Wiki source code of 06 Operation

Version 43.1 by Joey on 2022/06/11 15:24

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |**No.**|**Content**
6 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
7 |1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |5|Servo drive and servo motor must be grounded reliably.
12 |6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |7|The force of all cables is within the specified range.
14 |8|The wiring terminals have been insulated.
15 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
16 |1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |2|The servo drive and external braking resistor are not placed on combustible objects.
18 |3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == **Power-on** ==
23
24 **(1) Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
29
30 **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == **Jog operation** ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **(1) Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
39
40 **(2) Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44
45 (% class="table-bordered" %)
46 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
47 **Setting method**
48 )))|(% style="text-align:center; vertical-align:middle" %)(((
49 **Effective time**
50 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
51 |(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
52 Operation setting
53 )))|(% style="text-align:center; vertical-align:middle" %)(((
54 Effective immediately
55 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
56
57 Table 6-2 JOG speed parameter
58
59 == **Rotation direction selection** ==
60
61 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
62
63 (% class="table-bordered" %)
64 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
65 **Setting method**
66 )))|(% style="text-align:center; vertical-align:middle" %)(((
67 **Effective time**
68 )))|(% style="text-align:center; vertical-align:middle" %)(((
69 **Default value**
70 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
71 |(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
72 Shutdown setting
73 )))|(% style="text-align:center; vertical-align:middle" %)(((
74 Effective immediately
75 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
76 Forward rotation: Face the motor shaft to watch
77
78 0: standard setting (CW is forward rotation)
79
80 1: reverse mode (CCW is forward rotation)
81 )))|(% style="text-align:center; vertical-align:middle" %)-
82
83 Table 6-3 Rotation direction parameters** **
84
85 == **Braking resistor** ==
86
87 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
88
89 The basis for judging whether the braking resistor is built-in or external.
90
91 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
93
94 (% class="table-bordered" %)
95 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
96 **Setting method**
97 )))|(% style="text-align:center; vertical-align:middle" %)(((
98 **Effective time**
99 )))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
100 |(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
101 Operation setting
102 )))|(% style="text-align:center; vertical-align:middle" %)(((
103 Effective immediately
104 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
105 0: use built-in braking resistor
106
107 1: use external braking resistor and natural cooling
108
109 2: use external braking resistor and forced air cooling; (cannot be set)
110
111 3: No braking resistor is used, it is all absorbed by capacitor.
112 )))|(% style="text-align:center; vertical-align:middle" %)-
113 |(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
114 |(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
115 Operation setting
116 )))|(% style="text-align:center; vertical-align:middle" %)(((
117 Effective immediately
118 )))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
119 |(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
120 Operation setting
121 )))|(% style="text-align:center; vertical-align:middle" %)(((
122 Effective immediately
123 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
124
125 Table 6-4 Braking resistor parameters
126
127 == **Servo operation** ==
128
129 **(1) Set the servo enable (S-ON) to valid (ON)**
130
131 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
132
133 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
134
135 **(2) Input the instruction and the motor rotates**
136
137 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
138
139 **(3) Timing diagram of power on**
140
141 (% style="text-align:center" %)
142 [[image:image-20220608163014-1.png]]
143
144 Figure 6-1 Timing diagram of power on
145
146 == **Servo shutdown** ==
147
148 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
149
150 (% class="table-bordered" %)
151 |Shutdown mode|Shutdown description|Shutdown characteristics
152 |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
153 |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
154
155 Table 6-5 Comparison of two shutdown modes
156
157 (% class="table-bordered" %)
158 |(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
159 |(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
160
161 Table 6-6 Comparison of two shutdown status
162
163 **(1) Servo enable (S-ON) OFF shutdown**
164
165 The related parameters of the servo OFF shutdown mode are shown in the table below.
166
167 (% class="table-bordered" %)
168 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
169 **Setting method**
170 )))|(% style="text-align:center; vertical-align:middle" %)(((
171 **Effective time**
172 )))|(% style="text-align:center; vertical-align:middle" %)(((
173 **Default value**
174 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
175 |(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
176 Shutdown
177
178 setting
179 )))|(% style="text-align:center; vertical-align:middle" %)(((
180 Effective
181
182 immediately
183 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
184 0: Free shutdown, and the motor shaft remains free status.
185
186 1: Zero-speed shutdown, and the motor shaft remains free status.
187 )))|(% style="text-align:center; vertical-align:middle" %)-
188
189 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
190
191 **(2) Emergency shutdown**
192
193 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
194
195 **(3) Overtravel shutdown**
196
197 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
198
199 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
200
201 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
202
203 (% class="table-bordered" %)
204 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
205 **Setting method**
206 )))|(% style="text-align:center; vertical-align:middle" %)(((
207 **Effective time**
208 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
209 |(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
210 0: OFF (not used)
211
212 01: S-ON servo enable
213
214 02: A-CLR fault and Warning Clear
215
216 03: POT forward drive prohibition
217
218 04: NOT Reverse drive prohibition
219
220 05: ZCLAMP Zero speed
221
222 06: CL Clear deviation counter
223
224 07: C-SIGN Inverted instruction
225
226 08: E-STOP Emergency stop
227
228 09: GEAR-SEL Electronic Gear Switch 1
229
230 10: GAIN-SEL gain switch
231
232 11: INH Instruction pulse prohibited input
233
234 12: VSSEL Vibration control switch input
235
236 13: INSPD1 Internal speed instruction selection 1
237
238 14: INSPD2 Internal speed instruction selection 2
239
240 15: INSPD3 Internal speedinstruction selection 3
241
242 16: J-SEL inertia ratio switch (not implemented yet)
