Wiki source code of 06 Operation

Version 57.1 by Stone Wu on 2022/09/23 14:31

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 * 0: standard setting (CW is forward rotation)
90 * 1: reverse mode (CCW is forward rotation)
91 )))|-
92
93 Table 6-3 Rotation direction parameters** **
94
95 == **Braking resistor** ==
96
97 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
98
99 The basis for judging whether the braking resistor is built-in or external.
100
101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103
104 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
105 **Setting method**
106 )))|=(% style="width: 126px;" %)(((
107 **Effective time**
108 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
110 Operation setting
111 )))|(% style="width:126px" %)(((
112 Effective immediately
113 )))|0|0 to 3|(((
114 * 0: use built-in braking resistor
115 * 1: use external braking resistor and natural cooling
116 * 2: use external braking resistor and forced air cooling; (cannot be set)
117 * 3: No braking resistor is used, it is all absorbed by capacitor.
118 )))|-
119 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
121 Operation setting
122 )))|(% style="width:126px" %)(((
123 Effective immediately
124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
126 Operation setting
127 )))|(% style="width:126px" %)(((
128 Effective immediately
129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130
131 Table 6-4 Braking resistor parameters
132
133 == **Servo operation** ==
134
135 **Set the servo enable (S-ON) to valid (ON)**
136
137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138
139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140
141 **Input the instruction and the motor rotates**
142
143 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
144
145 **Timing diagram of power on**
146
147 (% style="text-align:center" %)
148 (((
149 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 )))
152
153 == Servo shutdown ==
154
155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
156
157 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 |=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
160
161 Table 6-5 Comparison of two shutdown modes
162
163 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165
166 Table 6-6 Comparison of two shutdown status
167
168 **Servo enable (S-ON) OFF shutdown**
169
170 The related parameters of the servo OFF shutdown mode are shown in the table below.
171
172 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
173 **Setting method**
174 )))|=(% style="width: 134px;" %)(((
175 **Effective time**
176 )))|=(% style="width: 86px;" %)(((
177 **Default value**
178 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
180 Shutdown
181
182 setting
183 )))|(% style="width:134px" %)(((
184 Effective
185
186 immediately
187 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 * 0: Free shutdown, and the motor shaft remains free status.
189 * 1: Zero-speed shutdown, and the motor shaft remains free status.
190 )))|-
191
192 Table 6-7 Servo OFF shutdown mode parameters details
193
194 **Emergency shutdown**
195
196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
197
198 **Overtravel shutdown**
199
200 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
201
202 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
203
204 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
205
206 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
207 **Setting method**
208 )))|=(% style="width: 114px;" %)(((
209 **Effective time**
210 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
211 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
212 * 0: OFF (not used)
213 * 01: S-ON servo enable
214 * 02: A-CLR fault and Warning Clear
215 * 03: POT forward drive prohibition
216 * 04: NOT Reverse drive prohibition
217 * 05: ZCLAMP Zero speed
218 * 06: CL Clear deviation counter
219 * 07: C-SIGN Inverted instruction
220 * 08: E-STOP Emergency stop
221 * 09: GEAR-SEL Electronic Gear Switch 1
222 * 10: GAIN-SEL gain switch
223 * 11: INH Instruction pulse prohibited input
224 * 12: VSSEL Vibration control switch input
225 * 13: INSPD1 Internal speed instruction selection 1
226 * 14: INSPD2 Internal speed instruction selection 2
227 * 15: INSPD3 Internal speedinstruction selection 3
228 * 16: J-SEL inertia ratio switch (not implemented yet)
229 * 17: MixModesel mixed mode selection
230 * 20: Internal multi-segment position enable signal
231 * 21: Internal multi-segment position selection 1
232 * 22: Internal multi-segment position selection 2
233 * 23: Internal multi-segment position selection 3
234 * 24: Internal multi-segment position selection 4
235 * Others: reserved
236 )))|-
237 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
238 Effective immediately
239 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
240 DI port input logic validity function selection.
241
242 * 0: Normally open input. Active low level (switch on);
243 * 1: Normally closed input. Active high level (switch off);
244 )))|-
245 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
246 Effective immediately
247 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
248 Select the DI_3 port type to enable
249
250 * 0: Hardware DI_3 input terminal
251 * 1: virtual VDI_3 input terminal
252 )))|-
253 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
254 Operation setting
255 )))|(% style="width:114px" %)(((
256 again Power-on
257 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 * 0: OFF (not used)
259 * 01: SON Servo enable
260 * 02: A-CLR Fault and Warning Clear
261 * 03: POT Forward drive prohibition
262 * 04: NOT Reverse drive prohibition
263 * 05: ZCLAMP Zero speed
264 * 06: CL Clear deviation counter
265 * 07: C-SIGN Inverted instruction
266 * 08: E-STOP Emergency shutdown
267 * 09: GEAR-SEL Electronic Gear Switch 1
268 * 10: GAIN-SEL gain switch
269 * 11: INH Instruction pulse prohibited input
270 * 12: VSSEL Vibration control switch input
271 * 13: INSPD1 Internal speed instruction selection 1
272 * 14: INSPD2 Internal speed instruction selection 2
273 * 15: INSPD3 Internal speed instruction selection 3
274 * 16: J-SEL inertia ratio switch (not implemented yet)
