Wiki source code of 06 Operation

Version 35.1 by Joey on 2022/06/10 15:17

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5
6 |**No.**|**Content**
7 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
8 |1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
9 |2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
10 |3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
11 |4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
12 |5|Servo drive and servo motor must be grounded reliably.
13 |6|When using an external braking resistor, the short wiring between drive C and D must be removed.
14 |7|The force of all cables is within the specified range.
15 |8|The wiring terminals have been insulated.
16 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
17 |1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
18 |2|The servo drive and external braking resistor are not placed on combustible objects.
19 |3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
20
21 Table 6-1 Check contents before operation
22
23 == **Power-on** ==
24
25 **(1) Connect the main circuit power supply**
26
27 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
28
29 If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
30
31 **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
32
33 == **Jog operation** ==
34
35 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
36
37 **(1) Panel jog operation**
38
39 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
40
41 **(2) Jog operation of servo debugging platform**
42
43 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
44
45
46 (% class="table-bordered" %)
47 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
48 **Setting method**
49 )))|(% style="text-align:center; vertical-align:middle" %)(((
50 **Effective time**
51 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
52 |(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
53 Operation setting
54 )))|(% style="text-align:center; vertical-align:middle" %)(((
55 Effective immediately
56 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
57
58 Table 6-2 JOG speed parameter
59
60 == **Rotation direction selection** ==
61
62 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
63
64 (% class="table-bordered" %)
65 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
66 **Setting method**
67 )))|(% style="text-align:center; vertical-align:middle" %)(((
68 **Effective time**
69 )))|(% style="text-align:center; vertical-align:middle" %)(((
70 **Default value**
71 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
72 |(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
73 Shutdown setting
74 )))|(% style="text-align:center; vertical-align:middle" %)(((
75 Effective immediately
76 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
77 Forward rotation: Face the motor shaft to watch
78
79 0: standard setting (CW is forward rotation)
80
81 1: reverse mode (CCW is forward rotation)
82 )))|(% style="text-align:center; vertical-align:middle" %)-
83
84 Table 6-3 Rotation direction parameters** **
85
86 == **Braking resistor** ==
87
88 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
89
90 The basis for judging whether the braking resistor is built-in or external.
91
92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
93 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
94
95 (% class="table-bordered" %)
96 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
97 **Setting method**
98 )))|(% style="text-align:center; vertical-align:middle" %)(((
99 **Effective time**
100 )))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
101 |(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
102 Operation setting
103 )))|(% style="text-align:center; vertical-align:middle" %)(((
104 Effective immediately
105 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
106 0: use built-in braking resistor
107
108 1: use external braking resistor and natural cooling
109
110 2: use external braking resistor and forced air cooling; (cannot be set)
111
112 3: No braking resistor is used, it is all absorbed by capacitor.
113 )))|(% style="text-align:center; vertical-align:middle" %)-
114 |(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
115 |(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
116 Operation setting
117 )))|(% style="text-align:center; vertical-align:middle" %)(((
118 Effective immediately
119 )))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
120 |(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
121 Operation setting
122 )))|(% style="text-align:center; vertical-align:middle" %)(((
123 Effective immediately
124 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
125
126 Table 6-4 Braking resistor parameters
127
128 == **Servo operation** ==
129
130 **(1) Set the servo enable (S-ON) to valid (ON)**
131
132 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
133
134 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
135
136 **(2) Input the instruction and the motor rotates**
137
138 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
139
140 **(3) Timing diagram of power on**
141
142 (% style="text-align:center" %)
143 [[image:image-20220608163014-1.png]]
144
145 Figure 6-1 Timing diagram of power on
146
147 == **Servo shutdown** ==
148
149 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
150
151 (% class="table-bordered" %)
152 |Shutdown mode|Shutdown description|Shutdown characteristics
153 |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
154 |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
155
156 Table 6-5 Comparison of two shutdown modes
157
158 (% class="table-bordered" %)
159 |(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
160 |(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
161
162 Table 6-6 Comparison of two shutdown status
163
164 **(1) Servo enable (S-ON) OFF shutdown**
165
166 The related parameters of the servo OFF shutdown mode are shown in the table below.
167
168 (% class="table-bordered" %)
169 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
170 **Setting method**
171 )))|(% style="text-align:center; vertical-align:middle" %)(((
172 **Effective time**
173 )))|(% style="text-align:center; vertical-align:middle" %)(((
174 **Default value**
175 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
176 |(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
177 Shutdown
178
179 setting
180 )))|(% style="text-align:center; vertical-align:middle" %)(((
181 Effective
182
183 immediately
184 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
185 0: Free shutdown, and the motor shaft remains free status.
186
187 1: Zero-speed shutdown, and the motor shaft remains free status.
188 )))|(% style="text-align:center; vertical-align:middle" %)-
189
190 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
191
192 **(2) Emergency shutdown**
193
194 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
195
196 **(3) Overtravel shutdown**
197
198 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
199
200 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
201
202 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
203
204 (% class="table-bordered" %)
205 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
206 **Setting method**
207 )))|(% style="text-align:center; vertical-align:middle" %)(((
208 **Effective time**
209 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
210 |(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
211 0: OFF (not used)
212
213 01: S-ON servo enable
214
215 02: A-CLR fault and Warning Clear
216
217 03: POT forward drive prohibition
218
219 04: NOT Reverse drive prohibition
220
221 05: ZCLAMP Zero speed
222
223 06: CL Clear deviation counter
224
225 07: C-SIGN Inverted instruction
226
227 08: E-STOP Emergency stop
228
229 09: GEAR-SEL Electronic Gear Switch 1
230
231 10: GAIN-SEL gain switch
232
233 11: INH Instruction pulse prohibited input
234
235 12: VSSEL Vibration control switch input
236
237 13: INSPD1 Internal speed instruction selection 1
238
239 14: INSPD2 Internal speed instruction selection 2
240
241 15: INSPD3 Internal speedinstruction selection 3
242
243 16: J-SEL inertia ratio switch (not implemented yet)
