Wiki source code of 06 Operation

Version 27.1 by Joey on 2022/06/10 15:08

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5
6 |**No.**|**Content**
7 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
8 |1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
9 |2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
10 |3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
11 |4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
12 |5|Servo drive and servo motor must be grounded reliably.
13 |6|When using an external braking resistor, the short wiring between drive C and D must be removed.
14 |7|The force of all cables is within the specified range.
15 |8|The wiring terminals have been insulated.
16 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
17 |1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
18 |2|The servo drive and external braking resistor are not placed on combustible objects.
19 |3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
20
21 Table 6-1 Check contents before operation
22
23 == **Power-on** ==
24
25 **(1) Connect the main circuit power supply**
26
27 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
28
29 If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
30
31 **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
32
33 == **Jog operation** ==
34
35 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
36
37 **(1) Panel jog operation**
38
39 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
40
41 **(2) Jog operation of servo debugging platform**
42
43 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
44
45
46 (% class="table-bordered" %)
47 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
48 **Setting method**
49 )))|(% style="text-align:center; vertical-align:middle" %)(((
50 **Effective time**
51 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
52 |(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
53 Operation setting
54 )))|(% style="text-align:center; vertical-align:middle" %)(((
55 Effective immediately
56 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
57
58 Table 6-2 JOG speed parameter
59
60 == **Rotation direction selection** ==
61
62 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
63
64 (% class="table-bordered" %)
65 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
66 **Setting method**
67 )))|(% style="text-align:center; vertical-align:middle" %)(((
68 **Effective time**
69 )))|(% style="text-align:center; vertical-align:middle" %)(((
70 **Default value**
71 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
72 |(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
73 Shutdown setting
74 )))|(% style="text-align:center; vertical-align:middle" %)(((
75 Effective immediately
76 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
77 Forward rotation: Face the motor shaft to watch
78
79 0: standard setting (CW is forward rotation)
80
81 1: reverse mode (CCW is forward rotation)
82 )))|(% style="text-align:center; vertical-align:middle" %)-
83
84 Table 6-3 Rotation direction parameters** **
85
86 == **Braking resistor** ==
87
88 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
89
90 The basis for judging whether the braking resistor is built-in or external.
91
92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
93 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
94
95 (% class="table-bordered" %)
96 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
97 **Setting method**
98 )))|(% style="text-align:center; vertical-align:middle" %)(((
99 **Effective time**
100 )))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
101 |(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
102 Operation setting
103 )))|(% style="text-align:center; vertical-align:middle" %)(((
104 Effective immediately
105 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
106 0: use built-in braking resistor
107
108 1: use external braking resistor and natural cooling
109
110 2: use external braking resistor and forced air cooling; (cannot be set)
111
112 3: No braking resistor is used, it is all absorbed by capacitor.
113 )))|(% style="text-align:center; vertical-align:middle" %)-
114 |(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
115 |(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
116 Operation setting
117 )))|(% style="text-align:center; vertical-align:middle" %)(((
118 Effective immediately
119 )))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
120 |(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
121 Operation setting
122 )))|(% style="text-align:center; vertical-align:middle" %)(((
123 Effective immediately
124 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
125
126 Table 6-4 Braking resistor parameters
127
128 == **Servo operation** ==
129
130 **(1) Set the servo enable (S-ON) to valid (ON)**
131
132 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
133
134 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
135
136 **(2) Input the instruction and the motor rotates**
137
138 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
139
140 **(3) Timing diagram of power on**
141
142 (% style="text-align:center" %)
143 [[image:image-20220608163014-1.png]]
144
145 Figure 6-1 Timing diagram of power on
146
147 == **Servo shutdown** ==
148
149 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
150
151 (% class="table-bordered" %)
152 |Shutdown mode|Shutdown description|Shutdown characteristics
153 |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
154 |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
155
156 Table 6-5 Comparison of two shutdown modes
157
158 (% class="table-bordered" %)
159 |(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
160 |(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
161
162 Table 6-6 Comparison of two shutdown status
163
164 **(1) Servo enable (S-ON) OFF shutdown**
165
166 The related parameters of the servo OFF shutdown mode are shown in the table below.
167
168 (% class="table-bordered" %)
169 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
170 **Setting method**
171 )))|(% style="text-align:center; vertical-align:middle" %)(((
172 **Effective time**
173 )))|(% style="text-align:center; vertical-align:middle" %)(((
174 **Default value**
175 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
176 |(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
177 Shutdown
178
179 setting
180 )))|(% style="text-align:center; vertical-align:middle" %)(((
181 Effective
182
183 immediately
184 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
185 0: Free shutdown, and the motor shaft remains free status.
186
187 1: Zero-speed shutdown, and the motor shaft remains free status.
188 )))|(% style="text-align:center; vertical-align:middle" %)-
189
190 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
191
192 **(2) Emergency shutdown**
193
194 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
195
196 **(3) Overtravel shutdown**
197
198 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
199
200 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
201
202 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
203
204 (% class="table-bordered" %)
205 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
206 **Setting method**
207 )))|(% style="text-align:center; vertical-align:middle" %)(((
208 **Effective time**
209 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
210 |(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
211 0: OFF (not used)
212
213 01: S-ON servo enable
214
215 02: A-CLR fault and Warning Clear
216
217 03: POT forward drive prohibition
218
219 04: NOT Reverse drive prohibition
220
221 05: ZCLAMP Zero speed
222
223 06: CL Clear deviation counter
224
225 07: C-SIGN Inverted instruction
226
227 08: E-STOP Emergency stop
228
229 09: GEAR-SEL Electronic Gear Switch 1
230
231 10: GAIN-SEL gain switch
232
233 11: INH Instruction pulse prohibited input
234
235 12: VSSEL Vibration control switch input
236
237 13: INSPD1 Internal speed instruction selection 1
238
239 14: INSPD2 Internal speed instruction selection 2
240
241 15: INSPD3 Internal speedinstruction selection 3
242
243 16: J-SEL inertia ratio switch (not implemented yet)
