Wiki source code of 06 Operation

Version 42.2 by Joey on 2022/06/11 15:19

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |**No.**|**Content**
6 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 |1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |5|Servo drive and servo motor must be grounded reliably.
12 |6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |7|The force of all cables is within the specified range.
14 |8|The wiring terminals have been insulated.
15 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 |1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |2|The servo drive and external braking resistor are not placed on combustible objects.
18 |3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == **Power-on** ==
23
24 **(1) Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
29
30 **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == **Jog operation** ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **(1) Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
39
40 **(2) Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44
45 (% class="table-bordered" %)
46 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
47 **Setting method**
48 )))|(% style="text-align:center; vertical-align:middle" %)(((
49 **Effective time**
50 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 |(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
52 Operation setting
53 )))|(% style="text-align:center; vertical-align:middle" %)(((
54 Effective immediately
55 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
56
57 Table 6-2 JOG speed parameter
58
59 == **Rotation direction selection** ==
60
61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62
63 (% class="table-bordered" %)
64 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
65 **Setting method**
66 )))|(% style="text-align:center; vertical-align:middle" %)(((
67 **Effective time**
68 )))|(% style="text-align:center; vertical-align:middle" %)(((
69 **Default value**
70 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 |(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
72 Shutdown setting
73 )))|(% style="text-align:center; vertical-align:middle" %)(((
74 Effective immediately
75 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
76 Forward rotation: Face the motor shaft to watch
77
78 0: standard setting (CW is forward rotation)
79
80 1: reverse mode (CCW is forward rotation)
81 )))|(% style="text-align:center; vertical-align:middle" %)-
82
83 Table 6-3 Rotation direction parameters** **
84
85 == **Braking resistor** ==
86
87 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
88
89 The basis for judging whether the braking resistor is built-in or external.
90
91 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
93
94 (% class="table-bordered" %)
95 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
96 **Setting method**
97 )))|(% style="text-align:center; vertical-align:middle" %)(((
98 **Effective time**
99 )))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 |(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
101 Operation setting
102 )))|(% style="text-align:center; vertical-align:middle" %)(((
103 Effective immediately
104 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
105 0: use built-in braking resistor
106
107 1: use external braking resistor and natural cooling
108
109 2: use external braking resistor and forced air cooling; (cannot be set)
110
111 3: No braking resistor is used, it is all absorbed by capacitor.
112 )))|(% style="text-align:center; vertical-align:middle" %)-
113 |(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
114 |(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
115 Operation setting
116 )))|(% style="text-align:center; vertical-align:middle" %)(((
117 Effective immediately
118 )))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 |(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
120 Operation setting
121 )))|(% style="text-align:center; vertical-align:middle" %)(((
122 Effective immediately
123 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
124
125 Table 6-4 Braking resistor parameters
126
127 == **Servo operation** ==
128
129 **(1) Set the servo enable (S-ON) to valid (ON)**
130
131 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
132
133 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
134
135 **(2) Input the instruction and the motor rotates**
136
137 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
138
139 **(3) Timing diagram of power on**
140
141 (% style="text-align:center" %)
142 [[image:image-20220608163014-1.png]]
143
144 Figure 6-1 Timing diagram of power on
145
146 == **Servo shutdown** ==
147
148 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
149
150 (% class="table-bordered" %)
151 |Shutdown mode|Shutdown description|Shutdown characteristics
152 |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
153 |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
154
155 Table 6-5 Comparison of two shutdown modes
156
157 (% class="table-bordered" %)
158 |(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 |(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
160
161 Table 6-6 Comparison of two shutdown status
162
163 **(1) Servo enable (S-ON) OFF shutdown**
164
165 The related parameters of the servo OFF shutdown mode are shown in the table below.
166
167 (% class="table-bordered" %)
168 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
169 **Setting method**
170 )))|(% style="text-align:center; vertical-align:middle" %)(((
171 **Effective time**
172 )))|(% style="text-align:center; vertical-align:middle" %)(((
173 **Default value**
174 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 |(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
176 Shutdown
177
178 setting
179 )))|(% style="text-align:center; vertical-align:middle" %)(((
180 Effective
181
182 immediately
183 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
184 0: Free shutdown, and the motor shaft remains free status.
185
186 1: Zero-speed shutdown, and the motor shaft remains free status.
187 )))|(% style="text-align:center; vertical-align:middle" %)-
188
189 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
190
191 **(2) Emergency shutdown**
192
193 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
194
195 **(3) Overtravel shutdown**
196
197 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
198
199 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
200
201 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
202
203 (% class="table-bordered" %)
204 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
205 **Setting method**
206 )))|(% style="text-align:center; vertical-align:middle" %)(((
207 **Effective time**
208 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 |(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
210 0: OFF (not used)
211
212 01: S-ON servo enable
213
214 02: A-CLR fault and Warning Clear
215
216 03: POT forward drive prohibition
217
218 04: NOT Reverse drive prohibition
219
220 05: ZCLAMP Zero speed
221
222 06: CL Clear deviation counter
223
224 07: C-SIGN Inverted instruction
225
226 08: E-STOP Emergency stop
227
228 09: GEAR-SEL Electronic Gear Switch 1
229
230 10: GAIN-SEL gain switch
231
232 11: INH Instruction pulse prohibited input
233
234 12: VSSEL Vibration control switch input
235
236 13: INSPD1 Internal speed instruction selection 1
237
238 14: INSPD2 Internal speed instruction selection 2
239
240 15: INSPD3 Internal speedinstruction selection 3
241
242 16: J-SEL inertia ratio switch (not implemented yet)
