Wiki source code of 06 Operation

Version 5.1 by Joey on 2022/06/10 14:43

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5
6 |**No.**|**Content**
7 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
8 |1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
9 |2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
10 |3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
11 |4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
12 |5|Servo drive and servo motor must be grounded reliably.
13 |6|When using an external braking resistor, the short wiring between drive C and D must be removed.
14 |7|The force of all cables is within the specified range.
15 |8|The wiring terminals have been insulated.
16 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
17 |1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
18 |2|The servo drive and external braking resistor are not placed on combustible objects.
19 |3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
20
21 Table 6-1 Check contents before operation
22
23 == **Power-on** ==
24
25 **(1) Connect the main circuit power supply**
26
27 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
28
29 If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
30
31 **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
32
33 == **Jog operation** ==
34
35 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
36
37 **(1) Panel jog operation**
38
39 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
40
41 **(2) Jog operation of servo debugging platform**
42
43 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
44
45
46 (% class="table-bordered" %)
47 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
48 **Setting method**
49 )))|(% style="text-align:center; vertical-align:middle" %)(((
50 **Effective time**
51 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
52 |(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
53 Operation setting
54 )))|(% style="text-align:center; vertical-align:middle" %)(((
55 Effective immediately
56 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
57
58 Table 6-2 JOG speed parameter
59
60 == **Rotation direction selection** ==
61
62 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
63
64 (% class="table-bordered" %)
65 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
66 **Setting method**
67 )))|(% style="text-align:center; vertical-align:middle" %)(((
68 **Effective time**
69 )))|(% style="text-align:center; vertical-align:middle" %)(((
70 **Default value**
71 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
72 |(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
73 Shutdown setting
74 )))|(% style="text-align:center; vertical-align:middle" %)(((
75 Effective immediately
76 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
77 Forward rotation: Face the motor shaft to watch
78
79 0: standard setting (CW is forward rotation)
80
81 1: reverse mode (CCW is forward rotation)
82 )))|(% style="text-align:center; vertical-align:middle" %)-
83
84 Table 6-3 Rotation direction parameters** **
85
86 == **Braking resistor** ==
87
88 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
89
90 The basis for judging whether the braking resistor is built-in or external.
91
92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
93 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
94
95 (% class="table-bordered" %)
96 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
97 **Setting method**
98 )))|(% style="text-align:center; vertical-align:middle" %)(((
99 **Effective time**
100 )))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
101 |(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
102 Operation setting
103 )))|(% style="text-align:center; vertical-align:middle" %)(((
104 Effective immediately
105 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
106 0: use built-in braking resistor
107
108 1: use external braking resistor and natural cooling
109
110 2: use external braking resistor and forced air cooling; (cannot be set)
111
112 3: No braking resistor is used, it is all absorbed by capacitor.
113 )))|(% style="text-align:center; vertical-align:middle" %)-
114 |(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
115 |(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
116 Operation setting
117 )))|(% style="text-align:center; vertical-align:middle" %)(((
118 Effective immediately
119 )))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
120 |(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
121 Operation setting
122 )))|(% style="text-align:center; vertical-align:middle" %)(((
123 Effective immediately
124 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
125
126 Table 6-4 Braking resistor parameters
127
128 == **Servo operation** ==
129
130 **(1) Set the servo enable (S-ON) to valid (ON)**
131
132 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
133
134 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
135
136 **(2) Input the instruction and the motor rotates**
137
138 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
139
140 **(3) Timing diagram of power on**
141
142 (% style="text-align:center" %)
143 [[image:image-20220608163014-1.png]]
144
145 Figure 6-1 Timing diagram of power on
146
147 == **Servo shutdown** ==
148
149 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
150
151 (% class="table-bordered" %)
152 |Shutdown mode|Shutdown description|Shutdown characteristics
153 |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
154 |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
155
156 Table 6-5 Comparison of two shutdown modes
157
158 (% class="table-bordered" %)
159 |(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
160 |(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
161
162 Table 6-6 Comparison of two shutdown status
163
164 **(1) Servo enable (S-ON) OFF shutdown**
165
166 The related parameters of the servo OFF shutdown mode are shown in the table below.
167
168 (% class="table-bordered" %)
169 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
170 **Setting method**
171 )))|(% style="text-align:center; vertical-align:middle" %)(((
172 **Effective time**
173 )))|(% style="text-align:center; vertical-align:middle" %)(((
174 **Default value**
175 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
176 |(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
177 Shutdown
178
179 setting
180 )))|(% style="text-align:center; vertical-align:middle" %)(((
181 Effective
182
183 immediately
184 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
185 0: Free shutdown, and the motor shaft remains free status.
186
187 1: Zero-speed shutdown, and the motor shaft remains free status.
188 )))|(% style="text-align:center; vertical-align:middle" %)-
189
190 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
191
192 **(2) Emergency shutdown**
193
194 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
195
196 **(3) Overtravel shutdown**
197
198 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
199
200 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
201
202 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
203
204 (% class="table-bordered" %)
205 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
206 **Setting method**
207 )))|(% style="text-align:center; vertical-align:middle" %)(((
208 **Effective time**
209 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
210 |(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
211 0: OFF (not used)
212
213 01: S-ON servo enable
214
215 02: A-CLR fault and Warning Clear
216
217 03: POT forward drive prohibition
218
219 04: NOT Reverse drive prohibition
220
221 05: ZCLAMP Zero speed
222
223 06: CL Clear deviation counter
224
225 07: C-SIGN Inverted instruction
226
227 08: E-STOP Emergency stop
228
229 09: GEAR-SEL Electronic Gear Switch 1
230
231 10: GAIN-SEL gain switch
232
233 11: INH Instruction pulse prohibited input
234
235 12: VSSEL Vibration control switch input
236
237 13: INSPD1 Internal speed instruction selection 1
238
239 14: INSPD2 Internal speed instruction selection 2
240
241 15: INSPD3 Internal speedinstruction selection 3
242
243 16: J-SEL inertia ratio switch (not implemented yet)