244
245 17: MixModesel mixed mode selection
246
247 20: Internal multi-segment position enable signal
248
249 21: Internal multi-segment position selection 1
250
251 22: Internal multi-segment position selection 2
252
253 23: Internal multi-segment position selection 3
254
255 24: Internal multi-segment position selection 4
256
257 Others: reserved
258 )))|(% style="text-align:center; vertical-align:middle" %)-
259 |(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
260 Effective immediately
261 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
262 DI port input logic validity function selection.
263
264 0: Normally open input. Active low level (switch on);
265
266 1: Normally closed input. Active high level (switch off);
267 )))|(% style="text-align:center; vertical-align:middle" %)-
268 |(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
269 Effective immediately
270 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
271 Select the DI_3 port type to enable
272
273 0: Hardware DI_3 input terminal
274
275 1: virtual VDI_3 input terminal
276 )))|(% style="text-align:center; vertical-align:middle" %)-
277
278 (% class="table-bordered" %)
279 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
280 Operation setting
281 )))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
282 again Power-on
283 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
284 0 off (not used)
285
286 01: SON Servo enable
287
288 02: A-CLR Fault and Warning Clear
289
290 03: POT Forward drive prohibition
291
292 04: NOT Reverse drive prohibition
293
294 05: ZCLAMP Zero speed
295
296 06: CL Clear deviation counter
297
298 07: C-SIGN Inverted instruction
299
300 08: E-STOP Emergency shutdown
301
302 09: GEAR-SEL Electronic Gear Switch 1
303
304 10: GAIN-SEL gain switch
305
306 11: INH Instruction pulse prohibited input
307
308 12: VSSEL Vibration control switch input
309
310 13: INSPD1 Internal speed instruction selection 1
311
312 14: INSPD2 Internal speed instruction selection 2
313
314 15: INSPD3 Internal speed instruction selection 3
315
316 16: J-SEL inertia ratio switch (not implemented yet)
317
318 17: MixModesel mixed mode selection
319
320 20: Internal multi-segment position enable signal
321
322 21: Internal multi-segment position selection 1
323
324 22: Internal multi-segment position selection 2
325
326 23: Internal multi-segment position selection 3
327
328 24: Internal multi-segment position selection 4
329
330 Others: reserved
331 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
332 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
333 Effective immediately
334 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
335 DI port input logic validity function selection.
336
337 0: Normally open input. Active low level (switch on);
338
339 1: Normally closed input. Active high level (switch off);
340 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
341 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
342 Effective immediately
343 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
344 Select the DI_4 port type to enable
345
346 0: Hardware DI_4 input terminal
347
348 1: virtual VDI_4 input terminal
349 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
350
351 Table 6-8 DI3 and DI4 channel parameters
352
353 **(4) Malfunction shutdown**
354
355 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
356
357 == **Brake device** ==
358
359 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
360
361 (% class="table-bordered" %)
362 |(((
363 (% style="text-align:center" %)
364 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
365 )))
366 |(((
367 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
368
369 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
370
371 ✎The brake coil has no polarity;
372
373 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
374
375 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
376 )))
377
378 **(1) Wiring of brake device**
379
380 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
381
382 (% style="text-align:center" %)
383 [[image:image-20220608163136-2.png]]
384
385 Figure 6-2 VD2B servo drive brake wiring
386
387 (% class="table-bordered" %)
388 |(((
389 (% style="text-align:center" %)
390 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
391 )))
392 |(((
393 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
394
395 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
396
397 ✎It is recommended to use cables above 0.5 mm².
398 )))
399
400 **(2) Brake software setting**
401
402 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
403
404 Related function code is as below.
405
406 (% class="table-bordered" %)
407 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
408 **Effective time**
409 )))
410 |(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
411 BRK-OFF Brake output
412 )))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
413
414 Table 6-2 Relevant function codes for brake setting
415
416 (% class="table-bordered" %)
417 |(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
418 **Setting method**
419 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
420 **Effective time**
421 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
422 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
423 Operation setting
424 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
425 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
426 Operation setting
427 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
428 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
429 Operation setting
430 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
431 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
432
433 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
434 )))|(% style="text-align:center; vertical-align:middle" %)rpm
435 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
436 Operation setting
437 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
438 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
439
440 When brake output (BRK-OFF) is not allocated, this function code has no effect.
441 )))|(% style="text-align:center; vertical-align:middle" %)ms
442
443 Table 6-9 Brake setting function codes
444
445 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
446
447 **(3) Servo drive brake timing in normal state**
448
449 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
450
451 1) Brake timing when servo motor is stationary
452
453 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
454
455 (% class="table-bordered" %)
456 |(((
457 (% style="text-align:center" %)
458 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
459 )))
460 |(((
461 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
462
463 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
464 )))
465
466 (% style="text-align:center" %)
467 [[image:image-20220608163304-3.png]]
468
469 Figure 6-3 Brake Timing of when the motor is stationary
470
471 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
472
473 2) The brake timing when servo motor rotates
474
475 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
476
477 (% class="table-bordered" %)
478 |(((
479 (% style="text-align:center" %)
480 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
481 )))
482 |(((
483 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
484
485 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
486
487 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
488
489 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
490
491 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
492 )))
493
494 (% style="text-align:center" %)
495 [[image:image-20220608163425-4.png]]
496
497 Figure 6-4 Brake timing when the motor rotates
498
499 **(4) Brake timing when the servo drive fails**
500
501 The brake timing (free shutdown) in the fault status is as follows.
502
503 (% style="text-align:center" %)
504 [[image:image-20220608163541-5.png]]
505
506 Figure 6-5 The brake timing (free shutdown) in the fault state
507
508 = **Position control mode** =
509
510 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
511
512 (% style="text-align:center" %)
513 [[image:image-20220608163643-6.png]]
514
515 Figure 6-6 Position control diagram
516
517 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
518
519 (% class="table-bordered" %)
520 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
521 **Setting method**
522 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
523 **Effective time**
524 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
525 |(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
526 Operation setting
527 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
528 immediately Effective
529 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
530 0: position control
531
532 2: speed control
533
534 3: torque control
535
536 4: position/speed mix control
537
538 5: position/torque mix control
539
540 6: speed /torque mix control
541 )))|(% style="text-align:center; vertical-align:middle" %)-
542
543 Table 6-10 Control mode parameters
544
545 == **Position instruction input setting** ==
546
547 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
548
549 (% class="table-bordered" %)
550 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
551 **Setting method**
552 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
553 **Effective time**
554 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
555 |(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
556 Operation setting
557 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
558 immediately Effective
559 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
560 0: pulse instruction
561
562 1: internal position instruction
563 )))|(% style="text-align:center; vertical-align:middle" %)-
564
565 Table 6-11 Position instruction source parameter
566
567 **(1) The source of position instruction is pulse instruction (P01-06=0)**
568
569 1) Low-speed pulse instruction input
570
571 (% class="table-bordered" %)
572 |(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
573 |(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
574 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
575
576 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
577
578 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
579
580 (% class="table-bordered" %)
581 |(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
582 |(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
583 |(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
584
585 Table 6-12 Pulse input specifications
586
587 1.Differential input
588
589 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
590
591 (% style="text-align:center" %)
592 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
593
594 Figure 6-8 Differential input connection
595
596 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
597
598 2.Open collector input
599
600 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
601
602 (% style="text-align:center" %)
603 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
604
605 Figure 6-9 Open collector input connection
606
607 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
608
609 2) Position pulse frequency and anti-interference level
610
611 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
612
613 (% style="text-align:center" %)
614 [[image:image-20220608163952-8.png]]
615
616 Figure 6-10 Example of filtered signal waveform
617
618 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
619
620 (% class="table-bordered" %)
621 |(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
622 **Setting method**
623 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
624 **Effective time**
625 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:71px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:349px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
626 |(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
627 Shutdown setting
628 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
629 Effective immediately
630 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)300|(% style="text-align:center; vertical-align:middle; width:71px" %)1 to 500|(% colspan="2" style="width:349px" %)Set the maximum frequency of external pulse instruction|KHz
631 |(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
632 Operation setting
633 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:159px" %)(((
634 Power-on again
635 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:105px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:71px" %)0 to 9|(% colspan="2" style="width:349px" %)(((
