Wiki source code of 06 Operation

Version 56.1 by Jim(Forgotten) on 2022/09/09 11:03

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 58px;" %)**No.**|=(% style="width: 1017px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 58px;" %)1|(% style="width:1017px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 58px;" %)2|(% style="width:1017px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 58px;" %)3|(% style="width:1017px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 58px;" %)4|(% style="width:1017px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 58px;" %)5|(% style="width:1017px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 58px;" %)6|(% style="width:1017px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 58px;" %)7|(% style="width:1017px" %)The force of all cables is within the specified range.
14 |=(% style="width: 58px;" %)8|(% style="width:1017px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 58px;" %)1|(% style="width:1017px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 58px;" %)2|(% style="width:1017px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 58px;" %)3|(% style="width:1017px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=P10-01|JOG speed|(((
50 Operation setting
51 )))|(((
52 Effective immediately
53 )))|100|0 to 3000|JOG speed|rpm
54
55 Table 6-2 JOG speed parameter
56
57 == **Rotation direction selection** ==
58
59 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
60
61 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
62 |=P00-04|Rotation direction|(((
63 Shutdown setting
64 )))|(((
65 Effective immediately
66 )))|0|0 to 1|(((
67 Forward rotation: Face the motor shaft to watch
68
69 * 0: standard setting (CW is forward rotation)
70 * 1: reverse mode (CCW is forward rotation)
71 )))|-
72
73 Table 6-3 Rotation direction parameters** **
74
75 == **Braking resistor** ==
76
77 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
78
79 The basis for judging whether the braking resistor is built-in or external.
80
81 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
82 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
83
84 |=(% scope="row" %)**Function code**|=**Name**|=(((
85 **Setting method**
86 )))|=(((
87 **Effective time**
88 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
89 |=P00-09|Braking resistor setting|(((
90 Operation setting
91 )))|(((
92 Effective immediately
93 )))|0|0 to 3|(((
94 * 0: use built-in braking resistor
95 * 1: use external braking resistor and natural cooling
96 * 2: use external braking resistor and forced air cooling; (cannot be set)
97 * 3: No braking resistor is used, it is all absorbed by capacitor.
98 )))|-
99 |=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
100 |=P00-10|External braking resistor value|(((
101 Operation setting
102 )))|(((
103 Effective immediately
104 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
105 |=P00-11|External braking resistor power|(((
106 Operation setting
107 )))|(((
108 Effective immediately
109 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
110
111 Table 6-4 Braking resistor parameters
112
113 == **Servo operation** ==
114
115 **Set the servo enable (S-ON) to valid (ON)**
116
117 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
118
119 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
120
121 **Input the instruction and the motor rotates**
122
123 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
124
125 **Timing diagram of power on**
126
127 (% style="text-align:center" %)
128 (((
129 (% class="wikigeneratedid" style="display:inline-block" %)
130 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
131 )))
132
133 == Servo shutdown ==
134
135 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
136
137 |=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
138 |=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
139 |=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
140
141 Table 6-5 Comparison of two shutdown modes
142
143 |=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
144 |=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
145
146 Table 6-6 Comparison of two shutdown status
147
148 **Servo enable (S-ON) OFF shutdown**
149
150 The related parameters of the servo OFF shutdown mode are shown in the table below.
151
152 |=(% scope="row" %)**Function code**|=**Name**|=(((
153 **Setting method**
154 )))|=(((
155 **Effective time**
156 )))|=(((
157 **Default value**
158 )))|=**Range**|=**Definition**|=**Unit**
159 |=P00-05|Servo OFF shutdown|(((
160 Shutdown
161
162 setting
163 )))|(((
164 Effective
165
166 immediately
167 )))|0|0 to 1|(((
168 * 0: Free shutdown, and the motor shaft remains free status.
169 * 1: Zero-speed shutdown, and the motor shaft remains free status.
170 )))|-
171
172 Table 6-7 Servo OFF shutdown mode parameters details
173
174 **Emergency shutdown**
175
176 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
177
178 **Overtravel shutdown**
179
180 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
181
182 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
183
184 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
185
186 |=(% scope="row" %)**Function code**|=(% style="width: 143px;" %)**Name**|=(% style="width: 137px;" %)(((
187 **Setting method**
188 )))|=(% style="width: 141px;" %)(((
189 **Effective time**
190 )))|=(% style="width: 84px;" %)**Default value**|=(% style="width: 100px;" %)**Range**|=**Definition**|=**Unit**
191 |=P06-08|(% style="width:143px" %)DI_3 channel function selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)Power-on again|(% style="width:84px" %)3|(% style="width:100px" %)0 to 32|(((
192 * 0: OFF (not used)
193 * 01: S-ON servo enable
194 * 02: A-CLR fault and Warning Clear
195 * 03: POT forward drive prohibition
196 * 04: NOT Reverse drive prohibition
197 * 05: ZCLAMP Zero speed
198 * 06: CL Clear deviation counter
199 * 07: C-SIGN Inverted instruction
200 * 08: E-STOP Emergency stop
201 * 09: GEAR-SEL Electronic Gear Switch 1
202 * 10: GAIN-SEL gain switch
203 * 11: INH Instruction pulse prohibited input
204 * 12: VSSEL Vibration control switch input
205 * 13: INSPD1 Internal speed instruction selection 1
206 * 14: INSPD2 Internal speed instruction selection 2
207 * 15: INSPD3 Internal speedinstruction selection 3
208 * 16: J-SEL inertia ratio switch (not implemented yet)
209 * 17: MixModesel mixed mode selection
210 * 20: Internal multi-segment position enable signal
211 * 21: Internal multi-segment position selection 1
212 * 22: Internal multi-segment position selection 2
213 * 23: Internal multi-segment position selection 3
214 * 24: Internal multi-segment position selection 4
215 * Others: reserved
216 )))|-
217 |=P06-09|(% style="width:143px" %)DI_3 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
218 Effective immediately
219 )))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
220 DI port input logic validity function selection.
221
222 * 0: Normally open input. Active low level (switch on);
223 * 1: Normally closed input. Active high level (switch off);
224 )))|-
225 |=P06-10|(% style="width:143px" %)DI_3 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
226 Effective immediately
227 )))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
228 Select the DI_3 port type to enable
229
230 * 0: Hardware DI_3 input terminal
231 * 1: virtual VDI_3 input terminal
232 )))|-
233 |=P06-11|(% style="width:143px" %)DI_4 channel function selection|(% style="width:137px" %)(((
234 Operation setting
235 )))|(% style="width:141px" %)(((
236 again Power-on
237 )))|(% style="width:84px" %)4|(% style="width:100px" %)0 to 32|(((
238 * 0: OFF (not used)
239 * 01: SON Servo enable
240 * 02: A-CLR Fault and Warning Clear
241 * 03: POT Forward drive prohibition
242 * 04: NOT Reverse drive prohibition
243 * 05: ZCLAMP Zero speed
244 * 06: CL Clear deviation counter
245 * 07: C-SIGN Inverted instruction
246 * 08: E-STOP Emergency shutdown
247 * 09: GEAR-SEL Electronic Gear Switch 1
248 * 10: GAIN-SEL gain switch
249 * 11: INH Instruction pulse prohibited input
250 * 12: VSSEL Vibration control switch input
251 * 13: INSPD1 Internal speed instruction selection 1
252 * 14: INSPD2 Internal speed instruction selection 2
253 * 15: INSPD3 Internal speed instruction selection 3
254 * 16: J-SEL inertia ratio switch (not implemented yet)
255 * 17: MixModesel mixed mode selection
256 * 20: Internal multi-segment position enable signal
257 * 21: Internal multi-segment position selection 1
258 * 22: Internal multi-segment position selection 2
259 * 23: Internal multi-segment position selection 3
260 * 24: Internal multi-segment position selection 4
261 * Others: reserved
262 )))|-
263 |=P06-12|(% style="width:143px" %)DI_4 channel logic selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
