Wiki source code of 06 Operation

Version 2.2 by Joey on 2022/06/08 15:31

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5
6 |**No.**|**Content**
7 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
8 |1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
9 |2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
10 |3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
11 |4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
12 |5|Servo drive and servo motor must be grounded reliably.
13 |6|When using an external braking resistor, the short wiring between drive C and D must be removed.
14 |7|The force of all cables is within the specified range.
15 |8|The wiring terminals have been insulated.
16 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
17 |1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
18 |2|The servo drive and external braking resistor are not placed on combustible objects.
19 |3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
20
21 Table 6-1 Check contents before operation
22
23 == **Power-on** ==
24
25 **(1) Connect the main circuit power supply**
26
27 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
28
29 If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
30
31 **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
32
33 == **Jog operation** ==
34
35 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
36
37 **(1) Panel jog operation**
38
39 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
40
41 **(2) Jog operation of servo debugging platform**
42
43 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
44
45
46 (% class="table-bordered" %)
47 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
48 **Setting method**
49 )))|(% style="text-align:center; vertical-align:middle" %)(((
50 **Effective time**
51 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
52 |(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
53 Operation setting
54 )))|(% style="text-align:center; vertical-align:middle" %)(((
55 Effective immediately
56 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
57
58 Table 6-2 JOG speed parameter
59
60 == **Rotation direction selection** ==
61
62 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
63
64 (% class="table-bordered" %)
65 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
66 **Setting method**
67 )))|(% style="text-align:center; vertical-align:middle" %)(((
68 **Effective time**
69 )))|(% style="text-align:center; vertical-align:middle" %)(((
70 **Default value**
71 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
72 |(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
73 Shutdown setting
74 )))|(% style="text-align:center; vertical-align:middle" %)(((
75 Effective immediately
76 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
77 Forward rotation: Face the motor shaft to watch
78
79 0: standard setting (CW is forward rotation)
80
81 1: reverse mode (CCW is forward rotation)
82 )))|(% style="text-align:center; vertical-align:middle" %)-
83
84 Table 6-3 Rotation direction parameters** **
85
86 == **Braking resistor** ==
87
88 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
89
90 The basis for judging whether the braking resistor is built-in or external.
91
92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
93 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
94
95 (% class="table-bordered" %)
96 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
97 **Setting method**
98 )))|(% style="text-align:center; vertical-align:middle" %)(((
99 **Effective time**
100 )))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
101 |(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
102 Operation setting
103 )))|(% style="text-align:center; vertical-align:middle" %)(((
104 Effective immediately
105 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
106 0: use built-in braking resistor
107
108 1: use external braking resistor and natural cooling
109
110 2: use external braking resistor and forced air cooling; (cannot be set)
111
112 3: No braking resistor is used, it is all absorbed by capacitor.
113 )))|(% style="text-align:center; vertical-align:middle" %)-
114 |(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
115 |(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
116 Operation setting
117 )))|(% style="text-align:center; vertical-align:middle" %)(((
118 Effective immediately
119 )))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
120 |(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
121 Operation setting
122 )))|(% style="text-align:center; vertical-align:middle" %)(((
123 Effective immediately
124 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
125
126 Table 6-4 Braking resistor parameters
127
128 == **Servo operation** ==
129
130 **(1) Set the servo enable (S-ON) to valid (ON)**
131
132 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
133
134 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
135
136 **(2) Input the instruction and the motor rotates**
137
138 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
139
140 **(3) Timing diagram of power on**
141
142 (% style="text-align:center" %)
143 [[image:image-20220608152346-1.png]]
144
145 Figure 6-1 Timing diagram of power on
146
147 == **Servo shutdown** ==
148
149 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
150
151 (% class="table-bordered" %)
152 |Shutdown mode|Shutdown description|Shutdown characteristics
153 |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
154 |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
155
156 Table 6-5 Comparison of two shutdown modes
157
158 (% class="table-bordered" %)
159 |(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
160 |(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
161
162 Table 6-6 Comparison of two shutdown status
163
164 **(1) Servo enable (S-ON) OFF shutdown**
165
166 The related parameters of the servo OFF shutdown mode are shown in the table below.
167
168 (% class="table-bordered" %)
169 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
170 **Setting method**
171 )))|(% style="text-align:center; vertical-align:middle" %)(((
172 **Effective time**
173 )))|(% style="text-align:center; vertical-align:middle" %)(((
174 **Default value**
175 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
176 |(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
177 Shutdown
178
179 setting
180 )))|(% style="text-align:center; vertical-align:middle" %)(((
181 Effective
182
183 immediately
184 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
185 0: Free shutdown, and the motor shaft remains free status.
186
187 1: Zero-speed shutdown, and the motor shaft remains free status.
188 )))|(% style="text-align:center; vertical-align:middle" %)-
189
190 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
191
192 **(2) Emergency shutdown**
193
194 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
195
196 **(3) Overtravel shutdown**
197
198 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
199
200 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
201
202 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
203
204 (% class="table-bordered" %)
205 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
206 **Setting method**
207 )))|(% style="text-align:center; vertical-align:middle" %)(((
208 **Effective time**
209 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
210 |(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
211 0: OFF (not used)
212
213 01: S-ON servo enable
214
215 02: A-CLR fault and Warning Clear
216
217 03: POT forward drive prohibition
218
219 04: NOT Reverse drive prohibition
220
221 05: ZCLAMP Zero speed
222
223 06: CL Clear deviation counter
224
225 07: C-SIGN Inverted instruction
226
227 08: E-STOP Emergency stop
228
229 09: GEAR-SEL Electronic Gear Switch 1
230
231 10: GAIN-SEL gain switch
232
233 11: INH Instruction pulse prohibited input
234
235 12: VSSEL Vibration control switch input
236
237 13: INSPD1 Internal speed instruction selection 1
238
239 14: INSPD2 Internal speed instruction selection 2
240
241 15: INSPD3 Internal speedinstruction selection 3
242
243 16: J-SEL inertia ratio switch (not implemented yet)