636 Set the anti-interference level of external pulse instruction.
637
638 0: no filtering;
639
640 1: Filtering time 128ns
641
642 2: Filtering time 256ns
643
644 3: Filtering time 512ns
645
646 4: Filtering time 1.024us
647
648 5: Filtering time 2.048us
649
650 6: Filtering time 4.096us
651
652 7: Filtering time 8.192us
653
654 8: Filtering time 16.384us
655 )))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
656 |(% rowspan="2" style="width:29px" %)9|VD2: Filtering time 25.5us
657 |VD2F: Filtering time 25.5us
658
659 Table 6-13 Position pulse frequency and anti-interference level parameters
660
661 3) Position pulse type selection
662
663 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
664
665 (% class="table-bordered" %)
666 |(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
667 **Setting method**
668 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
669 **Effective time**
670 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
671 |(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
672 Operation setting
673 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
674 Power-on again
675 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
676 0: direction + pulse (positive logic)
677
678 1: CW/CCW
679
680 2: A, B phase quadrature pulse (4 times frequency)
681
682 3: Direction + pulse (negative logic)
683
684 4: CW/CCW (negative logic)
685
686 5: A, B phase quadrature pulse (4 times frequency negative logic)
687 )))|(% style="text-align:center; vertical-align:middle" %)-
688
689 Table 6-14 Position pulse type selection parameter
690
691 (% class="table-bordered" %)
692 |(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
693 |(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
694 Direction + pulse
695
696 (Positive logic)
697 )))|(% style="text-align:center; vertical-align:middle" %)(((
698 PULSE
699
700 SIGN
701 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
702 |(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
703 PULSE (CW)
704
705 SIGN (CCW)
706 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
707 |(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
708 AB phase orthogonal
709
710 pulse (4 times frequency)
711 )))|(% style="text-align:center; vertical-align:middle" %)(((
712 PULSE (Phase A)
713
714 SIGN (Phase B)
715 )))|(% style="text-align:center; vertical-align:middle" %)(((
716 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
717
718 Phase A is 90° ahead of Phase B
719 )))|(% style="text-align:center; vertical-align:middle" %)(((
720 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
721
722 Phase B is 90° ahead of Phase A
723 )))
724 |(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
725 Direction + pulse
726
727 (Negative logic)
728 )))|(% style="text-align:center; vertical-align:middle" %)(((
729 PULSE
730
731 SIGN
732 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
733 |(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
734 CW/CCW
735
736 (Negative logic)
737 )))|(% style="text-align:center; vertical-align:middle" %)(((
738 PULSE (CW)
739
740 SIGN (CCW)
741 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
742 |(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
743 AB phase orthogonal
744
745 pulse (4 times frequency negative logic)
746 )))|(% style="text-align:center; vertical-align:middle" %)(((
747 PULSE (Phase A)
748
749 SIGN (Phase B)
750 )))|(% style="text-align:center; vertical-align:middle" %)(((
751 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
752
753 B phase is ahead of A phase by 90°
754 )))|(% style="text-align:center; vertical-align:middle" %)(((
755 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
756
757 A phase is ahead of B phase by 90°
758 )))
759
760 Table 6-15 Pulse description
761
762 **(2) The source of position instruction is internal position instruction (P01-06=1)**
763
764 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
765
766 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
767
768 (% style="text-align:center" %)
769 [[image:image-20220608164116-9.png]]
770
771 Figure 6-11 The setting process of multi-segment position
772
773 1) Set multi-segment position running mode
774
775 (% class="table-bordered" %)
776 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
777 **Setting method**
778 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
779 **Effective time**
780 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
781 |(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
782 Shutdown setting
783 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
784 Effective immediately
785 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
786 0: Single running
787
788 1: Cycle running
789
790 2: DI switching running
791 )))|(% style="text-align:center; vertical-align:middle" %)-
792 |(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
793 Shutdown setting
794 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
795 Effective immediately
796 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
797 |(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
798 Shutdown setting
799 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
800 Effective immediately
801 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
802 |(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
803 Shutdown setting
804 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
805 Effective immediately
806 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
807 0: Run the remaining segments
808
809 1: Run again from the start segment
810 )))|(% style="text-align:center; vertical-align:middle" %)-
811 |(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
812 Shutdown setting
813 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
814 Effective immediately
815 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
816 0: Relative position instruction
817
818 1: Absolute position instruction
819 )))|(% style="text-align:center; vertical-align:middle" %)-
820
821 Table 6-16 multi-segment position running mode parameters
822
823 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
824
825 ~1. Single running
826
827 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
828
829 (% style="text-align:center" %)
830 [[image:image-20220608164226-10.png]]
831
832 Figure 6-12 Single running curve (P07-02=1, P07-03=2)
833
834 2. Cycle running
835
836 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
837
838 (% style="text-align:center" %)
839 [[image:image-20220608164327-11.png]]
840
841 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
842
843 |(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
844 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
845
846 3. DI switching running
847
848 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
849
850 (% class="table-bordered" %)
851 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
852 |(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
853 |(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
854 |(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
855 |(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
856
857 Table 6-17 DI function code
858
859 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
860
861 (% class="table-bordered" %)
862 |(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
863 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
864 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
865 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
866 |(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
867 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
868
869 Table 6-18 INPOS corresponds to running segment number
870
871 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
872
873 (% style="text-align:center" %)
874 [[image:image-20220608164545-12.png]]
875
876 Figure 6-14 DI switching running curve
877
878 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
879
880 **A. Run the remaining segments**
881
882 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
883
884 (% style="text-align:center" %)
885 [[image:image-20220608164847-13.png]]
886
887 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
888
889 (% style="text-align:center" %)
890 [[image:image-20220608165032-14.png]]
891
892 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
893
894 **B. Run again from the start segment**
895
896 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
897
898 (% style="text-align:center" %)
899 [[image:image-20220608165343-15.png]]