275 * 17: MixModesel mixed mode selection
276 * 20: Internal multi-segment position enable signal
277 * 21: Internal multi-segment position selection 1
278 * 22: Internal multi-segment position selection 2
279 * 23: Internal multi-segment position selection 3
280 * 24: Internal multi-segment position selection 4
281 * Others: reserved
282 )))|-
283 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
284 Effective immediately
285 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
286 DI port input logic validity function selection.
287
288 * 0: Normally open input. Active low level (switch on);
289 * 1: Normally closed input. Active high level (switch off);
290 )))|-
291 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
292 Effective immediately
293 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
294 Select the DI_4 port type to enable
295
296 * 0: Hardware DI_4 input terminal
297 * 1: virtual VDI_4 input terminal
298 )))|-
299
300 Table 6-8 DI3 and DI4 channel parameters
301
302 **(4) Malfunction shutdown**
303
304 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
305
306 == Brake device ==
307
308 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
309
310 (% class="warning" %)|(((
311 (% style="text-align:center" %)
312 [[image:image-20220611151617-1.png]]
313 )))
314 |(((
315 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
316
317 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
318
319 ✎The brake coil has no polarity;
320
321 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
322
323 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
324 )))
325
326 **Wiring of brake device**
327
328 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
329
330
331 (% style="text-align:center" %)
332 (((
333 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
335 )))
336
337 (% class="warning" %)|(((
338 (% style="text-align:center" %)
339 [[image:image-20220611151642-2.png]]
340 )))
341 |(((
342 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
343
344 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
345
346 ✎It is recommended to use cables above 0.5 mm².
347 )))
348
349 **Brake software setting**
350
351 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
352
353 Related function code is as below.
354
355 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
356 **Effective time**
357 )))
358 |=144|(% style="width:241px" %)(((
359 BRK-OFF Brake output
360 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
361
362 Table 6-2 Relevant function codes for brake setting
363
364 |=(% scope="row" %)**Function code**|=**Name**|=(((
365 **Setting method**
366 )))|=(((
367 **Effective time**
368 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
369 |=P1-30|Delay from brake output to instruction reception|(((
370 Operation setting
371 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
372 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
373 Operation setting
374 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
375 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
376 Operation setting
377 )))|Effective immediately|30|0 to 3000|(((
378 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
379
380 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
381 )))|rpm
382 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
383 Operation setting
384 )))|Effective immediately|500|1 to 1000|(((
385 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
386
387 When brake output (BRK-OFF) is not allocated, this function code has no effect.
388 )))|ms
389
390 Table 6-9 Brake setting function codes
391
392 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
393
394 **Servo drive brake timing in normal state**
395
396 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
397
398 * Brake timing when servo motor is stationary
399
400 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
401
402 (% class="warning" %)|(((
403 (% style="text-align:center" %)
404 [[image:image-20220611151705-3.png]]
405 )))
406 |(((
407 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
408
409 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
410 )))
411
412 (% style="text-align:center" %)
413 (((
414 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
415 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
416 )))
417
418 (% class="box infomessage" %)
419 (((
420 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
421 )))
422
423 * The brake timing when servo motor rotates
424
425 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
426
427 (% class="warning" %)|(((
428 (% style="text-align:center" %)
429 [[image:image-20220611151719-4.png]]
430 )))
431 |(((
432 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
433
434 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
435
436 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
437
438 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
439
440 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
441 )))
442
443 (% style="text-align:center" %)
444 (((
445 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
446 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
447 )))