244
245 17: MixModesel mixed mode selection
246
247 20: Internal multi-segment position enable signal
248
249 21: Internal multi-segment position selection 1
250
251 22: Internal multi-segment position selection 2
252
253 23: Internal multi-segment position selection 3
254
255 24: Internal multi-segment position selection 4
256
257 Others: reserved
258 )))|(% style="text-align:center; vertical-align:middle" %)-
259 |(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
260 Effective immediately
261 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
262 DI port input logic validity function selection.
263
264 0: Normally open input. Active low level (switch on);
265
266 1: Normally closed input. Active high level (switch off);
267 )))|(% style="text-align:center; vertical-align:middle" %)-
268 |(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
269 Effective immediately
270 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
271 Select the DI_3 port type to enable
272
273 0: Hardware DI_3 input terminal
274
275 1: virtual VDI_3 input terminal
276 )))|(% style="text-align:center; vertical-align:middle" %)-
277
278 (% class="table-bordered" %)
279 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
280 Operation setting
281 )))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
282 again Power-on
283 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
284 0 off (not used)
285
286 01: SON Servo enable
287
288 02: A-CLR Fault and Warning Clear
289
290 03: POT Forward drive prohibition
291
292 04: NOT Reverse drive prohibition
293
294 05: ZCLAMP Zero speed
295
296 06: CL Clear deviation counter
297
298 07: C-SIGN Inverted instruction
299
300 08: E-STOP Emergency shutdown
301
302 09: GEAR-SEL Electronic Gear Switch 1
303
304 10: GAIN-SEL gain switch
305
306 11: INH Instruction pulse prohibited input
307
308 12: VSSEL Vibration control switch input
309
310 13: INSPD1 Internal speed instruction selection 1
311
312 14: INSPD2 Internal speed instruction selection 2
313
314 15: INSPD3 Internal speed instruction selection 3
315
316 16: J-SEL inertia ratio switch (not implemented yet)
317
318 17: MixModesel mixed mode selection
319
320 20: Internal multi-segment position enable signal
321
322 21: Internal multi-segment position selection 1
323
324 22: Internal multi-segment position selection 2
325
326 23: Internal multi-segment position selection 3
327
328 24: Internal multi-segment position selection 4
329
330 Others: reserved
331 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
332 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
333 Effective immediately
334 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
335 DI port input logic validity function selection.
336
337 0: Normally open input. Active low level (switch on);
338
339 1: Normally closed input. Active high level (switch off);
340 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
341 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
342 Effective immediately
343 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
344 Select the DI_4 port type to enable
345
346 0: Hardware DI_4 input terminal
347
348 1: virtual VDI_4 input terminal
349 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
350
351 Table 6-8 DI3 and DI4 channel parameters
352
353 **(4) Malfunction shutdown**
354
355 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
356
357 == **Brake device** ==
358
359 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
360
361 (% class="table-bordered" %)
362 |(((
363 (% style="text-align:center" %)
364 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
365 )))
366 |(((
367 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
368
369 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
370
371 ✎The brake coil has no polarity;
372
373 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
374
375 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
376 )))
377
378 **(1) Wiring of brake device**
379
380 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
381
382 (% style="text-align:center" %)
383 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e701ace1cc66f255.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e701ace1cc66f255.gif"]]
384
385 Figure 6-2 VD2B servo drive brake wiring
386
387 (% class="table-bordered" %)
388 |(((
389 (% style="text-align:center" %)
390 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
391 )))
392 |(((
393 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
394
395 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
396
397 ✎It is recommended to use cables above 0.5 mm².
398 )))
399
400 **(2) Brake software setting**
401
402 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
403
404 Related function code is as below.
405
406 (% class="table-bordered" %)
407 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
408 **Effective time**
409 )))
410 |(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
411 BRK-OFF Brake output
412 )))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
413
414 Table 6-2 Relevant function codes for brake setting
415
416 (% class="table-bordered" %)
417 |(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
418 **Setting method**
419 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
420 **Effective time**
421 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
422 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
423 Operation setting
424 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
425 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
426 Operation setting
427 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
428 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
429 Operation setting
430 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
431 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
432
433 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
434 )))|(% style="text-align:center; vertical-align:middle" %)rpm
435 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
436 Operation setting
437 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
438 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
439
440 When brake output (BRK-OFF) is not allocated, this function code has no effect.
441 )))|(% style="text-align:center; vertical-align:middle" %)ms
442
443 Table 6-9 Brake setting function codes
444
445 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
446
447 **(3) Servo drive brake timing in normal state**
448
449 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
450
451 1) Brake timing when servo motor is stationary
452
453 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
454
455 (% class="table-bordered" %)
456 |(((
457 (% style="text-align:center" %)
458 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
459 )))
460 |(((
461 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
462
463 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
464 )))
465
466 (% style="text-align:center" %)
467 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2da3eb860da7ba31.gif"]]
468
469 Figure 6-3 Brake Timing of when the motor is stationary
470
471 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
472
473 2) The brake timing when servo motor rotates
474
475 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
476
477 (% class="table-bordered" %)
478 |(((
479 (% style="text-align:center" %)
480 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
481 )))
482 |(((
483 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
484
485 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
486
487 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
488
489 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
490
491 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
492 )))
493
494 (% style="text-align:center" %)
495 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_4408711d09c83291.gif"]]
496
497 Figure 6-4 Brake timing when the motor rotates
498
499 **(4) Brake timing when the servo drive fails**
500
501 The brake timing (free shutdown) in the fault status is as follows.
502
503 (% style="text-align:center" %)
504 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2d941f733d7ef90b.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2d941f733d7ef90b.gif"]]
505
506 Figure 6-5 The brake timing (free shutdown) in the fault state
507
508 = **Position control mode** =
509
510 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
511
512 (% style="text-align:center" %)
513 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_8f058b9bad397ea5.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_8f058b9bad397ea5.gif"]]
514
515 Figure 6-6 Position control diagram
516
517 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
518
519 (% class="table-bordered" %)
520 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
521 **Setting method**
522 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
523 **Effective time**
524 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
525 |(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
526 Operation setting
527 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
528 immediately Effective
529 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
530 0: position control
531
532 2: speed control
533
534 3: torque control
535
536 4: position/speed mix control
537
538 5: position/torque mix control
539
540 6: speed /torque mix control
541 )))|(% style="text-align:center; vertical-align:middle" %)-
542
543 Table 6-10 Control mode parameters
544
545 == **Position instruction input setting** ==
546
547 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
548
549 (% class="table-bordered" %)
550 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
551 **Setting method**
552 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
553 **Effective time**
554 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
555 |(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
556 Operation setting
557 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
558 immediately Effective
559 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
560 0: pulse instruction
561
562 1: internal position instruction
563 )))|(% style="text-align:center; vertical-align:middle" %)-
564
565 Table 6-11 Position instruction source parameter
566
567 **(1) The source of position instruction is pulse instruction (P01-06=0)**
568
569 1) Low-speed pulse instruction input
570
571 (% class="table-bordered" %)
572 |(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d9151239d79c87a3.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_d9151239d79c87a3.gif"]]|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_26156823dfc2374b.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_26156823dfc2374b.gif" data-xwiki-image-style-alignment="center" data-xwiki-image-style-text-wrap="true"]]
573 |(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
574 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
575
576 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
577
578 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
579
580 (% class="table-bordered" %)
581 |(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
582 |(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
583 |(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
584
585 Table 6-12 Pulse input specifications
586
587 1.Differential input
588
589 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
590
591 (% style="text-align:center" %)
592 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_efcec2927621d22d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_efcec2927621d22d.gif" data-xwiki-image-style-alignment="center"]]
593
594 Figure 6-8 Differential input connection
595
596 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
597
598 2.Open collector input
599
600 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
601
602 (% style="text-align:center" %)
603 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e0abafdeeac8b1c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e0abafdeeac8b1c.gif" data-xwiki-image-style-alignment="center"]]
604
605 Figure 6-9 Open collector input connection
606
607 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
608
609 2) Position pulse frequency and anti-interference level
610
611 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
612
613 (% style="text-align:center" %)
614 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d88f7db4d5439ab5.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_d88f7db4d5439ab5.gif" data-xwiki-image-style-alignment="center"]]
615
616 Figure 6-10 Example of filtered signal waveform
617
618 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
619
620 (% class="table-bordered" %)
621 |(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
622 **Setting method**
623 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
624 **Effective time**
625 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:71px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:349px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
626 |(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
627 Shutdown setting
628 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
629 Effective immediately
630 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)300|(% style="text-align:center; vertical-align:middle; width:71px" %)1 to 500|(% colspan="2" style="width:349px" %)Set the maximum frequency of external pulse instruction|KHz
631 |(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
632 Operation setting
633 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:159px" %)(((
634 Power-on again
635 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:105px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:71px" %)0 to 9|(% colspan="2" style="width:349px" %)(((