243
244 17: MixModesel mixed mode selection
245
246 20: Internal multi-segment position enable signal
247
248 21: Internal multi-segment position selection 1
249
250 22: Internal multi-segment position selection 2
251
252 23: Internal multi-segment position selection 3
253
254 24: Internal multi-segment position selection 4
255
256 Others: reserved
257 )))|(% style="text-align:center; vertical-align:middle" %)-
258 |(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
259 Effective immediately
260 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
261 DI port input logic validity function selection.
262
263 0: Normally open input. Active low level (switch on);
264
265 1: Normally closed input. Active high level (switch off);
266 )))|(% style="text-align:center; vertical-align:middle" %)-
267 |(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
268 Effective immediately
269 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
270 Select the DI_3 port type to enable
271
272 0: Hardware DI_3 input terminal
273
274 1: virtual VDI_3 input terminal
275 )))|(% style="text-align:center; vertical-align:middle" %)-
276
277 (% class="table-bordered" %)
278 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
279 Operation setting
280 )))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
281 again Power-on
282 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
283 0 off (not used)
284
285 01: SON Servo enable
286
287 02: A-CLR Fault and Warning Clear
288
289 03: POT Forward drive prohibition
290
291 04: NOT Reverse drive prohibition
292
293 05: ZCLAMP Zero speed
294
295 06: CL Clear deviation counter
296
297 07: C-SIGN Inverted instruction
298
299 08: E-STOP Emergency shutdown
300
301 09: GEAR-SEL Electronic Gear Switch 1
302
303 10: GAIN-SEL gain switch
304
305 11: INH Instruction pulse prohibited input
306
307 12: VSSEL Vibration control switch input
308
309 13: INSPD1 Internal speed instruction selection 1
310
311 14: INSPD2 Internal speed instruction selection 2
312
313 15: INSPD3 Internal speed instruction selection 3
314
315 16: J-SEL inertia ratio switch (not implemented yet)
316
317 17: MixModesel mixed mode selection
318
319 20: Internal multi-segment position enable signal
320
321 21: Internal multi-segment position selection 1
322
323 22: Internal multi-segment position selection 2
324
325 23: Internal multi-segment position selection 3
326
327 24: Internal multi-segment position selection 4
328
329 Others: reserved
330 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
331 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
332 Effective immediately
333 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
334 DI port input logic validity function selection.
335
336 0: Normally open input. Active low level (switch on);
337
338 1: Normally closed input. Active high level (switch off);
339 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
340 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
341 Effective immediately
342 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
343 Select the DI_4 port type to enable
344
345 0: Hardware DI_4 input terminal
346
347 1: virtual VDI_4 input terminal
348 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
349
350 Table 6-8 DI3 and DI4 channel parameters
351
352 **(4) Malfunction shutdown**
353
354 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
355
356 == **Brake device** ==
357
358 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
359
360 (% class="table-bordered" %)
361 |(((
362 (% style="text-align:center" %)
363 [[image:image-20220611151617-1.png]]
364 )))
365 |(((
366 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
367
368 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
369
370 ✎The brake coil has no polarity;
371
372 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
373
374 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
375 )))
376
377 **(1) Wiring of brake device**
378
379 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
380
381 (% style="text-align:center" %)
382 [[image:image-20220608163136-2.png]]
383
384 Figure 6-2 VD2B servo drive brake wiring
385
386 (% class="table-bordered" %)
387 |(((
388 (% style="text-align:center" %)
389 [[image:image-20220611151642-2.png]]
390 )))
391 |(((
392 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
393
394 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
395
396 ✎It is recommended to use cables above 0.5 mm².
397 )))
398
399 **(2) Brake software setting**
400
401 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
402
403 Related function code is as below.
404
405 (% class="table-bordered" %)
406 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
407 **Effective time**
408 )))
409 |(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
410 BRK-OFF Brake output
411 )))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
412
413 Table 6-2 Relevant function codes for brake setting
414
415 (% class="table-bordered" %)
416 |(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
417 **Setting method**
418 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
419 **Effective time**
420 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
421 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
422 Operation setting
423 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
424 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
425 Operation setting
426 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
427 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
428 Operation setting
429 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
430 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
431
432 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
433 )))|(% style="text-align:center; vertical-align:middle" %)rpm
434 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
435 Operation setting
436 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
437 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
438
439 When brake output (BRK-OFF) is not allocated, this function code has no effect.
440 )))|(% style="text-align:center; vertical-align:middle" %)ms
441
442 Table 6-9 Brake setting function codes
443
444 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
445
446 **(3) Servo drive brake timing in normal state**
447
448 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
449
450 1) Brake timing when servo motor is stationary
451
452 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
453
454 (% class="table-bordered" %)
455 |(((
456 (% style="text-align:center" %)
457 [[image:image-20220611151705-3.png]]
458 )))
459 |(((
460 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
461
462 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
463 )))
464
465 (% style="text-align:center" %)
466 [[image:image-20220608163304-3.png]]
467
468 Figure 6-3 Brake Timing of when the motor is stationary
469
470 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
471
472 2) The brake timing when servo motor rotates
473
474 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
475
476 (% class="table-bordered" %)
477 |(((
478 (% style="text-align:center" %)
479 [[image:image-20220611151719-4.png]]
480 )))
481 |(((
482 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
483
484 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
485
486 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
487
488 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
489
490 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
491 )))
492
493 (% style="text-align:center" %)
494 [[image:image-20220608163425-4.png]]
495
496 Figure 6-4 Brake timing when the motor rotates
497
498 **(4) Brake timing when the servo drive fails**
499
500 The brake timing (free shutdown) in the fault status is as follows.
501
502 (% style="text-align:center" %)
503 [[image:image-20220608163541-5.png]]
504
505 Figure 6-5 The brake timing (free shutdown) in the fault state
506
507 = **Position control mode** =
508
509 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
510
511 (% style="text-align:center" %)
512 [[image:image-20220608163643-6.png]]
513
514 Figure 6-6 Position control diagram
515
516 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
517
518 (% class="table-bordered" %)
519 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
520 **Setting method**
521 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
522 **Effective time**
523 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
524 |(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
525 Operation setting
526 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
527 immediately Effective
528 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
529 0: position control
530
531 2: speed control
532
533 3: torque control
534
535 4: position/speed mix control
536
537 5: position/torque mix control
538
539 6: speed /torque mix control
540 )))|(% style="text-align:center; vertical-align:middle" %)-
541
542 Table 6-10 Control mode parameters
543
544 == **Position instruction input setting** ==
545
546 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
547
548 (% class="table-bordered" %)
549 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
550 **Setting method**
551 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
552 **Effective time**
553 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
554 |(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
555 Operation setting
556 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
557 immediately Effective
558 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
559 0: pulse instruction
560
561 1: internal position instruction
562 )))|(% style="text-align:center; vertical-align:middle" %)-
563
564 Table 6-11 Position instruction source parameter
565
566 **(1) The source of position instruction is pulse instruction (P01-06=0)**
567
568 1) Low-speed pulse instruction input
569
570 (% class="table-bordered" %)
571 |(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
572 |(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
573 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
574
575 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
576
577 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
578
579 (% class="table-bordered" %)
580 |(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
581 |(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
582 |(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
583
584 Table 6-12 Pulse input specifications
585
586 1.Differential input
587
588 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
589
590 (% style="text-align:center" %)
591 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
592
593 Figure 6-8 Differential input connection
594
595 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
596
597 2.Open collector input
598
599 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
600
601 (% style="text-align:center" %)
602 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
603
604 Figure 6-9 Open collector input connection
605
606 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
607
608 2) Position pulse frequency and anti-interference level
609
610 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
611
612 (% style="text-align:center" %)
613 [[image:image-20220608163952-8.png]]
614
615 Figure 6-10 Example of filtered signal waveform
616
617 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
618
619 (% class="table-bordered" %)
620 |(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
621 **Setting method**
622 )))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
623 **Effective time**
624 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:87px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:538px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
625 |(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
626 Shutdown setting
627 )))|(% style="text-align:center; vertical-align:middle; width:176px" %)(((
628 Effective immediately
629 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)300|(% style="text-align:center; vertical-align:middle; width:87px" %)1 to 500|(% colspan="2" style="width:538px" %)Set the maximum frequency of external pulse instruction|KHz
630 |(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
631 Operation setting
632 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:176px" %)(((
633 Power-on again
634 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:121px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:87px" %)0 to 9|(% colspan="2" style="width:538px" %)(((