244
245 17: MixModesel mixed mode selection
246
247 20: Internal multi-segment position enable signal
248
249 21: Internal multi-segment position selection 1
250
251 22: Internal multi-segment position selection 2
252
253 23: Internal multi-segment position selection 3
254
255 24: Internal multi-segment position selection 4
256
257 Others: reserved
258 )))|(% style="text-align:center; vertical-align:middle" %)-
259 |(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
260 Effective immediately
261 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
262 DI port input logic validity function selection.
263
264 0: Normally open input. Active low level (switch on);
265
266 1: Normally closed input. Active high level (switch off);
267 )))|(% style="text-align:center; vertical-align:middle" %)-
268 |(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
269 Effective immediately
270 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
271 Select the DI_3 port type to enable
272
273 0: Hardware DI_3 input terminal
274
275 1: virtual VDI_3 input terminal
276 )))|(% style="text-align:center; vertical-align:middle" %)-
277
278 (% class="table-bordered" %)
279 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
280 Operation setting
281 )))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
282 again Power-on
283 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
284 0 off (not used)
285
286 01: SON Servo enable
287
288 02: A-CLR Fault and Warning Clear
289
290 03: POT Forward drive prohibition
291
292 04: NOT Reverse drive prohibition
293
294 05: ZCLAMP Zero speed
295
296 06: CL Clear deviation counter
297
298 07: C-SIGN Inverted instruction
299
300 08: E-STOP Emergency shutdown
301
302 09: GEAR-SEL Electronic Gear Switch 1
303
304 10: GAIN-SEL gain switch
305
306 11: INH Instruction pulse prohibited input
307
308 12: VSSEL Vibration control switch input
309
310 13: INSPD1 Internal speed instruction selection 1
311
312 14: INSPD2 Internal speed instruction selection 2
313
314 15: INSPD3 Internal speed instruction selection 3
315
316 16: J-SEL inertia ratio switch (not implemented yet)
317
318 17: MixModesel mixed mode selection
319
320 20: Internal multi-segment position enable signal
321
322 21: Internal multi-segment position selection 1
323
324 22: Internal multi-segment position selection 2
325
326 23: Internal multi-segment position selection 3
327
328 24: Internal multi-segment position selection 4
329
330 Others: reserved
331 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
332 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
333 Effective immediately
334 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
335 DI port input logic validity function selection.
336
337 0: Normally open input. Active low level (switch on);
338
339 1: Normally closed input. Active high level (switch off);
340 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
341 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
342 Effective immediately
343 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
344 Select the DI_4 port type to enable
345
346 0: Hardware DI_4 input terminal
347
348 1: virtual VDI_4 input terminal
349 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
350
351 Table 6-8 DI3 and DI4 channel parameters
352
353 **(4) Malfunction shutdown**
354
355 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
356
357 == **Brake device** ==
358
359 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
360
361 (% class="table-bordered" %)
362 |(((
363 (% style="text-align:center" %)
364 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
365 )))
366 |(((
367 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
368
369 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
370
371 ✎The brake coil has no polarity;
372
373 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
374
375 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
376 )))
377
378 **(1) Wiring of brake device**
379
380 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
381
382 (% style="text-align:center" %)
383 [[image:image-20220608163136-2.png]]
384
385 Figure 6-2 VD2B servo drive brake wiring
386
387 (% class="table-bordered" %)
388 |(((
389 (% style="text-align:center" %)
390 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
391 )))
392 |(((
393 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
394
395 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
396
397 ✎It is recommended to use cables above 0.5 mm².
398 )))
399
400 **(2) Brake software setting**
401
402 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
403
404 Related function code is as below.
405
406 (% class="table-bordered" %)
407 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
408 **Effective time**
409 )))
410 |(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
411 BRK-OFF Brake output
412 )))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
413
414 Table 6-2 Relevant function codes for brake setting
415
416 (% class="table-bordered" %)
417 |(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
418 **Setting method**
419 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
420 **Effective time**
421 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
422 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
423 Operation setting
424 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
425 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
426 Operation setting
427 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
428 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
429 Operation setting
430 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
431 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
432
433 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
434 )))|(% style="text-align:center; vertical-align:middle" %)rpm
435 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
436 Operation setting
437 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
438 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
439
440 When brake output (BRK-OFF) is not allocated, this function code has no effect.
441 )))|(% style="text-align:center; vertical-align:middle" %)ms
442
443 Table 6-9 Brake setting function codes
444
445 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
446
447 **(3) Servo drive brake timing in normal state**
448
449 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
450
451 1) Brake timing when servo motor is stationary
452
453 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
454
455 (% class="table-bordered" %)
456 |(((
457 (% style="text-align:center" %)
458 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
459 )))
460 |(((
461 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
462
463 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
464 )))
465
466 (% style="text-align:center" %)
467 [[image:image-20220608163304-3.png]]
468
469 Figure 6-3 Brake Timing of when the motor is stationary
470
471 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
472
473 2) The brake timing when servo motor rotates
474
475 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
476
477 (% class="table-bordered" %)
478 |(((
479 (% style="text-align:center" %)
480 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
481 )))
482 |(((
483 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
484
485 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
486
487 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
488
489 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
490
491 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
492 )))
493
494 (% style="text-align:center" %)
495 [[image:image-20220608163425-4.png]]
496
497 Figure 6-4 Brake timing when the motor rotates
498
499 **(4) Brake timing when the servo drive fails**
500
501 The brake timing (free shutdown) in the fault status is as follows.
502
503 (% style="text-align:center" %)
504 [[image:image-20220608163541-5.png]]
505
506 Figure 6-5 The brake timing (free shutdown) in the fault state
507
508 = **Position control mode** =
509
510 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
511
512 (% style="text-align:center" %)
513 [[image:image-20220608163643-6.png]]
514
515 Figure 6-6 Position control diagram
516
517 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
518
519 (% class="table-bordered" %)
520 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
521 **Setting method**
522 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
523 **Effective time**
524 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
525 |(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
526 Operation setting
527 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
528 immediately Effective
529 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
530 0: position control
531
532 2: speed control
533
534 3: torque control
535
536 4: position/speed mix control
537
538 5: position/torque mix control
539
540 6: speed /torque mix control
541 )))|(% style="text-align:center; vertical-align:middle" %)-
542
543 Table 6-10 Control mode parameters
544
545 == **Position instruction input setting** ==
546
547 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
548
549 (% class="table-bordered" %)
550 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
551 **Setting method**
552 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
553 **Effective time**
554 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
555 |(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
556 Operation setting
557 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
558 immediately Effective
559 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
560 0: pulse instruction
561
562 1: internal position instruction
563 )))|(% style="text-align:center; vertical-align:middle" %)-
564
565 Table 6-11 Position instruction source parameter
566
567 **(1) The source of position instruction is pulse instruction (P01-06=0)**
568
569 1) Low-speed pulse instruction input
570
571 (% class="table-bordered" %)
572 |(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
573 |(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
574 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
575
576 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
577
578 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
579
580 (% class="table-bordered" %)
581 |(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
582 |(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
583 |(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
584
585 Table 6-12 Pulse input specifications
586
587 1.Differential input
588
589 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
590
591 (% style="text-align:center" %)
592 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
593
594 Figure 6-8 Differential input connection
595
596 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
597
598 2.Open collector input
599
600 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
601
602 (% style="text-align:center" %)
603 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
604
605 Figure 6-9 Open collector input connection
606
607 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
608
609 2) Position pulse frequency and anti-interference level
610
611 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
612
613 (% style="text-align:center" %)
614 [[image:image-20220608163952-8.png]]
615
616 Figure 6-10 Example of filtered signal waveform
617
618 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
619
620 (% class="table-bordered" %)
621 |(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
622 **Setting method**
623 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
624 **Effective time**
625 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:71px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:349px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
626 |(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
627 Shutdown setting
628 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
629 Effective immediately
630 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)300|(% style="text-align:center; vertical-align:middle; width:71px" %)1 to 500|(% colspan="2" style="width:349px" %)Set the maximum frequency of external pulse instruction|KHz
631 |(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
632 Operation setting
633 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:159px" %)(((
634 Power-on again
635 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:105px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:71px" %)0 to 9|(% colspan="2" style="width:349px" %)(((