243
244 17: MixModesel mixed mode selection
245
246 20: Internal multi-segment position enable signal
247
248 21: Internal multi-segment position selection 1
249
250 22: Internal multi-segment position selection 2
251
252 23: Internal multi-segment position selection 3
253
254 24: Internal multi-segment position selection 4
255
256 Others: reserved
257 )))|(% style="text-align:center; vertical-align:middle" %)-
258 |(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
259 Effective immediately
260 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
261 DI port input logic validity function selection.
262
263 0: Normally open input. Active low level (switch on);
264
265 1: Normally closed input. Active high level (switch off);
266 )))|(% style="text-align:center; vertical-align:middle" %)-
267 |(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
268 Effective immediately
269 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
270 Select the DI_3 port type to enable
271
272 0: Hardware DI_3 input terminal
273
274 1: virtual VDI_3 input terminal
275 )))|(% style="text-align:center; vertical-align:middle" %)-
276
277 (% class="table-bordered" %)
278 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
279 Operation setting
280 )))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
281 again Power-on
282 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
283 0 off (not used)
284
285 01: SON Servo enable
286
287 02: A-CLR Fault and Warning Clear
288
289 03: POT Forward drive prohibition
290
291 04: NOT Reverse drive prohibition
292
293 05: ZCLAMP Zero speed
294
295 06: CL Clear deviation counter
296
297 07: C-SIGN Inverted instruction
298
299 08: E-STOP Emergency shutdown
300
301 09: GEAR-SEL Electronic Gear Switch 1
302
303 10: GAIN-SEL gain switch
304
305 11: INH Instruction pulse prohibited input
306
307 12: VSSEL Vibration control switch input
308
309 13: INSPD1 Internal speed instruction selection 1
310
311 14: INSPD2 Internal speed instruction selection 2
312
313 15: INSPD3 Internal speed instruction selection 3
314
315 16: J-SEL inertia ratio switch (not implemented yet)
316
317 17: MixModesel mixed mode selection
318
319 20: Internal multi-segment position enable signal
320
321 21: Internal multi-segment position selection 1
322
323 22: Internal multi-segment position selection 2
324
325 23: Internal multi-segment position selection 3
326
327 24: Internal multi-segment position selection 4
328
329 Others: reserved
330 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
332 Effective immediately
333 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
334 DI port input logic validity function selection.
335
336 0: Normally open input. Active low level (switch on);
337
338 1: Normally closed input. Active high level (switch off);
339 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
341 Effective immediately
342 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
343 Select the DI_4 port type to enable
344
345 0: Hardware DI_4 input terminal
346
347 1: virtual VDI_4 input terminal
348 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
349
350 Table 6-8 DI3 and DI4 channel parameters
351
352 **(4) Malfunction shutdown**
353
354 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
355
356 == **Brake device** ==
357
358 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
359
360 (% class="table-bordered" %)
361 |(((
362 (% style="text-align:center" %)
363 [[image:image-20220611151617-1.png]]
364 )))
365 |(((
366 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
367
368 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
369
370 ✎The brake coil has no polarity;
371
372 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
373
374 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
375 )))
376
377 **(1) Wiring of brake device**
378
379 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
380
381 (% style="text-align:center" %)
382 [[image:image-20220608163136-2.png]]
383
384 Figure 6-2 VD2B servo drive brake wiring
385
386 (% class="table-bordered" %)
387 |(((
388 (% style="text-align:center" %)
389 [[image:image-20220611151642-2.png]]
390 )))
391 |(((
392 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
393
394 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
395
396 ✎It is recommended to use cables above 0.5 mm².
397 )))
398
399 **(2) Brake software setting**
400
401 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
402
403 Related function code is as below.
404
405 (% class="table-bordered" %)
406 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
407 **Effective time**
408 )))
409 |(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
410 BRK-OFF Brake output
411 )))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
412
413 Table 6-2 Relevant function codes for brake setting
414
415 (% class="table-bordered" %)
416 |(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
417 **Setting method**
418 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
419 **Effective time**
420 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
422 Operation setting
423 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
425 Operation setting
426 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
428 Operation setting
429 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
430 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
431
432 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
433 )))|(% style="text-align:center; vertical-align:middle" %)rpm
434 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
435 Operation setting
436 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
437 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
438
439 When brake output (BRK-OFF) is not allocated, this function code has no effect.
440 )))|(% style="text-align:center; vertical-align:middle" %)ms
441
442 Table 6-9 Brake setting function codes
443
444 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
445
446 **(3) Servo drive brake timing in normal state**
447
448 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
449
450 1) Brake timing when servo motor is stationary
451
452 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
453
454 (% class="table-bordered" %)
455 |(((
456 (% style="text-align:center" %)
457 [[image:image-20220611151705-3.png]]
458 )))
459 |(((
460 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
461
462 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
463 )))
464
465 (% style="text-align:center" %)
466 [[image:image-20220608163304-3.png]]
467
468 Figure 6-3 Brake Timing of when the motor is stationary
469
470 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
471
472 2) The brake timing when servo motor rotates
473
474 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
475
476 (% class="table-bordered" %)
477 |(((
478 (% style="text-align:center" %)
479 [[image:image-20220611151719-4.png]]
480 )))
481 |(((
482 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
483
484 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
485
486 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
487
488 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
489
490 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
491 )))
492
493 (% style="text-align:center" %)
494 [[image:image-20220608163425-4.png]]
495
496 Figure 6-4 Brake timing when the motor rotates
497
498 **(4) Brake timing when the servo drive fails**
499
500 The brake timing (free shutdown) in the fault status is as follows.
501
502 (% style="text-align:center" %)
503 [[image:image-20220608163541-5.png]]
504
505 Figure 6-5 The brake timing (free shutdown) in the fault state
506
507 = **Position control mode** =
508
509 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
510
511 (% style="text-align:center" %)
512 [[image:image-20220608163643-6.png]]
513
514 Figure 6-6 Position control diagram
515
516 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
517
518 (% class="table-bordered" %)
519 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
520 **Setting method**
521 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
522 **Effective time**
523 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 |(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
525 Operation setting
526 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
527 immediately Effective
528 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
529 0: position control
530
531 2: speed control
532
533 3: torque control
534
535 4: position/speed mix control
536
537 5: position/torque mix control
538
539 6: speed /torque mix control
540 )))|(% style="text-align:center; vertical-align:middle" %)-
541
542 Table 6-10 Control mode parameters
543
544 == **Position instruction input setting** ==
545
546 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
547
548 (% class="table-bordered" %)
549 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
550 **Setting method**
551 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
552 **Effective time**
553 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 |(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
555 Operation setting
556 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
557 immediately Effective
558 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
559 0: pulse instruction
560
561 1: internal position instruction
562 )))|(% style="text-align:center; vertical-align:middle" %)-
563
564 Table 6-11 Position instruction source parameter
565
566 **(1) The source of position instruction is pulse instruction (P01-06=0)**
567
568 1) Low-speed pulse instruction input
569
570 (% class="table-bordered" %)
571 |(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 |(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
574
575 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
576
577 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
578
579 (% class="table-bordered" %)
580 |(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 |(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 |(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
583
584 Table 6-12 Pulse input specifications
585
586 1.Differential input
587
588 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
589
590 (% style="text-align:center" %)
591 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
592
593 Figure 6-8 Differential input connection
594
595 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
596
597 2.Open collector input
598
599 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
600
601 (% style="text-align:center" %)
602 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
603
604 Figure 6-9 Open collector input connection
605
606 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
607
608 2) Position pulse frequency and anti-interference level
609
610 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
611
612 (% style="text-align:center" %)
613 [[image:image-20220608163952-8.png]]
614
615 Figure 6-10 Example of filtered signal waveform
616
617 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
618
619 (% class="table-bordered" %)
620 |(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
621 **Setting method**
622 )))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
623 **Effective time**
624 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 |(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
626 Shutdown setting
627 )))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
628 Effective immediately
629 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 |(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