635 Set the anti-interference level of external pulse instruction.
636
637 0: no filtering;
638
639 1: Filtering time 128ns
640
641 2: Filtering time 256ns
642
643 3: Filtering time 512ns
644
645 4: Filtering time 1.024us
646
647 5: Filtering time 2.048us
648
649 6: Filtering time 4.096us
650
651 7: Filtering time 8.192us
652
653 8: Filtering time 16.384us
654 )))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
655 |(% rowspan="2" style="width:4px" %)9|VD2: Filtering time 25.5us
656 |VD2F: Filtering time 25.5us
657
658 Table 6-13 Position pulse frequency and anti-interference level parameters
659
660 3) Position pulse type selection
661
662 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
663
664 (% class="table-bordered" %)
665 |(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
666 **Setting method**
667 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
668 **Effective time**
669 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
670 |(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
671 Operation setting
672 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
673 Power-on again
674 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
675 0: direction + pulse (positive logic)
676
677 1: CW/CCW
678
679 2: A, B phase quadrature pulse (4 times frequency)
680
681 3: Direction + pulse (negative logic)
682
683 4: CW/CCW (negative logic)
684
685 5: A, B phase quadrature pulse (4 times frequency negative logic)
686 )))|(% style="text-align:center; vertical-align:middle" %)-
687
688 Table 6-14 Position pulse type selection parameter
689
690 (% class="table-bordered" %)
691 |(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
692 |(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
693 Direction + pulse
694
695 (Positive logic)
696 )))|(% style="text-align:center; vertical-align:middle" %)(((
697 PULSE
698
699 SIGN
700 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
701 |(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
702 PULSE (CW)
703
704 SIGN (CCW)
705 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
706 |(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
707 AB phase orthogonal
708
709 pulse (4 times frequency)
710 )))|(% style="text-align:center; vertical-align:middle" %)(((
711 PULSE (Phase A)
712
713 SIGN (Phase B)
714 )))|(% style="text-align:center; vertical-align:middle" %)(((
715 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
716
717 Phase A is 90° ahead of Phase B
718 )))|(% style="text-align:center; vertical-align:middle" %)(((
719 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
720
721 Phase B is 90° ahead of Phase A
722 )))
723 |(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
724 Direction + pulse
725
726 (Negative logic)
727 )))|(% style="text-align:center; vertical-align:middle" %)(((
728 PULSE
729
730 SIGN
731 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
732 |(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
733 CW/CCW
734
735 (Negative logic)
736 )))|(% style="text-align:center; vertical-align:middle" %)(((
737 PULSE (CW)
738
739 SIGN (CCW)
740 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
741 |(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
742 AB phase orthogonal
743
744 pulse (4 times frequency negative logic)
745 )))|(% style="text-align:center; vertical-align:middle" %)(((
746 PULSE (Phase A)
747
748 SIGN (Phase B)
749 )))|(% style="text-align:center; vertical-align:middle" %)(((
750 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
751
752 B phase is ahead of A phase by 90°
753 )))|(% style="text-align:center; vertical-align:middle" %)(((
754 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
755
756 A phase is ahead of B phase by 90°
757 )))
758
759 Table 6-15 Pulse description
760
761 **(2) The source of position instruction is internal position instruction (P01-06=1)**
762
763 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
764
765 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
766
767 (% style="text-align:center" %)
768 [[image:image-20220608164116-9.png]]
769
770 Figure 6-11 The setting process of multi-segment position
771
772 1) Set multi-segment position running mode
773
774 (% class="table-bordered" %)
775 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
776 **Setting method**
777 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
778 **Effective time**
779 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
780 |(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
781 Shutdown setting
782 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
783 Effective immediately
784 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
785 0: Single running
786
787 1: Cycle running
788
789 2: DI switching running
790 )))|(% style="text-align:center; vertical-align:middle" %)-
791 |(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
792 Shutdown setting
793 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
794 Effective immediately
795 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
796 |(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
797 Shutdown setting
798 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
799 Effective immediately
800 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
801 |(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
802 Shutdown setting
803 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
804 Effective immediately
805 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
806 0: Run the remaining segments
807
808 1: Run again from the start segment
809 )))|(% style="text-align:center; vertical-align:middle" %)-
810 |(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
811 Shutdown setting
812 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
813 Effective immediately
814 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
815 0: Relative position instruction
816
817 1: Absolute position instruction
818 )))|(% style="text-align:center; vertical-align:middle" %)-
819
820 Table 6-16 multi-segment position running mode parameters
821
822 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
823
824 ~1. Single running
825
826 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
827
828 (% style="text-align:center" %)
829 [[image:image-20220608164226-10.png]]
830
831 Figure 6-12 Single running curve (P07-02=1, P07-03=2)
832
833 2. Cycle running
834
835 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
836
837 (% style="text-align:center" %)
838 [[image:image-20220608164327-11.png]]
839
840 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
841
842 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611151917-5.png]]
843 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
844
845 3. DI switching running
846
847 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
848
849 (% class="table-bordered" %)
850 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
851 |(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
852 |(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
853 |(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
854 |(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
855
856 Table 6-17 DI function code
857
858 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
859
860 (% class="table-bordered" %)
861 |(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
862 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
863 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
864 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
865 |(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
866 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
867
868 Table 6-18 INPOS corresponds to running segment number
869
870 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
871
872 (% style="text-align:center" %)
873 [[image:image-20220608164545-12.png]]
874
875 Figure 6-14 DI switching running curve
876
877 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
878
879 **A. Run the remaining segments**
880
881 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
882
883 (% style="text-align:center" %)
884 [[image:image-20220608164847-13.png]]
885
886 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
887
888 (% style="text-align:center" %)
889 [[image:image-20220608165032-14.png]]
890
891 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
892
893 **B. Run again from the start segment**
894
895 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
896
897 (% style="text-align:center" %)
898 [[image:image-20220608165343-15.png]]
899
900 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
901
902 (% style="text-align:center" %)
903 [[image:image-20220608165558-16.png]]
904
905 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
906
907 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
908
909 A. Relative position instruction
910
911 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
912
913 |(((
914 (% style="text-align:center" %)
915 [[image:image-20220608165710-17.png]]
916 )))|(((
917 (% style="text-align:center" %)
918 [[image:image-20220608165749-18.png]]
919 )))
920 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
921
922 B. Absolute position instruction
923
924 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
925
926 |(((
927 (% style="text-align:center" %)
928 [[image:image-20220608165848-19.png]]
929 )))|(((
930 (% style="text-align:center" %)
931 [[image:image-20220608170005-20.png]]
932 )))
933 |Figure 6-21 Absolute indication|Figure 6-22 Displacement
934
935 2) Multi-segment position running curve setting
936
937 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
938
939 (% class="table-bordered" %)
940 |(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
941 **Setting method**
942 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
943 **Effective time**
944 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:123px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
945 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
946 1st segment
947
948 displacement
949 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
950 Operation setting
951 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
952 Effective immediately
953 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)10000|(% style="text-align:center; vertical-align:middle; width:123px" %)(((
954 -2147483647 to
955
956 2147483646
957 )))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
958 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
959 Operation setting
960 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
961 Effective immediately
962 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
963 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
964 Operation setting
965 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
966 Effective immediately
967 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
968 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
969 Operation setting
970 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
971 Effective immediately
972 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)100|(% style="text-align:center; vertical-align:middle; width:123px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
973
974 Table 6-19 The 1st position operation curve parameters table
975
976 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
977
978 (% style="text-align:center" %)
979 [[image:image-20220608170149-21.png]]
980
981 Figure 6-23 The 1st segment running curve of motor
982
983 3) multi-segment position instruction enable
984
985 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
986
987 (% class="table-bordered" %)