264 Effective immediately
265 )))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
266 DI port input logic validity function selection.
267
268 * 0: Normally open input. Active low level (switch on);
269 * 1: Normally closed input. Active high level (switch off);
270 )))|-
271 |=P06-13|(% style="width:143px" %)DI_4 input source selection|(% style="width:137px" %)Operation setting|(% style="width:141px" %)(((
272 Effective immediately
273 )))|(% style="width:84px" %)0|(% style="width:100px" %)0 to 1|(((
274 Select the DI_4 port type to enable
275
276 * 0: Hardware DI_4 input terminal
277 * 1: virtual VDI_4 input terminal
278 )))|-
279
280 Table 6-8 DI3 and DI4 channel parameters
281
282 **(4) Malfunction shutdown**
283
284 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
285
286 == Brake device ==
287
288 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
289
290 |(((
291 (% style="text-align:center" %)
292 [[image:image-20220611151617-1.png]]
293 )))
294 |(((
295 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
296
297 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
298
299 ✎The brake coil has no polarity;
300
301 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
302
303 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
304 )))
305
306 **Wiring of brake device**
307
308 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
309
310
311 (% style="text-align:center" %)
312 (((
313 (% class="wikigeneratedid" style="display:inline-block" %)
314 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
315 )))
316
317 |(((
318 (% style="text-align:center" %)
319 [[image:image-20220611151642-2.png]]
320 )))
321 |(((
322 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
323
324 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
325
326 ✎It is recommended to use cables above 0.5 mm².
327 )))
328
329 **Brake software setting**
330
331 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
332
333 Related function code is as below.
334
335 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**|=(((
336 **Effective time**
337 )))
338 |=144|(((
339 BRK-OFF Brake output
340 )))|Output the signal indicates the servo motor brake release|Power-on again
341
342 Table 6-2 Relevant function codes for brake setting
343
344 |=(% scope="row" %)**Function code**|=**Name**|=(((
345 **Setting method**
346 )))|=(((
347 **Effective time**
348 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
349 |=P1-30|Delay from brake output to instruction reception|(((
350 Operation setting
351 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
352 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
353 Operation setting
354 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
355 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
356 Operation setting
357 )))|Effective immediately|30|0 to 3000|(((
358 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
359
360 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
361 )))|rpm
362 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
363 Operation setting
364 )))|Effective immediately|500|1 to 1000|(((
365 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
366
367 When brake output (BRK-OFF) is not allocated, this function code has no effect.
368 )))|ms
369
370 Table 6-9 Brake setting function codes
371
372 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
373
374 **Servo drive brake timing in normal state**
375
376 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
377
378 * Brake timing when servo motor is stationary
379
380 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
381
382 |(((
383 [[image:image-20220611151705-3.png]]
384 )))
385 |(((
386 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
387
388 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
389 )))
390
391 (% style="text-align:center" %)
392 (((
393 (% class="wikigeneratedid" style="display:inline-block" %)
394 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
395 )))
396
397 (% class="box infomessage" %)
398 (((
399 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
400 )))
401
402 * The brake timing when servo motor rotates
403
404 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
405
406 |(((
407 (% style="text-align:center" %)
408 [[image:image-20220611151719-4.png]]
409 )))
410 |(((
411 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
412
413 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
414
415 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
416
417 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
418
419 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
420 )))
421
422 (% style="text-align:center" %)
423 (((
424 (% class="wikigeneratedid" style="display:inline-block" %)
425 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
426 )))
427
428 **Brake timing when the servo drive fails**
429
430 The brake timing (free shutdown) in the fault status is as follows.
431
432 (% style="text-align:center" %)
433 (((
434 (% class="wikigeneratedid" style="display:inline-block" %)
435 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
436 )))
437
438 = **Position control mode** =
439
440 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
441
442 (% style="text-align:center" %)
443 (((
444 (% class="wikigeneratedid" style="display:inline-block" %)
445 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
446 )))
447
448 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
449
450 |=(% scope="row" %)**Function code**|=**Name**|=(((
451 **Setting method**
452 )))|=(((
453 **Effective time**
454 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
455 |=P01-01|Control mode|(((
456 Operation setting
457 )))|(((
458 immediately Effective
459 )))|0|0 to 6|(((
460 0: position control
461
462 2: speed control
463
464 3: torque control
465
466 4: position/speed mix control
467
468 5: position/torque mix control
469
470 6: speed /torque mix control
471 )))|-
472
473 Table 6-10 Control mode parameters
474
475 == Position instruction input setting ==
476
477 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
478
479 |=(% scope="row" %)**Function code**|=**Name**|=(((
480 **Setting method**
481 )))|=(((
482 **Effective time**
483 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
484 |=P01-06|Position instruction source|(((
485 Operation setting
486 )))|(((
487 immediately Effective
488 )))|0|0 to 1|(((
489 0: pulse instruction
490
491 1: internal position instruction
492 )))|-
493
494 Table 6-11 Position instruction source parameter
495
496 **The source of position instruction is pulse instruction (P01-06=0)**
497
498 Low-speed pulse instruction input
499
500 |[[image:image-20220804160519-1.jpeg]]|[[image:image-20220804160624-2.jpeg]]
501 |VD2A and VD2B servo drives|VD2F servo drive
502 |(% colspan="2" %)Figure 6-7 Position instruction input setting
503
504 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
505
506 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
507
508 |=(% scope="row" %)**Pulse method**|=**Maximum frequency**|=**Voltage**
509 |=Open collector input|200K|24V
510 |=Differential input|500K|5V
511
512 Table 6-12 Pulse input specifications
513
514 * Differential input
515
516 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
517
518 (% style="text-align:center" %)
519 (((
520 (% class="wikigeneratedid" style="display:inline-block" %)
521 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||id="Iimage-20220707092615-5.jpeg"]]
522 )))
523
524 (% class="box infomessage" %)
525 (((
526 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
527 )))
528
529 * Open collector input
530
531 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
532
533 (% style="text-align:center" %)
534 (((
535 (% class="wikigeneratedid" style="display:inline-block" %)
536 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="530" id="Iimage-20220707092401-3.jpeg" width="834"]]
537 )))
538
539
540 (% class="box infomessage" %)
541 (((
542 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
543 )))
544
545 * Position pulse frequency and anti-interference level
546
547 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
548
549 (% style="text-align:center" %)
550 (((
551 (% class="wikigeneratedid" style="display:inline-block" %)
552 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
553 )))