448
449 **Brake timing when the servo drive fails**
450
451 The brake timing (free shutdown) in the fault status is as follows.
452
453 (% style="text-align:center" %)
454 (((
455 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
456 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
457 )))
458
459 = **Position control mode** =
460
461 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
462
463 (% style="text-align:center" %)
464 (((
465 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
466 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
467 )))
468
469 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
470
471 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
472 **Setting method**
473 )))|=(((
474 **Effective time**
475 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
476 |=(% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((
477 Operation setting
478 )))|(((
479 immediately Effective
480 )))|0|0 to 6|(((
481 0: position control
482
483 2: speed control
484
485 3: torque control
486
487 4: position/speed mix control
488
489 5: position/torque mix control
490
491 6: speed /torque mix control
492 )))|-
493
494 Table 6-10 Control mode parameters
495
496 == Position instruction input setting ==
497
498 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
499
500 |=(% scope="row" %)**Function code**|=**Name**|=(((
501 **Setting method**
502 )))|=(((
503 **Effective time**
504 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
505 |=P01-06|Position instruction source|(((
506 Operation setting
507 )))|(((
508 immediately Effective
509 )))|0|0 to 1|(((
510 0: pulse instruction
511
512 1: internal position instruction
513 )))|-
514
515 Table 6-11 Position instruction source parameter
516
517 **The source of position instruction is pulse instruction (P01-06=0)**
518
519 Low-speed pulse instruction input
520
521 |(% style="text-align:center" %)
522 (((
523 (% class="wikigeneratedid" style="display:inline-block" %)
524 [[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
525 )))|(% style="text-align:center" %)
526 (((
527 (% class="wikigeneratedid" style="display:inline-block" %)
528 [[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
529 )))
530 |(% colspan="2" %)Figure 6-7 Position instruction input setting
531
532 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
533
534 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
535
536 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
537 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
538 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
539
540 Table 6-12 Pulse input specifications
541
542 * Differential input
543
544 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
545
546 (% style="text-align:center" %)
547 (((
548 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
549 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
550 )))
551
552 (% class="box infomessage" %)
553 (((
554 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
555 )))
556
557 * Open collector input
558
559 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
560
561 (% style="text-align:center" %)
562 (((
563 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
564 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
565 )))
566
567
568 (% class="box infomessage" %)
569 (((
570 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
571 )))
572
573 * Position pulse frequency and anti-interference level
574
575 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
576
577 (% style="text-align:center" %)
578 (((
579 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
580 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
581 )))
582
583 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
584
585 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
586 **Setting method**
587 )))|=(((
588 **Effective time**
589 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
590 |P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((
591 Shutdown setting
592 )))|(((
593 Effective immediately
594 )))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz
595 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
596 Operation setting
597 )))|(% rowspan="3" %)(((
598 Power-on again
599 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
600 Set the anti-interference level of external pulse instruction.
601
602 * 0: no filtering;
603 * 1: Filtering time 128ns
604 * 2: Filtering time 256ns
605 * 3: Filtering time 512ns
606 * 4: Filtering time 1.024us
607 * 5: Filtering time 2.048us
608 * 6: Filtering time 4.096us
609 * 7: Filtering time 8.192us
610 * 8: Filtering time 16.384us
611 * 9:
612 ** VD2: Filtering time 25.5us
613 ** VD2F: Filtering time 25.5us
614 )))|(% rowspan="3" %)-
615
616 Table 6-13 Position pulse frequency and anti-interference level parameters
617
618 * Position pulse type selection
619
620 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
621
622 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
623 **Setting method**
624 )))|=(% style="width: 109px;" %)(((
625 **Effective time**
626 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
627 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
628 Operation setting
629 )))|(% style="width:109px" %)(((
630 Power-on again
631 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
632 * 0: direction + pulse (positive logic)
633 * 1: CW/CCW
634 * 2: A, B phase quadrature pulse (4 times frequency)
635 * 3: Direction + pulse (negative logic)
636 * 4: CW/CCW (negative logic)
637 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
638 )))|-
639
640 Table 6-14 Position pulse type selection parameter
641
642 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
643 |=0|(% style="width:200px" %)(((
644 Direction + pulse
645
646 (Positive logic)
647 )))|(% style="width:161px" %)(((
648 PULSE
649
650 SIGN
651 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
652 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
653 PULSE (CW)
654
655 SIGN (CCW)
656 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
657 |=2|(% style="width:200px" %)(((
658 AB phase orthogonal
659
660 pulse (4 times frequency)
661 )))|(% style="width:161px" %)(((
662 PULSE (Phase A)
663
664 SIGN (Phase B)
665 )))|(((
666
667
668 [[image:image-20220707094358-9.jpeg]]
669
670 Phase A is 90° ahead of Phase B
671 )))|(((
672
673
674 [[image:image-20220707094407-10.jpeg]]
675
676 Phase B is 90° ahead of Phase A
677 )))
678 |=3|(% style="width:200px" %)(((
679 Direction + pulse
680
681 (Negative logic)
682 )))|(% style="width:161px" %)(((
683 PULSE
684
685 SIGN
686 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
687 |=4|(% style="width:200px" %)(((
688 CW/CCW
689
690 (Negative logic)
691 )))|(% style="width:161px" %)(((
692 PULSE (CW)
693
694 SIGN (CCW)
695 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
696 |=5|(% style="width:200px" %)(((
697 AB phase orthogonal
698
699 pulse (4 times frequency negative logic)