636 Set the anti-interference level of external pulse instruction.
637
638 0: no filtering;
639
640 1: Filtering time 128ns
641
642 2: Filtering time 256ns
643
644 3: Filtering time 512ns
645
646 4: Filtering time 1.024us
647
648 5: Filtering time 2.048us
649
650 6: Filtering time 4.096us
651
652 7: Filtering time 8.192us
653
654 8: Filtering time 16.384us
655 )))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
656 |(% rowspan="2" style="width:29px" %)9|VD2: Filtering time 25.5us
657 |VD2F: Filtering time 25.5us
658
659 Table 6-13 Position pulse frequency and anti-interference level parameters
660
661 3) Position pulse type selection
662
663 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
664
665 (% class="table-bordered" %)
666 |(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
667 **Setting method**
668 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
669 **Effective time**
670 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
671 |(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
672 Operation setting
673 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
674 Power-on again
675 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
676 0: direction + pulse (positive logic)
677
678 1: CW/CCW
679
680 2: A, B phase quadrature pulse (4 times frequency)
681
682 3: Direction + pulse (negative logic)
683
684 4: CW/CCW (negative logic)
685
686 5: A, B phase quadrature pulse (4 times frequency negative logic)
687 )))|(% style="text-align:center; vertical-align:middle" %)-
688
689 Table 6-14 Position pulse type selection parameter
690
691 (% class="table-bordered" %)
692 |(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
693 |(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
694 Direction + pulse
695
696 (Positive logic)
697 )))|(% style="text-align:center; vertical-align:middle" %)(((
698 PULSE
699
700 SIGN
701 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
702 |(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
703 PULSE (CW)
704
705 SIGN (CCW)
706 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
707 |(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
708 AB phase orthogonal
709
710 pulse (4 times frequency)
711 )))|(% style="text-align:center; vertical-align:middle" %)(((
712 PULSE (Phase A)
713
714 SIGN (Phase B)
715 )))|(% style="text-align:center; vertical-align:middle" %)(((
716 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
717
718 Phase A is 90° ahead of Phase B
719 )))|(% style="text-align:center; vertical-align:middle" %)(((
720 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
721
722 Phase B is 90° ahead of Phase A
723 )))
724 |(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
725 Direction + pulse
726
727 (Negative logic)
728 )))|(% style="text-align:center; vertical-align:middle" %)(((
729 PULSE
730
731 SIGN
732 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
733 |(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
734 CW/CCW
735
736 (Negative logic)
737 )))|(% style="text-align:center; vertical-align:middle" %)(((
738 PULSE (CW)
739
740 SIGN (CCW)
741 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
742 |(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
743 AB phase orthogonal
744
745 pulse (4 times frequency negative logic)
746 )))|(% style="text-align:center; vertical-align:middle" %)(((
747 PULSE (Phase A)
748
749 SIGN (Phase B)
750 )))|(% style="text-align:center; vertical-align:middle" %)(((
751 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
752
753 B phase is ahead of A phase by 90°
754 )))|(% style="text-align:center; vertical-align:middle" %)(((
755 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
756
757 A phase is ahead of B phase by 90°
758 )))
759
760 Table 6-15 Pulse description
761
762 **(2) The source of position instruction is internal position instruction (P01-06=1)**
763
764 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
765
766 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
767
768 (% style="text-align:center" %)
769 [[image:image-20220608164116-9.png]]
770
771 Figure 6-11 The setting process of multi-segment position
772
773 1) Set multi-segment position running mode
774
775 (% class="table-bordered" %)
776 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
777 **Setting method**
778 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
779 **Effective time**
780 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
781 |(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
782 Shutdown setting
783 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
784 Effective immediately
785 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
786 0: Single running
787
788 1: Cycle running
789
790 2: DI switching running
791 )))|(% style="text-align:center; vertical-align:middle" %)-
792 |(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
793 Shutdown setting
794 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
795 Effective immediately
796 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
797 |(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
798 Shutdown setting
799 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
800 Effective immediately
801 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
802 |(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
803 Shutdown setting
804 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
805 Effective immediately
806 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
807 0: Run the remaining segments
808
809 1: Run again from the start segment
810 )))|(% style="text-align:center; vertical-align:middle" %)-
811 |(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
812 Shutdown setting
813 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
814 Effective immediately
815 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
816 0: Relative position instruction
817
818 1: Absolute position instruction
819 )))|(% style="text-align:center; vertical-align:middle" %)-
820
821 Table 6-16 multi-segment position running mode parameters
822
823 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
824
825 ~1. Single running
826
827 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
828
829 (% style="text-align:center" %)
830 [[image:image-20220608164226-10.png]]
831
832 Figure 6-12 Single running curve (P07-02=1, P07-03=2)
833
834 2. Cycle running
835
836 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
837
838 (% style="text-align:center" %)
839 [[image:image-20220608164327-11.png]]
840
841 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
842
843 |(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
844 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
845
846 3. DI switching running
847
848 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
849
850 (% class="table-bordered" %)
851 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
852 |(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
853 |(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
854 |(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
855 |(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
856
857 Table 6-17 DI function code
858
859 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
860
861 (% class="table-bordered" %)
862 |(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
863 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
864 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
865 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
866 |(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
867 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
868
869 Table 6-18 INPOS corresponds to running segment number
870
871 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
872
873 (% style="text-align:center" %)
874 [[image:image-20220608164545-12.png]]
875
876 Figure 6-14 DI switching running curve
877
878 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
879
880 **A. Run the remaining segments**
881
882 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
883
884 (% style="text-align:center" %)
885 [[image:image-20220608164847-13.png]]
886
887 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
888