554
555 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
556
557 |=**Function code**|=**Name**|=(((
558 **Setting method**
559 )))|=(((
560 **Effective time**
561 )))|=**Default value**|=**Range**|=(% colspan="2" %)**Definition**|=**Unit**
562 |P00-13|Maximum position pulse frequency|(((
563 Shutdown setting
564 )))|(((
565 Effective immediately
566 )))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
567 |(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
568 Operation setting
569 )))|(% rowspan="3" %)(((
570 Power-on again
571 )))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
572 Set the anti-interference level of external pulse instruction.
573
574 * 0: no filtering;
575 * 1: Filtering time 128ns
576 * 2: Filtering time 256ns
577 * 3: Filtering time 512ns
578 * 4: Filtering time 1.024us
579 * 5: Filtering time 2.048us
580 * 6: Filtering time 4.096us
581 * 7: Filtering time 8.192us
582 * 8: Filtering time 16.384us
583 * 9:
584 ** VD2: Filtering time 25.5us
585 ** VD2F: Filtering time 25.5us
586 )))|(% rowspan="3" %)-
587
588 Table 6-13 Position pulse frequency and anti-interference level parameters
589
590 * Position pulse type selection
591
592 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
593
594 |=(% scope="row" %)**Function code**|=**Name**|=(((
595 **Setting method**
596 )))|=(((
597 **Effective time**
598 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
599 |=P00-12|Position pulse type selection|(((
600 Operation setting
601 )))|(((
602 Power-on again
603 )))|0|0 to 5|(((
604 * 0: direction + pulse (positive logic)
605 * 1: CW/CCW
606 * 2: A, B phase quadrature pulse (4 times frequency)
607 * 3: Direction + pulse (negative logic)
608 * 4: CW/CCW (negative logic)
609 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
610 )))|-
611
612 Table 6-14 Position pulse type selection parameter
613
614 |=(% scope="row" %)**Pulse type selection**|=**Pulse type**|=**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
615 |=0|(((
616 Direction + pulse
617
618 (Positive logic)
619 )))|(((
620 PULSE
621
622 SIGN
623 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
624 |=1|CW/CCW|(((
625 PULSE (CW)
626
627 SIGN (CCW)
628 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
629 |=2|(((
630 AB phase orthogonal
631
632 pulse (4 times frequency)
633 )))|(((
634 PULSE (Phase A)
635
636 SIGN (Phase B)
637 )))|(((
638
639
640 [[image:image-20220707094358-9.jpeg]]
641
642 Phase A is 90° ahead of Phase B
643 )))|(((
644
645
646 [[image:image-20220707094407-10.jpeg]]
647
648 Phase B is 90° ahead of Phase A
649 )))
650 |=3|(((
651 Direction + pulse
652
653 (Negative logic)
654 )))|(((
655 PULSE
656
657 SIGN
658 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
659 |=4|(((
660 CW/CCW
661
662 (Negative logic)
663 )))|(((
664 PULSE (CW)
665
666 SIGN (CCW)
667 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
668 |=5|(((
669 AB phase orthogonal
670
671 pulse (4 times frequency negative logic)
672 )))|(((
673 PULSE (Phase A)
674
675 SIGN (Phase B)
676 )))|(((
677
678
679 [[image:image-20220707094429-14.jpeg]]
680
681 Phase B is ahead of A phase by 90°
682 )))|(((
683
684
685 [[image:image-20220707094437-15.jpeg]]
686
687 Phase A is ahead of B phase by 90°
688 )))
689
690 Table 6-15 Pulse description
691
692 **The source of position instruction is internal position instruction (P01-06=1)**
693
694 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
695
696 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
697
698 (% style="text-align:center" %)
699 (((
700 (% class="wikigeneratedid" style="display:inline-block" %)
701 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
702 )))
703
704
705 * Set multi-segment position running mode
706
707 |=(% scope="row" %)**Function code**|=**Name**|=(((
708 **Setting method**
709 )))|=(((
710 **Effective time**
711 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
712 |=P07-01|Multi-segment position running mode|(((
713 Shutdown setting
714 )))|(((
715 Effective immediately
716 )))|0|0 to 2|(((
717 * 0: Single running
718 * 1: Cycle running
719 * 2: DI switching running
720 )))|-
721 |=P07-02|Start segment number|(((
722 Shutdown setting
723 )))|(((
724 Effective immediately
725 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
726 |=P07-03|End segment number|(((
727 Shutdown setting
728 )))|(((
729 Effective immediately
730 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
731 |=P07-04|Margin processing method|(((
732 Shutdown setting
733 )))|(((
734 Effective immediately
735 )))|0|0 to 1|(((
736 * 0: Run the remaining segments
737 * 1: Run again from the start segment
738 )))|-
739 |=P07-05|Displacement instruction type|(((
740 Shutdown setting
741 )))|(((
742 Effective immediately
743 )))|0|0 to 1|(((
744 * 0: Relative position instruction
745 * 1: Absolute position instruction
746 )))|-
747
748 Table 6-16 multi-segment position running mode parameters
749
750 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
751
752 1. Single running
753
754 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
755
756
757 (% style="text-align:center" %)
758 (((
759 (% class="wikigeneratedid" style="display:inline-block" %)
760 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
761 )))
762
763 * 2. Cycle running
764
765 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
766
767 (% style="text-align:center" %)
768 (((
769 (% class="wikigeneratedid" style="display:inline-block" %)
770 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
771 )))
772
773 |(((
774 (% style="text-align:center" %)
775 [[image:image-20220611151917-5.png]]
776 )))
777 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
778
779 (% start="3" %)
780 1. DI switching running
781
782 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
783
784 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
785 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
786 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
787 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
788 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
789
790 Table 6-17 DI function code
791
792 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
793
794 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
795 |=0|0|0|0|1
796 |=0|0|0|1|2
797 |=0|0|1|0|3
798 |=(% colspan="5" %)…………
799 |=1|1|1|1|16
800
801 Table 6-18 INPOS corresponds to running segment number
802
803 The operating curve in this running mode is shown in __Figure 6-14__.
804
805 (% style="text-align:center" %)
806 (((
807 (% class="wikigeneratedid" style="display:inline-block" %)
808 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
809 )))
810
811 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
812
813 **Run the remaining segments**
814
815 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
816
817 (% style="text-align:center" %)
818 (((
819 (% class="wikigeneratedid" style="display:inline-block" %)
820 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
821 )))
822
823 (% style="text-align:center" %)
824 (((
825 (% class="wikigeneratedid" style="display:inline-block" %)
826 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||id="Iimage-20220608165032-14.png"]]
827 )))
828
829 **Run again from the start segment**
830
831 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165343-15.png?rev=1.1]]__ and __[[Figure 6-18>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165558-16.png?rev=1.1]]__ respectively.