631 Operation setting
632 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
633 Power-on again
634 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
635 Set the anti-interference level of external pulse instruction.
636
637 0: no filtering;
638
639 1: Filtering time 128ns
640
641 2: Filtering time 256ns
642
643 3: Filtering time 512ns
644
645 4: Filtering time 1.024us
646
647 5: Filtering time 2.048us
648
649 6: Filtering time 4.096us
650
651 7: Filtering time 8.192us
652
653 8: Filtering time 16.384us
654 )))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 |(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
656 |VD2F: Filtering time 25.5us
657
658 Table 6-13 Position pulse frequency and anti-interference level parameters
659
660 3) Position pulse type selection
661
662 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
663
664 (% class="table-bordered" %)
665 |(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
666 **Setting method**
667 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
668 **Effective time**
669 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 |(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
671 Operation setting
672 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
673 Power-on again
674 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
675 0: direction + pulse (positive logic)
676
677 1: CW/CCW
678
679 2: A, B phase quadrature pulse (4 times frequency)
680
681 3: Direction + pulse (negative logic)
682
683 4: CW/CCW (negative logic)
684
685 5: A, B phase quadrature pulse (4 times frequency negative logic)
686 )))|(% style="text-align:center; vertical-align:middle" %)-
687
688 Table 6-14 Position pulse type selection parameter
689
690 (% class="table-bordered" %)
691 |(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 |(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
693 Direction + pulse
694
695 (Positive logic)
696 )))|(% style="text-align:center; vertical-align:middle" %)(((
697 PULSE
698
699 SIGN
700 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 |(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
702 PULSE (CW)
703
704 SIGN (CCW)
705 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 |(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
707 AB phase orthogonal
708
709 pulse (4 times frequency)
710 )))|(% style="text-align:center; vertical-align:middle" %)(((
711 PULSE (Phase A)
712
713 SIGN (Phase B)
714 )))|(% style="text-align:center; vertical-align:middle" %)(((
715 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
716
717 Phase A is 90° ahead of Phase B
718 )))|(% style="text-align:center; vertical-align:middle" %)(((
719 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
720
721 Phase B is 90° ahead of Phase A
722 )))
723 |(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
724 Direction + pulse
725
726 (Negative logic)
727 )))|(% style="text-align:center; vertical-align:middle" %)(((
728 PULSE
729
730 SIGN
731 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 |(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
733 CW/CCW
734
735 (Negative logic)
736 )))|(% style="text-align:center; vertical-align:middle" %)(((
737 PULSE (CW)
738
739 SIGN (CCW)
740 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 |(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
742 AB phase orthogonal
743
744 pulse (4 times frequency negative logic)
745 )))|(% style="text-align:center; vertical-align:middle" %)(((
746 PULSE (Phase A)
747
748 SIGN (Phase B)
749 )))|(% style="text-align:center; vertical-align:middle" %)(((
750 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
751
752 B phase is ahead of A phase by 90°
753 )))|(% style="text-align:center; vertical-align:middle" %)(((
754 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
755
756 A phase is ahead of B phase by 90°
757 )))
758
759 Table 6-15 Pulse description
760
761 **(2) The source of position instruction is internal position instruction (P01-06=1)**
762
763 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
764
765 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
766
767 (% style="text-align:center" %)
768 [[image:image-20220608164116-9.png]]
769
770 Figure 6-11 The setting process of multi-segment position
771
772 1) Set multi-segment position running mode
773
774 (% class="table-bordered" %)
775 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
776 **Setting method**
777 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
778 **Effective time**
779 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 |(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
781 Shutdown setting
782 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
783 Effective immediately
784 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
785 0: Single running
786
787 1: Cycle running
788
789 2: DI switching running
790 )))|(% style="text-align:center; vertical-align:middle" %)-
791 |(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
792 Shutdown setting
793 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
794 Effective immediately
795 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 |(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
797 Shutdown setting
798 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
799 Effective immediately
800 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 |(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
802 Shutdown setting
803 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
804 Effective immediately
805 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
806 0: Run the remaining segments
807
808 1: Run again from the start segment
809 )))|(% style="text-align:center; vertical-align:middle" %)-
810 |(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
811 Shutdown setting
812 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
813 Effective immediately
814 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
815 0: Relative position instruction
816
817 1: Absolute position instruction
818 )))|(% style="text-align:center; vertical-align:middle" %)-
819
820 Table 6-16 multi-segment position running mode parameters
821
822 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
823
824 ~1. Single running
825
826 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
827
828 (% style="text-align:center" %)
829 [[image:image-20220608164226-10.png]]
830
831 Figure 6-12 Single running curve (P07-02=1, P07-03=2)
832
833 2. Cycle running
834
835 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
836
837 (% style="text-align:center" %)
838 [[image:image-20220608164327-11.png]]
839
840 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
841
842 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
843 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
844
845 3. DI switching running
846
847 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
848
849 (% class="table-bordered" %)
850 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 |(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 |(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 |(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 |(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
855
856 Table 6-17 DI function code
857
858 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
859
860 (% class="table-bordered" %)
861 |(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 |(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
867
868 Table 6-18 INPOS corresponds to running segment number
869
870 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
871
872 (% style="text-align:center" %)
873 [[image:image-20220608164545-12.png]]
874
875 Figure 6-14 DI switching running curve
876
877 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
878
879 **A. Run the remaining segments**
880
881 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
882
883 (% style="text-align:center" %)
884 [[image:image-20220608164847-13.png]]
885
886 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
887
888 (% style="text-align:center" %)
889 [[image:image-20220608165032-14.png]]
890
891 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
892
893 **B. Run again from the start segment**
894
895 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
896
897 (% style="text-align:center" %)
898 [[image:image-20220608165343-15.png]]
899
900 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
901
902 (% style="text-align:center" %)
903 [[image:image-20220608165558-16.png]]
904
905 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
906
907 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
908
909 A. Relative position instruction
910
911 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
912
913 |(((
914 (% style="text-align:center" %)
915 [[image:image-20220608165710-17.png]]
916 )))|(((
917 (% style="text-align:center" %)
918 [[image:image-20220608165749-18.png]]
919 )))
920 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
921
922 B. Absolute position instruction
923
924 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
925
926 |(((
927 (% style="text-align:center" %)
928 [[image:image-20220608165848-19.png]]
929 )))|(((
930 (% style="text-align:center" %)
931 [[image:image-20220608170005-20.png]]
932 )))
933 |Figure 6-21 Absolute indication|Figure 6-22 Displacement
934
935 2) Multi-segment position running curve setting
936
937 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
938
939 (% class="table-bordered" %)
940 |(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
941 **Setting method**
942 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
943 **Effective time**
944 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
946 1st segment
947
948 displacement
949 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
950 Operation setting
951 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
952 Effective immediately
953 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
954 -2147483647 to
955
956 2147483646
957 )))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
959 Operation setting
960 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
961 Effective immediately
962 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
964 Operation setting
965 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
966 Effective immediately
967 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
969 Operation setting
970 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
971 Effective immediately
972 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
973
974 Table 6-19 The 1st position operation curve parameters table
975
976 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
977
978 (% style="text-align:center" %)
979 [[image:image-20220608170149-21.png]]
980
981 Figure 6-23 The 1st segment running curve of motor
982
983 3) multi-segment position instruction enable
984
985 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
986
987 (% class="table-bordered" %)
988 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 |(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