700 )))|(% style="width:161px" %)(((
701 PULSE (Phase A)
702
703 SIGN (Phase B)
704 )))|(((
705
706
707 [[image:image-20220707094429-14.jpeg]]
708
709 Phase B is ahead of A phase by 90°
710 )))|(((
711
712
713 [[image:image-20220707094437-15.jpeg]]
714
715 Phase A is ahead of B phase by 90°
716 )))
717
718 Table 6-15 Pulse description
719
720 **The source of position instruction is internal position instruction (P01-06=1)**
721
722 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
723
724 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
725
726 (% style="text-align:center" %)
727 (((
728 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
729 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
730 )))
731
732
733 * Set multi-segment position running mode
734
735 |=(% scope="row" %)**Function code**|=**Name**|=(((
736 **Setting method**
737 )))|=(((
738 **Effective time**
739 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
740 |=P07-01|Multi-segment position running mode|(((
741 Shutdown setting
742 )))|(((
743 Effective immediately
744 )))|0|0 to 2|(((
745 * 0: Single running
746 * 1: Cycle running
747 * 2: DI switching running
748 )))|-
749 |=P07-02|Start segment number|(((
750 Shutdown setting
751 )))|(((
752 Effective immediately
753 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
754 |=P07-03|End segment number|(((
755 Shutdown setting
756 )))|(((
757 Effective immediately
758 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
759 |=P07-04|Margin processing method|(((
760 Shutdown setting
761 )))|(((
762 Effective immediately
763 )))|0|0 to 1|(((
764 * 0: Run the remaining segments
765 * 1: Run again from the start segment
766 )))|-
767 |=P07-05|Displacement instruction type|(((
768 Shutdown setting
769 )))|(((
770 Effective immediately
771 )))|0|0 to 1|(((
772 * 0: Relative position instruction
773 * 1: Absolute position instruction
774 )))|-
775
776 Table 6-16 multi-segment position running mode parameters
777
778 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
779
780 1. Single running
781
782 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
783
784 (% style="text-align:center" %)
785 (((
786 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
787 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
788 )))
789
790 * 2. Cycle running
791
792 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
793
794 (% style="text-align:center" %)
795 (((
796 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
797 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
798 )))
799
800 (% class="warning" %)|(((
801 (% style="text-align:center" %)
802 [[image:image-20220611151917-5.png]]
803 )))
804 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
805
806 (% start="3" %)
807 1. DI switching running
808
809 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
810
811 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
812 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
813 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
814 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
815 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
816
817 Table 6-17 DI function code
818
819 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
820
821 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
822 |=0|0|0|0|1
823 |=0|0|0|1|2
824 |=0|0|1|0|3
825 |=(% colspan="5" %)…………
826 |=1|1|1|1|16
827
828 Table 6-18 INPOS corresponds to running segment number
829
830 The operating curve in this running mode is shown in __Figure 6-14__.
831
832 (% style="text-align:center" %)
833 (((
834 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
835 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
836 )))
837
838 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
839
840 **Run the remaining segments**
841
842 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
843
844 (% style="text-align:center" %)
845 (((
846 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
847 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
848 )))
849
850 (% style="text-align:center" %)
851 (((
852 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
853 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
854 )))
855
856 **Run again from the start segment**
857
858 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
859
860 (% style="text-align:center" %)
861 (((
862 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
863 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
864 )))
865
866 (% style="text-align:center" %)
867 (((
868 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
869 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
870 )))
871
872 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
873
874 * Relative position instruction
875
876 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
877
878 |(((
879 (% style="text-align:center" %)
880 (((
881 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
882 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
883 )))
884 )))|(((
885 (% style="text-align:center" %)
886 (((
887 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
888 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
889 )))
890 )))
891
892 * Absolute position instruction
893
894 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
895
896 |(((
897 (% style="text-align:center" %)
898 (((
899 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
900 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
901 )))
902 )))|(((
903 (% style="text-align:center" %)
904 (((
905 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
906 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
907 )))
908 )))
909
910 * Multi-segment position running curve setting
911
912 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
913
914 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
915 |=P07-09|(((
916 1st segment
917
918 displacement
919 )))|(((
920 Operation setting
921 )))|(((
922 Effective immediately
923 )))|10000|(((
924 -2147483647 to
925
926 2147483646
927 )))|Position instruction, positive and negative values could be set|-
928 |=P07-10|Maximum speed of the 1st displacement|(((
929 Operation setting
930 )))|(((
931 Effective immediately
932 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
933 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
934 Operation setting
935 )))|(((
936 Effective immediately
937 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
938 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
939 Operation setting
940 )))|(((
941 Effective immediately
942 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
943
944 Table 6-19 The 1st position operation curve parameters table
945
946 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
947
948 (% style="text-align:center" %)
949 (((
950 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
951 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
952 )))