832
833 (% style="text-align:center" %)
834 (((
835 (% class="wikigeneratedid" style="display:inline-block" %)
836 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
837 )))
838
839 (% style="text-align:center" %)
840 (((
841 (% class="wikigeneratedid" style="display:inline-block" %)
842 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
843 )))
844
845 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
846
847 * Relative position instruction
848
849 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
850
851 |(((
852 (% style="text-align:center" %)
853 (((
854 (% class="wikigeneratedid" style="display:inline-block" %)
855 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
856 )))
857 )))|(((
858 (% style="text-align:center" %)
859 (((
860 (% class="wikigeneratedid" style="display:inline-block" %)
861 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
862 )))
863 )))
864
865 * Absolute position instruction
866
867 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
868
869 |(((
870 (% style="text-align:center" %)
871 (((
872 (% class="wikigeneratedid" style="display:inline-block" %)
873 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
874 )))
875 )))|(((
876 (% style="text-align:center" %)
877 (((
878 (% class="wikigeneratedid" style="display:inline-block" %)
879 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
880 )))
881 )))
882
883 * Multi-segment position running curve setting
884
885 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
886
887 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
888 |=P07-09|(((
889 1st segment
890
891 displacement
892 )))|(((
893 Operation setting
894 )))|(((
895 Effective immediately
896 )))|10000|(((
897 -2147483647 to
898
899 2147483646
900 )))|Position instruction, positive and negative values could be set|-
901 |=P07-10|Maximum speed of the 1st displacement|(((
902 Operation setting
903 )))|(((
904 Effective immediately
905 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
906 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
907 Operation setting
908 )))|(((
909 Effective immediately
910 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
911 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
912 Operation setting
913 )))|(((
914 Effective immediately
915 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
916
917 Table 6-19 The 1st position operation curve parameters table
918
919 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
920
921 (% style="text-align:center" %)
922 (((
923 (% class="wikigeneratedid" style="display:inline-block" %)
924 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
925 )))
926
927
928 * multi-segment position instruction enable
929
930 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
931
932 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
933 |=20|ENINPOS: Internal multi-segment position enable signal|(((
934 DI port logic invalid: Does not affect the current operation of the servo motor.
935
936 DI port logic valid: Motor runs multi-segment position
937 )))
938
939 (% style="text-align:center" %)
940 [[image:image-20220611152020-6.png]]
941
942 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
943
944 == Electronic gear ratio ==
945
946 **Definition of electronic gear ratio**
947
948 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
949
950 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
951
952 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
953
954 (% style="text-align:center" %)
955 [[image:image-20220707094901-16.png]]
956
957 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
958
959 **Setting steps of electronic gear ratio**
960
961 (% style="text-align:center" %)
962 (((
963 (% class="wikigeneratedid" style="display:inline-block" %)
964 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||id="Iimage-20220707100850-20.jpeg"]]
965 )))
966
967 **lectronic gear ratio switch setting**
968
969 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
970
971 |=(% scope="row" %)**Function code**|=**Name**|=(((
972 **Setting method**
973 )))|=(((
974 **Effective time**
975 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
976 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
977 Shutdown setting
978 )))|(((
979 Effective immediately
980 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
981 Instruction pulse
982
983 unit
984 )))
985 |=P00-17|(((
986 Electronic gear 1
987
988 numerator
989 )))|Operation setting|(((
990 Effective immediately
991 )))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
992 |=P00-18|(((
993 Electronic gear 1
994
995 denominator
996 )))|(((
997 Operation setting
998 )))|(((
999 Effective immediately
1000 )))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1001 |=P00-19|(((
1002 Electronic gear 2
1003
1004 numerator
1005 )))|Operation setting|(((
1006 Effective immediately
1007 )))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1008 |=P00-20|(((
1009 Electronic gear 2
1010
1011 denominator
1012 )))|Operation setting|(((
1013 Effective immediately
1014 )))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1015
1016 Table 6-20 Electronic gear ratio function code
1017
1018 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1019
1020 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1021 |=09|GEAR-SEL electronic gear switch 1|(((
1022 DI port logic invalid: electronic gear ratio 1
1023
1024 DI port logic valid: electronic gear ratio 2
1025 )))
1026
1027 Table 6-21 Switching conditions of electronic gear ratio group
1028
1029 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1030 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1031 (% style="text-align:center" %)
1032 [[image:image-20220707101328-21.png]]
1033 )))
1034 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1035 (% style="text-align:center" %)
1036 [[image:image-20220707101336-22.png]]
1037 )))
1038 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1039 (% style="text-align:center" %)
1040 [[image:image-20220707101341-23.png]]
1041 )))
1042
1043 Table 6-22 Application of electronic gear ratio
1044
1045 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1046
1047 == Position instruction filtering ==
1048
1049 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1050
1051 In the following situations, position instruction filtering should be added.
1052
1053 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1054 1. The pulse instruction frequency is low;
1055 1. When the electronic gear ratio is 10 times or more.
1056
1057 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1058
1059 (% style="text-align:center" %)
1060 (((
1061 (% class="wikigeneratedid" style="display:inline-block" %)
1062 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||id="Iimage-20220608170455-23.png"]]
1063 )))
1064
1065 |=(% scope="row" %)**Function code**|=**Name**|=(((
1066 **Setting method**
1067 )))|=(((
1068 **Effective time**
1069 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1070 |=P04-01|Pulse instruction filtering method|(((
1071 Shutdown setting
1072 )))|(((
1073 Effective immediately
1074 )))|0|0 to 1|(((
1075 * 0: 1st-order low-pass filtering
1076 * 1: average filtering
1077 )))|-
1078 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1079 Effective immediately
1080 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1081 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1082 Effective immediately
1083 )))|0|0 to 128|Position instruction average filtering time constant|ms
1084
1085 Table 6-23 Position instruction filter function code
1086
1087 == Clearance of position deviation ==
1088
1089 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1090
1091 Position deviation = (position instruction-position feedback) (encoder unit)
1092
1093 == Position-related DO output function ==
1094
1095 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1096
1097 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1098 **Positioning completion/positioning approach output**
1099
1100 (% class="wikigeneratedid" %)
1101 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1102
1103 (% style="text-align:center" %)
1104 (((
1105 (% class="wikigeneratedid" style="display:inline-block" %)
1106 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1107 )))
1108
1109 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1110
1111 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1112
1113 (% style="text-align:center" %)
1114 (((
1115 (% class="wikigeneratedid" style="display:inline-block" %)
1116 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||id="Iimage-20220608170650-25.png"]]
1117 )))
1118
1119 |=(% scope="row" %)**Function code**|=**Name**|=(((
1120 **Setting method**
1121 )))|=(% style="width: 129px;" %)(((
1122 **Effective time**
1123 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1124 |=P05-12|Positioning completion threshold|(((
1125 Operation setting
1126 )))|(% style="width:129px" %)(((
1127 Effective immediately
1128 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1129 |=P05-13|Positioning approach threshold|(((
1130 Operation setting
1131 )))|(% style="width:129px" %)(((
1132 Effective immediately
1133 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1134 |=P05-14|Position detection window time|(((
1135 Operation setting
1136 )))|(% style="width:129px" %)(((
1137 Effective immediately
1138 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1139 |=P05-15|Positioning signal hold time|(((
1140 Operation setting
1141 )))|(% style="width:129px" %)(((
1142 Effective immediately
1143 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1144
1145 Table 6-24 Function code parameters of positioning completion
1146
1147 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1148 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1149 |=135|(((