244
245 17: MixModesel mixed mode selection
246
247 20: Internal multi-segment position enable signal
248
249 21: Internal multi-segment position selection 1
250
251 22: Internal multi-segment position selection 2
252
253 23: Internal multi-segment position selection 3
254
255 24: Internal multi-segment position selection 4
256
257 Others: reserved
258 )))|(% style="text-align:center; vertical-align:middle" %)-
259 |(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
260 Effective immediately
261 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
262 DI port input logic validity function selection.
263
264 0: Normally open input. Active low level (switch on);
265
266 1: Normally closed input. Active high level (switch off);
267 )))|(% style="text-align:center; vertical-align:middle" %)-
268 |(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
269 Effective immediately
270 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
271 Select the DI_3 port type to enable
272
273 0: Hardware DI_3 input terminal
274
275 1: virtual VDI_3 input terminal
276 )))|(% style="text-align:center; vertical-align:middle" %)-
277
278 (% class="table-bordered" %)
279 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
280 Operation setting
281 )))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
282 again Power-on
283 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
284 0 off (not used)
285
286 01: SON Servo enable
287
288 02: A-CLR Fault and Warning Clear
289
290 03: POT Forward drive prohibition
291
292 04: NOT Reverse drive prohibition
293
294 05: ZCLAMP Zero speed
295
296 06: CL Clear deviation counter
297
298 07: C-SIGN Inverted instruction
299
300 08: E-STOP Emergency shutdown
301
302 09: GEAR-SEL Electronic Gear Switch 1
303
304 10: GAIN-SEL gain switch
305
306 11: INH Instruction pulse prohibited input
307
308 12: VSSEL Vibration control switch input
309
310 13: INSPD1 Internal speed instruction selection 1
311
312 14: INSPD2 Internal speed instruction selection 2
313
314 15: INSPD3 Internal speed instruction selection 3
315
316 16: J-SEL inertia ratio switch (not implemented yet)
317
318 17: MixModesel mixed mode selection
319
320 20: Internal multi-segment position enable signal
321
322 21: Internal multi-segment position selection 1
323
324 22: Internal multi-segment position selection 2
325
326 23: Internal multi-segment position selection 3
327
328 24: Internal multi-segment position selection 4
329
330 Others: reserved
331 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
332 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
333 Effective immediately
334 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
335 DI port input logic validity function selection.
336
337 0: Normally open input. Active low level (switch on);
338
339 1: Normally closed input. Active high level (switch off);
340 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
341 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
342 Effective immediately
343 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
344 Select the DI_4 port type to enable
345
346 0: Hardware DI_4 input terminal
347
348 1: virtual VDI_4 input terminal
349 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
350
351 Table 6-8 DI3 and DI4 channel parameters
352
353 **(4) Malfunction shutdown**
354
355 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
356
357 == **Brake device** ==
358
359 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
360
361 (% class="table-bordered" %)
362 |(((
363 (% style="text-align:center" %)
364 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
365 )))
366 |(((
367 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
368
369 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
370
371 ✎The brake coil has no polarity;
372
373 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
374
375 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
376 )))
377
378 **(1) Wiring of brake device**
379
380 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
381
382 (% style="text-align:center" %)
383 [[image:image-20220608163136-2.png]]
384
385 Figure 6-2 VD2B servo drive brake wiring
386
387 (% class="table-bordered" %)
388 |(((
389 (% style="text-align:center" %)
390 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
391 )))
392 |(((
393 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
394
395 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
396
397 ✎It is recommended to use cables above 0.5 mm².
398 )))
399
400 **(2) Brake software setting**
401
402 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
403
404 Related function code is as below.
405
406 (% class="table-bordered" %)
407 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
408 **Effective time**
409 )))
410 |(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
411 BRK-OFF Brake output
412 )))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
413
414 Table 6-2 Relevant function codes for brake setting
415
416 (% class="table-bordered" %)
417 |(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
418 **Setting method**
419 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
420 **Effective time**
421 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
422 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
423 Operation setting
424 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
425 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
426 Operation setting
427 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
428 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
429 Operation setting
430 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
431 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
432
433 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
434 )))|(% style="text-align:center; vertical-align:middle" %)rpm
435 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
436 Operation setting
437 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
438 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
439
440 When brake output (BRK-OFF) is not allocated, this function code has no effect.
441 )))|(% style="text-align:center; vertical-align:middle" %)ms
442
443 Table 6-9 Brake setting function codes
444
445 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
446
447 **(3) Servo drive brake timing in normal state**
448
449 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
450
451 1) Brake timing when servo motor is stationary
452
453 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
454
455 (% class="table-bordered" %)
456 |(((
457 (% style="text-align:center" %)
458 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
459 )))
460 |(((
461 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
462
463 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
464 )))
465
466 (% style="text-align:center" %)
467 [[image:image-20220608163304-3.png]]
468
469 Figure 6-3 Brake Timing of when the motor is stationary
470
471 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
472
473 2) The brake timing when servo motor rotates
474
475 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
476
477 (% class="table-bordered" %)
478 |(((
479 (% style="text-align:center" %)
480 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
481 )))
482 |(((
483 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
484
485 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
486
487 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
488
489 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
490
491 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
492 )))
493
494 (% style="text-align:center" %)
495 [[image:image-20220608163425-4.png]]
496
497 Figure 6-4 Brake timing when the motor rotates
498
499 **(4) Brake timing when the servo drive fails**
500
501 The brake timing (free shutdown) in the fault status is as follows.
502
503 (% style="text-align:center" %)
504 [[image:image-20220608163541-5.png]]
505
506 Figure 6-5 The brake timing (free shutdown) in the fault state
507
508 = **Position control mode** =
509
510 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
511
512 (% style="text-align:center" %)
513 [[image:image-20220608163643-6.png]]
514
515 Figure 6-6 Position control diagram
516
517 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
518
519 (% class="table-bordered" %)
520 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
521 **Setting method**
522 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
523 **Effective time**
524 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
525 |(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
526 Operation setting
527 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
528 immediately Effective
529 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
530 0: position control
531
532 2: speed control
533
534 3: torque control
535
536 4: position/speed mix control
537
538 5: position/torque mix control
539
540 6: speed /torque mix control
541 )))|(% style="text-align:center; vertical-align:middle" %)-
542
543 Table 6-10 Control mode parameters
544
545 == **Position instruction input setting** ==
546
547 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
548
549 (% class="table-bordered" %)
550 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
551 **Setting method**
552 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
553 **Effective time**
554 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
555 |(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
556 Operation setting
557 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
558 immediately Effective
559 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
560 0: pulse instruction
561
562 1: internal position instruction
563 )))|(% style="text-align:center; vertical-align:middle" %)-
564
565 Table 6-11 Position instruction source parameter
566
567 **(1) The source of position instruction is pulse instruction (P01-06=0)**
568
569 1) Low-speed pulse instruction input
570
571 (% class="table-bordered" %)
572 |(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d9151239d79c87a3.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_d9151239d79c87a3.gif"]]|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_26156823dfc2374b.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_26156823dfc2374b.gif" data-xwiki-image-style-alignment="center" data-xwiki-image-style-text-wrap="true"]]
573 |(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
574 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
575
576 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
577
578 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
579
580 (% class="table-bordered" %)
581 |(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
582 |(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
583 |(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
584
585 Table 6-12 Pulse input specifications
586
587 1.Differential input
588
589 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
590
591 (% style="text-align:center" %)
592 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_efcec2927621d22d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_efcec2927621d22d.gif" data-xwiki-image-style-alignment="center"]]
593
594 Figure 6-8 Differential input connection
595
596 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
597
598 2.Open collector input
599
600 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
601
602 (% style="text-align:center" %)
603 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e0abafdeeac8b1c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e0abafdeeac8b1c.gif" data-xwiki-image-style-alignment="center"]]
604
605 Figure 6-9 Open collector input connection
606
607 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
608
609 2) Position pulse frequency and anti-interference level
610
611 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
612
613 (% style="text-align:center" %)
614 [[image:image-20220608163952-8.png]]
615
616 Figure 6-10 Example of filtered signal waveform
617
618 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
619
620 (% class="table-bordered" %)
621 |(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
622 **Setting method**
623 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
624 **Effective time**
625 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:71px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:349px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
626 |(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
627 Shutdown setting
628 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
629 Effective immediately
630 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)300|(% style="text-align:center; vertical-align:middle; width:71px" %)1 to 500|(% colspan="2" style="width:349px" %)Set the maximum frequency of external pulse instruction|KHz
631 |(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
632 Operation setting
633 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:159px" %)(((
634 Power-on again
635 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:105px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:71px" %)0 to 9|(% colspan="2" style="width:349px" %)(((