990 DI port logic invalid: Does not affect the current operation of the servo motor.
991
992 DI port logic valid: Motor runs multi-segment position
993 )))
994
995 (% style="text-align:center" %)
996 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]]
997
998 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
999
1000 == **Electronic gear ratio** ==
1001
1002 **(1) Definition of electronic gear ratio**
1003
1004 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1005
1006 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1007
1008 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1009
1010 (% style="text-align:center" %)
1011 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
1012
1013 (% style="text-align:center" %)
1014 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
1015
1016 (% style="text-align:center" %)
1017 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1018
1019 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1020
1021 **(2) Setting steps of electronic gear ratio**
1022
1023 (% style="text-align:center" %)
1024 [[image:image-20220608170320-22.png]]
1025
1026 Figure 6-24 Setting steps of electronic gear ratio
1027
1028 Step1: Confirm the mechanical parameters including the reduction ratio, the ball screw lead, gear diameter in the gear drive, and pulley diameter in the pulley drive.
1029
1030 Step2: Confirm the resolution of servo motor encoder.
1031
1032 Step3: Confirm the parameters such as mechanical specifications, positioning accuracy, etc, and determine the load displacement corresponding to one position instruction output by the host computer.
1033
1034 Step4: Combine the mechanical parameters and the load displacement corresponding to one position instruction, calculate the position instruction value required for one rotation of the load shaft.
1035
1036 Step5: Calculate the value of electronic gear ratio according to formula below.
1037
1038 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1039
1040 **(3) lectronic gear ratio switch setting**
1041
1042
1043 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1044
1045 (% class="table-bordered" %)
1046 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1047 **Setting method**
1048 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1049 **Effective time**
1050 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1051 |(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1052 Shutdown setting
1053 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1054 Effective immediately
1055 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1056 Instruction pulse
1057
1058 unit
1059 )))
1060 |(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1061 Electronic gear 1
1062
1063 numerator
1064 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1065 Effective immediately
1066 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1067 |(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1068 Electronic gear 1
1069
1070 denominator
1071 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1072 Operation setting
1073 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1074 Effective immediately
1075 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1076 |(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1077 Electronic gear 2
1078
1079 numerator
1080 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1081 Effective immediately
1082 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1083 |(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1084 Electronic gear 2
1085
1086 denominator
1087 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1088 Effective immediately
1089 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1090
1091 Table 6-20 Electronic gear ratio function code
1092
1093 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1094
1095 (% class="table-bordered" %)
1096 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1097 |(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1098 DI port logic invalid: electronic gear ratio 1
1099
1100 DI port logic valid: electronic gear ratio 2
1101 )))
1102
1103 Table 6-21 Switching conditions of electronic gear ratio group
1104
1105 |(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1106 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1107 |(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1108 |(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1109
1110 Table 6-22 Application of electronic gear ratio
1111
1112 When the function code P00-16 is not 0, the electronic gear ratio [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] is invalid.
1113
1114 == **Position instruction filtering** ==
1115
1116 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1117
1118 In the following situations, position instruction filtering should be added.
1119
1120 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1121 1. The pulse instruction frequency is low;
1122 1. When the electronic gear ratio is 10 times or more.
1123
1124 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1125
1126 (% style="text-align:center" %)
1127 [[image:image-20220608170455-23.png]]
1128
1129 Figure 6-25 Position instruction filtering diagram
1130
1131 (% class="table-bordered" %)
1132 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1133 **Setting method**
1134 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1135 **Effective time**
1136 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1137 |(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1138 Shutdown setting
1139 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1140 Effective immediately
1141 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((
1142 0: 1st-order low-pass filtering
1143
1144 1: average filtering
1145 )))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1146 |(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1147 Effective immediately
1148 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1149 |(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1150 Effective immediately
1151 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1152
1153 Table 6-23 Position instruction filter function code
1154
1155 == **Clearance of position deviation** ==
1156
1157 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1158
1159 Position deviation = (position instruction-position feedback) (encoder unit)
1160
1161 == **Position-related DO output function** ==
1162
1163 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1164
1165 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1166 **Positioning completion/positioning approach output**
1167
1168 (% class="wikigeneratedid" %)
1169 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1170
1171 (% style="text-align:center" %)
1172 [[image:image-20220608170550-24.png]]
1173
1174 Figure 6-26 Positioning completion signal output diagram
1175
1176 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1177
1178 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1179
1180 (% style="text-align:center" %)
1181 [[image:image-20220608170650-25.png]]
1182
1183 Figure 6-27 Positioning completion signal output with increased window filter time diagram
1184
1185 (% class="table-bordered" %)
1186 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1187 **Setting method**
1188 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1189 **Effective time**
1190 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1191 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1192 Operation setting
1193 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1194 Effective immediately
1195 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1196 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1197 Operation setting
1198 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1199 Effective immediately
1200 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1201 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1202 Operation setting
1203 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1204 Effective immediately
1205 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms
1206 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1207 Operation setting
1208 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1209 Effective immediately
1210 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms
1211
1212 Table 6-24 Function code parameters of positioning completion
1213
1214 (% class="table-bordered" %)
1215 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1216 |(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1217 |(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1218 P-NEAR positioning close