988 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
989 |(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
990 DI port logic invalid: Does not affect the current operation of the servo motor.
991
992 DI port logic valid: Motor runs multi-segment position
993 )))
994
995 (% style="text-align:center" %)
996 [[image:image-20220611152020-6.png]]
997
998 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
999
1000 == **Electronic gear ratio** ==
1001
1002 **(1) Definition of electronic gear ratio**
1003
1004 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1005
1006 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1007
1008 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1009
1010 (% style="text-align:center" %)
1011 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
1012
1013 (% style="text-align:center" %)
1014 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
1015
1016 (% style="text-align:center" %)
1017 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1018
1019 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1020
1021 **(2) Setting steps of electronic gear ratio**
1022
1023 (% style="text-align:center" %)
1024 [[image:image-20220608170320-22.png]]
1025
1026 Figure 6-24 Setting steps of electronic gear ratio
1027
1028 Step1: Confirm the mechanical parameters including the reduction ratio, the ball screw lead, gear diameter in the gear drive, and pulley diameter in the pulley drive.
1029
1030 Step2: Confirm the resolution of servo motor encoder.
1031
1032 Step3: Confirm the parameters such as mechanical specifications, positioning accuracy, etc, and determine the load displacement corresponding to one position instruction output by the host computer.
1033
1034 Step4: Combine the mechanical parameters and the load displacement corresponding to one position instruction, calculate the position instruction value required for one rotation of the load shaft.
1035
1036 Step5: Calculate the value of electronic gear ratio according to formula below.
1037
1038 (% style="text-align:center" %)
1039 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1040
1041 **(3) lectronic gear ratio switch setting**
1042
1043
1044 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1045
1046 (% class="table-bordered" %)
1047 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1048 **Setting method**
1049 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1050 **Effective time**
1051 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 |(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1053 Shutdown setting
1054 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1055 Effective immediately
1056 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)10000|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1057 Instruction pulse
1058
1059 unit
1060 )))
1061 |(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1062 Electronic gear 1
1063
1064 numerator
1065 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1066 Effective immediately
1067 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 |(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1069 Electronic gear 1
1070
1071 denominator
1072 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1073 Operation setting
1074 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1075 Effective immediately
1076 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 |(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1078 Electronic gear 2
1079
1080 numerator
1081 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1082 Effective immediately
1083 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 |(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1085 Electronic gear 2
1086
1087 denominator
1088 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1089 Effective immediately
1090 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)1|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1091
1092 Table 6-20 Electronic gear ratio function code
1093
1094 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1095
1096 (% class="table-bordered" %)
1097 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 |(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1099 DI port logic invalid: electronic gear ratio 1
1100
1101 DI port logic valid: electronic gear ratio 2
1102 )))
1103
1104 Table 6-21 Switching conditions of electronic gear ratio group
1105
1106 |(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 |(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 |(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1110
1111 Table 6-22 Application of electronic gear ratio
1112
1113 When the function code P00-16 is not 0, the electronic gear ratio [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]] is invalid.
1114
1115 == **Position instruction filtering** ==
1116
1117 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1118
1119 In the following situations, position instruction filtering should be added.
1120
1121 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1122 1. The pulse instruction frequency is low;
1123 1. When the electronic gear ratio is 10 times or more.
1124
1125 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1126
1127 (% style="text-align:center" %)
1128 [[image:image-20220608170455-23.png]]
1129
1130 Figure 6-25 Position instruction filtering diagram
1131
1132 (% class="table-bordered" %)
1133 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1134 **Setting method**
1135 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1136 **Effective time**
1137 )))|(% style="text-align:center; vertical-align:middle; width:123px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:253px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 |(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1139 Shutdown setting
1140 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1141 Effective immediately
1142 )))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1|(% style="width:253px" %)(((
1143 0: 1st-order low-pass filtering
1144
1145 1: average filtering
1146 )))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 |(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1148 Effective immediately
1149 )))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 1000|(% style="width:253px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 |(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1151 Effective immediately
1152 )))|(% style="text-align:center; vertical-align:middle; width:123px" %)0|(% style="text-align:center; vertical-align:middle; width:104px" %)0 to 128|(% style="width:253px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1153
1154 Table 6-23 Position instruction filter function code
1155
1156 == **Clearance of position deviation** ==
1157
1158 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1159
1160 Position deviation = (position instruction-position feedback) (encoder unit)
1161
1162 == **Position-related DO output function** ==
1163
1164 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1165
1166 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1167 **Positioning completion/positioning approach output**
1168
1169 (% class="wikigeneratedid" %)
1170 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1171
1172 (% style="text-align:center" %)
1173 [[image:image-20220608170550-24.png]]
1174
1175 Figure 6-26 Positioning completion signal output diagram
1176
1177 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1178
1179 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1180
1181 (% style="text-align:center" %)
1182 [[image:image-20220608170650-25.png]]
1183
1184 Figure 6-27 Positioning completion signal output with increased window filter time diagram
1185
1186 (% class="table-bordered" %)
1187 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1188 **Setting method**
1189 )))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1190 **Effective time**
1191 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:377px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:272px" %)**Unit**
1192 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1193 Operation setting
1194 )))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1195 Effective immediately
1196 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)800|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1197 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1198 Operation setting
1199 )))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1200 Effective immediately
1201 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)5000|(% style="text-align:center; vertical-align:middle; width:103px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:377px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:272px" %)Equivalent pulse unit
1202 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1203 Operation setting
1204 )))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1205 Effective immediately
1206 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1207 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1208 Operation setting
1209 )))|(% style="text-align:center; vertical-align:middle; width:224px" %)(((
1210 Effective immediately
1211 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:377px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle; width:272px" %)ms
1212
1213 Table 6-24 Function code parameters of positioning completion
1214
1215 (% class="table-bordered" %)
1216 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 |(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 |(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1219 P-NEAR positioning close