1150 P-NEAR positioning close
1151 )))|(((
1152 Output this signal indicates that the servo drive position is close.
1153 )))
1154
1155 Table 6-25 Description of DO rotation detection function code
1156
1157 = **Speed control mode** =
1158
1159 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1160
1161 (% style="text-align:center" %)
1162 (((
1163 (% class="wikigeneratedid" style="display:inline-block" %)
1164 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1165 )))
1166
1167 == Speed instruction input setting ==
1168
1169 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1170
1171 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 189px;" %)**Name**|=(% style="width: 125px;" %)(((
1172 **Setting method**
1173 )))|=(% style="width: 125px;" %)(((
1174 **Effective time**
1175 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1176 |=(% style="width: 121px;" %)P01-01|(% style="width:189px" %)Speed instruction source|(% style="width:125px" %)(((
1177 Shutdown setting
1178 )))|(% style="width:125px" %)(((
1179 Effective immediately
1180 )))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)(((
1181 * 0: internal speed instruction
1182 * 1: AI_1 analog input (not supported by VD2F)
1183 )))|-
1184
1185 Table 6-26 Speed instruction source parameter
1186
1187 **Speed instruction source is internal speed instruction (P01-01=0)**
1188
1189 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1190
1191 (% style="width:1141px" %)
1192 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1193 **Setting**
1194
1195 **method**
1196 )))|=(% colspan="2" %)(((
1197 **Effective**
1198
1199 **time**
1200 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1201 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1202 Internal speed
1203
1204 Instruction 0
1205 )))|(% colspan="2" %)(((
1206 Operation
1207
1208 setting
1209 )))|(% colspan="2" %)(((
1210 Effective
1211
1212 immediately
1213 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1214 Internal speed instruction 0
1215
1216 When DI input port:
1217
1218 * 15-INSPD3: 0
1219 * 14-INSPD2: 0
1220 * 13-INSPD1: 0,
1221
1222 select this speed instruction to be effective.
1223 )))|(% colspan="2" %)rpm
1224 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1225 Internal speed
1226
1227 Instruction 1
1228 )))|(% colspan="2" %)(((
1229 Operation
1230
1231 setting
1232 )))|(% colspan="2" %)(((
1233 Effective
1234
1235 immediately
1236 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1237 Internal speed instruction 1
1238
1239 When DI input port:
1240
1241 * 15-INSPD3: 0
1242 * 14-INSPD2: 0
1243 * 13-INSPD1: 1,
1244
1245 Select this speed instruction to be effective.
1246 )))|(% colspan="2" %)rpm
1247 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1248 Internal speed
1249
1250 Instruction 2
1251 )))|(% colspan="2" %)(((
1252 Operation
1253
1254 setting
1255 )))|(% colspan="2" %)(((
1256 Effective
1257
1258 immediately
1259 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1260 Internal speed instruction 2
1261
1262 When DI input port:
1263
1264 * 15-INSPD3: 0
1265 * 14-INSPD2: 1
1266 * 13-INSPD1: 0,
1267
1268 Select this speed instruction to be effective.
1269 )))|(% colspan="2" %)rpm
1270 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1271 Internal speed
1272
1273 Instruction 3
1274 )))|(% colspan="2" %)(((
1275 Operation
1276
1277 setting
1278 )))|(% colspan="2" %)(((
1279 Effective
1280
1281 immediately
1282 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1283 Internal speed instruction 3
1284
1285 When DI input port:
1286
1287 * 15-INSPD3: 0
1288 * 14-INSPD2: 1
1289 * 13-INSPD1: 1,
1290
1291 Select this speed instruction to be effective.
1292 )))|(% colspan="2" %)rpm
1293 |=P01-26|(% colspan="2" %)(((
1294 Internal speed
1295
1296 Instruction 4
1297 )))|(% colspan="2" %)(((
1298 Operation
1299
1300 setting
1301 )))|(% colspan="2" %)(((
1302 Effective
1303
1304 immediately
1305 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1306 Internal speed instruction 4
1307
1308 When DI input port:
1309
1310 * 15-INSPD3: 1
1311 * 14-INSPD2: 0
1312 * 13-INSPD1: 0,
1313
1314 Select this speed instruction to be effective.
1315 )))|(% colspan="1" %)rpm
1316 |=P01-27|(% colspan="2" %)(((
1317 Internal speed
1318
1319 Instruction 5
1320 )))|(% colspan="2" %)(((
1321 Operation
1322
1323 setting
1324 )))|(% colspan="2" %)(((
1325 Effective
1326
1327 immediately
1328 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1329 Internal speed instruction 5
1330
1331 When DI input port:
1332
1333 * 15-INSPD3: 1
1334 * 14-INSPD2: 0
1335 * 13-INSPD1: 1,
1336
1337 Select this speed instruction to be effective.
1338 )))|(% colspan="1" %)rpm
1339 |=P01-28|(% colspan="2" %)(((
1340 Internal speed
1341
1342 Instruction 6
1343 )))|(% colspan="2" %)(((
1344 Operation
1345
1346 setting
1347 )))|(% colspan="2" %)(((
1348 Effective
1349
1350 immediately
1351 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1352 Internal speed instruction 6
1353
1354 When DI input port:
1355
1356 * 15-INSPD3: 1
1357 * 14-INSPD2: 1
1358 * 13-INSPD1: 0,
1359
1360 Select this speed instruction to be effective.
1361 )))|(% colspan="1" %)rpm
1362 |=P01-29|(% colspan="2" %)(((
1363 Internal speed
1364
1365 Instruction 7
1366 )))|(% colspan="2" %)(((
1367 Operation
1368
1369 setting
1370 )))|(% colspan="2" %)(((
1371 Effective
1372
1373 immediately
1374 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1375 Internal speed instruction 7
1376
1377 When DI input port:
1378
1379 * 15-INSPD3: 1
1380 * 14-INSPD2: 1
1381 * 13-INSPD1: 1,
1382
1383 Select this speed instruction to be effective.
1384 )))|(% colspan="1" %)rpm
1385
1386 Table 6-27 Internal speed instruction parameters
1387
1388 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1389 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1390 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1391 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1392
1393 Table 6-28 DI multi-speed function code description
1394
1395 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1396
1397
1398 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1399 |0|0|0|1|0
1400 |0|0|1|2|1
1401 |0|1|0|3|2
1402 |(% colspan="5" %)......