889 (% style="text-align:center" %)
890 [[image:image-20220608165032-14.png]]
891
892 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
893
894 **B. Run again from the start segment**
895
896 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
897
898 (% style="text-align:center" %)
899 [[image:image-20220608165343-15.png]]
900
901 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
902
903 (% style="text-align:center" %)
904 [[image:image-20220608165558-16.png]]
905
906 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
907
908 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
909
910 A. Relative position instruction
911
912 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
913
914 |(((
915 (% style="text-align:center" %)
916 [[image:image-20220608165710-17.png]]
917 )))|(((
918 (% style="text-align:center" %)
919 [[image:image-20220608165749-18.png]]
920 )))
921 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
922
923 B. Absolute position instruction
924
925 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
926
927 |(((
928 (% style="text-align:center" %)
929 [[image:image-20220608165848-19.png]]
930 )))|(((
931 (% style="text-align:center" %)
932 [[image:image-20220608170005-20.png]]
933 )))
934 |Figure 6-21 Absolute indication|Figure 6-22 Displacement
935
936 2) Multi-segment position running curve setting
937
938 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
939
940 (% class="table-bordered" %)
941 |(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
942 **Setting method**
943 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
944 **Effective time**
945 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
946 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
947 1st segment
948
949 displacement
950 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
951 Operation setting
952 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
953 Effective immediately
954 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
955 -2147483647 to
956
957 2147483646
958 )))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
959 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
960 Operation setting
961 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
962 Effective immediately
963 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
964 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
965 Operation setting
966 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
967 Effective immediately
968 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
969 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
970 Operation setting
971 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
972 Effective immediately
973 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
974
975 Table 6-19 The 1st position operation curve parameters table
976
977 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
978
979 (% style="text-align:center" %)
980 [[image:image-20220608170149-21.png]]
981
982 Figure 6-23 The 1st segment running curve of motor
983
984 3) multi-segment position instruction enable
985
986 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
987
988 (% class="table-bordered" %)
989 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
990 |(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
991 DI port logic invalid: Does not affect the current operation of the servo motor.
992
993 DI port logic valid: Motor runs multi-segment position
994 )))
995
996 (% style="text-align:center" %)
997 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]]
998
999 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1000
1001 == **Electronic gear ratio** ==
1002
1003 **(1) Definition of electronic gear ratio**
1004
1005 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1006
1007 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1008
1009 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1010
1011 (% style="text-align:center" %)
1012 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
1013
1014 (% style="text-align:center" %)
1015 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
1016
1017 (% style="text-align:center" %)
1018 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1019
1020 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1021
1022 **(2) Setting steps of electronic gear ratio**
1023
1024 (% style="text-align:center" %)
1025 [[image:image-20220608170320-22.png]]
1026
1027 Figure 6-24 Setting steps of electronic gear ratio
1028
1029 Step1: Confirm the mechanical parameters including the reduction ratio, the ball screw lead, gear diameter in the gear drive, and pulley diameter in the pulley drive.
1030
1031 Step2: Confirm the resolution of servo motor encoder.
1032
1033 Step3: Confirm the parameters such as mechanical specifications, positioning accuracy, etc, and determine the load displacement corresponding to one position instruction output by the host computer.
1034
1035 Step4: Combine the mechanical parameters and the load displacement corresponding to one position instruction, calculate the position instruction value required for one rotation of the load shaft.
1036
1037 Step5: Calculate the value of electronic gear ratio according to formula below.
1038
1039 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1040
1041 **(3) lectronic gear ratio switch setting**
1042
1043
1044 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1045
1046 (% class="table-bordered" %)
1047 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1048 **Setting method**
1049 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1050 **Effective time**
1051 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 |(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1053 Shutdown setting
1054 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1055 Effective immediately
1056 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1057 Instruction pulse
1058
1059 unit
1060 )))
1061 |(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1062 Electronic gear 1
1063
1064 numerator
1065 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1066 Effective immediately
1067 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 |(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1069 Electronic gear 1
1070
1071 denominator
1072 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1073 Operation setting
1074 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1075 Effective immediately
1076 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 |(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1078 Electronic gear 2
1079
1080 numerator
1081 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1082 Effective immediately
1083 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 |(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1085 Electronic gear 2
1086
1087 denominator
1088 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1089 Effective immediately
1090 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1091
1092 Table 6-20 Electronic gear ratio function code
1093
1094 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1095
1096 (% class="table-bordered" %)
1097 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 |(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1099 DI port logic invalid: electronic gear ratio 1
1100
1101 DI port logic valid: electronic gear ratio 2
1102 )))
1103
1104 Table 6-21 Switching conditions of electronic gear ratio group
1105
1106 |(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 |(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 |(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1110
1111 Table 6-22 Application of electronic gear ratio
1112
1113 When the function code P00-16 is not 0, the electronic gear ratio [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] is invalid.
1114
1115 == **Position instruction filtering** ==
1116
1117 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1118
1119 In the following situations, position instruction filtering should be added.
1120
1121 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1122 1. The pulse instruction frequency is low;
1123 1. When the electronic gear ratio is 10 times or more.