953
954
955 * multi-segment position instruction enable
956
957 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
958
959 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
960 |=20|ENINPOS: Internal multi-segment position enable signal|(((
961 DI port logic invalid: Does not affect the current operation of the servo motor.
962
963 DI port logic valid: Motor runs multi-segment position
964 )))
965
966 (% style="text-align:center" %)
967 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
968
969 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
970
971 == Electronic gear ratio ==
972
973 **Definition of electronic gear ratio**
974
975 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
976
977 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
978
979 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
980
981 (% style="text-align:center" %)
982 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
983
984 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
985
986 **Setting steps of electronic gear ratio**
987
988 (% style="text-align:center" %)
989 (((
990 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
991 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
992 )))
993
994 **lectronic gear ratio switch setting**
995
996 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
997
998 |=(% scope="row" %)**Function code**|=**Name**|=(((
999 **Setting method**
1000 )))|=(((
1001 **Effective time**
1002 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1003 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1004 Shutdown setting
1005 )))|(((
1006 Effective immediately
1007 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1008 Instruction pulse
1009
1010 unit
1011 )))
1012 |=P00-17|(((
1013 Electronic gear 1
1014
1015 numerator
1016 )))|Operation setting|(((
1017 Effective immediately
1018 )))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1019 |=P00-18|(((
1020 Electronic gear 1
1021
1022 denominator
1023 )))|(((
1024 Operation setting
1025 )))|(((
1026 Effective immediately
1027 )))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1028 |=P00-19|(((
1029 Electronic gear 2
1030
1031 numerator
1032 )))|Operation setting|(((
1033 Effective immediately
1034 )))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1035 |=P00-20|(((
1036 Electronic gear 2
1037
1038 denominator
1039 )))|Operation setting|(((
1040 Effective immediately
1041 )))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1042
1043 Table 6-20 Electronic gear ratio function code
1044
1045 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1046
1047 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1048 |=09|GEAR-SEL electronic gear switch 1|(((
1049 DI port logic invalid: electronic gear ratio 1
1050
1051 DI port logic valid: electronic gear ratio 2
1052 )))
1053
1054 Table 6-21 Switching conditions of electronic gear ratio group
1055
1056 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1057 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1058 (% style="text-align:center" %)
1059 [[image:image-20220707101328-21.png]]
1060 )))
1061 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1062 (% style="text-align:center" %)
1063 [[image:image-20220707101336-22.png]]
1064 )))
1065 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1066 (% style="text-align:center" %)
1067 [[image:image-20220707101341-23.png]]
1068 )))
1069
1070 Table 6-22 Application of electronic gear ratio
1071
1072 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1073
1074 == Position instruction filtering ==
1075
1076 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1077
1078 In the following situations, position instruction filtering should be added.
1079
1080 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1081 1. The pulse instruction frequency is low;
1082 1. When the electronic gear ratio is 10 times or more.
1083
1084 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1085
1086 (% style="text-align:center" %)
1087 (((
1088 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1089 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1090 )))
1091
1092 |=(% scope="row" %)**Function code**|=**Name**|=(((
1093 **Setting method**
1094 )))|=(((
1095 **Effective time**
1096 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1097 |=P04-01|Pulse instruction filtering method|(((
1098 Shutdown setting
1099 )))|(((
1100 Effective immediately
1101 )))|0|0 to 1|(((
1102 * 0: 1st-order low-pass filtering
1103 * 1: average filtering
1104 )))|-
1105 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1106 Effective immediately
1107 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1108 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1109 Effective immediately
1110 )))|0|0 to 128|Position instruction average filtering time constant|ms
1111
1112 Table 6-23 Position instruction filter function code
1113
1114 == Clearance of position deviation ==
1115
1116 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1117
1118 Position deviation = (position instruction-position feedback) (encoder unit)
1119
1120 == Position-related DO output function ==
1121
1122 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1123
1124 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1125 **Positioning completion/positioning approach output**
1126
1127 (% class="wikigeneratedid" %)
1128 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1129
1130 (% style="text-align:center" %)
1131 (((
1132 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1133 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1134 )))
1135
1136 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1137
1138 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1139
1140 (% style="text-align:center" %)
1141 (((
1142 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1143 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1144 )))
1145
1146 |=(% scope="row" %)**Function code**|=**Name**|=(((
1147 **Setting method**
1148 )))|=(% style="width: 129px;" %)(((
1149 **Effective time**
1150 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1151 |=P05-12|Positioning completion threshold|(((
1152 Operation setting
1153 )))|(% style="width:129px" %)(((
1154 Effective immediately
1155 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1156 |=P05-13|Positioning approach threshold|(((
1157 Operation setting
1158 )))|(% style="width:129px" %)(((
1159 Effective immediately
1160 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1161 |=P05-14|Position detection window time|(((
1162 Operation setting
1163 )))|(% style="width:129px" %)(((
1164 Effective immediately
1165 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1166 |=P05-15|Positioning signal hold time|(((
1167 Operation setting
1168 )))|(% style="width:129px" %)(((
1169 Effective immediately
1170 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1171
1172 Table 6-24 Function code parameters of positioning completion
1173
1174 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1175 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1176 |=135|(((
1177 P-NEAR positioning close
1178 )))|(((
1179 Output this signal indicates that the servo drive position is close.
1180 )))
1181
1182 Table 6-25 Description of DO rotation detection function code
1183
1184 = **Speed control mode** =
1185
1186 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1187
1188 (% style="text-align:center" %)
1189 (((
1190 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1191 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1192 )))
1193
1194 == Speed instruction input setting ==
1195
1196 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1197
1198 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1199 **Setting method**
1200 )))|=(% style="width: 125px;" %)(((
1201 **Effective time**
1202 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1203 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1204 Shutdown setting
1205 )))|(% style="width:125px" %)(((
1206 Effective immediately
1207 )))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)(((
1208 * 0: internal speed instruction
1209 * 1: AI_1 analog input (not supported by VD2F)
1210 )))|-
1211
1212 Table 6-26 Speed instruction source parameter
1213
1214 **Speed instruction source is internal speed instruction (P01-01=0)**
1215
1216 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1217
1218 (% style="width:1141px" %)
1219 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1220 **Setting**
1221
1222 **method**
1223 )))|=(% colspan="2" %)(((
1224 **Effective**
1225
1226 **time**
1227 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1228 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1229 Internal speed
1230
1231 Instruction 0
1232 )))|(% colspan="2" %)(((
1233 Operation
1234
1235 setting
1236 )))|(% colspan="2" %)(((
1237 Effective
1238
1239 immediately
1240 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1241 Internal speed instruction 0
1242
1243 When DI input port:
1244
1245 * 15-INSPD3: 0
1246 * 14-INSPD2: 0
1247 * 13-INSPD1: 0,
1248
1249 select this speed instruction to be effective.