900
901 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
902
903 (% style="text-align:center" %)
904 [[image:image-20220608165558-16.png]]
905
906 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
907
908 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
909
910 A. Relative position instruction
911
912 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
913
914 |(((
915 (% style="text-align:center" %)
916 [[image:image-20220608165710-17.png]]
917 )))|(((
918 (% style="text-align:center" %)
919 [[image:image-20220608165749-18.png]]
920 )))
921 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
922
923 B. Absolute position instruction
924
925 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
926
927 |(((
928 (% style="text-align:center" %)
929 [[image:image-20220608165848-19.png]]
930 )))|(((
931 (% style="text-align:center" %)
932 [[image:image-20220608170005-20.png]]
933 )))
934 |Figure 6-21 Absolute indication|Figure 6-22 Displacement
935
936 2) Multi-segment position running curve setting
937
938 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
939
940 (% class="table-bordered" %)
941 |(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
942 **Setting method**
943 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
944 **Effective time**
945 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
946 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
947 1st segment
948
949 displacement
950 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
951 Operation setting
952 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
953 Effective immediately
954 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
955 -2147483647 to
956
957 2147483646
958 )))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
959 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
960 Operation setting
961 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
962 Effective immediately
963 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
964 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
965 Operation setting
966 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
967 Effective immediately
968 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
969 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
970 Operation setting
971 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
972 Effective immediately
973 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
974
975 Table 6-19 The 1st position operation curve parameters table
976
977 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
978
979 (% style="text-align:center" %)
980 [[image:image-20220608170149-21.png]]
981
982 Figure 6-23 The 1st segment running curve of motor
983
984 3) multi-segment position instruction enable
985
986 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
987
988 (% class="table-bordered" %)
989 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
990 |(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
991 DI port logic invalid: Does not affect the current operation of the servo motor.
992
993 DI port logic valid: Motor runs multi-segment position
994 )))
995
996 (% style="text-align:center" %)
997 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]]
998
999 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1000
1001 == **Electronic gear ratio** ==
1002
1003 **(1) Definition of electronic gear ratio**
1004
1005 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1006
1007 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1008
1009 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1010
1011 (% style="text-align:center" %)
1012 [[image:image-20220610150133-1.png]]
1013
1014 (6-1)
1015
1016 (% style="text-align:center" %)
1017 [[image:image-20220610150145-2.png]]
1018
1019 (6-2)
1020
1021 (% style="text-align:center" %)
1022 [[image:image-20220610150156-3.png]]
1023
1024 (6-3)
1025
1026 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1027
1028 **(2) Setting steps of electronic gear ratio**
1029
1030 (% style="text-align:center" %)
1031 [[image:image-20220608170320-22.png]]
1032
1033 Figure 6-24 Setting steps of electronic gear ratio
1034
1035 Step1: Confirm the mechanical parameters including the reduction ratio, the ball screw lead, gear diameter in the gear drive, and pulley diameter in the pulley drive.
1036
1037 Step2: Confirm the resolution of servo motor encoder.
1038
1039 Step3: Confirm the parameters such as mechanical specifications, positioning accuracy, etc, and determine the load displacement corresponding to one position instruction output by the host computer.
1040
1041 Step4: Combine the mechanical parameters and the load displacement corresponding to one position instruction, calculate the position instruction value required for one rotation of the load shaft.
1042
1043 Step5: Calculate the value of electronic gear ratio according to formula below.
1044
1045 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_783be3e5149faf1e.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_783be3e5149faf1e.gif"]]
1046
1047 **(3) lectronic gear ratio switch setting**
1048
1049
1050 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1051
1052 (% class="table-bordered" %)
1053 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1054 **Setting method**
1055 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1056 **Effective time**
1057 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1058 |(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1059 Shutdown setting
1060 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1061 Effective immediately
1062 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1063 Instruction pulse
1064
1065 unit
1066 )))
1067 |(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1068 Electronic gear 1
1069
1070 numerator
1071 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1072 Effective immediately
1073 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1074 |(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1075 Electronic gear 1
1076
1077 denominator
1078 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1079 Operation setting
1080 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1081 Effective immediately
1082 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1083 |(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1084 Electronic gear 2
1085
1086 numerator
1087 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1088 Effective immediately
1089 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1090 |(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1091 Electronic gear 2
1092
1093 denominator
1094 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1095 Effective immediately
1096 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1097
1098 Table 6-20 Electronic gear ratio function code
1099
1100 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1101
1102 (% class="table-bordered" %)
1103 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1104 |(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1105 DI port logic invalid: electronic gear ratio 1
1106
1107 DI port logic valid: electronic gear ratio 2
1108 )))
1109
1110 Table 6-21 Switching conditions of electronic gear ratio group
1111
1112 |(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3c885bb1dd9f482d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3c885bb1dd9f482d.gif"]]
1113 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_936c435aaa56afe9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_936c435aaa56afe9.gif"]]
1114 |(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f7cc7443de5ae1fd.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f7cc7443de5ae1fd.gif"]]
1115 |(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3b79819a4d341e9c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3b79819a4d341e9c.gif"]]
1116
1117 Table 6-22 Application of electronic gear ratio
1118
1119 When the function code P00-16 is not 0, the electronic gear ratio [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3c885bb1dd9f482d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3c885bb1dd9f482d.gif"]] is invalid.
1120
1121 == **Position instruction filtering** ==
1122
1123 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1124
1125 In the following situations, position instruction filtering should be added.
1126
1127 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1128 1. The pulse instruction frequency is low;
1129 1. When the electronic gear ratio is 10 times or more.