1124
1125 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1126
1127 (% style="text-align:center" %)
1128 [[image:image-20220608170455-23.png]]
1129
1130 Figure 6-25 Position instruction filtering diagram
1131
1132 (% class="table-bordered" %)
1133 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1134 **Setting method**
1135 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1136 **Effective time**
1137 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 |(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1139 Shutdown setting
1140 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1141 Effective immediately
1142 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((
1143 0: 1st-order low-pass filtering
1144
1145 1: average filtering
1146 )))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 |(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1148 Effective immediately
1149 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 |(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1151 Effective immediately
1152 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1153
1154 Table 6-23 Position instruction filter function code
1155
1156 == **Clearance of position deviation** ==
1157
1158 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1159
1160 Position deviation = (position instruction-position feedback) (encoder unit)
1161
1162 == **Position-related DO output function** ==
1163
1164 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1165
1166 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1167 **Positioning completion/positioning approach output**
1168
1169 (% class="wikigeneratedid" %)
1170 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1171
1172 (% style="text-align:center" %)
1173 [[image:image-20220608170550-24.png]]
1174
1175 Figure 6-26 Positioning completion signal output diagram
1176
1177 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1178
1179 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1180
1181 (% style="text-align:center" %)
1182 [[image:image-20220608170650-25.png]]
1183
1184 Figure 6-27 Positioning completion signal output with increased window filter time diagram
1185
1186 (% class="table-bordered" %)
1187 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1188 **Setting method**
1189 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1190 **Effective time**
1191 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1192 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1193 Operation setting
1194 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1195 Effective immediately
1196 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1197 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1198 Operation setting
1199 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1200 Effective immediately
1201 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1202 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1203 Operation setting
1204 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1205 Effective immediately
1206 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms
1207 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1208 Operation setting
1209 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1210 Effective immediately
1211 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms
1212
1213 Table 6-24 Function code parameters of positioning completion
1214
1215 (% class="table-bordered" %)
1216 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 |(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 |(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1219 P-NEAR positioning close
1220 )))|(% style="text-align:center; vertical-align:middle" %)(((
1221 Output this signal indicates that the servo drive position is close.
1222 )))
1223
1224 Table 6-25 Description of DO rotation detection function code
1225
1226 = **Speed control mode** =
1227
1228 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1229
1230 (% style="text-align:center" %)
1231 [[image:6.28.jpg||height="260" width="806"]]
1232
1233 Figure 6-28 Speed control block diagram
1234
1235 == **Speed instruction input setting** ==
1236
1237 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1238
1239 (% class="table-bordered" %)
1240 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1241 **Setting method**
1242 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1243 **Effective time**
1244 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 |(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1246 Shutdown setting
1247 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1248 Effective immediately
1249 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1250 0: internal speed instruction
1251
1252 1: AI_1 analog input (not supported by VD2F)
1253 )))|(% style="text-align:center; vertical-align:middle" %)-
1254
1255 Table 6-26 Speed instruction source parameter
1256
1257 **(1) Speed instruction source is internal speed instruction (P01-01=0)**
1258
1259 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1260
1261 (% class="table-bordered" %)
1262 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1263 **Setting method**
1264 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1265 **Effective time**
1266 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1267 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1268 Internal speed Instruction 0
1269 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1270 Operation setting
1271 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1272 Effective immediately
1273 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1274 Internal speed instruction 0
1275
1276 When DI input port:
1277
1278 15-INSPD3: 0
1279
1280 14-INSPD2: 0
1281
1282 13-INSPD1: 0,
1283
1284 select this speed instruction to be effective.
1285 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1286 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1287 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1288 Internal speed Instruction 1
1289 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1290 Operation setting
1291 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1292 Effective immediately
1293 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1294 Internal speed instruction 1
1295
1296 When DI input port:
1297
1298 15-INSPD3: 0
1299
1300 14-INSPD2: 0
1301
1302 13-INSPD1: 1,
1303
1304 Select this speed instruction to be effective.
1305 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1306 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1307 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1308 Internal speed Instruction 2
1309 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1310 Operation setting
1311 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1312 Effective immediately
1313 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1314 Internal speed instruction 2
1315
1316 When DI input port:
1317
1318 15-INSPD3: 0
1319
1320 14-INSPD2: 1
1321
1322 13-INSPD1: 0,
1323
1324 Select this speed instruction to be effective.
1325 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1326 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1327 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1328 Internal speed Instruction 3
1329 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1330 Operation setting
1331 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1332 Effective immediately
1333 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1334 Internal speed instruction 3
1335
1336 When DI input port:
1337
1338 15-INSPD3: 0
1339
1340 14-INSPD2: 1
1341
1342 13-INSPD1: 1,
1343
1344 Select this speed instruction to be effective.
1345 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1346 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1347
1348 (% class="table-bordered" %)
1349 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1350 Internal speed Instruction 4
1351 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1352 Operation setting
1353 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1354 Effective immediately
1355 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1356 Internal speed instruction 4
1357
1358 When DI input port:
1359
1360 15-INSPD3: 1
1361
1362 14-INSPD2: 0
1363
1364 13-INSPD1: 0,
1365
1366 Select this speed instruction to be effective.
1367 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1370 Internal speed Instruction 5
1371 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1372 Operation setting
1373 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1374 Effective immediately
1375 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1376 Internal speed instruction 5
1377
1378 When DI input port:
1379
1380 15-INSPD3: 1
1381
1382 14-INSPD2: 0
1383
1384 13-INSPD1: 1,
1385
1386 Select this speed instruction to be effective.
1387 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1390 Internal speed Instruction 6
1391 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1392 Operation setting
1393 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1394 Effective immediately
1395 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1396 Internal speed instruction 6
1397
1398 When DI input port:
1399
1400 15-INSPD3: 1
1401
1402 14-INSPD2: 1
1403
1404 13-INSPD1: 0,
1405
1406 Select this speed instruction to be effective.
1407 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1410 Internal speed Instruction 7
1411 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1412 Operation setting
1413 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1414 Effective immediately
1415 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1416 Internal speed instruction 7
1417
1418 When DI input port:
1419
1420 15-INSPD3: 1
1421
1422 14-INSPD2: 1
1423
1424 13-INSPD1: 1,
1425
1426 Select this speed instruction to be effective.
1427 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1429
1430 Table 6-27 Internal speed instruction parameters
1431
1432 ✎**Note: **“*” means the set range of VD2F servo drive.
1433
1434 (% class="table-bordered" %)
1435 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 |(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 |(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 |(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1439
1440 Table 6-28 DI multi-speed function code description
1441
1442 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1443
1444 (% class="table-bordered" %)
1445 |(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1449 |(% colspan="5" %)......