1219 )))|(% style="text-align:center; vertical-align:middle" %)(((
1220 Output this signal indicates that the servo drive position is close.
1221 )))
1222
1223 Table 6-25 Description of DO rotation detection function code
1224
1225 = **Speed control mode** =
1226
1227 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1228
1229 (% style="text-align:center" %)
1230 [[image:6.28.jpg||height="260" width="806"]]
1231
1232 Figure 6-28 Speed control block diagram
1233
1234 == **Speed instruction input setting** ==
1235
1236 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1237
1238 (% class="table-bordered" %)
1239 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1240 **Setting method**
1241 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1242 **Effective time**
1243 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1244 |(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1245 Shutdown setting
1246 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1247 Effective immediately
1248 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1249 0: internal speed instruction
1250
1251 1: AI_1 analog input (not supported by VD2F)
1252 )))|(% style="text-align:center; vertical-align:middle" %)-
1253
1254 Table 6-26 Speed instruction source parameter
1255
1256 **(1) Speed instruction source is internal speed instruction (P01-01=0)**
1257
1258 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1259
1260 (% class="table-bordered" %)
1261 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1262 **Setting method**
1263 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1264 **Effective time**
1265 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1266 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1267 Internal speed Instruction 0
1268 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1269 Operation setting
1270 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1271 Effective immediately
1272 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1273 Internal speed instruction 0
1274
1275 When DI input port:
1276
1277 15-INSPD3: 0
1278
1279 14-INSPD2: 0
1280
1281 13-INSPD1: 0,
1282
1283 select this speed instruction to be effective.
1284 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1285 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1286 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1287 Internal speed Instruction 1
1288 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1289 Operation setting
1290 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1291 Effective immediately
1292 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1293 Internal speed instruction 1
1294
1295 When DI input port:
1296
1297 15-INSPD3: 0
1298
1299 14-INSPD2: 0
1300
1301 13-INSPD1: 1,
1302
1303 Select this speed instruction to be effective.
1304 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1305 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1306 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1307 Internal speed Instruction 2
1308 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1309 Operation setting
1310 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1311 Effective immediately
1312 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1313 Internal speed instruction 2
1314
1315 When DI input port:
1316
1317 15-INSPD3: 0
1318
1319 14-INSPD2: 1
1320
1321 13-INSPD1: 0,
1322
1323 Select this speed instruction to be effective.
1324 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1325 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1326 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1327 Internal speed Instruction 3
1328 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1329 Operation setting
1330 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1331 Effective immediately
1332 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1333 Internal speed instruction 3
1334
1335 When DI input port:
1336
1337 15-INSPD3: 0
1338
1339 14-INSPD2: 1
1340
1341 13-INSPD1: 1,
1342
1343 Select this speed instruction to be effective.
1344 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1345 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1346
1347 (% class="table-bordered" %)
1348 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1349 Internal speed Instruction 4
1350 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1351 Operation setting
1352 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1353 Effective immediately
1354 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1355 Internal speed instruction 4
1356
1357 When DI input port:
1358
1359 15-INSPD3: 1
1360
1361 14-INSPD2: 0
1362
1363 13-INSPD1: 0,
1364
1365 Select this speed instruction to be effective.
1366 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1367 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1368 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1369 Internal speed Instruction 5
1370 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1371 Operation setting
1372 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1373 Effective immediately
1374 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1375 Internal speed instruction 5
1376
1377 When DI input port:
1378
1379 15-INSPD3: 1
1380
1381 14-INSPD2: 0
1382
1383 13-INSPD1: 1,
1384
1385 Select this speed instruction to be effective.
1386 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1387 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1388 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1389 Internal speed Instruction 6
1390 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1391 Operation setting
1392 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1393 Effective immediately
1394 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1395 Internal speed instruction 6
1396
1397 When DI input port:
1398
1399 15-INSPD3: 1
1400
1401 14-INSPD2: 1
1402
1403 13-INSPD1: 0,
1404
1405 Select this speed instruction to be effective.
1406 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1407 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1408 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1409 Internal speed Instruction 7
1410 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1411 Operation setting
1412 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1413 Effective immediately
1414 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1415 Internal speed instruction 7
1416
1417 When DI input port:
1418
1419 15-INSPD3: 1
1420
1421 14-INSPD2: 1
1422
1423 13-INSPD1: 1,
1424
1425 Select this speed instruction to be effective.
1426 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1427 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1428
1429 Table 6-27 Internal speed instruction parameters
1430
1431 ✎**Note: **“*” means the set range of VD2F servo drive.
1432
1433 (% class="table-bordered" %)
1434 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1435 |(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1436 |(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1437 |(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1438
1439 Table 6-28 DI multi-speed function code description
1440
1441 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1442
1443 (% class="table-bordered" %)
1444 |(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1445 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1446 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1447 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1448 |(% colspan="5" %)......