1130
1131 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1132
1133 (% style="text-align:center" %)
1134 [[image:image-20220608170455-23.png]]
1135
1136 Figure 6-25 Position instruction filtering diagram
1137
1138 (% class="table-bordered" %)
1139 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1140 **Setting method**
1141 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1142 **Effective time**
1143 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1144 |(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1145 Shutdown setting
1146 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1147 Effective immediately
1148 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((
1149 0: 1st-order low-pass filtering
1150
1151 1: average filtering
1152 )))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1153 |(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1154 Effective immediately
1155 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1156 |(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1157 Effective immediately
1158 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1159
1160 Table 6-23 Position instruction filter function code
1161
1162 == **Clearance of position deviation** ==
1163
1164 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1165
1166 Position deviation = (position instruction-position feedback) (encoder unit)
1167
1168 == **Position-related DO output function** ==
1169
1170 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1171
1172 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1173 **Positioning completion/positioning approach output**
1174
1175 (% class="wikigeneratedid" %)
1176 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1177
1178 (% style="text-align:center" %)
1179 [[image:image-20220608170550-24.png]]
1180
1181 Figure 6-26 Positioning completion signal output diagram
1182
1183 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1184
1185 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1186
1187 (% style="text-align:center" %)
1188 [[image:image-20220608170650-25.png]]
1189
1190 Figure 6-27 Positioning completion signal output with increased window filter time diagram
1191
1192 (% class="table-bordered" %)
1193 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1194 **Setting method**
1195 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1196 **Effective time**
1197 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1198 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1199 Operation setting
1200 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1201 Effective immediately
1202 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1203 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1204 Operation setting
1205 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1206 Effective immediately
1207 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1208 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1209 Operation setting
1210 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1211 Effective immediately
1212 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms
1213 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1214 Operation setting
1215 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1216 Effective immediately
1217 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms
1218
1219 Table 6-24 Function code parameters of positioning completion
1220
1221 (% class="table-bordered" %)
1222 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1223 |(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1224 |(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1225 P-NEAR positioning close
1226 )))|(% style="text-align:center; vertical-align:middle" %)(((
1227 Output this signal indicates that the servo drive position is close.
1228 )))
1229
1230 Table 6-25 Description of DO rotation detection function code
1231
1232 = **Speed control mode** =
1233
1234 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1235
1236 (% style="text-align:center" %)
1237 [[image:6.28.jpg||height="260" width="806"]]
1238
1239 Figure 6-28 Speed control block diagram
1240
1241 == **Speed instruction input setting** ==
1242
1243 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1244
1245 (% class="table-bordered" %)
1246 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1247 **Setting method**
1248 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1249 **Effective time**
1250 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1251 |(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1252 Shutdown setting
1253 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1254 Effective immediately
1255 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1256 0: internal speed instruction
1257
1258 1: AI_1 analog input (not supported by VD2F)
1259 )))|(% style="text-align:center; vertical-align:middle" %)-
1260
1261 Table 6-26 Speed instruction source parameter
1262
1263 **(1) Speed instruction source is internal speed instruction (P01-01=0)**
1264
1265 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1266
1267 (% class="table-bordered" %)
1268 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1269 **Setting method**
1270 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1271 **Effective time**
1272 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1273 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1274 Internal speed Instruction 0
1275 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1276 Operation setting
1277 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1278 Effective immediately
1279 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1280 Internal speed instruction 0
1281
1282 When DI input port:
1283
1284 15-INSPD3: 0
1285
1286 14-INSPD2: 0
1287
1288 13-INSPD1: 0,
1289
1290 select this speed instruction to be effective.
1291 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1292 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1293 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1294 Internal speed Instruction 1
1295 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1296 Operation setting
1297 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1298 Effective immediately
1299 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1300 Internal speed instruction 1
1301
1302 When DI input port:
1303
1304 15-INSPD3: 0
1305
1306 14-INSPD2: 0
1307
1308 13-INSPD1: 1,
1309
1310 Select this speed instruction to be effective.
1311 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1312 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1313 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1314 Internal speed Instruction 2
1315 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1316 Operation setting
1317 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1318 Effective immediately
1319 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1320 Internal speed instruction 2
1321
1322 When DI input port:
1323
1324 15-INSPD3: 0
1325
1326 14-INSPD2: 1
1327
1328 13-INSPD1: 0,
1329
1330 Select this speed instruction to be effective.
1331 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1332 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1333 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1334 Internal speed Instruction 3
1335 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1336 Operation setting
1337 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1338 Effective immediately
1339 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1340 Internal speed instruction 3
1341
1342 When DI input port:
1343
1344 15-INSPD3: 0
1345
1346 14-INSPD2: 1
1347
1348 13-INSPD1: 1,
1349
1350 Select this speed instruction to be effective.
1351 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1352 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1353
1354 (% class="table-bordered" %)
1355 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1356 Internal speed Instruction 4
1357 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1358 Operation setting
1359 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1360 Effective immediately
1361 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1362 Internal speed instruction 4
1363
1364 When DI input port:
1365
1366 15-INSPD3: 1
1367
1368 14-INSPD2: 0
1369
1370 13-INSPD1: 0,
1371
1372 Select this speed instruction to be effective.
1373 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1374 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1375 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1376 Internal speed Instruction 5
1377 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1378 Operation setting
1379 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1380 Effective immediately
1381 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1382 Internal speed instruction 5
1383
1384 When DI input port:
1385
1386 15-INSPD3: 1
1387
1388 14-INSPD2: 0
1389
1390 13-INSPD1: 1,
1391
1392 Select this speed instruction to be effective.
1393 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1394 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1395 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1396 Internal speed Instruction 6
1397 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1398 Operation setting
1399 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1400 Effective immediately
1401 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1402 Internal speed instruction 6
1403
1404 When DI input port:
1405
1406 15-INSPD3: 1
1407
1408 14-INSPD2: 1
1409
1410 13-INSPD1: 0,
1411
1412 Select this speed instruction to be effective.
1413 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1414 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1415 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1416 Internal speed Instruction 7
1417 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1418 Operation setting
1419 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1420 Effective immediately
1421 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1422 Internal speed instruction 7
1423
1424 When DI input port:
1425
1426 15-INSPD3: 1
1427
1428 14-INSPD2: 1
1429
1430 13-INSPD1: 1,
1431
1432 Select this speed instruction to be effective.
1433 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1434 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1435
1436 Table 6-27 Internal speed instruction parameters
1437
1438 ✎**Note: **“*” means the set range of VD2F servo drive.
1439
1440 (% class="table-bordered" %)
1441 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1442 |(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1443 |(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1444 |(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1445
1446 Table 6-28 DI multi-speed function code description
1447
1448 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1449
1450 (% class="table-bordered" %)
1451 |(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1452 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1453 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1454 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1455 |(% colspan="5" %)......
