HW)
3760
3761 Deceleration point: Home switch (HW)
3762
3763 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3764
3765 (% style="text-align:center" %)
3766 [[image:1748227795620-564.jpg||height="432" width="600"]]
3767
3768 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3769
3770
3771 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3772
3773 (% style="text-align:center" %)
3774 [[image:1748227810884-219.jpg||height="395" width="600"]]
3775
3776 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. After encountering a rising edge of HW, it decelerates and runs in a reverse low speed. After encountering a falling edge of HW, it reverses. When running at a forward low speed, it stops when it encounters a rising edge of HW.
3777
3778 ③ The deceleration point signal is valid when starting homing
3779
3780 (% style="text-align:center" %)
3781 [[image:1748227826652-200.jpg||height="392" width="600"]]
3782
3783 When starting homing, when HW=1, it starts to homing directly at low speed in reverse direction. After encountering the falling edge of HW, it stops when running at low speed in reverse direction and forward direction and encountering the rising edge of HW
3784
3785
3786 (28) P01-40=30
3787
3788 Mechanical homing: Home switch (HW)
3789
3790 Deceleration point: Home switch (HW)
3791
3792 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3793
3794 (% style="text-align:center" %)
3795 [[image:1748227844268-953.jpg||height="437" width="600"]]
3796
3797 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates, runs at reverse low speed, and stops when encountering the falling edge of HW.
3798
3799
3800 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3801
3802 (% style="text-align:center" %)
3803 [[image:1748227859385-295.jpg||height="394" width="600"]]
3804
3805 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and runs in a reverse low speed. When it encounters a falling edge of HW, it stops.
3806
3807
3808 ③ The deceleration point signal is valid when starting homing
3809
3810 (% style="text-align:center" %)
3811 [[image:1748227876370-835.jpg||height="395" width="600"]]
3812
3813 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3814
3815
3816 (29) P01-40=33 and P01-40=34
3817
3818 Mechanical homing: Z signal.
3819
3820 Deceleration point: None
3821
3822 Homing mode 33: Reverse low speed operation, stop the first Z signal encountered
3823
3824 Homing mode 34: running at low speed in forward direction, stopping the first Z signal encountered
3825
3826 (% style="text-align:center" %)
3827 [[image:1748227893108-875.jpg||height="161" width="600"]]
3828
3829
3830 (30) P01-40=35
3831
3832 Homing mode 35, taking the current position as the mechanical homing, after triggering the homing (P01-39: 0x00→0x01/0x00 → 0x02);
3833
3834 After the homing is completed, according to the set value of P10-08 (homing bias compensation), P10-06 (encoder multi-turn reset operation) is executed.
3835
3836
3837