1220 )))|(% style="text-align:center; vertical-align:middle" %)(((
1221 Output this signal indicates that the servo drive position is close.
1222 )))
1223
1224 Table 6-25 Description of DO rotation detection function code
1225
1226 = **Speed control mode** =
1227
1228 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1229
1230 (% style="text-align:center" %)
1231 [[image:6.28.jpg||height="260" width="806"]]
1232
1233 Figure 6-28 Speed control block diagram
1234
1235 == **Speed instruction input setting** ==
1236
1237 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1238
1239 (% class="table-bordered" %)
1240 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1241 **Setting method**
1242 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1243 **Effective time**
1244 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 |(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1246 Shutdown setting
1247 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1248 Effective immediately
1249 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1250 0: internal speed instruction
1251
1252 1: AI_1 analog input (not supported by VD2F)
1253 )))|(% style="text-align:center; vertical-align:middle" %)-
1254
1255 Table 6-26 Speed instruction source parameter
1256
1257 **(1) Speed instruction source is internal speed instruction (P01-01=0)**
1258
1259 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1260
1261 (% class="table-bordered" %)
1262 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1263 **Setting method**
1264 )))|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
1265 **Effective time**
1266 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:287px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:259px" %)**Unit**
1267 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1268 Internal speed Instruction 0
1269 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1270 Operation setting
1271 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1272 Effective immediately
1273 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1274 Internal speed instruction 0
1275
1276 When DI input port:
1277
1278 15-INSPD3: 0
1279
1280 14-INSPD2: 0
1281
1282 13-INSPD1: 0,
1283
1284 select this speed instruction to be effective.
1285 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1286 |(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1287 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1288 Internal speed Instruction 1
1289 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1290 Operation setting
1291 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1292 Effective immediately
1293 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1294 Internal speed instruction 1
1295
1296 When DI input port:
1297
1298 15-INSPD3: 0
1299
1300 14-INSPD2: 0
1301
1302 13-INSPD1: 1,
1303
1304 Select this speed instruction to be effective.
1305 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1306 |(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1307 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1308 Internal speed Instruction 2
1309 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1310 Operation setting
1311 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1312 Effective immediately
1313 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1314 Internal speed instruction 2
1315
1316 When DI input port:
1317
1318 15-INSPD3: 0
1319
1320 14-INSPD2: 1
1321
1322 13-INSPD1: 0,
1323
1324 Select this speed instruction to be effective.
1325 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1326 |(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1327 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1328 Internal speed Instruction 3
1329 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1330 Operation setting
1331 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:191px" %)(((
1332 Effective immediately
1333 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:142px" %)0|(% style="text-align:center; vertical-align:middle; width:144px" %)-3000 to 3000|(% rowspan="2" style="width:287px" %)(((
1334 Internal speed instruction 3
1335
1336 When DI input port:
1337
1338 15-INSPD3: 0
1339
1340 14-INSPD2: 1
1341
1342 13-INSPD1: 1,
1343
1344 Select this speed instruction to be effective.
1345 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:259px" %)rpm
1346 |(% style="text-align:center; vertical-align:middle; width:144px" %)-5000 to 5000*
1347
1348 (% class="table-bordered" %)
1349 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1350 Internal speed Instruction 4
1351 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1352 Operation setting
1353 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1354 Effective immediately
1355 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1356 Internal speed instruction 4
1357
1358 When DI input port:
1359
1360 15-INSPD3: 1
1361
1362 14-INSPD2: 0
1363
1364 13-INSPD1: 0,
1365
1366 Select this speed instruction to be effective.
1367 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1370 Internal speed Instruction 5
1371 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1372 Operation setting
1373 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1374 Effective immediately
1375 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1376 Internal speed instruction 5
1377
1378 When DI input port:
1379
1380 15-INSPD3: 1
1381
1382 14-INSPD2: 0
1383
1384 13-INSPD1: 1,
1385
1386 Select this speed instruction to be effective.
1387 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1390 Internal speed Instruction 6
1391 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1392 Operation setting
1393 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1394 Effective immediately
1395 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1396 Internal speed instruction 6
1397
1398 When DI input port:
1399
1400 15-INSPD3: 1
1401
1402 14-INSPD2: 1
1403
1404 13-INSPD1: 0,
1405
1406 Select this speed instruction to be effective.
1407 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1410 Internal speed Instruction 7
1411 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1412 Operation setting
1413 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1414 Effective immediately
1415 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1416 Internal speed instruction 7
1417
1418 When DI input port:
1419
1420 15-INSPD3: 1
1421
1422 14-INSPD2: 1
1423
1424 13-INSPD1: 1,
1425
1426 Select this speed instruction to be effective.
1427 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1429
1430 Table 6-27 Internal speed instruction parameters
1431
1432 ✎**Note: **“*” means the set range of VD2F servo drive.
1433
1434 (% class="table-bordered" %)
1435 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 |(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 |(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 |(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1439
1440 Table 6-28 DI multi-speed function code description
1441
1442 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1443
1444 (% class="table-bordered" %)
1445 |(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1449 |(% colspan="5" %)......