636 Set the anti-interference level of external pulse instruction.
637
638 0: no filtering;
639
640 1: Filtering time 128ns
641
642 2: Filtering time 256ns
643
644 3: Filtering time 512ns
645
646 4: Filtering time 1.024us
647
648 5: Filtering time 2.048us
649
650 6: Filtering time 4.096us
651
652 7: Filtering time 8.192us
653
654 8: Filtering time 16.384us
655 )))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
656 |(% rowspan="2" style="width:29px" %)9|VD2: Filtering time 25.5us
657 |VD2F: Filtering time 25.5us
658
659 Table 6-13 Position pulse frequency and anti-interference level parameters
660
661 3) Position pulse type selection
662
663 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
664
665 (% class="table-bordered" %)
666 |(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
667 **Setting method**
668 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
669 **Effective time**
670 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
671 |(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
672 Operation setting
673 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
674 Power-on again
675 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
676 0: direction + pulse (positive logic)
677
678 1: CW/CCW
679
680 2: A, B phase quadrature pulse (4 times frequency)
681
682 3: Direction + pulse (negative logic)
683
684 4: CW/CCW (negative logic)
685
686 5: A, B phase quadrature pulse (4 times frequency negative logic)
687 )))|(% style="text-align:center; vertical-align:middle" %)-
688
689 Table 6-14 Position pulse type selection parameter
690
691 (% class="table-bordered" %)
692 |(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
693 |(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
694 Direction + pulse
695
696 (Positive logic)
697 )))|(% style="text-align:center; vertical-align:middle" %)(((
698 PULSE
699
700 SIGN
701 )))|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79f577e37a33667d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_79f577e37a33667d.gif"]]|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_da702cd5792c6189.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_da702cd5792c6189.gif"]]
702 |(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
703 PULSE (CW)
704
705 SIGN (CCW)
706 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a59bd612219726ff.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a59bd612219726ff.gif"]]
707 |(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
708 AB phase orthogonal
709
710 pulse (4 times frequency)
711 )))|(% style="text-align:center; vertical-align:middle" %)(((
712 PULSE (Phase A)
713
714 SIGN (Phase B)
715 )))|(% style="text-align:center; vertical-align:middle" %)(((
716 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f35bccfc547cf59c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f35bccfc547cf59c.gif"]]
717
718 Phase A is 90° ahead of Phase B
719 )))|(% style="text-align:center; vertical-align:middle" %)(((
720 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_41687fb2387833e7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_41687fb2387833e7.gif"]]
721
722 Phase B is 90° ahead of Phase A
723 )))
724 |(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
725 Direction + pulse
726
727 (Negative logic)
728 )))|(% style="text-align:center; vertical-align:middle" %)(((
729 PULSE
730
731 SIGN
732 )))|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_7d2b03d0fb959ea6.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_7d2b03d0fb959ea6.gif"]]|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_42312f2433c2ebf8.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_42312f2433c2ebf8.gif"]]
733 |(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
734 CW/CCW
735
736 (Negative logic)
737 )))|(% style="text-align:center; vertical-align:middle" %)(((
738 PULSE (CW)
739
740 SIGN (CCW)
741 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_8218481384864bcd.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_8218481384864bcd.gif"]]
742 |(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
743 AB phase orthogonal
744
745 pulse (4 times frequency negative logic)
746 )))|(% style="text-align:center; vertical-align:middle" %)(((
747 PULSE (Phase A)
748
749 SIGN (Phase B)
750 )))|(% style="text-align:center; vertical-align:middle" %)(((
751 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_552d434eda0cc25a.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_552d434eda0cc25a.gif"]]
752
753 B phase is ahead of A phase by 90°
754 )))|(% style="text-align:center; vertical-align:middle" %)(((
755 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d1de574238d8caf9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_d1de574238d8caf9.gif"]]
756
757 A phase is ahead of B phase by 90°
758 )))
759
760 Table 6-15 Pulse description
761
762 **(2) The source of position instruction is internal position instruction (P01-06=1)**
763
764 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
765
766 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
767
768 (% style="text-align:center" %)
769 [[image:image-20220608152955-3.png]]
770
771 Figure 6-11 The setting process of multi-segment position
772
773 1) Set multi-segment position running mode
774
775 (% class="table-bordered" %)
776 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
777 **Setting method**
778 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
779 **Effective time**
780 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
781 |(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
782 Shutdown setting
783 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
784 Effective immediately
785 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
786 0: Single running
787
788 1: Cycle running
789
790 2: DI switching running
791 )))|(% style="text-align:center; vertical-align:middle" %)-
792 |(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
793 Shutdown setting
794 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
795 Effective immediately
796 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
797 |(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
798 Shutdown setting
799 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
800 Effective immediately
801 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
802 |(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
803 Shutdown setting
804 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
805 Effective immediately
806 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
807 0: Run the remaining segments
808
809 1: Run again from the start segment
810 )))|(% style="text-align:center; vertical-align:middle" %)-
811 |(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
812 Shutdown setting
813 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
814 Effective immediately
815 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
816 0: Relative position instruction
817
818 1: Absolute position instruction
819 )))|(% style="text-align:center; vertical-align:middle" %)-
820
821 Table 6-16 multi-segment position running mode parameters
822
823 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
824
825 ~1. Single running
826
827 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_b3223c0806f5c6c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_b3223c0806f5c6c.gif"]] are the displacements of the 1st segment and the 2nd segment respectively
828
829 (% style="text-align:center" %)
830 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_669701d67ab2f246.gif" data-xwiki-image-style-alignment="center"]]
831
832 Figure 6-12 Single running curve (P07-02=1, P07-03=2)
833
834 2. Cycle running
835
836 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a2646a1ce199bcaa.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a2646a1ce199bcaa.gif"]] are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
837
838 (% style="text-align:center" %)
839 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_80b358d07288f7b4.gif"]]
840
841 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
842
843 |(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
844 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
845
846 3. DI switching running
847
848 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
849
850 (% class="table-bordered" %)
851 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
852 |(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
853 |(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
854 |(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
855 |(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
856
857 Table 6-17 DI function code
858
859 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
860
861 (% class="table-bordered" %)
862 |(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
863 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
864 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
865 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
866 |(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
867 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
868
869 Table 6-18 INPOS corresponds to running segment number
870
871 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
872
873 (% style="text-align:center" %)
874 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_91c44ab732c79e26.gif" data-xwiki-image-style-alignment="center"]]
875
876 Figure 6-14 DI switching running curve
877
878 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
879
880 **A. Run the remaining segments**
881
882 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