636 Set the anti-interference level of external pulse instruction.
637
638 0: no filtering;
639
640 1: Filtering time 128ns
641
642 2: Filtering time 256ns
643
644 3: Filtering time 512ns
645
646 4: Filtering time 1.024us
647
648 5: Filtering time 2.048us
649
650 6: Filtering time 4.096us
651
652 7: Filtering time 8.192us
653
654 8: Filtering time 16.384us
655 )))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
656 |(% rowspan="2" style="width:29px" %)9|VD2: Filtering time 25.5us
657 |VD2F: Filtering time 25.5us
658
659 Table 6-13 Position pulse frequency and anti-interference level parameters
660
661 3) Position pulse type selection
662
663 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
664
665 (% class="table-bordered" %)
666 |(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
667 **Setting method**
668 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
669 **Effective time**
670 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
671 |(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
672 Operation setting
673 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
674 Power-on again
675 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
676 0: direction + pulse (positive logic)
677
678 1: CW/CCW
679
680 2: A, B phase quadrature pulse (4 times frequency)
681
682 3: Direction + pulse (negative logic)
683
684 4: CW/CCW (negative logic)
685
686 5: A, B phase quadrature pulse (4 times frequency negative logic)
687 )))|(% style="text-align:center; vertical-align:middle" %)-
688
689 Table 6-14 Position pulse type selection parameter
690
691 (% class="table-bordered" %)
692 |(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
693 |(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
694 Direction + pulse
695
696 (Positive logic)
697 )))|(% style="text-align:center; vertical-align:middle" %)(((
698 PULSE
699
700 SIGN
701 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_da702cd5792c6189.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_da702cd5792c6189.gif"]]
702 |(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
703 PULSE (CW)
704
705 SIGN (CCW)
706 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a59bd612219726ff.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a59bd612219726ff.gif"]]
707 |(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
708 AB phase orthogonal
709
710 pulse (4 times frequency)
711 )))|(% style="text-align:center; vertical-align:middle" %)(((
712 PULSE (Phase A)
713
714 SIGN (Phase B)
715 )))|(% style="text-align:center; vertical-align:middle" %)(((
716 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f35bccfc547cf59c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f35bccfc547cf59c.gif"]]
717
718 Phase A is 90° ahead of Phase B
719 )))|(% style="text-align:center; vertical-align:middle" %)(((
720 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_41687fb2387833e7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_41687fb2387833e7.gif"]]
721
722 Phase B is 90° ahead of Phase A
723 )))
724 |(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
725 Direction + pulse
726
727 (Negative logic)
728 )))|(% style="text-align:center; vertical-align:middle" %)(((
729 PULSE
730
731 SIGN
732 )))|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_7d2b03d0fb959ea6.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_7d2b03d0fb959ea6.gif"]]|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_42312f2433c2ebf8.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_42312f2433c2ebf8.gif"]]
733 |(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
734 CW/CCW
735
736 (Negative logic)
737 )))|(% style="text-align:center; vertical-align:middle" %)(((
738 PULSE (CW)
739
740 SIGN (CCW)
741 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_8218481384864bcd.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_8218481384864bcd.gif"]]
742 |(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
743 AB phase orthogonal
744
745 pulse (4 times frequency negative logic)
746 )))|(% style="text-align:center; vertical-align:middle" %)(((
747 PULSE (Phase A)
748
749 SIGN (Phase B)
750 )))|(% style="text-align:center; vertical-align:middle" %)(((
751 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_552d434eda0cc25a.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_552d434eda0cc25a.gif"]]
752
753 B phase is ahead of A phase by 90°
754 )))|(% style="text-align:center; vertical-align:middle" %)(((
755 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d1de574238d8caf9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_d1de574238d8caf9.gif"]]
756
757 A phase is ahead of B phase by 90°
758 )))
759
760 Table 6-15 Pulse description
761
762 **(2) The source of position instruction is internal position instruction (P01-06=1)**
763
764 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
765
766 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
767
768 (% style="text-align:center" %)
769 [[image:image-20220608164116-9.png]]
770
771 Figure 6-11 The setting process of multi-segment position
772
773 1) Set multi-segment position running mode
774
775 (% class="table-bordered" %)
776 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
777 **Setting method**
778 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
779 **Effective time**
780 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
781 |(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
782 Shutdown setting
783 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
784 Effective immediately
785 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
786 0: Single running
787
788 1: Cycle running
789
790 2: DI switching running
791 )))|(% style="text-align:center; vertical-align:middle" %)-
792 |(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
793 Shutdown setting
794 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
795 Effective immediately
796 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
797 |(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
798 Shutdown setting
799 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
800 Effective immediately
801 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
802 |(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
803 Shutdown setting
804 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
805 Effective immediately
806 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
807 0: Run the remaining segments
808
809 1: Run again from the start segment
810 )))|(% style="text-align:center; vertical-align:middle" %)-
811 |(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
812 Shutdown setting
813 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
814 Effective immediately
815 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
816 0: Relative position instruction
817
818 1: Absolute position instruction
819 )))|(% style="text-align:center; vertical-align:middle" %)-
820
821 Table 6-16 multi-segment position running mode parameters
822
823 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
824
825 ~1. Single running
826
827 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_b3223c0806f5c6c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_b3223c0806f5c6c.gif"]] are the displacements of the 1st segment and the 2nd segment respectively
828
829 (% style="text-align:center" %)
830 [[image:image-20220608164226-10.png]]
831
832 Figure 6-12 Single running curve (P07-02=1, P07-03=2)
833
834 2. Cycle running
835
836 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a2646a1ce199bcaa.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a2646a1ce199bcaa.gif"]] are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
837
838 (% style="text-align:center" %)
839 [[image:image-20220608164327-11.png]]
840
841 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
842
843 |(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
844 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
845
846 3. DI switching running
847
848 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
849
850 (% class="table-bordered" %)
851 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
852 |(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
853 |(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
854 |(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
855 |(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
856
857 Table 6-17 DI function code
858
859 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
860
861 (% class="table-bordered" %)
862 |(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
863 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
864 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
865 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
866 |(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
867 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
868
869 Table 6-18 INPOS corresponds to running segment number
870
871 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
872
873 (% style="text-align:center" %)
874 [[image:image-20220608164545-12.png]]
875
876 Figure 6-14 DI switching running curve
877
878 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
879
880 **A. Run the remaining segments**
881