1450 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1451
1452 Table 6-29 Correspondence between INSPD bits and segment numbers
1453
1454 (% style="text-align:center" %)
1455 [[image:image-20220608170845-26.png]]
1456
1457 Figure 6-29 Multi-segment speed running curve
1458
1459 **(2) Speed instruction source is internal speed instruction (P01-01=0)**
1460
1461 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1462
1463 (% style="text-align:center" %)
1464 [[image:image-20220608153341-5.png]]
1465
1466 Figure 6-30 Analog input circuit
1467
1468 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1469
1470 (% style="text-align:center" %)
1471 [[image:image-20220608170955-27.png]]
1472
1473 Figure 6-31 Analog voltage speed instruction setting steps
1474
1475 Explanation of related terms:
1476
1477 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1478
1479 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1480
1481 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1482
1483 (% style="text-align:center" %)
1484 [[image:image-20220608171124-28.png]]
1485
1486 Figure 6-32 AI_1 diagram before and after bias
1487
1488 (% class="table-bordered" %)
1489 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1494
1495 Table 6-30 AI_1 parameters
1496
1497 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1498
1499 == **Acceleration and deceleration time setting** ==
1500
1501 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1502
1503 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1504
1505 (% style="text-align:center" %)
1506 [[image:image-20220608171314-29.png]]
1507
1508 Figure 6-33 of acceleration and deceleration time diagram
1509
1510 Actual acceleration time T1 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/43.jpg?rev=1.1]]
1511
1512 Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1513
1514 (% class="table-bordered" %)
1515 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1516 **Setting method**
1517 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1518 **Effective time**
1519 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1521 Operation setting
1522 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1523 Effective immediately
1524 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1526 Operation setting
1527 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1528 Effective immediately
1529 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1530
1531 Table 6-31 Acceleration and deceleration time parameters
1532
1533 == **Speed instruction limit** ==
1534
1535 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1536
1537 1. P01-10: Set the maximum speed limit value
1538 1. P01-12: Set forward speed limit value
1539 1. P01-13: Set reverse speed limit value
1540 1. The maximum speed of the motor: determined by motor model
1541
1542 The actual motor speed limit interval satisfies the following relationship:
1543
1544 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1545
1546 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1547
1548 (% class="table-bordered" %)
1549 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1550 **Setting method**
1551 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1552 **Effective time**
1553 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1555 Operation setting
1556 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1557 Effective immediately
1558 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1560 Operation setting
1561 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1562 Effective immediately
1563 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1565 Operation setting
1566 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1567 Effective immediately
1568 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1569
1570 Table 6-32 Rotation speed related function codes
1571
1572 == **Zero-speed clamp function** ==
1573
1574 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1575
1576 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1577
1578 (% class="table-bordered" %)
1579 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1580 **Setting method**
1581 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1582 **Effective time**
1583 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1585 Zero-speed clamp function selection
1586 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1587 Operation setting
1588 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1589 Effective immediately
1590 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1591 Set the zero-speed clamp function. In speed mode:
1592
1593 0: Force the speed to 0;
1594
1595 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1596
1597 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1598
1599 3: Invalid, ignore zero-speed clamp input
1600 )))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1602 Zero-speed clamp speed threshold
1603 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1604 Operation setting
1605 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1606 Effective immediately
1607 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1608
1609 Table 6-33 Zero-speed clamp related parameters
1610
1611 (% style="text-align:center" %)
1612 [[image:image-20220608171549-30.png]]
1613
1614 Figure 6-34 Zero-speed clamp diagram
1615
1616 == **Speed-related DO output function** ==
1617
1618 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1619
1620 **(1) Rotation detection signal**
1621
1622 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1623
1624 (% style="text-align:center" %)
1625 [[image:image-20220608171625-31.png]]
1626
1627 Figure 6-35 Rotation detection signal diagram
1628
1629 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1630
1631 (% class="table-bordered" %)
1632 |(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1633 **Setting method**
1634 )))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1635 **Effective time**
1636 )))|(% style="text-align:center; vertical-align:middle; width:126px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:113px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:382px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:237px" %)**Unit**
1637 |(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1638 Rotation detection
1639
1640 speed threshold
1641 )))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1642 Operation setting
1643 )))|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
1644 Effective immediately
1645 )))|(% style="text-align:center; vertical-align:middle; width:126px" %)20|(% style="text-align:center; vertical-align:middle; width:113px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:382px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:237px" %)rpm
1646
1647 Table 6-34 Rotation detection speed threshold parameters
1648
1649 (% class="table-bordered" %)
1650 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:421px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:879px" %)**Function**
1651 |(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle; width:421px" %)(((
1652 T-COIN rotation detection
1653 )))|(% style="width:879px" %)(((
1654 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1655
1656 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1657 )))
1658
1659 Table 6-35 DO rotation detection function code
1660
1661 **(2) Zero-speed signal**
1662
1663 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1664
1665 (% style="text-align:center" %)
1666 [[image:image-20220608171904-32.png]]
1667
1668 Figure 6-36 Zero-speed signal diagram
1669
1670 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1671
1672 (% class="table-bordered" %)
1673 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1674 **Setting method**
1675 )))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1676 **Effective time**
1677 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:106px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:400px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:196px" %)**Unit**
1678 |(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1679 Operation setting
1680 )))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
1681 Effective immediately
1682 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)10|(% style="text-align:center; vertical-align:middle; width:106px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:400px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle; width:196px" %)rpm
1683
1684 Table 6-36 Zero-speed output signal threshold parameter
1685
1686 (% class="table-bordered" %)
1687 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1688 |(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1689 ZSP zero speed signal
1690 )))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1691
1692 Table 6-37 DO zero-speed signal function code
1693
1694 **(3) Speed consistent signal**
1695
1696 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1697
1698 (% style="text-align:center" %)
1699 [[image:image-20220608172053-33.png]]
1700
1701 Figure 6-37 Speed consistent signal diagram
1702
1703 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1704
1705 (% class="table-bordered" %)
1706 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1707 **Setting method**
1708 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1709 **Effective time**
1710 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:103px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:209px" %)**Unit**
1711 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1712 Operationsetting
1713 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1714 Effective immediately
1715 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)10|(% style="text-align:center; vertical-align:middle; width:103px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:347px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:209px" %)rpm
1716
1717 Table 6-38 Speed consistent signal threshold parameters
1718
1719 (% class="table-bordered" %)
1720 |(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1721 |(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1722 U-COIN consistent speed
1723 )))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1724
1725 Table 6-39 DO speed consistent function code
1726
1727 **(4) Speed approach signal**
1728
1729 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1730
1731 (% style="text-align:center" %)
1732 [[image:image-20220608172207-34.png]]
1733
1734 Figure 6-38 Speed approaching signal diagram
1735
1736 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1737
1738 (% class="table-bordered" %)
1739 |(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1740 **Setting method**
1741 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1742 **Effective time**
1743 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1744 |(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1745 Operation setting
1746 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1747 Effective immediately
1748 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1749
1750 Table 6-40 Speed approaching signal threshold parameters
1751
1752 (% class="table-bordered" %)
1753 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1754 |(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1755 V-NEAR speed approach
1756 )))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1757
1758 Table 6-41 DO speed approach function code
1759
1760 = **Torque control mode** =
1761
1762 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1763
1764 (% style="text-align:center" %)
1765 [[image:image-20220608172405-35.png]]
1766
1767 Figure 6-39 Torque mode diagram
1768
1769 == **Torque instruction input setting** ==
1770
1771 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1772
1773 (% class="table-bordered" %)
1774 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1775 **Setting method**
1776 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1777 **Effective time**
1778 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1779 |(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1780 Shutdown setting
1781 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1782 Effective immediately
1783 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1784 0: internal torque instruction
1785
1786 1: AI_1 analog input(not supported by VD2F)