1450 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1451
1452 Table 6-29 Correspondence between INSPD bits and segment numbers
1453
1454 (% style="text-align:center" %)
1455 [[image:image-20220608170845-26.png]]
1456
1457 Figure 6-29 Multi-segment speed running curve
1458
1459 **(2) Speed instruction source is internal speed instruction (P01-01=0)**
1460
1461 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1462
1463 (% style="text-align:center" %)
1464 [[image:image-20220608153341-5.png]]
1465
1466 Figure 6-30 Analog input circuit
1467
1468 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1469
1470 (% style="text-align:center" %)
1471 [[image:image-20220608170955-27.png]]
1472
1473 Figure 6-31 Analog voltage speed instruction setting steps
1474
1475 Explanation of related terms:
1476
1477 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1478
1479 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1480
1481 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1482
1483 (% style="text-align:center" %)
1484 [[image:image-20220608171124-28.png]]
1485
1486 Figure 6-32 AI_1 diagram before and after bias
1487
1488 (% class="table-bordered" %)
1489 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1494
1495 Table 6-30 AI_1 parameters
1496
1497 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1498
1499 == **Acceleration and deceleration time setting** ==
1500
1501 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1502
1503 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1504
1505 (% style="text-align:center" %)
1506 [[image:image-20220608171314-29.png]]
1507
1508 Figure 6-33 of acceleration and deceleration time diagram
1509
1510 Actual acceleration time T1 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f534257c8134eb35.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]],,
1511
1512 Actual deceleration time T2 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f696c4e8005b5d7.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]],,
1513
1514 (% class="table-bordered" %)
1515 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1516 **Setting method**
1517 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1518 **Effective time**
1519 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1521 Operation setting
1522 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1523 Effective immediately
1524 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1526 Operation setting
1527 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1528 Effective immediately
1529 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1530
1531 Table 6-31 Acceleration and deceleration time parameters
1532
1533 == **Speed instruction limit** ==
1534
1535 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1536
1537 1. P01-10: Set the maximum speed limit value
1538 1. P01-12: Set forward speed limit value
1539 1. P01-13: Set reverse speed limit value
1540 1. The maximum speed of the motor: determined by motor model
1541
1542 The actual motor speed limit interval satisfies the following relationship:
1543
1544 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1545
1546 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1547
1548 (% class="table-bordered" %)
1549 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1550 **Setting method**
1551 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1552 **Effective time**
1553 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1555 Operation setting
1556 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1557 Effective immediately
1558 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1560 Operation setting
1561 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1562 Effective immediately
1563 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1565 Operation setting
1566 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1567 Effective immediately
1568 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1569
1570 Table 6-32 Rotation speed related function codes
1571
1572 == **Zero-speed clamp function** ==
1573
1574 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1575
1576 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1577
1578 (% class="table-bordered" %)
1579 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1580 **Setting method**
1581 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1582 **Effective time**
1583 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1585 Zero-speed clamp function selection
1586 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1587 Operation setting
1588 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1589 Effective immediately
1590 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1591 Set the zero-speed clamp function. In speed mode:
1592
1593 0: Force the speed to 0;
1594
1595 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1596
1597 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1598
1599 3: Invalid, ignore zero-speed clamp input
1600 )))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1602 Zero-speed clamp speed threshold
1603 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1604 Operation setting
1605 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1606 Effective immediately
1607 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1608
1609 Table 6-33 Zero-speed clamp related parameters
1610
1611 (% style="text-align:center" %)
1612 [[image:image-20220608171549-30.png]]
1613
1614 Figure 6-34 Zero-speed clamp diagram
1615
1616 == **Speed-related DO output function** ==
1617
1618 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1619
1620 **(1) Rotation detection signal**
1621
1622 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1623
1624 (% style="text-align:center" %)
1625 [[image:image-20220608171625-31.png]]
1626
1627 Figure 6-35 Rotation detection signal diagram
1628
1629 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1630
1631 (% class="table-bordered" %)
1632 |(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1633 **Setting method**
1634 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1635 **Effective time**
1636 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1637 |(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1638 Rotation detection
1639
1640 speed threshold
1641 )))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1642 Operation setting
1643 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1644 Effective immediately
1645 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1646
1647 Table 6-34 Rotation detection speed threshold parameters
1648
1649 (% class="table-bordered" %)
1650 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1651 |(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)(((
1652 T-COIN
1653
1654 rotation detection
1655 )))|(((
1656 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1657
1658 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1659 )))
1660
1661 Table 6-35 DO rotation detection function code
1662
1663 **(2) Zero-speed signal**
1664
1665 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1666
1667 (% style="text-align:center" %)
1668 [[image:image-20220608171904-32.png]]
1669
1670 Figure 6-36 Zero-speed signal diagram
1671
1672 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1673
1674 (% class="table-bordered" %)
1675 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1676 **Setting method**
1677 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1678 **Effective time**
1679 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1680 |(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1681 Operation setting
1682 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1683 Effective immediately
1684 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1685
1686 Table 6-36 Zero-speed output signal threshold parameter
1687
1688 (% class="table-bordered" %)
1689 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1690 |(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1691 ZSP zero speed signal
1692 )))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1693
1694 Table 6-37 DO zero-speed signal function code
1695
1696 **(3) Speed consistent signal**
1697
1698 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1699
1700 (% style="text-align:center" %)
1701 [[image:image-20220608172053-33.png]]
1702
1703 Figure 6-37 Speed consistent signal diagram
1704
1705 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1706
1707 (% class="table-bordered" %)
1708 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1709 **Setting method**
1710 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1711 **Effective time**
1712 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1713 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1714 Operationsetting
1715 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1716 Effective immediately
1717 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1718
1719 Table 6-38 Speed consistent signal threshold parameters
1720
1721 (% class="table-bordered" %)
1722 |(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1723 |(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1724 U-COIN consistent speed
1725 )))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1726
1727 Table 6-39 DO speed consistent function code
1728
1729 **(4) Speed approach signal**
1730
1731 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1732
1733 (% style="text-align:center" %)
1734 [[image:image-20220608172207-34.png]]
1735
1736 Figure 6-38 Speed approaching signal diagram
1737
1738 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1739
1740 (% class="table-bordered" %)
1741 |(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1742 **Setting method**
1743 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1744 **Effective time**
1745 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1746 |(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1747 Operation setting
1748 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1749 Effective immediately
1750 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1751
1752 Table 6-40 Speed approaching signal threshold parameters
1753
1754 (% class="table-bordered" %)
1755 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1756 |(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1757 V-NEAR speed approach
1758 )))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1759
1760 Table 6-41 DO speed approach function code
1761
1762 = **Torque control mode** =
1763
1764 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1765
1766 (% style="text-align:center" %)
1767 [[image:image-20220608172405-35.png]]
1768
1769 Figure 6-39 Torque mode diagram
1770
1771 == **Torque instruction input setting** ==
1772
1773 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1774
1775 (% class="table-bordered" %)
1776 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1777 **Setting method**
1778 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1779 **Effective time**
1780 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1781 |(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1782 Shutdown setting
1783 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1784 Effective immediately
1785 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1786 0: internal torque instruction
1787
1788 1: AI_1 analog input(not supported by VD2F)