882 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
883
884 (% style="text-align:center" %)
885 [[image:image-20220608164847-13.png]]
886
887 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
888
889 (% style="text-align:center" %)
890 [[image:image-20220608165032-14.png]]
891
892 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
893
894 **B. Run again from the start segment**
895
896 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
897
898 (% style="text-align:center" %)
899 [[image:image-20220608165343-15.png]]
900
901 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
902
903 (% style="text-align:center" %)
904 [[image:image-20220608165558-16.png]]
905
906 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
907
908 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
909
910 A. Relative position instruction
911
912 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
913
914 |(((
915 (% style="text-align:center" %)
916 [[image:image-20220608165710-17.png]]
917 )))|(((
918 (% style="text-align:center" %)
919 [[image:image-20220608165749-18.png]]
920 )))
921 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
922
923 B. Absolute position instruction
924
925 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
926
927 |(((
928 (% style="text-align:center" %)
929 [[image:image-20220608165848-19.png]]
930 )))|(((
931 (% style="text-align:center" %)
932 [[image:image-20220608170005-20.png]]
933 )))
934 |Figure 6-21 Absolute indication|Figure 6-22 Displacement
935
936 2) Multi-segment position running curve setting
937
938 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
939
940 (% class="table-bordered" %)
941 |(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
942 **Setting method**
943 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
944 **Effective time**
945 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
946 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
947 1st segment
948
949 displacement
950 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
951 Operation setting
952 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
953 Effective immediately
954 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
955 -2147483647 to
956
957 2147483646
958 )))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
959 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
960 Operation setting
961 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
962 Effective immediately
963 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
964 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
965 Operation setting
966 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
967 Effective immediately
968 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
969 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
970 Operation setting
971 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
972 Effective immediately
973 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
974
975 Table 6-19 The 1st position operation curve parameters table
976
977 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
978
979 (% style="text-align:center" %)
980 [[image:image-20220608170149-21.png]]
981
982 Figure 6-23 The 1st segment running curve of motor
983
984 3) multi-segment position instruction enable
985
986 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
987
988 (% class="table-bordered" %)
989 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
990 |(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
991 DI port logic invalid: Does not affect the current operation of the servo motor.
992
993 DI port logic valid: Motor runs multi-segment position
994 )))
995
996 (% style="text-align:center" %)
997 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]]
998
999 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1000
1001 == **Electronic gear ratio** ==
1002
1003 **(1) Definition of electronic gear ratio**
1004
1005 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1006
1007 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1008
1009 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1010
1011 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_36eea050640062e9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_36eea050640062e9.gif"]] (6-1)
1012
1013 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2cd5305a8be2e1f2.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2cd5305a8be2e1f2.gif"]] (6-2)
1014
1015 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_5e7b8108abd1a9ed.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_5e7b8108abd1a9ed.gif"]] (6-3)
1016
1017 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1018
1019 **(2) Setting steps of electronic gear ratio**
1020
1021 (% style="text-align:center" %)
1022 [[image:image-20220608170320-22.png]]
1023
1024 Figure 6-24 Setting steps of electronic gear ratio
1025
1026 Step1: Confirm the mechanical parameters including the reduction ratio, the ball screw lead, gear diameter in the gear drive, and pulley diameter in the pulley drive.
1027
1028 Step2: Confirm the resolution of servo motor encoder.
1029
1030 Step3: Confirm the parameters such as mechanical specifications, positioning accuracy, etc, and determine the load displacement corresponding to one position instruction output by the host computer.
1031
1032 Step4: Combine the mechanical parameters and the load displacement corresponding to one position instruction, calculate the position instruction value required for one rotation of the load shaft.
1033
1034 Step5: Calculate the value of electronic gear ratio according to formula below.
1035
1036 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_783be3e5149faf1e.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_783be3e5149faf1e.gif"]]
1037
1038 **(3) lectronic gear ratio switch setting**
1039
1040
1041 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1042
1043 (% class="table-bordered" %)
1044 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1045 **Setting method**
1046 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1047 **Effective time**
1048 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1049 |(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1050 Shutdown setting
1051 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1052 Effective immediately
1053 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1054 Instruction pulse
1055
1056 unit
1057 )))
1058 |(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1059 Electronic gear 1
1060
1061 numerator
1062 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1063 Effective immediately
1064 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1065 |(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1066 Electronic gear 1
1067
1068 denominator
1069 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1070 Operation setting
1071 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1072 Effective immediately
1073 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1074 |(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1075 Electronic gear 2
1076
1077 numerator
1078 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1079 Effective immediately
1080 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1081 |(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1082 Electronic gear 2
1083
1084 denominator
1085 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1086 Effective immediately
1087 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1088
1089 Table 6-20 Electronic gear ratio function code
1090
1091 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1092
1093 (% class="table-bordered" %)
1094 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1095 |(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1096 DI port logic invalid: electronic gear ratio 1
1097
1098 DI port logic valid: electronic gear ratio 2
1099 )))
1100
1101 Table 6-21 Switching conditions of electronic gear ratio group
1102
1103 |(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3c885bb1dd9f482d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3c885bb1dd9f482d.gif"]]
1104 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_936c435aaa56afe9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_936c435aaa56afe9.gif"]]
1105 |(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f7cc7443de5ae1fd.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f7cc7443de5ae1fd.gif"]]
1106 |(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3b79819a4d341e9c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3b79819a4d341e9c.gif"]]
1107
1108 Table 6-22 Application of electronic gear ratio
1109
1110 When the function code P00-16 is not 0, the electronic gear ratio [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3c885bb1dd9f482d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3c885bb1dd9f482d.gif"]] is invalid.
1111
1112 == **Position instruction filtering** ==
1113
1114 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1115
1116 In the following situations, position instruction filtering should be added.
1117
1118 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1119 1. The pulse instruction frequency is low;
1120 1. When the electronic gear ratio is 10 times or more.