883
884 (% style="text-align:center" %)
885 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_29777829e6742c0d.gif"]]
886
887 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
888
889 (% style="text-align:center" %)
890 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_d264849e0940e3e4.gif"]]
891
892 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
893
894 **B. Run again from the start segment**
895
896 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
897
898 (% style="text-align:center" %)
899 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2328499c9613af49.gif"]]
900
901 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
902
903 (% style="text-align:center" %)
904 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_1f2e35174b1afd3c.gif"]]
905
906 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
907
908 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
909
910 A. Relative position instruction
911
912 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
913
914 |(((
915 (% style="text-align:center" %)
916 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_87634f36b33add27.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_87634f36b33add27.gif"]]
917 )))|(((
918 (% style="text-align:center" %)
919 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6731ac1b21e3a000.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6731ac1b21e3a000.gif"]]
920 )))
921 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
922
923 B. Absolute position instruction
924
925 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
926
927 |(((
928 (% style="text-align:center" %)
929 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_18d123cfee9d9941.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_18d123cfee9d9941.gif"]]
930 )))|(((
931 (% style="text-align:center" %)
932 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a2200ebb6453151f.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a2200ebb6453151f.gif"]]
933 )))
934 |Figure 6-21 Absolute indication|Figure 6-22 Displacement
935
936 2) Multi-segment position running curve setting
937
938 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
939
940 (% class="table-bordered" %)
941 |(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
942 **Setting method**
943 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
944 **Effective time**
945 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
946 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
947 1st segment
948
949 displacement
950 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
951 Operation setting
952 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
953 Effective immediately
954 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
955 -2147483647 to
956
957 2147483646
958 )))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
959 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
960 Operation setting
961 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
962 Effective immediately
963 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
964 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
965 Operation setting
966 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
967 Effective immediately
968 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
969 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
970 Operation setting
971 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
972 Effective immediately
973 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
974
975 Table 6-19 The 1st position operation curve parameters table
976
977 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
978
979 (% style="text-align:center" %)
980 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_aca615fac179a16a.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_aca615fac179a16a.gif"]]
981
982 Figure 6-23 The 1st segment running curve of motor
983
984 3) multi-segment position instruction enable
985
986 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
987
988 (% class="table-bordered" %)
989 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
990 |(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
991 DI port logic invalid: Does not affect the current operation of the servo motor.
992
993 DI port logic valid: Motor runs multi-segment position
994 )))
995
996 (% style="text-align:center" %)
997 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]]
998
999 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1000
1001 == **Electronic gear ratio** ==
1002
1003 **(1) Definition of electronic gear ratio**
1004
1005 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1006
1007 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1008
1009 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1010
1011 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_36eea050640062e9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_36eea050640062e9.gif"]] (6-1)
1012
1013 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2cd5305a8be2e1f2.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2cd5305a8be2e1f2.gif"]] (6-2)
1014
1015 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_5e7b8108abd1a9ed.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_5e7b8108abd1a9ed.gif"]] (6-3)
1016
1017 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1018
1019 **(2) Setting steps of electronic gear ratio**
1020
1021 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_9af279e6d5253d7a.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_9af279e6d5253d7a.gif"]]
1022
1023 Figure 6-24 Setting steps of electronic gear ratio
1024
1025 Step1: Confirm the mechanical parameters including the reduction ratio, the ball screw lead, gear diameter in the gear drive, and pulley diameter in the pulley drive.
1026
1027 Step2: Confirm the resolution of servo motor encoder.
1028
1029 Step3: Confirm the parameters such as mechanical specifications, positioning accuracy, etc, and determine the load displacement corresponding to one position instruction output by the host computer.
1030
1031 Step4: Combine the mechanical parameters and the load displacement corresponding to one position instruction, calculate the position instruction value required for one rotation of the load shaft.
1032
1033 Step5: Calculate the value of electronic gear ratio according to formula below.
1034
1035 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_783be3e5149faf1e.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_783be3e5149faf1e.gif"]]
1036
1037 **(3) lectronic gear ratio switch setting**
1038
1039
1040 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1041
1042 (% class="table-bordered" %)
1043 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1044 **Setting method**
1045 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1046 **Effective time**
1047 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1048 |(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1049 Shutdown setting
1050 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1051 Effective immediately
1052 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1053 Instruction pulse
1054
1055 unit
1056 )))
1057 |(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1058 Electronic gear 1
1059
1060 numerator
1061 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1062 Effective immediately
1063 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1064 |(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1065 Electronic gear 1
1066
1067 denominator
1068 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1069 Operation setting
1070 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1071 Effective immediately
1072 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1073 |(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1074 Electronic gear 2
1075
1076 numerator
1077 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1078 Effective immediately
1079 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1080 |(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1081 Electronic gear 2
1082
1083 denominator
1084 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1085 Effective immediately
1086 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1087
1088 Table 6-20 Electronic gear ratio function code
1089
1090 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1091
1092 (% class="table-bordered" %)
1093 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1094 |(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1095 DI port logic invalid: electronic gear ratio 1
1096
1097 DI port logic valid: electronic gear ratio 2
1098 )))
1099
1100 Table 6-21 Switching conditions of electronic gear ratio group
1101
1102 |(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3c885bb1dd9f482d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3c885bb1dd9f482d.gif"]]
1103 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_936c435aaa56afe9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_936c435aaa56afe9.gif"]]
1104 |(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f7cc7443de5ae1fd.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f7cc7443de5ae1fd.gif"]]
1105 |(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3b79819a4d341e9c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3b79819a4d341e9c.gif"]]
1106
1107 Table 6-22 Application of electronic gear ratio
1108
1109 When the function code P00-16 is not 0, the electronic gear ratio [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3c885bb1dd9f482d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3c885bb1dd9f482d.gif"]] is invalid.