1449 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1450
1451 Table 6-29 Correspondence between INSPD bits and segment numbers
1452
1453 (% style="text-align:center" %)
1454 [[image:image-20220608170845-26.png]]
1455
1456 Figure 6-29 Multi-segment speed running curve
1457
1458 **(2) Speed instruction source is internal speed instruction (P01-01=0)**
1459
1460 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1461
1462 (% style="text-align:center" %)
1463 [[image:image-20220608153341-5.png]]
1464
1465 Figure 6-30 Analog input circuit
1466
1467 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1468
1469 (% style="text-align:center" %)
1470 [[image:image-20220608170955-27.png]]
1471
1472 Figure 6-31 Analog voltage speed instruction setting steps
1473
1474 Explanation of related terms:
1475
1476 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1477
1478 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1479
1480 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1481
1482 (% style="text-align:center" %)
1483 [[image:image-20220608171124-28.png]]
1484
1485 Figure 6-32 AI_1 diagram before and after bias
1486
1487 (% class="table-bordered" %)
1488 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1489 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1490 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1491 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1492 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493
1494 Table 6-30 AI_1 parameters
1495
1496 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1497
1498 == **Acceleration and deceleration time setting** ==
1499
1500 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1501
1502 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1503
1504 (% style="text-align:center" %)
1505 [[image:image-20220608171314-29.png]]
1506
1507 Figure 6-33 of acceleration and deceleration time diagram
1508
1509 Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]]
1510
1511 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1512
1513 (% class="table-bordered" %)
1514 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1515 **Setting method**
1516 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1517 **Effective time**
1518 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1519 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1520 Operation setting
1521 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1522 Effective immediately
1523 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1524 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1525 Operation setting
1526 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1527 Effective immediately
1528 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1529
1530 Table 6-31 Acceleration and deceleration time parameters
1531
1532 == **Speed instruction limit** ==
1533
1534 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1535
1536 1. P01-10: Set the maximum speed limit value
1537 1. P01-12: Set forward speed limit value
1538 1. P01-13: Set reverse speed limit value
1539 1. The maximum speed of the motor: determined by motor model
1540
1541 The actual motor speed limit interval satisfies the following relationship:
1542
1543 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1544
1545 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1546
1547 (% class="table-bordered" %)
1548 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1549 **Setting method**
1550 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1551 **Effective time**
1552 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1553 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1554 Operation setting
1555 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1556 Effective immediately
1557 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1558 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1559 Operation setting
1560 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1561 Effective immediately
1562 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1563 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1564 Operation setting
1565 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1566 Effective immediately
1567 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1568
1569 Table 6-32 Rotation speed related function codes
1570
1571 == **Zero-speed clamp function** ==
1572
1573 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1574
1575 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1576
1577 (% class="table-bordered" %)
1578 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1579 **Setting method**
1580 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1581 **Effective time**
1582 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1583 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1584 Zero-speed clamp function selection
1585 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1586 Operation setting
1587 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1588 Effective immediately
1589 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1590 Set the zero-speed clamp function. In speed mode:
1591
1592 0: Force the speed to 0;
1593
1594 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1595
1596 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1597
1598 3: Invalid, ignore zero-speed clamp input
1599 )))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1600 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1601 Zero-speed clamp speed threshold
1602 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1603 Operation setting
1604 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1605 Effective immediately
1606 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1607
1608 Table 6-33 Zero-speed clamp related parameters
1609
1610 (% style="text-align:center" %)
1611 [[image:image-20220608171549-30.png]]
1612
1613 Figure 6-34 Zero-speed clamp diagram
1614
1615 == **Speed-related DO output function** ==
1616
1617 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1618
1619 **(1) Rotation detection signal**
1620
1621 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1622
1623 (% style="text-align:center" %)
1624 [[image:image-20220608171625-31.png]]
1625
1626 Figure 6-35 Rotation detection signal diagram
1627
1628 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1629
1630 (% class="table-bordered" %)
1631 |(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1632 **Setting method**
1633 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1634 **Effective time**
1635 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1636 |(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1637 Rotation detection
1638
1639 speed threshold
1640 )))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1641 Operation setting
1642 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1643 Effective immediately
1644 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1645
1646 Table 6-34 Rotation detection speed threshold parameters
1647
1648 (% class="table-bordered" %)
1649 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1650 |(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)(((
1651 T-COIN
1652
1653 rotation detection
1654 )))|(((
1655 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1656
1657 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1658 )))
1659
1660 Table 6-35 DO rotation detection function code
1661
1662 **(2) Zero-speed signal**
1663
1664 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1665
1666 (% style="text-align:center" %)
1667 [[image:image-20220608171904-32.png]]
1668
1669 Figure 6-36 Zero-speed signal diagram
1670
1671 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1672
1673 (% class="table-bordered" %)
1674 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1675 **Setting method**
1676 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1677 **Effective time**
1678 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1679 |(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1680 Operation setting
1681 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1682 Effective immediately
1683 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1684
1685 Table 6-36 Zero-speed output signal threshold parameter
1686
1687 (% class="table-bordered" %)
1688 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1689 |(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1690 ZSP zero speed signal
1691 )))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1692
1693 Table 6-37 DO zero-speed signal function code
1694
1695 **(3) Speed consistent signal**
1696
1697 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1698
1699 (% style="text-align:center" %)
1700 [[image:image-20220608172053-33.png]]
1701
1702 Figure 6-37 Speed consistent signal diagram
1703
1704 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1705
1706 (% class="table-bordered" %)
1707 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1708 **Setting method**
1709 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1710 **Effective time**
1711 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1712 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1713 Operationsetting
1714 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1715 Effective immediately
1716 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1717
1718 Table 6-38 Speed consistent signal threshold parameters
1719
1720 (% class="table-bordered" %)
1721 |(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1722 |(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1723 U-COIN consistent speed
1724 )))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1725
1726 Table 6-39 DO speed consistent function code
1727
1728 **(4) Speed approach signal**
1729
1730 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1731
1732 (% style="text-align:center" %)
1733 [[image:image-20220608172207-34.png]]
1734
1735 Figure 6-38 Speed approaching signal diagram
1736
1737 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1738
1739 (% class="table-bordered" %)
1740 |(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1741 **Setting method**
1742 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1743 **Effective time**
1744 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1745 |(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1746 Operation setting
1747 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1748 Effective immediately
1749 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1750
1751 Table 6-40 Speed approaching signal threshold parameters
1752
1753 (% class="table-bordered" %)
1754 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1755 |(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1756 V-NEAR speed approach
1757 )))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1758
1759 Table 6-41 DO speed approach function code
1760
1761 = **Torque control mode** =
1762
1763 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1764
1765 (% style="text-align:center" %)
1766 [[image:image-20220608172405-35.png]]
1767
1768 Figure 6-39 Torque mode diagram
1769
1770 == **Torque instruction input setting** ==
1771
1772 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1773
1774 (% class="table-bordered" %)
1775 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1776 **Setting method**
1777 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1778 **Effective time**
1779 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1780 |(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1781 Shutdown setting
1782 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1783 Effective immediately
1784 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1785 0: internal torque instruction
1786
1787 1: AI_1 analog input(not supported by VD2F)