1121
1122 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1123
1124 (% style="text-align:center" %)
1125 [[image:image-20220608170455-23.png]]
1126
1127 Figure 6-25 Position instruction filtering diagram
1128
1129 (% class="table-bordered" %)
1130 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1131 **Setting method**
1132 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1133 **Effective time**
1134 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1135 |(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1136 Shutdown setting
1137 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1138 Effective immediately
1139 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((
1140 0: 1st-order low-pass filtering
1141
1142 1: average filtering
1143 )))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1144 |(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1145 Effective immediately
1146 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1147 |(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1148 Effective immediately
1149 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150
1151 Table 6-23 Position instruction filter function code
1152
1153 == **Clearance of position deviation** ==
1154
1155 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1156
1157 Position deviation = (position instruction-position feedback) (encoder unit)
1158
1159 == **Position-related DO output function** ==
1160
1161 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1162
1163 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1164 **Positioning completion/positioning approach output**
1165
1166 (% class="wikigeneratedid" %)
1167 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1168
1169 (% style="text-align:center" %)
1170 [[image:image-20220608170550-24.png]]
1171
1172 Figure 6-26 Positioning completion signal output diagram
1173
1174 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1175
1176 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1177
1178 (% style="text-align:center" %)
1179 [[image:image-20220608170650-25.png]]
1180
1181 Figure 6-27 Positioning completion signal output with increased window filter time diagram
1182
1183 (% class="table-bordered" %)
1184 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1185 **Setting method**
1186 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1187 **Effective time**
1188 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1189 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1190 Operation setting
1191 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1192 Effective immediately
1193 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1194 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1195 Operation setting
1196 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1197 Effective immediately
1198 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1199 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1200 Operation setting
1201 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1202 Effective immediately
1203 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms
1204 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1205 Operation setting
1206 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1207 Effective immediately
1208 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms
1209
1210 Table 6-24 Function code parameters of positioning completion
1211
1212 (% class="table-bordered" %)
1213 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1214 |(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1215 |(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1216 P-NEAR positioning close
1217 )))|(% style="text-align:center; vertical-align:middle" %)(((
1218 Output this signal indicates that the servo drive position is close.
1219 )))
1220
1221 Table 6-25 Description of DO rotation detection function code
1222
1223 = **Speed control mode** =
1224
1225 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1226
1227 (% style="text-align:center" %)
1228 [[image:6.28.jpg||height="260" width="806"]]
1229
1230 Figure 6-28 Speed control block diagram
1231
1232 == **Speed instruction input setting** ==
1233
1234 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1235
1236 (% class="table-bordered" %)
1237 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1238 **Setting method**
1239 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1240 **Effective time**
1241 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1242 |(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1243 Shutdown setting
1244 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1245 Effective immediately
1246 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1247 0: internal speed instruction
1248
1249 1: AI_1 analog input (not supported by VD2F)
1250 )))|(% style="text-align:center; vertical-align:middle" %)-
1251
1252 Table 6-26 Speed instruction source parameter
1253
1254 **(1) Speed instruction source is internal speed instruction (P01-01=0)**
1255
1256 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1257
1258 (% class="table-bordered" %)
1259 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1260 **Setting method**
1261 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1262 **Effective time**
1263 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1264 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1265 Internal speed Instruction 0
1266 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1267 Operation setting
1268 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1269 Effective immediately
1270 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1271 Internal speed instruction 0
1272
1273 When DI input port:
1274
1275 15-INSPD3: 0
1276
1277 14-INSPD2: 0
1278
1279 13-INSPD1: 0,
1280
1281 select this speed instruction to be effective.
1282 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1283 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1284 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1285 Internal speed Instruction 1
1286 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1287 Operation setting
1288 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1289 Effective immediately
1290 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1291 Internal speed instruction 1
1292
1293 When DI input port:
1294
1295 15-INSPD3: 0
1296
1297 14-INSPD2: 0
1298
1299 13-INSPD1: 1,
1300
1301 Select this speed instruction to be effective.
1302 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1303 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1304 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1305 Internal speed Instruction 2
1306 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1307 Operation setting
1308 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1309 Effective immediately
1310 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1311 Internal speed instruction 2
1312
1313 When DI input port:
1314
1315 15-INSPD3: 0
1316
1317 14-INSPD2: 1
1318
1319 13-INSPD1: 0,
1320
1321 Select this speed instruction to be effective.
1322 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1323 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1324 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1325 Internal speed Instruction 3
1326 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1327 Operation setting
1328 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1329 Effective immediately
1330 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1331 Internal speed instruction 3
1332
1333 When DI input port:
1334
1335 15-INSPD3: 0
1336
1337 14-INSPD2: 1
1338
1339 13-INSPD1: 1,
1340
1341 Select this speed instruction to be effective.
1342 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1343 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1344
1345 (% class="table-bordered" %)
1346 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1347 Internal speed Instruction 4
1348 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1349 Operation setting
1350 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1351 Effective immediately
1352 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1353 Internal speed instruction 4
1354
1355 When DI input port:
1356
1357 15-INSPD3: 1
1358
1359 14-INSPD2: 0
1360
1361 13-INSPD1: 0,
1362
1363 Select this speed instruction to be effective.
1364 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1365 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1366 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1367 Internal speed Instruction 5
1368 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1369 Operation setting
1370 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1371 Effective immediately
1372 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1373 Internal speed instruction 5
1374
1375 When DI input port:
1376
1377 15-INSPD3: 1
1378
1379 14-INSPD2: 0
1380
1381 13-INSPD1: 1,
1382
1383 Select this speed instruction to be effective.
1384 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1385 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1386 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1387 Internal speed Instruction 6
1388 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1389 Operation setting
1390 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1391 Effective immediately
1392 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1393 Internal speed instruction 6
1394
1395 When DI input port:
1396
1397 15-INSPD3: 1
1398
1399 14-INSPD2: 1
1400
1401 13-INSPD1: 0,
1402
1403 Select this speed instruction to be effective.
1404 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1405 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1406 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1407 Internal speed Instruction 7
1408 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1409 Operation setting
1410 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1411 Effective immediately
1412 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1413 Internal speed instruction 7
1414
1415 When DI input port:
1416
1417 15-INSPD3: 1
1418
1419 14-INSPD2: 1
1420
1421 13-INSPD1: 1,
1422
1423 Select this speed instruction to be effective.
1424 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1425 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1426
1427 Table 6-27 Internal speed instruction parameters
1428
1429 ✎**Note: **“*” means the set range of VD2F servo drive.
1430
1431 (% class="table-bordered" %)
1432 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1433 |(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1434 |(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1435 |(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1436
1437 Table 6-28 DI multi-speed function code description
1438
1439 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1440
1441 (% class="table-bordered" %)
1442 |(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1443 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1444 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1445 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1446 |(% colspan="5" %)......