1403 |1|1|1|8|7
1404
1405 Table 6-29 Correspondence between INSPD bits and segment numbers
1406
1407 (% style="text-align:center" %)
1408 (((
1409 (% class="wikigeneratedid" style="display:inline-block" %)
1410 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||id="Iimage-20220608170845-26.png"]]
1411 )))
1412
1413 **Speed instruction source is internal speed instruction (P01-01=1)**
1414
1415 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1416
1417 (% style="text-align:center" %)
1418 (((
1419 (% class="wikigeneratedid" style="display:inline-block" %)
1420 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1421 )))
1422
1423 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1424
1425 (% style="text-align:center" %)
1426 (((
1427 (% class="wikigeneratedid" style="display:inline-block" %)
1428 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1429 )))
1430
1431 Explanation of related terms:
1432
1433 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1434 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1435 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1436
1437 (% style="text-align:center" %)
1438 (((
1439 (% class="wikigeneratedid" style="display:inline-block" %)
1440 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1441 )))
1442
1443 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1444 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1445 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1446 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1447 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1448
1449 Table 6-30 AI_1 parameters
1450
1451 (% class="box infomessage" %)
1452 (((
1453 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1454 )))
1455
1456 == Acceleration and deceleration time setting ==
1457
1458 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1459
1460 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1461
1462 (% style="text-align:center" %)
1463 (((
1464 (% class="wikigeneratedid" style="display:inline-block" %)
1465 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1466 )))
1467
1468 (% style="text-align:center" %)
1469 [[image:image-20220707103616-27.png]]
1470
1471 |=(% scope="row" %)**Function code**|=**Name**|=(((
1472 **Setting method**
1473 )))|=(((
1474 **Effective time**
1475 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1476 |=P01-03|Acceleration time|(((
1477 Operation setting
1478 )))|(((
1479 Effective immediately
1480 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1481 |=P01-04|Deceleration time|(((
1482 Operation setting
1483 )))|(((
1484 Effective immediately
1485 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1486
1487 Table 6-31 Acceleration and deceleration time parameters
1488
1489 == Speed instruction limit ==
1490
1491 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1492
1493 1. P01-10: Set the maximum speed limit value
1494 1. P01-12: Set forward speed limit value
1495 1. P01-13: Set reverse speed limit value
1496 1. The maximum speed of the motor: determined by motor model
1497
1498 The actual motor speed limit interval satisfies the following relationship:
1499
1500 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1501
1502 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1503
1504 |=(% scope="row" %)**Function code**|=**Name**|=(((
1505 **Setting method**
1506 )))|=(((
1507 **Effective time**
1508 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1509 |=P01-10|Maximum speed threshold|(((
1510 Operation setting
1511 )))|(((
1512 Effective immediately
1513 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1514 |=P01-12|Forward speed threshold|(((
1515 Operation setting
1516 )))|(((
1517 Effective immediately
1518 )))|3000|0 to 5000|Set forward speed limit value|rpm
1519 |=P01-13|Reverse speed threshold|(((
1520 Operation setting
1521 )))|(((
1522 Effective immediately
1523 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1524
1525 Table 6-32 Rotation speed related function codes
1526
1527 == Zero-speed clamp function ==
1528
1529 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1530
1531 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1532
1533 |=(% scope="row" %)**Function code**|=**Name**|=(((
1534 **Setting method**
1535 )))|=(((
1536 **Effective time**
1537 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1538 |=P01-21|(((
1539 Zero-speed clamp function selection
1540 )))|(((
1541 Operation setting
1542 )))|(((
1543 Effective immediately
1544 )))|0|0 to 3|(((
1545 Set the zero-speed clamp function. In speed mode:
1546
1547 * 0: Force the speed to 0;
1548 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1549 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1550 * 3: Invalid, ignore zero-speed clamp input
1551 )))|-
1552 |=P01-22|(((
1553 Zero-speed clamp speed threshold
1554 )))|(((
1555 Operation setting
1556 )))|(((
1557 Effective immediately
1558 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1559
1560 Table 6-33 Zero-speed clamp related parameters
1561
1562 (% style="text-align:center" %)
1563 (((
1564 (% class="wikigeneratedid" style="display:inline-block" %)
1565 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1566 )))
1567
1568 == Speed-related DO output function ==
1569
1570 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1571
1572 **Rotation detection signal**
1573
1574 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1575
1576 (% style="text-align:center" %)
1577 (((
1578 (% class="wikigeneratedid" style="display:inline-block" %)
1579 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1580 )))
1581
1582 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1583
1584 |=(% scope="row" %)**Function code**|=**Name**|=(((
1585 **Setting method**
1586 )))|=(((
1587 **Effective time**
1588 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1589 |=P05-16|(((
1590 Rotation detection
1591
1592 speed threshold
1593 )))|(((
1594 Operation setting
1595 )))|(((
1596 Effective immediately
1597 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1598
1599 Table 6-34 Rotation detection speed threshold parameters
1600
1601 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1602 |=132|(% style="width:247px" %)(((
1603 T-COIN rotation detection
1604 )))|(% style="width:695px" %)(((
1605 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1606
1607 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1608 )))
1609
1610 Table 6-35 DO rotation detection function code
1611
1612 **Zero-speed signal**
1613
1614 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1615
1616 (% style="text-align:center" %)
1617 (((
1618 (% class="wikigeneratedid" style="display:inline-block" %)
1619 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1620 )))
1621
1622 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1623
1624 |=(% scope="row" %)**Function code**|=**Name**|=(((
1625 **Setting method**
1626 )))|=(((
1627 **Effective time**
1628 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1629 |=P05-19|Zero speed output signal threshold|(((
1630 Operation setting
1631 )))|(((
1632 Effective immediately
1633 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1634
1635 Table 6-36 Zero-speed output signal threshold parameter
1636
1637 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1638 |=133|(((
1639 ZSP zero speed signal
1640 )))|Output this signal indicates that the servo motor is stopping rotation
1641
1642 Table 6-37 DO zero-speed signal function code
1643
1644 **Speed consistent signal**
1645
1646 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1647
1648 (% style="text-align:center" %)
1649 (((
1650 (% class="wikigeneratedid" style="display:inline-block" %)
1651 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1652 )))
1653
1654 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1655
1656 |=(% scope="row" %)**Function code**|=**Name**|=(((
1657 **Setting method**
1658 )))|=(((
1659 **Effective time**
1660 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1661 |=P05-17|Speed consistent signal threshold|(((
1662 Operationsetting
1663 )))|(((
1664 Effective immediately
1665 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1666
1667 Table 6-38 Speed consistent signal threshold parameters
1668
1669 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1670 |=136|(% style="width:262px" %)(((
1671 U-COIN consistent speed
1672 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1673
1674 Table 6-39 DO speed consistent function code
1675
1676 **Speed approach signal**
1677
1678 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1679
1680 (% style="text-align:center" %)
1681 (((
1682 (% class="wikigeneratedid" style="display:inline-block" %)
1683 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1684 )))
1685
1686 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1687
1688 |=(% scope="row" %)**Function code**|=**Name**|=(((
1689 **Setting method**
1690 )))|=(((
1691 **Effective time**
1692 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1693 |=P05-18|Speed approach signal threshold|(((
1694 Operation setting
1695 )))|(((
1696 Effective immediately
1697 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1698
1699 Table 6-40 Speed approaching signal threshold parameters
1700
1701 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1702 |=137|(((
1703 V-NEAR speed approach
1704 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1705
1706 Table 6-41 DO speed approach function code
1707
1708 = **Torque control mode** =
1709
1710 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1711
1712 (% style="text-align:center" %)
1713 (((
1714 (% class="wikigeneratedid" style="display:inline-block" %)
1715 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1716 )))
1717
1718 == Torque instru**ction input setting** ==
1719
1720 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1721
1722 |=(% scope="row" %)**Function code**|=**Name**|=(((
1723 **Setting method**
1724 )))|=(((
1725 **Effective time**
1726 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1727 |=P01-07|Torque instruction source|(((
1728 Shutdown setting
1729 )))|(((
1730 Effective immediately
1731 )))|0|0 to 1|(((
1732 0: internal torque instruction
1733
1734 1: AI_1 analog input(not supported by VD2F)