1788 )))|(% style="text-align:center; vertical-align:middle" %)-
1789
1790 Table 6-42 Torque instruction source parameter
1791
1792 **(1) Torque instruction source is internal torque instruction (P01-07=0)**
1793
1794 Torque instruction source is from inside, the value is set by function code P01-08.
1795
1796 (% class="table-bordered" %)
1797 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1798 **Setting method**
1799 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1800 **Effective time**
1801 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1802 |(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1803 Operation setting
1804 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1805 Effective immediately
1806 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1807
1808 Table 6-43 Torque instruction keyboard set value
1809
1810 **(2) Torque instruction source is internal torque instruction (P01-07=1)**
1811
1812 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1813
1814 (% style="text-align:center" %)
1815 [[image:image-20220608153646-7.png||height="213" width="408"]]
1816
1817 Figure 6-40 Analog input circuit
1818
1819 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1820
1821 (% style="text-align:center" %)
1822 [[image:image-20220608172502-36.png]]
1823
1824 Figure 6-41 Analog voltage torque instruction setting steps
1825
1826 Explanation of related terms:
1827
1828 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1829
1830 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1831
1832 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1833
1834 (% style="text-align:center" %)
1835 [[image:image-20220608172611-37.png]]
1836
1837 Figure 6-42 AI_1 diagram before and after bias
1838
1839 (% class="table-bordered" %)
1840 |(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1841 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1842 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1843 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1844 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1845
1846 Table 6-44 AI_1 parameters
1847
1848 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1849
1850 == **Torque instruction filtering** ==
1851
1852 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1853
1854 (% class="table-bordered" %)
1855 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1856 **Setting method**
1857 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1858 **Effective time**
1859 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1860 |(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1861 Operation setting
1862 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1863 Effective immediately
1864 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1865
1866 Table 6-45 Torque filtering time constant parameter details
1867
1868 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1869
1870 (% style="text-align:center" %)
1871 [[image:image-20220608172646-38.png]]
1872
1873 Figure 6-43 Torque instruction-first-order filtering diagram
1874
1875 == **Torque instruction limit** ==
1876
1877 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1878
1879 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1880
1881 (% style="text-align:center" %)
1882 [[image:image-20220608172806-39.png]]
1883
1884 Figure 6-44 Torque instruction limit diagram
1885
1886 **(1) Set torque limit source**
1887
1888 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1889
1890 (% class="table-bordered" %)
1891 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1892 **Setting method**
1893 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1894 **Effective time**
1895 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1896 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1897 Torque limit source
1898 )))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1899 Shutdown setting
1900 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1901 Effective immediately
1902 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1903 0: internal value
1904
1905 1: AI_1 analog input
1906
1907 (not supported by VD2F)
1908 )))|(% style="text-align:center; vertical-align:middle" %)-
1909
1910 1) Torque limit source is internal torque instruction (P01-14=0)
1911
1912 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1913
1914 (% class="table-bordered" %)
1915 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1916 **Setting method**
1917 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1918 **Effective time**
1919 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1920 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1921 Forward torque limit
1922 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1923 Operation setting
1924 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1925 Effective immediately
1926 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1927 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1928 Reverse torque limit
1929 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1930 Operation setting
1931 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1932 Effective immediately
1933 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1934
1935 Table 6-46 Torque limit parameter details
1936
1937 2) Torque limit source is external (P01-14=1)
1938
1939 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1940
1941 **(2) Set torque limit DO signal output**
1942
1943 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1944
1945 (% class="table-bordered" %)
1946 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1947 |(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1948 T-LIMIT in torque limit
1949 )))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1950
1951 Table 6-47 DO torque limit function codes
1952
1953 == **Speed limit in torque mode** ==
1954
1955 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1956
1957 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1958
1959 |(((
1960 (% style="text-align:center" %)
1961 [[image:image-20220608172910-40.png]]
1962 )))|(((
1963 (% style="text-align:center" %)
1964 [[image:image-20220608173155-41.png]]
1965 )))
1966 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1967
1968 (% class="table-bordered" %)
1969 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1970 **Setting method**
1971 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1972 **Effective time**
1973 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1974 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1975 Forward torque
1976
1977 limit in torque mode
1978 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1979 Operation setting
1980 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1981 Effective immediately
1982 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1983 Forward torque
1984
1985 limit in torque mode
1986 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1987 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1988 Reverse torque
1989
1990 limit in torque mode
1991 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1992 Operation setting
1993 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1994 Effective immediately
1995 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1996 Reverse torque
1997
1998 limit in torque mode
1999 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
2000
2001 Table 6-48 Speed limit parameters in torque mode
2002
2003 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__.
2004
2005 == **Torque-related DO output functions** ==
2006
2007 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2008
2009 **Torque arrival**
2010
2011 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2012
2013 (% style="text-align:center" %)
2014 [[image:image-20220608173541-42.png]]
2015
2016 Figure 6-47 Torque arrival output diagram
2017
2018 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2019
2020 (% class="table-bordered" %)
2021 |(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2022 **Setting method**
2023 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2024 **Effective time**
2025 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2026 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2027 Torque arrival
2028
2029 threshold
2030 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2031 Operation setting
2032 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2033 Effective immediately
2034 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2035 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2036
2037 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2038
2039 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2040 )))|(% style="text-align:center; vertical-align:middle" %)%
2041 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2042 Torque arrival
2043
2044 hysteresis
2045 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2046 Operation setting
2047 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2048 Effective immediately
2049 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2050
2051 Table 6-49 Torque arrival parameters
2052
2053 (% class="table-bordered" %)
2054 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2055 |(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2056 T-COIN torque arrival
2057 )))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2058
2059 Table 6-50 DO Torque Arrival Function Code
2060
2061 = **Mixed control mode** =
2062
2063 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2064
2065 Position mode  Speed mode
2066
2067 Position mode  Torque mode
2068
2069 Speed mode  Torque mode
2070
2071 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2072
2073 (% class="table-bordered" %)
2074 |(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2075 **Setting method**
2076 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2077 **Effective time**
2078 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2079 |(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2080 Shutdown setting
2081 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2082 Shutdown setting
2083 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((
2084 1: Position control
2085
2086 2: Speed control
2087
2088 3: Torque control
2089
2090 4: Position/speed mixed control
2091
2092 5: Position/torque mixed control
2093
2094 6: Speed/torque mixed control
2095 )))|(% style="text-align:center; vertical-align:middle" %)-
2096
2097 Table 6-51 Mixed control mode parameters
2098
2099 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2100
2101 (% class="table-bordered" %)
2102 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2103 |(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2104 (% class="table-bordered" %)
2105 |(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2106 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2107 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2108 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2109 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2110 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2111 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2112 )))
2113
2114 Table 6-52 Description of DI function codes in control mode
2115
2116 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2117
2118 = **Absolute system** =
2119
2120 == **Overview** ==
2121
2122 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2123
2124 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2125
2126 == **Single-turn absolute value system** ==
2127
2128 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2129
2130 (% class="table-bordered" %)
2131 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2132 |(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2133
2134 Table 6-53 Single-turn absolute encoder information
2135
2136 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2137
2138 (% style="text-align:center" %)
2139 [[image:image-20220608173618-43.png]]
2140
2141 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2142
2143 == **Multi-turn absolute value system** ==
2144
2145 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2146
2147 (% class="table-bordered" %)
2148 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2149 |(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2150 |(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2151
2152 Table 6-54 Multi-turn absolute encoder information
2153
2154 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2155
2156 (% style="text-align:center" %)
2157 [[image:image-20220608173701-44.png]]
2158
2159 Figure 6-49 The relationship between encoder feedback position and rotating load position
2160
2161 == **Encoder feedback data** ==
2162
2163 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2164
2165 (% class="table-bordered" %)
2166 |(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2167 |(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2168 |(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2169 |(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2170
2171 Table 6-55 Encoder feedback data
2172
2173 == **Absolute value system encoder battery box use precautions** ==
2174
2175 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2176
2177 (% style="text-align:center" %)
2178 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2179
2180 Figure 6-50 the encoder battery box
2181
2182 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. The specific replacement method is as follows:
2183
2184 1. Step1 The servo drive is powered on and is in a non-operational state;
2185 1. Step2 Replace the battery;
2186 1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings.