1250 )))|(% colspan="2" %)rpm
1251 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1252 Internal speed
1253
1254 Instruction 1
1255 )))|(% colspan="2" %)(((
1256 Operation
1257
1258 setting
1259 )))|(% colspan="2" %)(((
1260 Effective
1261
1262 immediately
1263 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1264 Internal speed instruction 1
1265
1266 When DI input port:
1267
1268 * 15-INSPD3: 0
1269 * 14-INSPD2: 0
1270 * 13-INSPD1: 1,
1271
1272 Select this speed instruction to be effective.
1273 )))|(% colspan="2" %)rpm
1274 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1275 Internal speed
1276
1277 Instruction 2
1278 )))|(% colspan="2" %)(((
1279 Operation
1280
1281 setting
1282 )))|(% colspan="2" %)(((
1283 Effective
1284
1285 immediately
1286 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1287 Internal speed instruction 2
1288
1289 When DI input port:
1290
1291 * 15-INSPD3: 0
1292 * 14-INSPD2: 1
1293 * 13-INSPD1: 0,
1294
1295 Select this speed instruction to be effective.
1296 )))|(% colspan="2" %)rpm
1297 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1298 Internal speed
1299
1300 Instruction 3
1301 )))|(% colspan="2" %)(((
1302 Operation
1303
1304 setting
1305 )))|(% colspan="2" %)(((
1306 Effective
1307
1308 immediately
1309 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1310 Internal speed instruction 3
1311
1312 When DI input port:
1313
1314 * 15-INSPD3: 0
1315 * 14-INSPD2: 1
1316 * 13-INSPD1: 1,
1317
1318 Select this speed instruction to be effective.
1319 )))|(% colspan="2" %)rpm
1320 |=P01-26|(% colspan="2" %)(((
1321 Internal speed
1322
1323 Instruction 4
1324 )))|(% colspan="2" %)(((
1325 Operation
1326
1327 setting
1328 )))|(% colspan="2" %)(((
1329 Effective
1330
1331 immediately
1332 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1333 Internal speed instruction 4
1334
1335 When DI input port:
1336
1337 * 15-INSPD3: 1
1338 * 14-INSPD2: 0
1339 * 13-INSPD1: 0,
1340
1341 Select this speed instruction to be effective.
1342 )))|(% colspan="1" %)rpm
1343 |=P01-27|(% colspan="2" %)(((
1344 Internal speed
1345
1346 Instruction 5
1347 )))|(% colspan="2" %)(((
1348 Operation
1349
1350 setting
1351 )))|(% colspan="2" %)(((
1352 Effective
1353
1354 immediately
1355 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1356 Internal speed instruction 5
1357
1358 When DI input port:
1359
1360 * 15-INSPD3: 1
1361 * 14-INSPD2: 0
1362 * 13-INSPD1: 1,
1363
1364 Select this speed instruction to be effective.
1365 )))|(% colspan="1" %)rpm
1366 |=P01-28|(% colspan="2" %)(((
1367 Internal speed
1368
1369 Instruction 6
1370 )))|(% colspan="2" %)(((
1371 Operation
1372
1373 setting
1374 )))|(% colspan="2" %)(((
1375 Effective
1376
1377 immediately
1378 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1379 Internal speed instruction 6
1380
1381 When DI input port:
1382
1383 * 15-INSPD3: 1
1384 * 14-INSPD2: 1
1385 * 13-INSPD1: 0,
1386
1387 Select this speed instruction to be effective.
1388 )))|(% colspan="1" %)rpm
1389 |=P01-29|(% colspan="2" %)(((
1390 Internal speed
1391
1392 Instruction 7
1393 )))|(% colspan="2" %)(((
1394 Operation
1395
1396 setting
1397 )))|(% colspan="2" %)(((
1398 Effective
1399
1400 immediately
1401 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1402 Internal speed instruction 7
1403
1404 When DI input port:
1405
1406 * 15-INSPD3: 1
1407 * 14-INSPD2: 1
1408 * 13-INSPD1: 1,
1409
1410 Select this speed instruction to be effective.
1411 )))|(% colspan="1" %)rpm
1412
1413 Table 6-27 Internal speed instruction parameters
1414
1415 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1416 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1417 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1418 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1419
1420 Table 6-28 DI multi-speed function code description
1421
1422 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1423
1424
1425 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1426 |0|0|0|1|0
1427 |0|0|1|2|1
1428 |0|1|0|3|2
1429 |(% colspan="5" %)......