1110
1111 == **Position instruction filtering** ==
1112
1113 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1114
1115 In the following situations, position instruction filtering should be added.
1116
1117 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1118 1. The pulse instruction frequency is low;
1119 1. When the electronic gear ratio is 10 times or more.
1120
1121 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1122
1123 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_58c73e15d14818f5.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_58c73e15d14818f5.gif"]]
1124
1125 Figure 6-25 Position instruction filtering diagram
1126
1127 (% class="table-bordered" %)
1128 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1129 **Setting method**
1130 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1131 **Effective time**
1132 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1133 |(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1134 Shutdown setting
1135 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1136 Effective immediately
1137 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((
1138 0: 1st-order low-pass filtering
1139
1140 1: average filtering
1141 )))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1142 |(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1143 Effective immediately
1144 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1145 |(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1146 Effective immediately
1147 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1148
1149 Table 6-23 Position instruction filter function code
1150
1151 == **Clearance of position deviation** ==
1152
1153 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1154
1155 Position deviation = (position instruction-position feedback) (encoder unit)
1156
1157 == **Position-related DO output function** ==
1158
1159 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1160
1161 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1162 **Positioning completion/positioning approach output**
1163
1164 (% class="wikigeneratedid" %)
1165 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1166
1167 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a317d1e7b69d9f5.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a317d1e7b69d9f5.gif"]]
1168
1169 Figure 6-26 Positioning completion signal output diagram
1170
1171 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1172
1173 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1174
1175 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_135bb12a3465fd06.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_135bb12a3465fd06.gif"]]
1176
1177 Figure 6-27 Positioning completion signal output with increased window filter time diagram
1178
1179 (% class="table-bordered" %)
1180 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1181 **Setting method**
1182 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1183 **Effective time**
1184 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1185 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1186 Operation setting
1187 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1188 Effective immediately
1189 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1190 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1191 Operation setting
1192 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1193 Effective immediately
1194 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1195 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1196 Operation setting
1197 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1198 Effective immediately
1199 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms
1200 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1201 Operation setting
1202 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1203 Effective immediately
1204 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms
1205
1206 Table 6-24 Function code parameters of positioning completion
1207
1208 (% class="table-bordered" %)
1209 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1210 |(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1211 |(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1212 P-NEAR positioning close
1213 )))|(% style="text-align:center; vertical-align:middle" %)(((
1214 Output this signal indicates that the servo drive position is close.
1215 )))
1216
1217 Table 6-25 Description of DO rotation detection function code
1218
1219 = **Speed control mode** =
1220
1221 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1222
1223 (% style="text-align:center" %)
1224 [[image:6.28.jpg||height="260" width="806"]]
1225
1226 Figure 6-28 Speed control block diagram
1227
1228 == **Speed instruction input setting** ==
1229
1230 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1231
1232 (% class="table-bordered" %)
1233 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1234 **Setting method**
1235 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1236 **Effective time**
1237 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1238 |(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1239 Shutdown setting
1240 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1241 Effective immediately
1242 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1243 0: internal speed instruction
1244
1245 1: AI_1 analog input (not supported by VD2F)
1246 )))|(% style="text-align:center; vertical-align:middle" %)-
1247
1248 Table 6-26 Speed instruction source parameter
1249
1250 **(1) Speed instruction source is internal speed instruction (P01-01=0)**
1251
1252 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1253
1254 (% class="table-bordered" %)
1255 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1256 **Setting method**
1257 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1258 **Effective time**
1259 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1260 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1261 Internal speed Instruction 0
1262 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1263 Operation setting
1264 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1265 Effective immediately
1266 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1267 Internal speed instruction 0
1268
1269 When DI input port:
1270
1271 15-INSPD3: 0
1272
1273 14-INSPD2: 0
1274
1275 13-INSPD1: 0,
1276
1277 select this speed instruction to be effective.
1278 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1279 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1280 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1281 Internal speed Instruction 1
1282 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1283 Operation setting
1284 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1285 Effective immediately
1286 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1287 Internal speed instruction 1
1288
1289 When DI input port:
1290
1291 15-INSPD3: 0
1292
1293 14-INSPD2: 0
1294
1295 13-INSPD1: 1,
1296
1297 Select this speed instruction to be effective.
1298 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1299 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1300 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1301 Internal speed Instruction 2
1302 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1303 Operation setting
1304 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1305 Effective immediately
1306 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1307 Internal speed instruction 2
1308
1309 When DI input port:
1310
1311 15-INSPD3: 0
1312
1313 14-INSPD2: 1
1314
1315 13-INSPD1: 0,
1316
1317 Select this speed instruction to be effective.
1318 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1319 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1320 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1321 Internal speed Instruction 3
1322 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1323 Operation setting
1324 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1325 Effective immediately
1326 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1327 Internal speed instruction 3
1328
1329 When DI input port:
1330
1331 15-INSPD3: 0
1332
1333 14-INSPD2: 1
1334
1335 13-INSPD1: 1,
1336
1337 Select this speed instruction to be effective.
1338 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1339 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1340
1341 (% class="table-bordered" %)
1342 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1343 Internal speed Instruction 4
1344 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1345 Operation setting
1346 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1347 Effective immediately
1348 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1349 Internal speed instruction 4
1350
1351 When DI input port:
1352
1353 15-INSPD3: 1
1354
1355 14-INSPD2: 0
1356
1357 13-INSPD1: 0,
1358
1359 Select this speed instruction to be effective.
1360 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1361 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1362 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1363 Internal speed Instruction 5
1364 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1365 Operation setting
1366 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1367 Effective immediately
1368 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1369 Internal speed instruction 5
1370
1371 When DI input port:
1372
1373 15-INSPD3: 1
1374
1375 14-INSPD2: 0
1376
1377 13-INSPD1: 1,
1378
1379 Select this speed instruction to be effective.
1380 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1381 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1382 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1383 Internal speed Instruction 6
1384 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1385 Operation setting
1386 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1387 Effective immediately
1388 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1389 Internal speed instruction 6
1390
1391 When DI input port:
1392
1393 15-INSPD3: 1
1394
1395 14-INSPD2: 1
1396
1397 13-INSPD1: 0,
1398
1399 Select this speed instruction to be effective.
1400 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1401 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1402 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1403 Internal speed Instruction 7
1404 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1405 Operation setting
1406 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1407 Effective immediately
1408 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1409 Internal speed instruction 7
1410
1411 When DI input port:
1412
1413 15-INSPD3: 1
1414
1415 14-INSPD2: 1
1416
1417 13-INSPD1: 1,
1418
1419 Select this speed instruction to be effective.
1420 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1421 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1422
1423 Table 6-27 Internal speed instruction parameters
1424
1425 ✎**Note: **“*” means the set range of VD2F servo drive.