1787 )))|(% style="text-align:center; vertical-align:middle" %)-
1788
1789 Table 6-42 Torque instruction source parameter
1790
1791 **(1) Torque instruction source is internal torque instruction (P01-07=0)**
1792
1793 Torque instruction source is from inside, the value is set by function code P01-08.
1794
1795 (% class="table-bordered" %)
1796 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1797 **Setting method**
1798 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1799 **Effective time**
1800 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1801 |(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1802 Operation setting
1803 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1804 Effective immediately
1805 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1806
1807 Table 6-43 Torque instruction keyboard set value
1808
1809 **(2) Torque instruction source is internal torque instruction (P01-07=1)**
1810
1811 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1812
1813 (% style="text-align:center" %)
1814 [[image:image-20220608153646-7.png||height="213" width="408"]]
1815
1816 Figure 6-40 Analog input circuit
1817
1818 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1819
1820 (% style="text-align:center" %)
1821 [[image:image-20220608172502-36.png]]
1822
1823 Figure 6-41 Analog voltage torque instruction setting steps
1824
1825 Explanation of related terms:
1826
1827 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1828
1829 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1830
1831 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1832
1833 (% style="text-align:center" %)
1834 [[image:image-20220608172611-37.png]]
1835
1836 Figure 6-42 AI_1 diagram before and after bias
1837
1838 (% class="table-bordered" %)
1839 |(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1840 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1841 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1842 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1843 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1844
1845 Table 6-44 AI_1 parameters
1846
1847 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1848
1849 == **Torque instruction filtering** ==
1850
1851 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1852
1853 (% class="table-bordered" %)
1854 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1855 **Setting method**
1856 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1857 **Effective time**
1858 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1859 |(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1860 Operation setting
1861 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1862 Effective immediately
1863 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1864
1865 Table 6-45 Torque filtering time constant parameter details
1866
1867 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1868
1869 (% style="text-align:center" %)
1870 [[image:image-20220608172646-38.png]]
1871
1872 Figure 6-43 Torque instruction-first-order filtering diagram
1873
1874 == **Torque instruction limit** ==
1875
1876 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1877
1878 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1879
1880 (% style="text-align:center" %)
1881 [[image:image-20220608172806-39.png]]
1882
1883 Figure 6-44 Torque instruction limit diagram
1884
1885 **(1) Set torque limit source**
1886
1887 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1888
1889 (% class="table-bordered" %)
1890 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1891 **Setting method**
1892 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1893 **Effective time**
1894 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1895 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1896 Torque limit source
1897 )))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1898 Shutdown setting
1899 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1900 Effective immediately
1901 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1902 0: internal value
1903
1904 1: AI_1 analog input
1905
1906 (not supported by VD2F)
1907 )))|(% style="text-align:center; vertical-align:middle" %)-
1908
1909 1) Torque limit source is internal torque instruction (P01-14=0)
1910
1911 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1912
1913 (% class="table-bordered" %)
1914 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1915 **Setting method**
1916 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1917 **Effective time**
1918 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1919 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1920 Forward torque limit
1921 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1922 Operation setting
1923 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1924 Effective immediately
1925 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1926 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1927 Reverse torque limit
1928 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1929 Operation setting
1930 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1931 Effective immediately
1932 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1933
1934 Table 6-46 Torque limit parameter details
1935
1936 2) Torque limit source is external (P01-14=1)
1937
1938 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1939
1940 **(2) Set torque limit DO signal output**
1941
1942 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1943
1944 (% class="table-bordered" %)
1945 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1946 |(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1947 T-LIMIT in torque limit
1948 )))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1949
1950 Table 6-47 DO torque limit function codes
1951
1952 == **Speed limit in torque mode** ==
1953
1954 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1955
1956 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1957
1958 |(((
1959 (% style="text-align:center" %)
1960 [[image:image-20220608172910-40.png]]
1961 )))|(((
1962 (% style="text-align:center" %)
1963 [[image:image-20220608173155-41.png]]
1964 )))
1965 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1966
1967 (% class="table-bordered" %)
1968 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1969 **Setting method**
1970 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1971 **Effective time**
1972 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1973 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1974 Forward torque
1975
1976 limit in torque mode
1977 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1978 Operation setting
1979 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1980 Effective immediately
1981 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1982 Forward torque
1983
1984 limit in torque mode
1985 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1986 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1987 Reverse torque
1988
1989 limit in torque mode
1990 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1991 Operation setting
1992 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1993 Effective immediately
1994 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1995 Reverse torque
1996
1997 limit in torque mode
1998 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1999
2000 Table 6-48 Speed limit parameters in torque mode
2001
2002 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__.