1456 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1457
1458 Table 6-29 Correspondence between INSPD bits and segment numbers
1459
1460 (% style="text-align:center" %)
1461 [[image:image-20220608170845-26.png]]
1462
1463 Figure 6-29 Multi-segment speed running curve
1464
1465 **(2) Speed instruction source is internal speed instruction (P01-01=0)**
1466
1467 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1468
1469 (% style="text-align:center" %)
1470 [[image:image-20220608153341-5.png]]
1471
1472 Figure 6-30 Analog input circuit
1473
1474 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1475
1476 (% style="text-align:center" %)
1477 [[image:image-20220608170955-27.png]]
1478
1479 Figure 6-31 Analog voltage speed instruction setting steps
1480
1481 Explanation of related terms:
1482
1483 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1484
1485 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1486
1487 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1488
1489 (% style="text-align:center" %)
1490 [[image:image-20220608171124-28.png]]
1491
1492 Figure 6-32 AI_1 diagram before and after bias
1493
1494 (% class="table-bordered" %)
1495 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1496 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1497 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1498 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1499 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1500
1501 Table 6-30 AI_1 parameters
1502
1503 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1504
1505 == **Acceleration and deceleration time setting** ==
1506
1507 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1508
1509 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1510
1511 (% style="text-align:center" %)
1512 [[image:image-20220608171314-29.png]]
1513
1514 Figure 6-33 of acceleration and deceleration time diagram
1515
1516 Actual acceleration time T1 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f534257c8134eb35.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]],,
1517
1518 Actual deceleration time T2 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f696c4e8005b5d7.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]],,
1519
1520 (% class="table-bordered" %)
1521 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1522 **Setting method**
1523 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1524 **Effective time**
1525 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1526 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1527 Operation setting
1528 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1529 Effective immediately
1530 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1531 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1532 Operation setting
1533 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1534 Effective immediately
1535 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1536
1537 Table 6-31 Acceleration and deceleration time parameters
1538
1539 == **Speed instruction limit** ==
1540
1541 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1542
1543 1. P01-10: Set the maximum speed limit value
1544 1. P01-12: Set forward speed limit value
1545 1. P01-13: Set reverse speed limit value
1546 1. The maximum speed of the motor: determined by motor model
1547
1548 The actual motor speed limit interval satisfies the following relationship:
1549
1550 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1551
1552 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1553
1554 (% class="table-bordered" %)
1555 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1556 **Setting method**
1557 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1558 **Effective time**
1559 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1560 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1561 Operation setting
1562 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1563 Effective immediately
1564 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1565 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1566 Operation setting
1567 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1568 Effective immediately
1569 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1570 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1571 Operation setting
1572 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1573 Effective immediately
1574 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1575
1576 Table 6-32 Rotation speed related function codes
1577
1578 == **Zero-speed clamp function** ==
1579
1580 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1581
1582 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1583
1584 (% class="table-bordered" %)
1585 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1586 **Setting method**
1587 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1588 **Effective time**
1589 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1590 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1591 Zero-speed clamp function selection
1592 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1593 Operation setting
1594 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1595 Effective immediately
1596 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1597 Set the zero-speed clamp function. In speed mode:
1598
1599 0: Force the speed to 0;
1600
1601 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1602
1603 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1604
1605 3: Invalid, ignore zero-speed clamp input
1606 )))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1607 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1608 Zero-speed clamp speed threshold
1609 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1610 Operation setting
1611 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1612 Effective immediately
1613 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1614
1615 Table 6-33 Zero-speed clamp related parameters
1616
1617 (% style="text-align:center" %)
1618 [[image:image-20220608171549-30.png]]
1619
1620 Figure 6-34 Zero-speed clamp diagram
1621
1622 == **Speed-related DO output function** ==
1623
1624 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1625
1626 **(1) Rotation detection signal**
1627
1628 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1629
1630 (% style="text-align:center" %)
1631 [[image:image-20220608171625-31.png]]
1632
1633 Figure 6-35 Rotation detection signal diagram
1634
1635 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1636
1637 (% class="table-bordered" %)
1638 |(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1639 **Setting method**
1640 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1641 **Effective time**
1642 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1643 |(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1644 Rotation detection
1645
1646 speed threshold
1647 )))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1648 Operation setting
1649 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1650 Effective immediately
1651 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1652
1653 Table 6-34 Rotation detection speed threshold parameters
1654
1655 (% class="table-bordered" %)
1656 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1657 |(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)(((
1658 T-COIN
1659
1660 rotation detection
1661 )))|(((
1662 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1663
1664 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1665 )))
1666
1667 Table 6-35 DO rotation detection function code
1668
1669 **(2) Zero-speed signal**
1670
1671 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1672
1673 (% style="text-align:center" %)
1674 [[image:image-20220608171904-32.png]]
1675
1676 Figure 6-36 Zero-speed signal diagram
1677
1678 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1679
1680 (% class="table-bordered" %)
1681 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1682 **Setting method**
1683 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1684 **Effective time**
1685 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1686 |(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1687 Operation setting
1688 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1689 Effective immediately
1690 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1691
1692 Table 6-36 Zero-speed output signal threshold parameter
1693
1694 (% class="table-bordered" %)
1695 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1696 |(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1697 ZSP zero speed signal
1698 )))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1699
1700 Table 6-37 DO zero-speed signal function code
1701
1702 **(3) Speed consistent signal**
1703
1704 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1705
1706 (% style="text-align:center" %)
1707 [[image:image-20220608172053-33.png]]
1708
1709 Figure 6-37 Speed consistent signal diagram
1710
1711 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1712
1713 (% class="table-bordered" %)
1714 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1715 **Setting method**
1716 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1717 **Effective time**
1718 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1719 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1720 Operationsetting
1721 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1722 Effective immediately
1723 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1724
1725 Table 6-38 Speed consistent signal threshold parameters
1726
1727 (% class="table-bordered" %)
1728 |(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1729 |(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1730 U-COIN consistent speed
1731 )))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1732
1733 Table 6-39 DO speed consistent function code
1734
1735 **(4) Speed approach signal**
1736
1737 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1738
1739 (% style="text-align:center" %)
1740 [[image:image-20220608172207-34.png]]
1741
1742 Figure 6-38 Speed approaching signal diagram
1743
1744 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1745
1746 (% class="table-bordered" %)
1747 |(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1748 **Setting method**
1749 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1750 **Effective time**
1751 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1752 |(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1753 Operation setting
1754 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1755 Effective immediately
1756 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1757
1758 Table 6-40 Speed approaching signal threshold parameters
1759
1760 (% class="table-bordered" %)
1761 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1762 |(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1763 V-NEAR speed approach
1764 )))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1765
1766 Table 6-41 DO speed approach function code
1767
1768 = **Torque control mode** =
1769
1770 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1771
1772 (% style="text-align:center" %)
1773 [[image:image-20220608172405-35.png]]
1774
1775 Figure 6-39 Torque mode diagram
1776
1777 == **Torque instruction input setting** ==
1778
1779 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1780
1781 (% class="table-bordered" %)
1782 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1783 **Setting method**
1784 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1785 **Effective time**
1786 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1787 |(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1788 Shutdown setting
1789 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1790 Effective immediately
1791 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1792 0: internal torque instruction
1793
1794 1: AI_1 analog input(not supported by VD2F)