1447 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1448
1449 Table 6-29 Correspondence between INSPD bits and segment numbers
1450
1451 (% style="text-align:center" %)
1452 [[image:image-20220608170845-26.png]]
1453
1454 Figure 6-29 Multi-segment speed running curve
1455
1456 **(2) Speed instruction source is internal speed instruction (P01-01=0)**
1457
1458 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1459
1460 (% style="text-align:center" %)
1461 [[image:image-20220608153341-5.png]]
1462
1463 Figure 6-30 Analog input circuit
1464
1465 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1466
1467 (% style="text-align:center" %)
1468 [[image:image-20220608170955-27.png]]
1469
1470 Figure 6-31 Analog voltage speed instruction setting steps
1471
1472 Explanation of related terms:
1473
1474 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1475
1476 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1477
1478 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1479
1480 (% style="text-align:center" %)
1481 [[image:image-20220608171124-28.png]]
1482
1483 Figure 6-32 AI_1 diagram before and after bias
1484
1485 (% class="table-bordered" %)
1486 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1487 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1488 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1489 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1490 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491
1492 Table 6-30 AI_1 parameters
1493
1494 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1495
1496 == **Acceleration and deceleration time setting** ==
1497
1498 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1499
1500 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1501
1502 (% style="text-align:center" %)
1503 [[image:image-20220608171314-29.png]]
1504
1505 Figure 6-33 of acceleration and deceleration time diagram
1506
1507 Actual acceleration time T1 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f534257c8134eb35.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]],,
1508
1509 Actual deceleration time T2 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f696c4e8005b5d7.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]],,
1510
1511 (% class="table-bordered" %)
1512 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1513 **Setting method**
1514 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1515 **Effective time**
1516 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1517 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1518 Operation setting
1519 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1520 Effective immediately
1521 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1522 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1523 Operation setting
1524 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1525 Effective immediately
1526 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1527
1528 Table 6-31 Acceleration and deceleration time parameters
1529
1530 == **Speed instruction limit** ==
1531
1532 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1533
1534 1. P01-10: Set the maximum speed limit value
1535 1. P01-12: Set forward speed limit value
1536 1. P01-13: Set reverse speed limit value
1537 1. The maximum speed of the motor: determined by motor model
1538
1539 The actual motor speed limit interval satisfies the following relationship:
1540
1541 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1542
1543 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1544
1545 (% class="table-bordered" %)
1546 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1547 **Setting method**
1548 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1549 **Effective time**
1550 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1551 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1552 Operation setting
1553 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1554 Effective immediately
1555 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1556 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1557 Operation setting
1558 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1559 Effective immediately
1560 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1561 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1562 Operation setting
1563 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1564 Effective immediately
1565 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1566
1567 Table 6-32 Rotation speed related function codes
1568
1569 == **Zero-speed clamp function** ==
1570
1571 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1572
1573 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1574
1575 (% class="table-bordered" %)
1576 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1577 **Setting method**
1578 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1579 **Effective time**
1580 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1581 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1582 Zero-speed clamp function selection
1583 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1584 Operation setting
1585 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1586 Effective immediately
1587 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1588 Set the zero-speed clamp function. In speed mode:
1589
1590 0: Force the speed to 0;
1591
1592 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1593
1594 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1595
1596 3: Invalid, ignore zero-speed clamp input
1597 )))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1598 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1599 Zero-speed clamp speed threshold
1600 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1601 Operation setting
1602 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1603 Effective immediately
1604 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1605
1606 Table 6-33 Zero-speed clamp related parameters
1607
1608 (% style="text-align:center" %)
1609 [[image:image-20220608171549-30.png]]
1610
1611 Figure 6-34 Zero-speed clamp diagram
1612
1613 == **Speed-related DO output function** ==
1614
1615 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1616
1617 **(1) Rotation detection signal**
1618
1619 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1620
1621 (% style="text-align:center" %)
1622 [[image:image-20220608171625-31.png]]
1623
1624 Figure 6-35 Rotation detection signal diagram
1625
1626 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1627
1628 (% class="table-bordered" %)
1629 |(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1630 **Setting method**
1631 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1632 **Effective time**
1633 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1634 |(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1635 Rotation detection
1636
1637 speed threshold
1638 )))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1639 Operation setting
1640 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1641 Effective immediately
1642 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1643
1644 Table 6-34 Rotation detection speed threshold parameters
1645
1646 (% class="table-bordered" %)
1647 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1648 |(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)(((
1649 T-COIN
1650
1651 rotation detection
1652 )))|(((
1653 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1654
1655 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1656 )))
1657
1658 Table 6-35 DO rotation detection function code
1659
1660 **(2) Zero-speed signal**
1661
1662 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1663
1664 (% style="text-align:center" %)
1665 [[image:image-20220608171904-32.png]]
1666
1667 Figure 6-36 Zero-speed signal diagram
1668
1669 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1670
1671 (% class="table-bordered" %)
1672 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1673 **Setting method**
1674 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1675 **Effective time**
1676 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1677 |(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1678 Operation setting
1679 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1680 Effective immediately
1681 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1682
1683 Table 6-36 Zero-speed output signal threshold parameter
1684
1685 (% class="table-bordered" %)
1686 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1687 |(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1688 ZSP zero speed signal
1689 )))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1690
1691 Table 6-37 DO zero-speed signal function code
1692
1693 **(3) Speed consistent signal**
1694
1695 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1696
1697 (% style="text-align:center" %)
1698 [[image:image-20220608172053-33.png]]
1699
1700 Figure 6-37 Speed consistent signal diagram
1701
1702 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1703
1704 (% class="table-bordered" %)
1705 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1706 **Setting method**
1707 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1708 **Effective time**
1709 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1710 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1711 Operationsetting
1712 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1713 Effective immediately
1714 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1715
1716 Table 6-38 Speed consistent signal threshold parameters
1717
1718 (% class="table-bordered" %)
1719 |(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1720 |(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1721 U-COIN consistent speed
1722 )))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1723
1724 Table 6-39 DO speed consistent function code
1725
1726 **(4) Speed approach signal**
1727
1728 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1729
1730 (% style="text-align:center" %)
1731 [[image:image-20220608172207-34.png]]
1732
1733 Figure 6-38 Speed approaching signal diagram
1734
1735 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1736
1737 (% class="table-bordered" %)
1738 |(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1739 **Setting method**
1740 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1741 **Effective time**
1742 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1743 |(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1744 Operation setting
1745 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1746 Effective immediately
1747 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1748
1749 Table 6-40 Speed approaching signal threshold parameters
1750
1751 (% class="table-bordered" %)
1752 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1753 |(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1754 V-NEAR speed approach
1755 )))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1756
1757 Table 6-41 DO speed approach function code
1758
1759 = **Torque control mode** =
1760
1761 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1762
1763 (% style="text-align:center" %)
1764 [[image:image-20220608172405-35.png]]
1765
1766 Figure 6-39 Torque mode diagram
1767
1768 == **Torque instruction input setting** ==
1769
1770 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1771
1772 (% class="table-bordered" %)
1773 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1774 **Setting method**
1775 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1776 **Effective time**
1777 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1778 |(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1779 Shutdown setting
1780 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1781 Effective immediately
1782 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1783 0: internal torque instruction
1784
1785 1: AI_1 analog input(not supported by VD2F)