1430 |1|1|1|8|7
1431
1432 Table 6-29 Correspondence between INSPD bits and segment numbers
1433
1434 (% style="text-align:center" %)
1435 (((
1436 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1437 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1438 )))
1439
1440 **Speed instruction source is internal speed instruction (P01-01=1)**
1441
1442 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1443
1444 (% style="text-align:center" %)
1445 (((
1446 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1447 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1448 )))
1449
1450 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1451
1452 (% style="text-align:center" %)
1453 (((
1454 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1455 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1456 )))
1457
1458 Explanation of related terms:
1459
1460 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1461 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1462 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1463
1464 (% style="text-align:center" %)
1465 (((
1466 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1467 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1468 )))
1469
1470 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1471 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1472 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1473 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1474 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1475
1476 Table 6-30 AI_1 parameters
1477
1478 (% class="box infomessage" %)
1479 (((
1480 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1481 )))
1482
1483 == Acceleration and deceleration time setting ==
1484
1485 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1486
1487 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1488
1489 (% style="text-align:center" %)
1490 (((
1491 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1492 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1493 )))
1494
1495 (% style="text-align:center" %)
1496 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1497
1498 |=(% scope="row" %)**Function code**|=**Name**|=(((
1499 **Setting method**
1500 )))|=(((
1501 **Effective time**
1502 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1503 |=P01-03|Acceleration time|(((
1504 Operation setting
1505 )))|(((
1506 Effective immediately
1507 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1508 |=P01-04|Deceleration time|(((
1509 Operation setting
1510 )))|(((
1511 Effective immediately
1512 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1513
1514 Table 6-31 Acceleration and deceleration time parameters
1515
1516 == Speed instruction limit ==
1517
1518 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1519
1520 1. P01-10: Set the maximum speed limit value
1521 1. P01-12: Set forward speed limit value
1522 1. P01-13: Set reverse speed limit value
1523 1. The maximum speed of the motor: determined by motor model
1524
1525 The actual motor speed limit interval satisfies the following relationship:
1526
1527 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1528
1529 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1530
1531 |=(% scope="row" %)**Function code**|=**Name**|=(((
1532 **Setting method**
1533 )))|=(((
1534 **Effective time**
1535 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1536 |=P01-10|Maximum speed threshold|(((
1537 Operation setting
1538 )))|(((
1539 Effective immediately
1540 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1541 |=P01-12|Forward speed threshold|(((
1542 Operation setting
1543 )))|(((
1544 Effective immediately
1545 )))|3000|0 to 5000|Set forward speed limit value|rpm
1546 |=P01-13|Reverse speed threshold|(((
1547 Operation setting
1548 )))|(((
1549 Effective immediately
1550 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1551
1552 Table 6-32 Rotation speed related function codes
1553
1554 == Zero-speed clamp function ==
1555
1556 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1557
1558 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1559
1560 |=(% scope="row" %)**Function code**|=**Name**|=(((
1561 **Setting method**
1562 )))|=(((
1563 **Effective time**
1564 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1565 |=P01-21|(((
1566 Zero-speed clamp function selection
1567 )))|(((
1568 Operation setting
1569 )))|(((
1570 Effective immediately
1571 )))|0|0 to 3|(((
1572 Set the zero-speed clamp function. In speed mode:
1573
1574 * 0: Force the speed to 0;
1575 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1576 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1577 * 3: Invalid, ignore zero-speed clamp input
1578 )))|-
1579 |=P01-22|(((
1580 Zero-speed clamp speed threshold
1581 )))|(((
1582 Operation setting
1583 )))|(((
1584 Effective immediately
1585 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1586
1587 Table 6-33 Zero-speed clamp related parameters
1588
1589 (% style="text-align:center" %)
1590 (((
1591 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1592 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1593 )))
1594
1595 == Speed-related DO output function ==
1596
1597 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1598
1599 **Rotation detection signal**
1600
1601 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1602
1603 (% style="text-align:center" %)
1604 (((
1605 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1606 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1607 )))
1608
1609 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1610
1611 |=(% scope="row" %)**Function code**|=**Name**|=(((
1612 **Setting method**
1613 )))|=(((
1614 **Effective time**
1615 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1616 |=P05-16|(((
1617 Rotation detection
1618
1619 speed threshold
1620 )))|(((
1621 Operation setting
1622 )))|(((
1623 Effective immediately
1624 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1625
1626 Table 6-34 Rotation detection speed threshold parameters
1627
1628 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1629 |=132|(% style="width:247px" %)(((
1630 T-COIN rotation detection
1631 )))|(% style="width:695px" %)(((
1632 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1633
1634 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1635 )))
1636
1637 Table 6-35 DO rotation detection function code
1638
1639 **Zero-speed signal**
1640
1641 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1642
1643 (% style="text-align:center" %)
1644 (((
1645 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1646 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1647 )))
1648
1649 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1650
1651 |=(% scope="row" %)**Function code**|=**Name**|=(((
1652 **Setting method**
1653 )))|=(((
1654 **Effective time**
1655 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1656 |=P05-19|Zero speed output signal threshold|(((
1657 Operation setting
1658 )))|(((
1659 Effective immediately
1660 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1661
1662 Table 6-36 Zero-speed output signal threshold parameter
1663
1664 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1665 |=133|(((