1795 )))|(% style="text-align:center; vertical-align:middle" %)-
1796
1797 Table 6-42 Torque instruction source parameter
1798
1799 **(1) Torque instruction source is internal torque instruction (P01-07=0)**
1800
1801 Torque instruction source is from inside, the value is set by function code P01-08.
1802
1803 (% class="table-bordered" %)
1804 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1805 **Setting method**
1806 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1807 **Effective time**
1808 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1809 |(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1810 Operation setting
1811 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1812 Effective immediately
1813 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1814
1815 Table 6-43 Torque instruction keyboard set value
1816
1817 **(2) Torque instruction source is internal torque instruction (P01-07=1)**
1818
1819 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1820
1821 (% style="text-align:center" %)
1822 [[image:image-20220608153646-7.png||height="213" width="408"]]
1823
1824 Figure 6-40 Analog input circuit
1825
1826 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1827
1828 (% style="text-align:center" %)
1829 [[image:image-20220608172502-36.png]]
1830
1831 Figure 6-41 Analog voltage torque instruction setting steps
1832
1833 Explanation of related terms:
1834
1835 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1836
1837 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1838
1839 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1840
1841 (% style="text-align:center" %)
1842 [[image:image-20220608172611-37.png]]
1843
1844 Figure 6-42 AI_1 diagram before and after bias
1845
1846 (% class="table-bordered" %)
1847 |(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1848 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1849 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1850 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1851 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1852
1853 Table 6-44 AI_1 parameters
1854
1855 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1856
1857 == **Torque instruction filtering** ==
1858
1859 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1860
1861 (% class="table-bordered" %)
1862 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1863 **Setting method**
1864 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1865 **Effective time**
1866 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1867 |(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1868 Operation setting
1869 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1870 Effective immediately
1871 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1872
1873 Table 6-45 Torque filtering time constant parameter details
1874
1875 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1876
1877 (% style="text-align:center" %)
1878 [[image:image-20220608172646-38.png]]
1879
1880 Figure 6-43 Torque instruction-first-order filtering diagram
1881
1882 == **Torque instruction limit** ==
1883
1884 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1885
1886 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1887
1888 (% style="text-align:center" %)
1889 [[image:image-20220608172806-39.png]]
1890
1891 Figure 6-44 Torque instruction limit diagram
1892
1893 **(1) Set torque limit source**
1894
1895 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1896
1897 (% class="table-bordered" %)
1898 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1899 **Setting method**
1900 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1901 **Effective time**
1902 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1903 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1904 Torque limit source
1905 )))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1906 Shutdown setting
1907 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1908 Effective immediately
1909 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1910 0: internal value
1911
1912 1: AI_1 analog input
1913
1914 (not supported by VD2F)
1915 )))|(% style="text-align:center; vertical-align:middle" %)-
1916
1917 1) Torque limit source is internal torque instruction (P01-14=0)
1918
1919 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1920
1921 (% class="table-bordered" %)
1922 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1923 **Setting method**
1924 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1925 **Effective time**
1926 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1927 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1928 Forward torque limit
1929 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1930 Operation setting
1931 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1932 Effective immediately
1933 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1934 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1935 Reverse torque limit
1936 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1937 Operation setting
1938 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1939 Effective immediately
1940 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1941
1942 Table 6-46 Torque limit parameter details
1943
1944 2) Torque limit source is external (P01-14=1)
1945
1946 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1947
1948 **(2) Set torque limit DO signal output**
1949
1950 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1951
1952 (% class="table-bordered" %)
1953 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1954 |(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1955 T-LIMIT in torque limit
1956 )))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1957
1958 Table 6-47 DO torque limit function codes
1959
1960 == **Speed limit in torque mode** ==
1961
1962 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1963
1964 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1965
1966 |(((
1967 (% style="text-align:center" %)
1968 [[image:image-20220608172910-40.png]]
1969 )))|(((
1970 (% style="text-align:center" %)
1971 [[image:image-20220608173155-41.png]]
1972 )))
1973 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1974
1975 (% class="table-bordered" %)
1976 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1977 **Setting method**
1978 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1979 **Effective time**
1980 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1981 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1982 Forward torque
1983
1984 limit in torque mode
1985 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1986 Operation setting
1987 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1988 Effective immediately
1989 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1990 Forward torque
1991
1992 limit in torque mode
1993 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1994 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1995 Reverse torque
1996
1997 limit in torque mode
1998 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1999 Operation setting
2000 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
2001 Effective immediately
2002 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
2003 Reverse torque
2004
2005 limit in torque mode
2006 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
2007
2008 Table 6-48 Speed limit parameters in torque mode
2009
2010 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__.
2011
2012 == **Torque-related DO output functions** ==
2013
2014 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2015
2016 **Torque arrival**
2017
2018 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2019
2020 (% style="text-align:center" %)
2021 [[image:image-20220608173541-42.png]]
2022
2023 Figure 6-47 Torque arrival output diagram
2024
2025 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2026
2027 (% class="table-bordered" %)
2028 |(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2029 **Setting method**
2030 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2031 **Effective time**
2032 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2033 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2034 Torque arrival
2035
2036 threshold
2037 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2038 Operation setting
2039 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2040 Effective immediately
2041 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2042 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2043
2044 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2045
2046 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2047 )))|(% style="text-align:center; vertical-align:middle" %)%
2048 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2049 Torque arrival
2050
2051 hysteresis
2052 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2053 Operation setting
2054 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2055 Effective immediately
2056 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2057
2058 Table 6-49 Torque arrival parameters
2059
2060 (% class="table-bordered" %)
2061 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2062 |(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2063 T-COIN torque arrival
2064 )))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2065
2066 Table 6-50 DO Torque Arrival Function Code
2067
2068 = **Mixed control mode** =
2069
2070 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2071
2072 Position mode  Speed mode
2073
2074 Position mode  Torque mode
2075
2076 Speed mode  Torque mode
2077
2078 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2079
2080 (% class="table-bordered" %)
2081 |(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2082 **Setting method**
2083 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2084 **Effective time**
2085 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2086 |(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2087 Shutdown setting
2088 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2089 Shutdown setting
2090 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((
2091 1: Position control
2092
2093 2: Speed control
2094
2095 3: Torque control
2096
2097 4: Position/speed mixed control
2098
2099 5: Position/torque mixed control
2100
2101 6: Speed/torque mixed control
2102 )))|(% style="text-align:center; vertical-align:middle" %)-
2103
2104 Table 6-51 Mixed control mode parameters
2105
2106 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2107
2108 (% class="table-bordered" %)
2109 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2110 |(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2111 (% class="table-bordered" %)
2112 |(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2113 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2114 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2115 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2116 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2117 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2118 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2119 )))
2120
2121 Table 6-52 Description of DI function codes in control mode
2122
2123 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2124
2125 = **Absolute system** =
2126
2127 == **Overview** ==
2128
2129 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2130
2131 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2132
2133 == **Single-turn absolute value system** ==
2134
2135 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2136
2137 (% class="table-bordered" %)
2138 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2139 |(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2140
2141 Table 6-53 Single-turn absolute encoder information
2142
2143 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2144
2145 (% style="text-align:center" %)
2146 [[image:image-20220608173618-43.png]]
2147
2148 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2149
2150 == **Multi-turn absolute value system** ==
2151
2152 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2153
2154 (% class="table-bordered" %)
2155 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2156 |(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2157 |(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2158
2159 Table 6-54 Multi-turn absolute encoder information
2160
2161 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2162
2163 (% style="text-align:center" %)
2164 [[image:image-20220608173701-44.png]]
2165
2166 Figure 6-49 The relationship between encoder feedback position and rotating load position
2167
2168 == **Encoder feedback data** ==
2169
2170 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2171
2172 (% class="table-bordered" %)
2173 |(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2174 |(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2175 |(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2176 |(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2177
2178 Table 6-55 Encoder feedback data
2179
2180 == **Absolute value system encoder battery box use precautions** ==
2181
2182 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2183
2184 (% style="text-align:center" %)
2185 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e9fac7759607dce6.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e9fac7759607dce6.png"]]
2186
2187 Figure 6-50 the encoder battery box
2188
2189 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. The specific replacement method is as follows:
2190
2191 1. Step1 The servo drive is powered on and is in a non-operational state;
2192 1. Step2 Replace the battery;
2193 1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings.