1786 )))|(% style="text-align:center; vertical-align:middle" %)-
1787
1788 Table 6-42 Torque instruction source parameter
1789
1790 **(1) Torque instruction source is internal torque instruction (P01-07=0)**
1791
1792 Torque instruction source is from inside, the value is set by function code P01-08.
1793
1794 (% class="table-bordered" %)
1795 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1796 **Setting method**
1797 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1798 **Effective time**
1799 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1800 |(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1801 Operation setting
1802 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1803 Effective immediately
1804 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1805
1806 Table 6-43 Torque instruction keyboard set value
1807
1808 **(2) Torque instruction source is internal torque instruction (P01-07=1)**
1809
1810 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1811
1812 (% style="text-align:center" %)
1813 [[image:image-20220608153646-7.png||height="213" width="408"]]
1814
1815 Figure 6-40 Analog input circuit
1816
1817 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1818
1819 (% style="text-align:center" %)
1820 [[image:image-20220608172502-36.png]]
1821
1822 Figure 6-41 Analog voltage torque instruction setting steps
1823
1824 Explanation of related terms:
1825
1826 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1827
1828 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1829
1830 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1831
1832 (% style="text-align:center" %)
1833 [[image:image-20220608172611-37.png]]
1834
1835 Figure 6-42 AI_1 diagram before and after bias
1836
1837 (% class="table-bordered" %)
1838 |(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1839 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1840 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1841 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1842 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1843
1844 Table 6-44 AI_1 parameters
1845
1846 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1847
1848 == **Torque instruction filtering** ==
1849
1850 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1851
1852 (% class="table-bordered" %)
1853 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1854 **Setting method**
1855 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1856 **Effective time**
1857 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1858 |(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1859 Operation setting
1860 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1861 Effective immediately
1862 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1863
1864 Table 6-45 Torque filtering time constant parameter details
1865
1866 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1867
1868 (% style="text-align:center" %)
1869 [[image:image-20220608172646-38.png]]
1870
1871 Figure 6-43 Torque instruction-first-order filtering diagram
1872
1873 == **Torque instruction limit** ==
1874
1875 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1876
1877 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1878
1879 (% style="text-align:center" %)
1880 [[image:image-20220608172806-39.png]]
1881
1882 Figure 6-44 Torque instruction limit diagram
1883
1884 **(1) Set torque limit source**
1885
1886 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1887
1888 (% class="table-bordered" %)
1889 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1890 **Setting method**
1891 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1892 **Effective time**
1893 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1894 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1895 Torque limit source
1896 )))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1897 Shutdown setting
1898 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1899 Effective immediately
1900 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1901 0: internal value
1902
1903 1: AI_1 analog input
1904
1905 (not supported by VD2F)
1906 )))|(% style="text-align:center; vertical-align:middle" %)-
1907
1908 1) Torque limit source is internal torque instruction (P01-14=0)
1909
1910 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1911
1912 (% class="table-bordered" %)
1913 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1914 **Setting method**
1915 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1916 **Effective time**
1917 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1918 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1919 Forward torque limit
1920 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1921 Operation setting
1922 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1923 Effective immediately
1924 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1925 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1926 Reverse torque limit
1927 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1928 Operation setting
1929 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1930 Effective immediately
1931 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1932
1933 Table 6-46 Torque limit parameter details
1934
1935 2) Torque limit source is external (P01-14=1)
1936
1937 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1938
1939 **(2) Set torque limit DO signal output**
1940
1941 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1942
1943 (% class="table-bordered" %)
1944 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1945 |(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1946 T-LIMIT in torque limit
1947 )))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1948
1949 Table 6-47 DO torque limit function codes
1950
1951 == **Speed limit in torque mode** ==
1952
1953 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1954
1955 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1956
1957 |(((
1958 (% style="text-align:center" %)
1959 [[image:image-20220608172910-40.png]]
1960 )))|(((
1961 (% style="text-align:center" %)
1962 [[image:image-20220608173155-41.png]]
1963 )))
1964 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1965
1966 (% class="table-bordered" %)
1967 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1968 **Setting method**
1969 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1970 **Effective time**
1971 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1972 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1973 Forward torque
1974
1975 limit in torque mode
1976 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1977 Operation setting
1978 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1979 Effective immediately
1980 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1981 Forward torque
1982
1983 limit in torque mode
1984 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1985 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1986 Reverse torque
1987
1988 limit in torque mode
1989 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1990 Operation setting
1991 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1992 Effective immediately
1993 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1994 Reverse torque
1995
1996 limit in torque mode
1997 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1998
1999 Table 6-48 Speed limit parameters in torque mode
2000
2001 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__.