1735 )))|-
1736
1737 Table 6-42 Torque instruction source parameter
1738
1739 **Torque instruction source is internal torque instruction (P01-07=0)**
1740
1741 Torque instruction source is from inside, the value is set by function code P01-08.
1742
1743 |=(% scope="row" %)**Function code**|=**Name**|=(((
1744 **Setting method**
1745 )))|=(((
1746 **Effective time**
1747 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1748 |=P01-08|Torque instruction keyboard set value|(((
1749 Operation setting
1750 )))|(((
1751 Effective immediately
1752 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1753
1754 Table 6-43 Torque instruction keyboard set value
1755
1756 **Torque instruction source is internal torque instruction (P01-07=1)**
1757
1758 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1759
1760 (% style="text-align:center" %)
1761 (((
1762 (% class="wikigeneratedid" style="display:inline-block" %)
1763 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1764 )))
1765
1766 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1767
1768 (% style="text-align:center" %)
1769 (((
1770 (% class="wikigeneratedid" style="display:inline-block" %)
1771 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1772 )))
1773
1774 Explanation of related terms:
1775
1776 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1777 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1778 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1779
1780 (% style="text-align:center" %)
1781 (((
1782 (% class="wikigeneratedid" style="display:inline-block" %)
1783 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1784 )))
1785
1786 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1787 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1788 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1789 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1790 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1791
1792 Table 6-44 AI_1 parameters
1793
1794 (% class="box infomessage" %)
1795 (((
1796 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1797 )))
1798
1799 == Torque instruction filtering ==
1800
1801 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1802
1803 |=(% scope="row" %)**Function code**|=**Name**|=(((
1804 **Setting method**
1805 )))|=(((
1806 **Effective time**
1807 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1808 |=P04-04|Torque filtering time constant|(((
1809 Operation setting
1810 )))|(((
1811 Effective immediately
1812 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1813
1814 Table 6-45 Torque filtering time constant parameter details
1815
1816 (% class="box infomessage" %)
1817 (((
1818 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1819 )))
1820
1821 (% style="text-align:center" %)
1822 (((
1823 (% class="wikigeneratedid" style="display:inline-block" %)
1824 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1825 )))
1826
1827 == Torque instruction limit ==
1828
1829 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1830
1831 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1832
1833 (% style="text-align:center" %)
1834 (((
1835 (% class="wikigeneratedid" style="display:inline-block" %)
1836 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1837 )))
1838
1839 **Set torque limit source**
1840
1841 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1842
1843 |=(% scope="row" %)**Function code**|=**Name**|=(((
1844 **Setting method**
1845 )))|=(((
1846 **Effective time**
1847 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1848 |=P01-14|(((
1849 Torque limit source
1850 )))|(((
1851 Shutdown setting
1852 )))|(((
1853 Effective immediately
1854 )))|0|0 to 1|(((
1855 * 0: internal value
1856 * 1: AI_1 analog input (not supported by VD2F)
1857 )))|-
1858
1859 * Torque limit source is internal torque instruction (P01-14=0)
1860
1861 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1862
1863 |=(% scope="row" %)**Function code**|=**Name**|=(((
1864 **Setting method**
1865 )))|=(((
1866 **Effective time**
1867 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1868 |=P01-15|(((
1869 Forward torque limit
1870 )))|(((
1871 Operation setting
1872 )))|(((
1873 Effective immediately
1874 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1875 |=P01-16|(((
1876 Reverse torque limit
1877 )))|(((
1878 Operation setting
1879 )))|(((
1880 Effective immediately
1881 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1882
1883 Table 6-46 Torque limit parameter details
1884
1885 * Torque limit source is external (P01-14=1)
1886
1887 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1888
1889 **Set torque limit DO signal output**
1890
1891 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1892
1893 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1894 |=139|(((
1895 T-LIMIT in torque limit
1896 )))|Output of this signal indicates that the servo motor torque is limited
1897
1898 Table 6-47 DO torque limit function codes
1899
1900 == **Speed limit in torque mode** ==
1901
1902 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1903
1904 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1905
1906 |(((
1907 (% style="text-align:center" %)
1908 (((
1909 (% class="wikigeneratedid" style="display:inline-block" %)
1910 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1911 )))
1912 )))|(((
1913 (% style="text-align:center" %)
1914 (((
1915 (% class="wikigeneratedid" style="display:inline-block" %)
1916 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1917 )))
1918 )))
1919
1920 |=(% scope="row" %)**Function code**|=**Name**|=(((
1921 **Setting method**
1922 )))|=(((
1923 **Effective time**
1924 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1925 |=P01-17|(((
1926 Forward torque
1927
1928 limit in torque mode
1929 )))|(((
1930 Operation setting
1931 )))|(((
1932 Effective immediately
1933 )))|3000|0 to 5000|(((
1934 Forward torque
1935
1936 limit in torque mode
1937 )))|0.1%
1938 |=P01-18|(((
1939 Reverse torque
1940
1941 limit in torque mode
1942 )))|(((
1943 Operation setting
1944 )))|(((
1945 Effective immediately
1946 )))|3000|0 to 5000|(((
1947 Reverse torque
1948
1949 limit in torque mode
1950 )))|0.1%
1951
1952 Table 6-48 Speed limit parameters in torque mode
1953
1954 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1955
1956 == Torque-related DO output functions ==
1957
1958 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1959
1960 **Torque arrival**
1961
1962 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1963
1964 (% style="text-align:center" %)
1965 (((
1966 (% class="wikigeneratedid" style="display:inline-block" %)
1967 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||id="Iimage-20220608173541-42.png"]]
1968 )))
1969
1970 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
1971
1972 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
1973 **Setting method**
1974 )))|=(% style="width: 124px;" %)(((
1975 **Effective time**
1976 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
1977 |=P05-20|(% style="width:113px" %)(((
1978 Torque arrival
1979
1980 threshold
1981 )))|(% style="width:100px" %)(((
1982 Operation setting
1983 )))|(% style="width:124px" %)(((
1984 Effective immediately
1985 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
1986 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
1987
1988 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
1989
1990 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
1991 )))|%
1992 |=P05-21|(% style="width:113px" %)(((
1993 Torque arrival
1994
1995 hysteresis
1996 )))|(% style="width:100px" %)(((
1997 Operation setting
1998 )))|(% style="width:124px" %)(((
1999 Effective immediately
2000 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2001
2002 Table 6-49 Torque arrival parameters
2003
2004 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2005 |=138|(((
2006 T-COIN torque arrival
2007 )))|Used to determine whether the actual torque instruction has reached the set range
2008
2009 Table 6-50 DO Torque Arrival Function Code
2010
2011 = **Mixed control mode** =
2012
2013 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2014
2015 * Position mode⇔ Speed mode
2016 * Position mode ⇔Torque mode
2017 * Speed mode ⇔Torque mode
2018
2019 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2020
2021 |=(% scope="row" %)**Function code**|=**Name**|=(((
2022 **Setting method**
2023 )))|=(((
2024 **Effective time**
2025 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2026 |=P00-01|Control mode|(((
2027 Shutdown setting
2028 )))|(((
2029 Shutdown setting
2030 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2031 * 1: Position control
2032 * 2: Speed control
2033 * 3: Torque control
2034 * 4: Position/speed mixed control
2035 * 5: Position/torque mixed control
2036 * 6: Speed/torque mixed control
2037 )))|-
2038
2039 Table 6-51 Mixed control mode parameters
2040
2041 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2042
2043 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2044 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2045 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2046 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2047 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2048 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2049 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2050 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2051 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2052 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2053 )))
2054
2055 Table 6-52 Description of DI function codes in control mode
2056
2057 (% class="box infomessage" %)
2058 (((
2059 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2060 )))
2061
2062 = **Absolute system** =
2063
2064 == Overview ==
2065
2066 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2067
2068 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2069
2070 == Single-turn absolute value system ==