2003
2004 == **Torque-related DO output functions** ==
2005
2006 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2007
2008 **Torque arrival**
2009
2010 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2011
2012 (% style="text-align:center" %)
2013 [[image:image-20220608173541-42.png]]
2014
2015 Figure 6-47 Torque arrival output diagram
2016
2017 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2018
2019 (% class="table-bordered" %)
2020 |(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2021 **Setting method**
2022 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2023 **Effective time**
2024 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2025 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2026 Torque arrival
2027
2028 threshold
2029 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2030 Operation setting
2031 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2032 Effective immediately
2033 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2034 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2035
2036 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2037
2038 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2039 )))|(% style="text-align:center; vertical-align:middle" %)%
2040 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2041 Torque arrival
2042
2043 hysteresis
2044 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2045 Operation setting
2046 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2047 Effective immediately
2048 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2049
2050 Table 6-49 Torque arrival parameters
2051
2052 (% class="table-bordered" %)
2053 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2054 |(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2055 T-COIN torque arrival
2056 )))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2057
2058 Table 6-50 DO Torque Arrival Function Code
2059
2060 = **Mixed control mode** =
2061
2062 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2063
2064 Position mode  Speed mode
2065
2066 Position mode  Torque mode
2067
2068 Speed mode  Torque mode
2069
2070 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2071
2072 (% class="table-bordered" %)
2073 |(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2074 **Setting method**
2075 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2076 **Effective time**
2077 )))|(% style="text-align:center; vertical-align:middle; width:144px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:408px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2078 |(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2079 Shutdown setting
2080 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2081 Shutdown setting
2082 )))|(% style="text-align:center; vertical-align:middle; width:144px" %)1|(% style="text-align:center; vertical-align:middle; width:97px" %)1 to 6|(% style="width:408px" %)(((
2083 1: Position control
2084
2085 2: Speed control
2086
2087 3: Torque control
2088
2089 4: Position/speed mixed control
2090
2091 5: Position/torque mixed control
2092
2093 6: Speed/torque mixed control
2094 )))|(% style="text-align:center; vertical-align:middle" %)-
2095
2096 Table 6-51 Mixed control mode parameters
2097
2098 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2099
2100 (% class="table-bordered" %)
2101 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2102 |(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2103 (% class="table-bordered" %)
2104 |(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2105 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2106 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2107 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2108 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2111 )))
2112
2113 Table 6-52 Description of DI function codes in control mode
2114
2115 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2116
2117 = **Absolute system** =
2118
2119 == **Overview** ==
2120
2121 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2122
2123 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2124
2125 == **Single-turn absolute value system** ==
2126
2127 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2128
2129 (% class="table-bordered" %)
2130 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2131 |(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2132
2133 Table 6-53 Single-turn absolute encoder information
2134
2135 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2136
2137 (% style="text-align:center" %)
2138 [[image:image-20220608173618-43.png]]
2139
2140 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2141
2142 == **Multi-turn absolute value system** ==
2143
2144 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2145
2146 (% class="table-bordered" %)
2147 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2148 |(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2149 |(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2150
2151 Table 6-54 Multi-turn absolute encoder information
2152
2153 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2154
2155 (% style="text-align:center" %)
2156 [[image:image-20220608173701-44.png]]
2157
2158 Figure 6-49 The relationship between encoder feedback position and rotating load position
2159
2160 == **Encoder feedback data** ==
2161
2162 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2163
2164 (% class="table-bordered" %)
2165 |(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2166 |(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2167 |(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2168 |(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2169
2170 Table 6-55 Encoder feedback data
2171
2172 == **Absolute value system encoder battery box use precautions** ==
2173
2174 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2175
2176 (% style="text-align:center" %)
2177 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2178
2179 Figure 6-50 the encoder battery box
2180
2181 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. The specific replacement method is as follows:
2182
2183 1. Step1 The servo drive is powered on and is in a non-operational state;
2184 1. Step2 Replace the battery;
2185 1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings.
2186
2187 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2188
2189 (% class="table-bordered" %)
2190 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2191 **Setting method**
2192 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2193 **Effective time**
2194 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2195 |(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2196 Shutdown setting
2197 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2198 Effective immediately
2199 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2200 0: No operation
2201
2202 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2203
2204 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2205 )))|(% style="text-align:center; vertical-align:middle" %)-
2206
2207 Table 6-56 Absolute encoder reset enable parameter
2208
2209 ✎**Note: **If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2210
2211 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2212
2213 = **Overview** =
2214
2215 == **VDI** ==
2216
2217 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2218
2219 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2220
2221 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2222
2223 (% style="text-align:center" %)
2224 [[image:image-20220608173804-46.png]]
2225
2226 Figure 6-51 VDI_1 setting steps
2227
2228 (% class="table-bordered" %)
2229 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2230 **Setting method**
2231 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2232 **Effective time**
2233 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2234 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2235 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2236
2237 VDI_1 input level:
2238
2239 0: low level
2240
2241 1: high level
2242 )))|(% style="text-align:center; vertical-align:middle" %)-
2243 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2244 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2245
2246 VDI_2 input level:
2247
2248 0: low level
2249
2250 1: high level
2251 )))|(% style="text-align:center; vertical-align:middle" %)-
2252 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2253 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2254
2255 VDI_3 input level:
2256
2257 0: low level
2258
2259 1: high level
2260 )))|(% style="text-align:center; vertical-align:middle" %)-
2261 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2262 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2263
2264 VDI_4 input level:
2265
2266 0: low level
2267
2268 1: high level
2269 )))|(% style="text-align:center; vertical-align:middle" %)-
2270 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2271 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2272
2273 VDI_5 input level:
2274
2275 0: low level
2276
2277 1: high level
2278 )))|(% style="text-align:center; vertical-align:middle" %)-
2279 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2280 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2281
2282 VDI_6 input level:
2283
2284 0: low level
2285
2286 1: high level
2287 )))|(% style="text-align:center; vertical-align:middle" %)-
2288 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2289 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2290
2291 VDI_7 input level:
2292
2293 0: low level
2294
2295 1: high level
2296 )))|(% style="text-align:center; vertical-align:middle" %)-
2297 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2298 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2299
2300 VDI_8 input level:
2301
2302 0: low level
2303
2304 1: high level
2305 )))|(% style="text-align:center; vertical-align:middle" %)-
2306
2307 Table 6-57 Virtual VDI parameters
2308
2309 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2310
2311 == **Port filtering time** ==
2312
2313 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2314
2315 (% class="table-bordered" %)
2316 |(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2317 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2318 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2319
2320 Table 6-58 DI terminal channel logic selection
2321
2322 == **VDO** ==
2323
2324 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2325
2326 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2327
2328 (% style="text-align:center" %)
2329 [[image:image-20220608173957-48.png]]
2330
2331 Figure 6-52 VDO_2 setting steps
2332
2333 (% class="table-bordered" %)
2334 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2335 **Setting method**
2336 )))|(% style="text-align:center; vertical-align:middle" %)(((
2337 **Effective time**
2338 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2339 |(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2340 VDO_1 output level:
2341
2342 0: low level
2343
2344 1: high level
2345 )))|(% style="text-align:center; vertical-align:middle" %)-
2346 |(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2347 VDO_2 output level:
2348
2349 0: low level
2350
2351 1: high level
2352 )))|(% style="text-align:center; vertical-align:middle" %)-
2353 |(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2354 VDO_3 output level:
2355
2356 0: low level
2357
2358 1: high level
2359 )))|(% style="text-align:center; vertical-align:middle" %)-
2360 |(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2361 VDO_4 output level:
2362
2363 0: low level
2364
2365 1: high level
2366 )))|(% style="text-align:center; vertical-align:middle" %)-
2367
2368 Table 6-59 Communication control DO function parameters
2369
2370 (% class="table-bordered" %)
2371 |(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2372 |(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373 |(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 |(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 |(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2376
2377 Table 6-60 VDO function number
2378
2379 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2380
2381 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2382
2383 == **Motor overload protection** ==
2384
2385 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2386
2387 (% class="table-bordered" %)
2388 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2389 **Setting method**
2390 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2391 **Effective time**
2392 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2393 |(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2394 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2395
2396 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2397 )))|(% style="text-align:center; vertical-align:middle" %)%
2398
2399 In the following cases, it could be modified according to the actual heat generation of the motor
2400
2401 1. The motor works in a place with high ambient temperature
2402 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2403
2404 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2405
2406 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2407
2408 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.