2194
2195 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2196
2197 (% class="table-bordered" %)
2198 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2199 **Setting method**
2200 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2201 **Effective time**
2202 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2203 |(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2204 Shutdown setting
2205 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2206 Effective immediately
2207 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2208 0: No operation
2209
2210 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2211
2212 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2213 )))|(% style="text-align:center; vertical-align:middle" %)-
2214
2215 Table 6-56 Absolute encoder reset enable parameter
2216
2217 ✎**Note: **If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2218
2219 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2220
2221 = **Overview** =
2222
2223 == **VDI** ==
2224
2225 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2226
2227 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2228
2229 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2230
2231 (% style="text-align:center" %)
2232 [[image:image-20220608173804-46.png]]
2233
2234 Figure 6-51 VDI_1 setting steps
2235
2236 (% class="table-bordered" %)
2237 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2238 **Setting method**
2239 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2240 **Effective time**
2241 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2242 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2243 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2244
2245 VDI_1 input level:
2246
2247 0: low level
2248
2249 1: high level
2250 )))|(% style="text-align:center; vertical-align:middle" %)-
2251 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2252 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2253
2254 VDI_2 input level:
2255
2256 0: low level
2257
2258 1: high level
2259 )))|(% style="text-align:center; vertical-align:middle" %)-
2260 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2261 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2262
2263 VDI_3 input level:
2264
2265 0: low level
2266
2267 1: high level
2268 )))|(% style="text-align:center; vertical-align:middle" %)-
2269 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2270 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2271
2272 VDI_4 input level:
2273
2274 0: low level
2275
2276 1: high level
2277 )))|(% style="text-align:center; vertical-align:middle" %)-
2278 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2279 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2280
2281 VDI_5 input level:
2282
2283 0: low level
2284
2285 1: high level
2286 )))|(% style="text-align:center; vertical-align:middle" %)-
2287 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2288 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2289
2290 VDI_6 input level:
2291
2292 0: low level
2293
2294 1: high level
2295 )))|(% style="text-align:center; vertical-align:middle" %)-
2296 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2297 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2298
2299 VDI_7 input level:
2300
2301 0: low level
2302
2303 1: high level
2304 )))|(% style="text-align:center; vertical-align:middle" %)-
2305 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2306 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2307
2308 VDI_8 input level:
2309
2310 0: low level
2311
2312 1: high level
2313 )))|(% style="text-align:center; vertical-align:middle" %)-
2314
2315 Table 6-57 Virtual VDI parameters
2316
2317 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2318
2319 == **Port filtering time** ==
2320
2321 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2322
2323 (% class="table-bordered" %)
2324 |(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2325 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2476a4a02e6f0760.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2476a4a02e6f0760.gif"]]
2326 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_ad0a0d3f9b9908b1.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_ad0a0d3f9b9908b1.gif"]]
2327
2328 Table 6-58 DI terminal channel logic selection
2329
2330 == **VDO** ==
2331
2332 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2333
2334 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2335
2336 (% style="text-align:center" %)
2337 [[image:image-20220608173957-48.png]]
2338
2339 Figure 6-52 VDO_2 setting steps
2340
2341 (% class="table-bordered" %)
2342 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2343 **Setting method**
2344 )))|(% style="text-align:center; vertical-align:middle" %)(((
2345 **Effective time**
2346 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2347 |(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2348 VDO_1 output level:
2349
2350 0: low level
2351
2352 1: high level
2353 )))|(% style="text-align:center; vertical-align:middle" %)-
2354 |(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2355 VDO_2 output level:
2356
2357 0: low level
2358
2359 1: high level
2360 )))|(% style="text-align:center; vertical-align:middle" %)-
2361 |(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2362 VDO_3 output level:
2363
2364 0: low level
2365
2366 1: high level
2367 )))|(% style="text-align:center; vertical-align:middle" %)-
2368 |(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2369 VDO_4 output level:
2370
2371 0: low level
2372
2373 1: high level
2374 )))|(% style="text-align:center; vertical-align:middle" %)-
2375
2376 Table 6-59 Communication control DO function parameters
2377
2378 (% class="table-bordered" %)
2379 |(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2380 |(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2381 |(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2382 |(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2383 |(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2384
2385 Table 6-60 VDO function number
2386
2387 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2388
2389 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2390
2391 == **Motor overload protection** ==
2392
2393 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2394
2395 (% class="table-bordered" %)
2396 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2397 **Setting method**
2398 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2399 **Effective time**
2400 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2401 |(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2402 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2403
2404 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2405 )))|(% style="text-align:center; vertical-align:middle" %)%
2406
2407 In the following cases, it could be modified according to the actual heat generation of the motor
2408
2409 1. The motor works in a place with high ambient temperature
2410 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2411
2412 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2413
2414 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2415
2416 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.