1426
1427 (% class="table-bordered" %)
1428 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1429 |(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1430 |(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1431 |(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1432
1433 Table 6-28 DI multi-speed function code description
1434
1435 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1436
1437 (% class="table-bordered" %)
1438 |(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1439 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1440 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1441 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1442 |(% colspan="5" %)......
1443 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1444
1445 Table 6-29 Correspondence between INSPD bits and segment numbers
1446
1447 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f54c42ea2d098bf8.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f54c42ea2d098bf8.gif"]]
1448
1449 Figure 6-29 Multi-segment speed running curve
1450
1451 **(2) Speed instruction source is internal speed instruction (P01-01=0)**
1452
1453 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1454
1455 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a3f8a734b72fcc10.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a3f8a734b72fcc10.gif"]]
1456
1457 Figure 6-30 Analog input circuit
1458
1459 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1460
1461 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_43da944efa0a6a10.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_43da944efa0a6a10.gif"]]
1462
1463 Figure 6-31 Analog voltage speed instruction setting steps
1464
1465 Explanation of related terms:
1466
1467 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1468
1469 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1470
1471 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1472
1473 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4bcfc7a8548b6252.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_4bcfc7a8548b6252.gif"]]
1474
1475 Figure 6-32 AI_1 diagram before and after bias
1476
1477 (% class="table-bordered" %)
1478 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1479 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1480 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1481 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1482 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1483
1484 Table 6-30 AI_1 parameters
1485
1486 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1487
1488 == **Acceleration and deceleration time setting** ==
1489
1490 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1491
1492 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1493
1494 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_68d514ca1c1b327.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_68d514ca1c1b327.gif"]]
1495
1496 Figure 6-33 of acceleration and deceleration time diagram
1497
1498 Actual acceleration time T1 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f534257c8134eb35.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]],,
1499
1500 Actual deceleration time T2 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f696c4e8005b5d7.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]],,
1501
1502 (% class="table-bordered" %)
1503 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1504 **Setting method**
1505 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1506 **Effective time**
1507 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1508 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1509 Operation setting
1510 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1511 Effective immediately
1512 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1513 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1514 Operation setting
1515 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1516 Effective immediately
1517 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1518
1519 Table 6-31 Acceleration and deceleration time parameters
1520
1521 == **Speed instruction limit** ==
1522
1523 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1524
1525 1. P01-10: Set the maximum speed limit value
1526 1. P01-12: Set forward speed limit value
1527 1. P01-13: Set reverse speed limit value
1528 1. The maximum speed of the motor: determined by motor model
1529
1530 The actual motor speed limit interval satisfies the following relationship:
1531
1532 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1533
1534 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1535
1536 (% class="table-bordered" %)
1537 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1538 **Setting method**
1539 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1540 **Effective time**
1541 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1542 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1543 Operation setting
1544 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1545 Effective immediately
1546 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1547 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1548 Operation setting
1549 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1550 Effective immediately
1551 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1552 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1553 Operation setting
1554 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1555 Effective immediately
1556 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1557
1558 Table 6-32 Rotation speed related function codes
1559
1560 == **Zero-speed clamp function** ==
1561
1562 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1563
1564 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1565
1566 (% class="table-bordered" %)
1567 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1568 **Setting method**
1569 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1570 **Effective time**
1571 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1572 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1573 Zero-speed clamp function selection
1574 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1575 Operation setting
1576 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1577 Effective immediately
1578 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1579 Set the zero-speed clamp function. In speed mode:
1580
1581 0: Force the speed to 0;
1582
1583 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1584
1585 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1586
1587 3: Invalid, ignore zero-speed clamp input
1588 )))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1589 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1590 Zero-speed clamp speed threshold
1591 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1592 Operation setting
1593 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1594 Effective immediately
1595 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1596
1597 Table 6-33 Zero-speed clamp related parameters
1598
1599 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_bc1d29f8fdb299dc.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_bc1d29f8fdb299dc.gif"]]
1600
1601 Figure 6-34 Zero-speed clamp diagram
1602
1603 == **Speed-related DO output function** ==
1604
1605 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1606
1607 **(1) Rotation detection signal**
1608
1609 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1610
1611 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_fb8cfa4f5903d0f1.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_fb8cfa4f5903d0f1.gif"]]
1612
1613 Figure 6-35 Rotation detection signal diagram
1614
1615 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1616
1617 (% class="table-bordered" %)
1618 |(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1619 **Setting method**
1620 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1621 **Effective time**
1622 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1623 |(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1624 Rotation detection
1625
1626 speed threshold
1627 )))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1628 Operation setting
1629 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1630 Effective immediately
1631 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1632
1633 Table 6-34 Rotation detection speed threshold parameters
1634
1635 (% class="table-bordered" %)
1636 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1637 |(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)(((
1638 T-COIN
1639
1640 rotation detection
1641 )))|(((
1642 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1643
1644 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1645 )))
1646
1647 Table 6-35 DO rotation detection function code
1648
1649 **(2) Zero-speed signal**
1650
1651 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1652
1653 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_5e35c1aad6d8dfbe.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_5e35c1aad6d8dfbe.gif"]]
1654
1655 Figure 6-36 Zero-speed signal diagram
1656
1657 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1658
1659 (% class="table-bordered" %)
1660 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1661 **Setting method**
1662 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1663 **Effective time**
1664 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1665 |(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1666 Operation setting
1667 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1668 Effective immediately
1669 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1670
1671 Table 6-36 Zero-speed output signal threshold parameter
1672
1673 (% class="table-bordered" %)
1674 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1675 |(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1676 ZSP zero speed signal
1677 )))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1678
1679 Table 6-37 DO zero-speed signal function code
1680
1681 **(3) Speed consistent signal**
1682
1683 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1684
1685 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2b53a916c8f09d5.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2b53a916c8f09d5.gif"]]
1686
1687 Figure 6-37 Speed consistent signal diagram
1688
1689 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1690
1691 (% class="table-bordered" %)
1692 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1693 **Setting method**
1694 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1695 **Effective time**
1696 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1697 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1698 Operationsetting
1699 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1700 Effective immediately
1701 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1702
1703 Table 6-38 Speed consistent signal threshold parameters
1704
1705 (% class="table-bordered" %)
1706 |(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1707 |(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1708 U-COIN consistent speed
1709 )))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1710
1711 Table 6-39 DO speed consistent function code
1712
1713 **(4) Speed approach signal**
1714
1715 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1716
1717 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_46c88547b24e8a4b.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_46c88547b24e8a4b.gif"]]
1718
1719 Figure 6-38 Speed approaching signal diagram
1720
1721 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1722
1723 (% class="table-bordered" %)
1724 |(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1725 **Setting method**
1726 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1727 **Effective time**
1728 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1729 |(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1730 Operation setting
1731 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1732 Effective immediately
1733 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1734
1735 Table 6-40 Speed approaching signal threshold parameters
1736
1737 (% class="table-bordered" %)
1738 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1739 |(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1740 V-NEAR speed approach
1741 )))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1742
1743 Table 6-41 DO speed approach function code
1744
1745 = **Torque control mode** =
1746
1747 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1748
1749 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_fa7e410ad05cf1a6.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_fa7e410ad05cf1a6.gif"]]
1750
1751 Figure 6-39 Torque mode diagram
1752
1753 == **Torque instruction input setting** ==
1754
1755 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1756
1757 (% class="table-bordered" %)
1758 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1759 **Setting method**
1760 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1761 **Effective time**
1762 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1763 |(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1764 Shutdown setting
1765 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1766 Effective immediately
1767 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1768 0: internal torque instruction
1769
1770 1: AI_1 analog input(not supported by VD2F)