2002
2003 == **Torque-related DO output functions** ==
2004
2005 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2006
2007 **Torque arrival**
2008
2009 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2010
2011 (% style="text-align:center" %)
2012 [[image:image-20220608173541-42.png]]
2013
2014 Figure 6-47 Torque arrival output diagram
2015
2016 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2017
2018 (% class="table-bordered" %)
2019 |(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2020 **Setting method**
2021 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2022 **Effective time**
2023 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2024 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2025 Torque arrival
2026
2027 threshold
2028 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2029 Operation setting
2030 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2031 Effective immediately
2032 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2033 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2034
2035 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2036
2037 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2038 )))|(% style="text-align:center; vertical-align:middle" %)%
2039 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2040 Torque arrival
2041
2042 hysteresis
2043 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2044 Operation setting
2045 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2046 Effective immediately
2047 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2048
2049 Table 6-49 Torque arrival parameters
2050
2051 (% class="table-bordered" %)
2052 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2053 |(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2054 T-COIN torque arrival
2055 )))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2056
2057 Table 6-50 DO Torque Arrival Function Code
2058
2059 = **Mixed control mode** =
2060
2061 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2062
2063 Position mode  Speed mode
2064
2065 Position mode  Torque mode
2066
2067 Speed mode  Torque mode
2068
2069 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2070
2071 (% class="table-bordered" %)
2072 |(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2073 **Setting method**
2074 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2075 **Effective time**
2076 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2077 |(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2078 Shutdown setting
2079 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2080 Shutdown setting
2081 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((
2082 1: Position control
2083
2084 2: Speed control
2085
2086 3: Torque control
2087
2088 4: Position/speed mixed control
2089
2090 5: Position/torque mixed control
2091
2092 6: Speed/torque mixed control
2093 )))|(% style="text-align:center; vertical-align:middle" %)-
2094
2095 Table 6-51 Mixed control mode parameters
2096
2097 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2098
2099 (% class="table-bordered" %)
2100 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2101 |(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2102 (% class="table-bordered" %)
2103 |(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2104 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2105 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2106 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2107 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2108 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2109 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2110 )))
2111
2112 Table 6-52 Description of DI function codes in control mode
2113
2114 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2115
2116 = **Absolute system** =
2117
2118 == **Overview** ==
2119
2120 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2121
2122 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2123
2124 == **Single-turn absolute value system** ==
2125
2126 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2127
2128 (% class="table-bordered" %)
2129 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2130 |(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2131
2132 Table 6-53 Single-turn absolute encoder information
2133
2134 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2135
2136 (% style="text-align:center" %)
2137 [[image:image-20220608173618-43.png]]
2138
2139 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2140
2141 == **Multi-turn absolute value system** ==
2142
2143 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2144
2145 (% class="table-bordered" %)
2146 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2147 |(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2148 |(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2149
2150 Table 6-54 Multi-turn absolute encoder information
2151
2152 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2153
2154 (% style="text-align:center" %)
2155 [[image:image-20220608173701-44.png]]
2156
2157 Figure 6-49 The relationship between encoder feedback position and rotating load position
2158
2159 == **Encoder feedback data** ==
2160
2161 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2162
2163 (% class="table-bordered" %)
2164 |(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2165 |(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2166 |(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2167 |(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2168
2169 Table 6-55 Encoder feedback data
2170
2171 == **Absolute value system encoder battery box use precautions** ==
2172
2173 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2174
2175 (% style="text-align:center" %)
2176 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e9fac7759607dce6.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e9fac7759607dce6.png"]]
2177
2178 Figure 6-50 the encoder battery box
2179
2180 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. The specific replacement method is as follows:
2181
2182 1. Step1 The servo drive is powered on and is in a non-operational state;
2183 1. Step2 Replace the battery;
2184 1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings.
2185
2186 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2187
2188 (% class="table-bordered" %)
2189 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2190 **Setting method**
2191 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2192 **Effective time**
2193 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2194 |(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2195 Shutdown setting
2196 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2197 Effective immediately
2198 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2199 0: No operation
2200
2201 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2202
2203 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2204 )))|(% style="text-align:center; vertical-align:middle" %)-
2205
2206 Table 6-56 Absolute encoder reset enable parameter
2207
2208 ✎**Note: **If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2209
2210 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2211
2212 = **Overview** =
2213
2214 == **VDI** ==
2215
2216 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2217
2218 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2219
2220 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2221
2222 (% style="text-align:center" %)
2223 [[image:image-20220608173804-46.png]]
2224
2225 Figure 6-51 VDI_1 setting steps
2226
2227 (% class="table-bordered" %)
2228 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2229 **Setting method**
2230 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2231 **Effective time**
2232 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2233 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2234 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2235
2236 VDI_1 input level:
2237
2238 0: low level
2239
2240 1: high level
2241 )))|(% style="text-align:center; vertical-align:middle" %)-
2242 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2243 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2244
2245 VDI_2 input level:
2246
2247 0: low level
2248
2249 1: high level
2250 )))|(% style="text-align:center; vertical-align:middle" %)-
2251 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2252 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2253
2254 VDI_3 input level:
2255
2256 0: low level
2257
2258 1: high level
2259 )))|(% style="text-align:center; vertical-align:middle" %)-
2260 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2261 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2262
2263 VDI_4 input level:
2264
2265 0: low level
2266
2267 1: high level
2268 )))|(% style="text-align:center; vertical-align:middle" %)-
2269 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2270 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2271
2272 VDI_5 input level:
2273
2274 0: low level
2275
2276 1: high level
2277 )))|(% style="text-align:center; vertical-align:middle" %)-
2278 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2279 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2280
2281 VDI_6 input level:
2282
2283 0: low level
2284
2285 1: high level
2286 )))|(% style="text-align:center; vertical-align:middle" %)-
2287 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2288 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2289
2290 VDI_7 input level:
2291
2292 0: low level
2293
2294 1: high level
2295 )))|(% style="text-align:center; vertical-align:middle" %)-
2296 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2297 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2298
2299 VDI_8 input level:
2300
2301 0: low level
2302
2303 1: high level
2304 )))|(% style="text-align:center; vertical-align:middle" %)-
2305
2306 Table 6-57 Virtual VDI parameters
2307
2308 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2309
2310 == **Port filtering time** ==
2311
2312 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2313
2314 (% class="table-bordered" %)
2315 |(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2316 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2476a4a02e6f0760.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2476a4a02e6f0760.gif"]]
2317 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_ad0a0d3f9b9908b1.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_ad0a0d3f9b9908b1.gif"]]
2318
2319 Table 6-58 DI terminal channel logic selection
2320
2321 == **VDO** ==
2322
2323 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2324
2325 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2326
2327 (% style="text-align:center" %)
2328 [[image:image-20220608173957-48.png]]
2329
2330 Figure 6-52 VDO_2 setting steps
2331
2332 (% class="table-bordered" %)
2333 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2334 **Setting method**
2335 )))|(% style="text-align:center; vertical-align:middle" %)(((
2336 **Effective time**
2337 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2338 |(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2339 VDO_1 output level:
2340
2341 0: low level
2342
2343 1: high level
2344 )))|(% style="text-align:center; vertical-align:middle" %)-
2345 |(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2346 VDO_2 output level:
2347
2348 0: low level
2349
2350 1: high level
2351 )))|(% style="text-align:center; vertical-align:middle" %)-
2352 |(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2353 VDO_3 output level:
2354
2355 0: low level
2356
2357 1: high level
2358 )))|(% style="text-align:center; vertical-align:middle" %)-
2359 |(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2360 VDO_4 output level:
2361
2362 0: low level
2363
2364 1: high level
2365 )))|(% style="text-align:center; vertical-align:middle" %)-
2366
2367 Table 6-59 Communication control DO function parameters
2368
2369 (% class="table-bordered" %)
2370 |(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2371 |(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2372 |(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373 |(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2374 |(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375
2376 Table 6-60 VDO function number
2377
2378 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2379
2380 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2381
2382 == **Motor overload protection** ==
2383
2384 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2385
2386 (% class="table-bordered" %)
2387 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2388 **Setting method**
2389 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2390 **Effective time**
2391 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2392 |(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2393 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2394
2395 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2396 )))|(% style="text-align:center; vertical-align:middle" %)%
2397
2398 In the following cases, it could be modified according to the actual heat generation of the motor
2399
2400 1. The motor works in a place with high ambient temperature
2401 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2402
2403 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2404
2405 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2406
2407 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.