1789 )))|(% style="text-align:center; vertical-align:middle" %)-
1790
1791 Table 6-42 Torque instruction source parameter
1792
1793 **(1) Torque instruction source is internal torque instruction (P01-07=0)**
1794
1795 Torque instruction source is from inside, the value is set by function code P01-08.
1796
1797 (% class="table-bordered" %)
1798 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1799 **Setting method**
1800 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1801 **Effective time**
1802 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1803 |(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1804 Operation setting
1805 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1806 Effective immediately
1807 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1808
1809 Table 6-43 Torque instruction keyboard set value
1810
1811 **(2) Torque instruction source is internal torque instruction (P01-07=1)**
1812
1813 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1814
1815 (% style="text-align:center" %)
1816 [[image:image-20220608153646-7.png||height="213" width="408"]]
1817
1818 Figure 6-40 Analog input circuit
1819
1820 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1821
1822 (% style="text-align:center" %)
1823 [[image:image-20220608172502-36.png]]
1824
1825 Figure 6-41 Analog voltage torque instruction setting steps
1826
1827 Explanation of related terms:
1828
1829 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1830
1831 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1832
1833 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1834
1835 (% style="text-align:center" %)
1836 [[image:image-20220608172611-37.png]]
1837
1838 Figure 6-42 AI_1 diagram before and after bias
1839
1840 (% class="table-bordered" %)
1841 |(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1842 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1843 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1844 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1845 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1846
1847 Table 6-44 AI_1 parameters
1848
1849 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1850
1851 == **Torque instruction filtering** ==
1852
1853 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1854
1855 (% class="table-bordered" %)
1856 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1857 **Setting method**
1858 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1859 **Effective time**
1860 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1861 |(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1862 Operation setting
1863 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1864 Effective immediately
1865 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1866
1867 Table 6-45 Torque filtering time constant parameter details
1868
1869 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1870
1871 (% style="text-align:center" %)
1872 [[image:image-20220608172646-38.png]]
1873
1874 Figure 6-43 Torque instruction-first-order filtering diagram
1875
1876 == **Torque instruction limit** ==
1877
1878 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1879
1880 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1881
1882 (% style="text-align:center" %)
1883 [[image:image-20220608172806-39.png]]
1884
1885 Figure 6-44 Torque instruction limit diagram
1886
1887 **(1) Set torque limit source**
1888
1889 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1890
1891 (% class="table-bordered" %)
1892 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1893 **Setting method**
1894 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1895 **Effective time**
1896 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1897 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1898 Torque limit source
1899 )))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1900 Shutdown setting
1901 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1902 Effective immediately
1903 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1904 0: internal value
1905
1906 1: AI_1 analog input
1907
1908 (not supported by VD2F)
1909 )))|(% style="text-align:center; vertical-align:middle" %)-
1910
1911 1) Torque limit source is internal torque instruction (P01-14=0)
1912
1913 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1914
1915 (% class="table-bordered" %)
1916 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1917 **Setting method**
1918 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1919 **Effective time**
1920 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1921 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1922 Forward torque limit
1923 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1924 Operation setting
1925 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1926 Effective immediately
1927 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1928 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1929 Reverse torque limit
1930 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1931 Operation setting
1932 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1933 Effective immediately
1934 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1935
1936 Table 6-46 Torque limit parameter details
1937
1938 2) Torque limit source is external (P01-14=1)
1939
1940 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1941
1942 **(2) Set torque limit DO signal output**
1943
1944 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1945
1946 (% class="table-bordered" %)
1947 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1948 |(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1949 T-LIMIT in torque limit
1950 )))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1951
1952 Table 6-47 DO torque limit function codes
1953
1954 == **Speed limit in torque mode** ==
1955
1956 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1957
1958 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1959
1960 |(((
1961 (% style="text-align:center" %)
1962 [[image:image-20220608172910-40.png]]
1963 )))|(((
1964 (% style="text-align:center" %)
1965 [[image:image-20220608173155-41.png]]
1966 )))
1967 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1968
1969 (% class="table-bordered" %)
1970 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1971 **Setting method**
1972 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1973 **Effective time**
1974 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1975 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1976 Forward torque
1977
1978 limit in torque mode
1979 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1980 Operation setting
1981 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1982 Effective immediately
1983 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1984 Forward torque
1985
1986 limit in torque mode
1987 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1988 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1989 Reverse torque
1990
1991 limit in torque mode
1992 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1993 Operation setting
1994 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1995 Effective immediately
1996 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1997 Reverse torque
1998
1999 limit in torque mode
2000 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
2001
2002 Table 6-48 Speed limit parameters in torque mode
2003
2004 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__.
2005
2006 == **Torque-related DO output functions** ==
2007
2008 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2009
2010 **Torque arrival**
2011
2012 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2013
2014 (% style="text-align:center" %)
2015 [[image:image-20220608173541-42.png]]
2016
2017 Figure 6-47 Torque arrival output diagram
2018
2019 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2020
2021 (% class="table-bordered" %)
2022 |(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2023 **Setting method**
2024 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2025 **Effective time**
2026 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2027 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2028 Torque arrival
2029
2030 threshold
2031 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2032 Operation setting
2033 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2034 Effective immediately
2035 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2036 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2037
2038 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2039
2040 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2041 )))|(% style="text-align:center; vertical-align:middle" %)%
2042 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2043 Torque arrival
2044
2045 hysteresis
2046 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2047 Operation setting
2048 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2049 Effective immediately
2050 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2051
2052 Table 6-49 Torque arrival parameters
2053
2054 (% class="table-bordered" %)
2055 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2056 |(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2057 T-COIN torque arrival
2058 )))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2059
2060 Table 6-50 DO Torque Arrival Function Code
2061
2062 = **Mixed control mode** =
2063
2064 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2065
2066 Position mode  Speed mode
2067
2068 Position mode  Torque mode
2069
2070 Speed mode  Torque mode
2071
2072 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2073
2074 (% class="table-bordered" %)
2075 |(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2076 **Setting method**
2077 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2078 **Effective time**
2079 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2080 |(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2081 Shutdown setting
2082 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2083 Shutdown setting
2084 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((
2085 1: Position control
2086
2087 2: Speed control
2088
2089 3: Torque control
2090
2091 4: Position/speed mixed control
2092
2093 5: Position/torque mixed control
2094
2095 6: Speed/torque mixed control
2096 )))|(% style="text-align:center; vertical-align:middle" %)-
2097
2098 Table 6-51 Mixed control mode parameters
2099
2100 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2101
2102 (% class="table-bordered" %)
2103 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2104 |(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2105 (% class="table-bordered" %)
2106 |(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2107 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2108 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2111 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2112 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2113 )))
2114
2115 Table 6-52 Description of DI function codes in control mode
2116
2117 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2118
2119 = **Absolute system** =
2120
2121 == **Overview** ==
2122
2123 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2124
2125 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2126
2127 == **Single-turn absolute value system** ==
2128
2129 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2130
2131 (% class="table-bordered" %)
2132 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2133 |(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2134
2135 Table 6-53 Single-turn absolute encoder information
2136
2137 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2138
2139 (% style="text-align:center" %)
2140 [[image:image-20220608173618-43.png]]
2141
2142 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2143
2144 == **Multi-turn absolute value system** ==
2145
2146 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2147
2148 (% class="table-bordered" %)
2149 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2150 |(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2151 |(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2152
2153 Table 6-54 Multi-turn absolute encoder information
2154
2155 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2156
2157 (% style="text-align:center" %)
2158 [[image:image-20220608173701-44.png]]
2159
2160 Figure 6-49 The relationship between encoder feedback position and rotating load position
2161
2162 == **Encoder feedback data** ==
2163
2164 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2165
2166 (% class="table-bordered" %)
2167 |(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2168 |(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2169 |(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2170 |(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2171
2172 Table 6-55 Encoder feedback data
2173
2174 == **Absolute value system encoder battery box use precautions** ==
2175
2176 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2177
2178 (% style="text-align:center" %)
2179 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e9fac7759607dce6.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e9fac7759607dce6.png"]]
2180
2181 Figure 6-50 the encoder battery box
2182
2183 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. The specific replacement method is as follows:
2184
2185 1. Step1 The servo drive is powered on and is in a non-operational state;
2186 1. Step2 Replace the battery;
2187 1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings.