2071
2072 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2073
2074 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2075 |A1 (single-turn magnetic encoder)|17|0 to 131071
2076
2077 Table 6-53 Single-turn absolute encoder information
2078
2079 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2080
2081 (% style="text-align:center" %)
2082 (((
2083 (% class="wikigeneratedid" style="display:inline-block" %)
2084 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||id="Iimage-20220608173618-43.png"]]
2085 )))
2086
2087 == Multi-turn absolute value system ==
2088
2089 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2090
2091 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2092 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2093 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2094
2095 Table 6-54 Multi-turn absolute encoder information
2096
2097 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2098
2099 (% style="text-align:center" %)
2100 (((
2101 (% class="wikigeneratedid" style="display:inline-block" %)
2102 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2103 )))
2104
2105 == Related functions and parameters ==
2106
2107 **Encoder feedback data**
2108
2109 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2110
2111 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2112 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2113 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2114 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2115
2116 Table 6-55 Encoder feedback data
2117
2118 **Shield multi-turn absolute encoder battery fault**
2119
2120 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2121
2122 |=(% scope="row" %)**Function code**|=**Name**|=(((
2123 **Setting**
2124
2125 **method**
2126 )))|=(((
2127 **Effective**
2128
2129 **time**
2130 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2131 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2132 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2133 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2134 )))|-
2135
2136 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2137
2138 (% class="box infomessage" %)
2139 (((
2140 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2141 )))
2142
2143 == Absolute value system encoder battery box use precautions. ==
2144
2145 **Cautions**
2146
2147 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2148
2149 (% style="text-align:center" %)
2150 (((
2151 (% class="wikigeneratedid" style="display:inline-block" %)
2152 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||id="Iimage-20220707111333-28.png"]]
2153 )))
2154
2155 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2156
2157 **Replace the battery**
2158
2159 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2160
2161 The specific replacement method is as follows:
2162
2163 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2164 * Step2 Remove the old battery.
2165 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2166 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2167
2168 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2169
2170 |=(% scope="row" %)**Function code**|=**Name**|=(((
2171 **Setting method**
2172 )))|=(((
2173 **Effective time**
2174 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2175 |=P10-06|Multi-turn absolute encoder reset|(((
2176 Shutdown setting
2177 )))|(((
2178 Effective immediately
2179 )))|0|0 to 1|(((
2180 * 0: No operation
2181 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2182
2183 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2184 )))|-
2185
2186 Table 6-56 Absolute encoder reset enable parameter
2187
2188 **Battery selection**
2189
2190 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2191 |(% rowspan="4" style="width:361px" %)(((
2192 Nominal Voltage: 3.6V
2193
2194 Nominal capacity: 2700mAh
2195 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2196 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2197 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2198 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2199
2200 Table 6-57 Absolute value encoder battery information
2201
2202 **✎Note: **
2203
2204 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2205
2206 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2207
2208 Correct placement of batteries +, - direction
2209
2210 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2211 1. This battery cannot be charged.
2212 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2213 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2214 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2215
2216 = **Other functions** =
2217
2218 == VDI ==
2219
2220 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2221
2222 (% class="box infomessage" %)
2223 (((
2224 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2225 )))
2226
2227 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2228
2229 (% style="text-align:center" %)
2230 (((
2231 (% class="wikigeneratedid" style="display:inline-block" %)
2232 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2233 )))
2234
2235 |=(% scope="row" %)**Function code**|=**Name**|=(((
2236 **Setting method**
2237 )))|=(((
2238 **Effective time**
2239 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2240 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2241 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2242
2243 VDI_1 input level:
2244
2245 * 0: low level
2246 * 1: high level
2247 )))|-
2248 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2249 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2250
2251 VDI_2 input level:
2252
2253 * 0: low level
2254 * 1: high level
2255 )))|-
2256 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2257 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2258
2259 VDI_3 input level:
2260
2261 * 0: low level
2262 * 1: high level
2263 )))|-
2264 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2265 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2266
2267 VDI_4 input level:
2268
2269 * 0: low level
2270 * 1: high level
2271 )))|-
2272 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2273 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2274
2275 VDI_5 input level:
2276
2277 * 0: low level
2278 * 1: high level
2279 )))|-
2280 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2281 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2282
2283 VDI_6 input level:
2284
2285 * 0: low level
2286 * 1: high level
2287 )))|-
2288 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2289 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2290
2291 VDI_7 input level:
2292
2293 * 0: low level
2294 * 1: high level
2295 )))|-
2296 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2297 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2298
2299 VDI_8 input level:
2300
2301 * 0: low level
2302 * 1: high level
2303 )))|-
2304
2305 Table 6-57 Virtual VDI parameters
2306
2307 (% class="box infomessage" %)
2308 (((
2309 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2310 )))
2311
2312 == Port filtering time ==
2313
2314 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2315
2316 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2317 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2318 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2319
2320 Table 6-58 DI terminal channel logic selection
2321
2322 == **VDO** ==
2323
2324 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2325
2326 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2327
2328 (% style="text-align:center" %)
2329 (((
2330 (% class="wikigeneratedid" style="display:inline-block" %)
2331 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2332 )))
2333
2334
2335 |=(% scope="row" %)**Function code**|=**Name**|=(((
2336 **Setting method**
2337 )))|=(((
2338 **Effective time**
2339 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2340 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2341 VDO_1 output level:
2342
2343 * 0: low level
2344 * 1: high level
2345 )))|-
2346 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2347 VDO_2 output level:
2348
2349 * 0: low level
2350 * 1: high level
2351 )))|-
2352 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2353 VDO_3 output level:
2354
2355 * 0: low level
2356 * 1: high level
2357 )))|-
2358 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2359 VDO_4 output level:
2360
2361 * 0: low level
2362 * 1: high level
2363 )))|-
2364
2365 Table 6-59 Communication control DO function parameters
2366
2367 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2368 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2369 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2370 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2371 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2372
2373 Table 6-60 VDO function number
2374
2375 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2376
2377 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2378
2379 == Motor overload protection ==
2380
2381 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2382
2383 |=(% scope="row" %)**Function code**|=**Name**|=(((
2384 **Setting method**
2385 )))|=(((
2386 **Effective time**
2387 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2388 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2389 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2390
2391 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2392 )))|%
2393
2394 In the following cases, it could be modified according to the actual heat generation of the motor
2395
2396 1. The motor works in a place with high ambient temperature
2397 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2398
2399 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2400
2401 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2402
2403 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.