1771 )))|(% style="text-align:center; vertical-align:middle" %)-
1772
1773 Table 6-42 Torque instruction source parameter
1774
1775 **(1) Torque instruction source is internal torque instruction (P01-07=0)**
1776
1777 Torque instruction source is from inside, the value is set by function code P01-08.
1778
1779 (% class="table-bordered" %)
1780 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1781 **Setting method**
1782 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1783 **Effective time**
1784 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1785 |(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1786 Operation setting
1787 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1788 Effective immediately
1789 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1790
1791 Table 6-43 Torque instruction keyboard set value
1792
1793 **(2) Torque instruction source is internal torque instruction (P01-07=1)**
1794
1795 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1796
1797 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_bd6a9cba37c8c87e.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_bd6a9cba37c8c87e.gif"]]
1798
1799 Figure 6-40 Analog input circuit
1800
1801 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1802
1803 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_186332b32f148c60.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_186332b32f148c60.gif"]]
1804
1805 Figure 6-41 Analog voltage torque instruction setting steps
1806
1807 Explanation of related terms:
1808
1809 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1810
1811 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1812
1813 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1814
1815 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_9e37dbf27a47694a.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_9e37dbf27a47694a.gif"]]
1816
1817 Figure 6-42 AI_1 diagram before and after bias
1818
1819 (% class="table-bordered" %)
1820 |(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1821 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1822 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1823 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1824 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1825
1826 Table 6-44 AI_1 parameters
1827
1828 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1829
1830 == **Torque instruction filtering** ==
1831
1832 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1833
1834 (% class="table-bordered" %)
1835 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1836 **Setting method**
1837 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1838 **Effective time**
1839 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1840 |(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1841 Operation setting
1842 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1843 Effective immediately
1844 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1845
1846 Table 6-45 Torque filtering time constant parameter details
1847
1848 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1849
1850 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_205df0eae349c586.gif"]]
1851
1852 Figure 6-43 Torque instruction-first-order filtering diagram
1853
1854 == **Torque instruction limit** ==
1855
1856 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1857
1858 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1859
1860 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_5150cab591eac5bc.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_5150cab591eac5bc.gif"]]
1861
1862 Figure 6-44 Torque instruction limit diagram
1863
1864 **(1) Set torque limit source**
1865
1866 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1867
1868 (% class="table-bordered" %)
1869 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1870 **Setting method**
1871 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1872 **Effective time**
1873 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1874 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1875 Torque limit source
1876 )))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1877 Shutdown setting
1878 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1879 Effective immediately
1880 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1881 0: internal value
1882
1883 1: AI_1 analog input
1884
1885 (not supported by VD2F)
1886 )))|(% style="text-align:center; vertical-align:middle" %)-
1887
1888 1) Torque limit source is internal torque instruction (P01-14=0)
1889
1890 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1891
1892 (% class="table-bordered" %)
1893 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1894 **Setting method**
1895 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1896 **Effective time**
1897 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1898 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1899 Forward torque limit
1900 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1901 Operation setting
1902 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1903 Effective immediately
1904 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1905 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1906 Reverse torque limit
1907 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1908 Operation setting
1909 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1910 Effective immediately
1911 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1912
1913 Table 6-46 Torque limit parameter details
1914
1915 2) Torque limit source is external (P01-14=1)
1916
1917 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1918
1919 **(2) Set torque limit DO signal output**
1920
1921 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1922
1923 (% class="table-bordered" %)
1924 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1925 |(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1926 T-LIMIT in torque limit
1927 )))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1928
1929 Table 6-47 DO torque limit function codes
1930
1931 == **Speed limit in torque mode** ==
1932
1933 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1934
1935 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1936
1937 |[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e1eced3568bc22d7.gif"]]|[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_79d479af8534745f.gif"]]
1938 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1939
1940 (% class="table-bordered" %)
1941 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1942 **Setting method**
1943 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1944 **Effective time**
1945 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1946 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1947 Forward torque
1948
1949 limit in torque mode
1950 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1951 Operation setting
1952 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1953 Effective immediately
1954 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1955 Forward torque
1956
1957 limit in torque mode
1958 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1959 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1960 Reverse torque
1961
1962 limit in torque mode
1963 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1964 Operation setting
1965 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1966 Effective immediately
1967 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1968 Reverse torque
1969
1970 limit in torque mode
1971 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1972
1973 Table 6-48 Speed limit parameters in torque mode
1974
1975 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__.