2188
2189 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2190
2191 (% class="table-bordered" %)
2192 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2193 **Setting method**
2194 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2195 **Effective time**
2196 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2197 |(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2198 Shutdown setting
2199 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2200 Effective immediately
2201 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2202 0: No operation
2203
2204 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2205
2206 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2207 )))|(% style="text-align:center; vertical-align:middle" %)-
2208
2209 Table 6-56 Absolute encoder reset enable parameter
2210
2211 ✎**Note: **If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2212
2213 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2214
2215 = **Overview** =
2216
2217 == **VDI** ==
2218
2219 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2220
2221 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2222
2223 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2224
2225 (% style="text-align:center" %)
2226 [[image:image-20220608173804-46.png]]
2227
2228 Figure 6-51 VDI_1 setting steps
2229
2230 (% class="table-bordered" %)
2231 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2232 **Setting method**
2233 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2234 **Effective time**
2235 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2236 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2237 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2238
2239 VDI_1 input level:
2240
2241 0: low level
2242
2243 1: high level
2244 )))|(% style="text-align:center; vertical-align:middle" %)-
2245 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2246 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2247
2248 VDI_2 input level:
2249
2250 0: low level
2251
2252 1: high level
2253 )))|(% style="text-align:center; vertical-align:middle" %)-
2254 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2255 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2256
2257 VDI_3 input level:
2258
2259 0: low level
2260
2261 1: high level
2262 )))|(% style="text-align:center; vertical-align:middle" %)-
2263 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2264 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2265
2266 VDI_4 input level:
2267
2268 0: low level
2269
2270 1: high level
2271 )))|(% style="text-align:center; vertical-align:middle" %)-
2272 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2273 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2274
2275 VDI_5 input level:
2276
2277 0: low level
2278
2279 1: high level
2280 )))|(% style="text-align:center; vertical-align:middle" %)-
2281 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2282 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2283
2284 VDI_6 input level:
2285
2286 0: low level
2287
2288 1: high level
2289 )))|(% style="text-align:center; vertical-align:middle" %)-
2290 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2291 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2292
2293 VDI_7 input level:
2294
2295 0: low level
2296
2297 1: high level
2298 )))|(% style="text-align:center; vertical-align:middle" %)-
2299 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2300 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2301
2302 VDI_8 input level:
2303
2304 0: low level
2305
2306 1: high level
2307 )))|(% style="text-align:center; vertical-align:middle" %)-
2308
2309 Table 6-57 Virtual VDI parameters
2310
2311 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2312
2313 == **Port filtering time** ==
2314
2315 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2316
2317 (% class="table-bordered" %)
2318 |(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2319 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2476a4a02e6f0760.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2476a4a02e6f0760.gif"]]
2320 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_ad0a0d3f9b9908b1.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_ad0a0d3f9b9908b1.gif"]]
2321
2322 Table 6-58 DI terminal channel logic selection
2323
2324 == **VDO** ==
2325
2326 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2327
2328 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2329
2330 (% style="text-align:center" %)
2331 [[image:image-20220608173957-48.png]]
2332
2333 Figure 6-52 VDO_2 setting steps
2334
2335 (% class="table-bordered" %)
2336 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2337 **Setting method**
2338 )))|(% style="text-align:center; vertical-align:middle" %)(((
2339 **Effective time**
2340 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2341 |(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2342 VDO_1 output level:
2343
2344 0: low level
2345
2346 1: high level
2347 )))|(% style="text-align:center; vertical-align:middle" %)-
2348 |(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2349 VDO_2 output level:
2350
2351 0: low level
2352
2353 1: high level
2354 )))|(% style="text-align:center; vertical-align:middle" %)-
2355 |(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2356 VDO_3 output level:
2357
2358 0: low level
2359
2360 1: high level
2361 )))|(% style="text-align:center; vertical-align:middle" %)-
2362 |(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2363 VDO_4 output level:
2364
2365 0: low level
2366
2367 1: high level
2368 )))|(% style="text-align:center; vertical-align:middle" %)-
2369
2370 Table 6-59 Communication control DO function parameters
2371
2372 (% class="table-bordered" %)
2373 |(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2374 |(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 |(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2376 |(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2377 |(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2378
2379 Table 6-60 VDO function number
2380
2381 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2382
2383 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2384
2385 == **Motor overload protection** ==
2386
2387 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2388
2389 (% class="table-bordered" %)
2390 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2391 **Setting method**
2392 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2393 **Effective time**
2394 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2395 |(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2396 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2397
2398 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2399 )))|(% style="text-align:center; vertical-align:middle" %)%
2400
2401 In the following cases, it could be modified according to the actual heat generation of the motor
2402
2403 1. The motor works in a place with high ambient temperature
2404 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2405
2406 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2407
2408 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2409
2410 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.