2187
2188 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2189
2190 (% class="table-bordered" %)
2191 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2192 **Setting method**
2193 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2194 **Effective time**
2195 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2196 |(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2197 Shutdown setting
2198 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2199 Effective immediately
2200 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2201 0: No operation
2202
2203 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2204
2205 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2206 )))|(% style="text-align:center; vertical-align:middle" %)-
2207
2208 Table 6-56 Absolute encoder reset enable parameter
2209
2210 ✎**Note: **If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2211
2212 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2213
2214 = **Overview** =
2215
2216 == **VDI** ==
2217
2218 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2219
2220 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2221
2222 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2223
2224 (% style="text-align:center" %)
2225 [[image:image-20220608173804-46.png]]
2226
2227 Figure 6-51 VDI_1 setting steps
2228
2229 (% class="table-bordered" %)
2230 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2231 **Setting method**
2232 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2233 **Effective time**
2234 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2235 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2236 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2237
2238 VDI_1 input level:
2239
2240 0: low level
2241
2242 1: high level
2243 )))|(% style="text-align:center; vertical-align:middle" %)-
2244 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2245 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2246
2247 VDI_2 input level:
2248
2249 0: low level
2250
2251 1: high level
2252 )))|(% style="text-align:center; vertical-align:middle" %)-
2253 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2254 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2255
2256 VDI_3 input level:
2257
2258 0: low level
2259
2260 1: high level
2261 )))|(% style="text-align:center; vertical-align:middle" %)-
2262 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2263 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2264
2265 VDI_4 input level:
2266
2267 0: low level
2268
2269 1: high level
2270 )))|(% style="text-align:center; vertical-align:middle" %)-
2271 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2272 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2273
2274 VDI_5 input level:
2275
2276 0: low level
2277
2278 1: high level
2279 )))|(% style="text-align:center; vertical-align:middle" %)-
2280 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2281 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2282
2283 VDI_6 input level:
2284
2285 0: low level
2286
2287 1: high level
2288 )))|(% style="text-align:center; vertical-align:middle" %)-
2289 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2290 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2291
2292 VDI_7 input level:
2293
2294 0: low level
2295
2296 1: high level
2297 )))|(% style="text-align:center; vertical-align:middle" %)-
2298 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2299 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2300
2301 VDI_8 input level:
2302
2303 0: low level
2304
2305 1: high level
2306 )))|(% style="text-align:center; vertical-align:middle" %)-
2307
2308 Table 6-57 Virtual VDI parameters
2309
2310 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2311
2312 == **Port filtering time** ==
2313
2314 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2315
2316 (% class="table-bordered" %)
2317 |(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2318 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2319 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2320
2321 Table 6-58 DI terminal channel logic selection
2322
2323 == **VDO** ==
2324
2325 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2326
2327 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2328
2329 (% style="text-align:center" %)
2330 [[image:image-20220608173957-48.png]]
2331
2332 Figure 6-52 VDO_2 setting steps
2333
2334 (% class="table-bordered" %)
2335 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2336 **Setting method**
2337 )))|(% style="text-align:center; vertical-align:middle" %)(((
2338 **Effective time**
2339 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2340 |(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2341 VDO_1 output level:
2342
2343 0: low level
2344
2345 1: high level
2346 )))|(% style="text-align:center; vertical-align:middle" %)-
2347 |(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2348 VDO_2 output level:
2349
2350 0: low level
2351
2352 1: high level
2353 )))|(% style="text-align:center; vertical-align:middle" %)-
2354 |(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2355 VDO_3 output level:
2356
2357 0: low level
2358
2359 1: high level
2360 )))|(% style="text-align:center; vertical-align:middle" %)-
2361 |(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2362 VDO_4 output level:
2363
2364 0: low level
2365
2366 1: high level
2367 )))|(% style="text-align:center; vertical-align:middle" %)-
2368
2369 Table 6-59 Communication control DO function parameters
2370
2371 (% class="table-bordered" %)
2372 |(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2373 |(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 |(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 |(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2376 |(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2377
2378 Table 6-60 VDO function number
2379
2380 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2381
2382 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2383
2384 == **Motor overload protection** ==
2385
2386 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2387
2388 (% class="table-bordered" %)
2389 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2390 **Setting method**
2391 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2392 **Effective time**
2393 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2394 |(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2395 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2396
2397 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2398 )))|(% style="text-align:center; vertical-align:middle" %)%
2399
2400 In the following cases, it could be modified according to the actual heat generation of the motor
2401
2402 1. The motor works in a place with high ambient temperature
2403 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2404
2405 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2406
2407 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2408
2409 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.