1976
1977 == **Torque-related DO output functions** ==
1978
1979 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1980
1981 **Torque arrival**
1982
1983 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1984
1985 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_c5aa33a1ea3666a9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_c5aa33a1ea3666a9.gif"]]
1986
1987 Figure 6-47 Torque arrival output diagram
1988
1989 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
1990
1991 (% class="table-bordered" %)
1992 |(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
1993 **Setting method**
1994 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
1995 **Effective time**
1996 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1997 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1998 Torque arrival
1999
2000 threshold
2001 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2002 Operation setting
2003 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2004 Effective immediately
2005 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2006 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2007
2008 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2009
2010 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2011 )))|(% style="text-align:center; vertical-align:middle" %)%
2012 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2013 Torque arrival
2014
2015 hysteresis
2016 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2017 Operation setting
2018 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2019 Effective immediately
2020 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2021
2022 Table 6-49 Torque arrival parameters
2023
2024 (% class="table-bordered" %)
2025 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2026 |(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2027 T-COIN torque arrival
2028 )))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2029
2030 Table 6-50 DO Torque Arrival Function Code
2031
2032 = **Mixed control mode** =
2033
2034 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2035
2036 Position mode  Speed mode
2037
2038 Position mode  Torque mode
2039
2040 Speed mode  Torque mode
2041
2042 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2043
2044 (% class="table-bordered" %)
2045 |(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2046 **Setting method**
2047 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2048 **Effective time**
2049 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2050 |(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2051 Shutdown setting
2052 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2053 Shutdown setting
2054 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((
2055 1: Position control
2056
2057 2: Speed control
2058
2059 3: Torque control
2060
2061 4: Position/speed mixed control
2062
2063 5: Position/torque mixed control
2064
2065 6: Speed/torque mixed control
2066 )))|(% style="text-align:center; vertical-align:middle" %)-
2067
2068 Table 6-51 Mixed control mode parameters
2069
2070 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2071
2072 (% class="table-bordered" %)
2073 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2074 |(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2075 (% class="table-bordered" %)
2076 |(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2077 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2078 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2079 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2080 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2081 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2082 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2083 )))
2084
2085 Table 6-52 Description of DI function codes in control mode
2086
2087 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2088
2089 = **Absolute system** =
2090
2091 == **Overview** ==
2092
2093 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2094
2095 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2096
2097 == **Single-turn absolute value system** ==
2098
2099 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2100
2101 (% class="table-bordered" %)
2102 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2103 |(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2104
2105 Table 6-53 Single-turn absolute encoder information
2106
2107 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2108
2109 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f1dd9e5d93d026de.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f1dd9e5d93d026de.gif"]]
2110
2111 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2112
2113 == **Multi-turn absolute value system** ==
2114
2115 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2116
2117 (% class="table-bordered" %)
2118 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2119 |(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2120 |(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2121
2122 Table 6-54 Multi-turn absolute encoder information
2123
2124 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2125
2126 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e6f0ac4930ba15b8.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e6f0ac4930ba15b8.gif"]]
2127
2128 Figure 6-49 The relationship between encoder feedback position and rotating load position
2129
2130 == **Encoder feedback data** ==
2131
2132 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2133
2134 (% class="table-bordered" %)
2135 |(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2136 |(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2137 |(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2138 |(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2139
2140 Table 6-55 Encoder feedback data
2141
2142 == **Absolute value system encoder battery box use precautions** ==
2143
2144 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2145
2146 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e9fac7759607dce6.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e9fac7759607dce6.png"]]
2147
2148 Figure 6-50 the encoder battery box
2149
2150 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. The specific replacement method is as follows:
2151
2152 1. Step1 The servo drive is powered on and is in a non-operational state;
2153 1. Step2 Replace the battery;
2154 1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings.
2155
2156 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2157
2158 (% class="table-bordered" %)
2159 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2160 **Setting method**
2161 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2162 **Effective time**
2163 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2164 |(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2165 Shutdown setting
2166 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2167 Effective immediately
2168 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2169 0: No operation
2170
2171 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2172
2173 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2174 )))|(% style="text-align:center; vertical-align:middle" %)-
2175
2176 Table 6-56 Absolute encoder reset enable parameter
2177
2178 ✎**Note: **If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2179
2180 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2181
2182 = **Overview** =
2183
2184 == **VDI** ==
2185
2186 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2187
2188 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2189
2190 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2191
2192 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d237b43521f07beb.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_d237b43521f07beb.gif"]]
2193
2194 Figure 6-51 VDI_1 setting steps
2195
2196 (% class="table-bordered" %)
2197 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2198 **Setting method**
2199 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2200 **Effective time**
2201 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2202 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2203 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2204
2205 VDI_1 input level:
2206
2207 0: low level
2208
2209 1: high level
2210 )))|(% style="text-align:center; vertical-align:middle" %)-
2211 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2212 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2213
2214 VDI_2 input level:
2215
2216 0: low level
2217
2218 1: high level
2219 )))|(% style="text-align:center; vertical-align:middle" %)-
2220 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2221 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2222
2223 VDI_3 input level:
2224
2225 0: low level
2226
2227 1: high level
2228 )))|(% style="text-align:center; vertical-align:middle" %)-
2229 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2230 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2231
2232 VDI_4 input level:
2233
2234 0: low level
2235
2236 1: high level
2237 )))|(% style="text-align:center; vertical-align:middle" %)-
2238 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2239 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2240
2241 VDI_5 input level:
2242
2243 0: low level
2244
2245 1: high level
2246 )))|(% style="text-align:center; vertical-align:middle" %)-
2247 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2248 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2249
2250 VDI_6 input level:
2251
2252 0: low level
2253
2254 1: high level
2255 )))|(% style="text-align:center; vertical-align:middle" %)-
2256 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2257 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2258
2259 VDI_7 input level:
2260
2261 0: low level
2262
2263 1: high level
2264 )))|(% style="text-align:center; vertical-align:middle" %)-
2265 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2266 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2267
2268 VDI_8 input level:
2269
2270 0: low level
2271
2272 1: high level
2273 )))|(% style="text-align:center; vertical-align:middle" %)-
2274
2275 Table 6-57 Virtual VDI parameters
2276
2277 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2278
2279 == **Port filtering time** ==
2280
2281 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2282
2283 (% class="table-bordered" %)
2284 |(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2285 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2476a4a02e6f0760.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2476a4a02e6f0760.gif"]]
2286 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_ad0a0d3f9b9908b1.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_ad0a0d3f9b9908b1.gif"]]
2287
2288 Table 6-58 DI terminal channel logic selection
2289
2290 == **VDO** ==
2291
2292 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2293
2294 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2295
2296 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_571b1f09b2ec0199.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_571b1f09b2ec0199.gif"]]
2297
2298 Figure 6-52 VDO_2 setting steps
2299
2300 (% class="table-bordered" %)
2301 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2302 **Setting method**
2303 )))|(% style="text-align:center; vertical-align:middle" %)(((
2304 **Effective time**
2305 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2306 |(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2307 VDO_1 output level:
2308
2309 0: low level
2310
2311 1: high level
2312 )))|(% style="text-align:center; vertical-align:middle" %)-
2313 |(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2314 VDO_2 output level:
2315
2316 0: low level
2317
2318 1: high level
2319 )))|(% style="text-align:center; vertical-align:middle" %)-
2320 |(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2321 VDO_3 output level:
2322
2323 0: low level
2324
2325 1: high level
2326 )))|(% style="text-align:center; vertical-align:middle" %)-
2327 |(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2328 VDO_4 output level:
2329
2330 0: low level
2331
2332 1: high level
2333 )))|(% style="text-align:center; vertical-align:middle" %)-
2334
2335 Table 6-59 Communication control DO function parameters
2336
2337 (% class="table-bordered" %)
2338 |(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2339 |(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2340 |(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2341 |(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2342 |(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2343
2344 Table 6-60 VDO function number
2345
2346 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2347
2348 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2349
2350 == **Motor overload protection** ==
2351
2352 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2353
2354 (% class="table-bordered" %)
2355 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2356 **Setting method**
2357 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2358 **Effective time**
2359 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2360 |(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2361 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2362
2363 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2364 )))|(% style="text-align:center; vertical-align:middle" %)%
2365
2366 In the following cases, it could be modified according to the actual heat generation of the motor
2367
2368 1. The motor works in a place with high ambient temperature
2369 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2370
2371 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2372
2373 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2374
2375 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.