1666 ZSP zero speed signal
1667 )))|Output this signal indicates that the servo motor is stopping rotation
1668
1669 Table 6-37 DO zero-speed signal function code
1670
1671 **Speed consistent signal**
1672
1673 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1674
1675 (% style="text-align:center" %)
1676 (((
1677 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1678 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1679 )))
1680
1681 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1682
1683 |=(% scope="row" %)**Function code**|=**Name**|=(((
1684 **Setting method**
1685 )))|=(((
1686 **Effective time**
1687 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1688 |=P05-17|Speed consistent signal threshold|(((
1689 Operationsetting
1690 )))|(((
1691 Effective immediately
1692 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1693
1694 Table 6-38 Speed consistent signal threshold parameters
1695
1696 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1697 |=136|(% style="width:262px" %)(((
1698 U-COIN consistent speed
1699 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1700
1701 Table 6-39 DO speed consistent function code
1702
1703 **Speed approach signal**
1704
1705 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1706
1707 (% style="text-align:center" %)
1708 (((
1709 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1710 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1711 )))
1712
1713 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1714
1715 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1716 **Setting method**
1717 )))|=(((
1718 **Effective time**
1719 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1720 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1721 Operation setting
1722 )))|(((
1723 Effective immediately
1724 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1725
1726 Table 6-40 Speed approaching signal threshold parameters
1727
1728 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1729 |=137|(((
1730 V-NEAR speed approach
1731 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1732
1733 Table 6-41 DO speed approach function code
1734
1735 = **Torque control mode** =
1736
1737 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1738
1739 (% style="text-align:center" %)
1740 (((
1741 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1742 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1743 )))
1744
1745 == Torque instru**ction input setting** ==
1746
1747 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1748
1749 |=(% scope="row" %)**Function code**|=**Name**|=(((
1750 **Setting method**
1751 )))|=(((
1752 **Effective time**
1753 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1754 |=P01-07|Torque instruction source|(((
1755 Shutdown setting
1756 )))|(((
1757 Effective immediately
1758 )))|0|0 to 1|(((
1759 0: internal torque instruction
1760
1761 1: AI_1 analog input(not supported by VD2F)
1762 )))|-
1763
1764 Table 6-42 Torque instruction source parameter
1765
1766 **Torque instruction source is internal torque instruction (P01-07=0)**
1767
1768 Torque instruction source is from inside, the value is set by function code P01-08.
1769
1770 |=(% scope="row" %)**Function code**|=**Name**|=(((
1771 **Setting method**
1772 )))|=(((
1773 **Effective time**
1774 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1775 |=P01-08|Torque instruction keyboard set value|(((
1776 Operation setting
1777 )))|(((
1778 Effective immediately
1779 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1780
1781 Table 6-43 Torque instruction keyboard set value
1782
1783 **Torque instruction source is internal torque instruction (P01-07=1)**
1784
1785 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1786
1787 (% style="text-align:center" %)
1788 (((
1789 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1790 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1791 )))
1792
1793 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1794
1795 (% style="text-align:center" %)
1796 (((
1797 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1798 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1799 )))
1800
1801 Explanation of related terms:
1802
1803 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1804 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1805 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1806
1807 (% style="text-align:center" %)
1808 (((
1809 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1810 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1811 )))
1812
1813 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1814 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1815 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1816 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1817 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1818
1819 Table 6-44 AI_1 parameters
1820
1821 (% class="box infomessage" %)
1822 (((
1823 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1824 )))
1825
1826 == Torque instruction filtering ==
1827
1828 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1829
1830 |=(% scope="row" %)**Function code**|=**Name**|=(((
1831 **Setting method**
1832 )))|=(((
1833 **Effective time**
1834 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1835 |=P04-04|Torque filtering time constant|(((
1836 Operation setting
1837 )))|(((
1838 Effective immediately
1839 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1840
1841 Table 6-45 Torque filtering time constant parameter details
1842
1843 (% class="box infomessage" %)
1844 (((
1845 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1846 )))
1847
1848 (% style="text-align:center" %)
1849 (((
1850 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1851 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1852 )))
1853
1854 == Torque instruction limit ==
1855
1856 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1857
1858 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1859
1860 (% style="text-align:center" %)
1861 (((
1862 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1863 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1864 )))
1865
1866 **Set torque limit source**
1867
1868 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1869
1870 |=(% scope="row" %)**Function code**|=**Name**|=(((
1871 **Setting method**
1872 )))|=(((
1873 **Effective time**
1874 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1875 |=P01-14|(((
1876 Torque limit source
1877 )))|(((
1878 Shutdown setting
1879 )))|(((
1880 Effective immediately
1881 )))|0|0 to 1|(((
1882 * 0: internal value
1883 * 1: AI_1 analog input (not supported by VD2F)
1884 )))|-
1885
1886 * Torque limit source is internal torque instruction (P01-14=0)
1887
1888 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1889
1890 |=(% scope="row" %)**Function code**|=**Name**|=(((
1891 **Setting method**
1892 )))|=(((
1893 **Effective time**
1894 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1895 |=P01-15|(((
1896 Forward torque limit
1897 )))|(((
1898 Operation setting
1899 )))|(((
1900 Effective immediately
1901 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1902 |=P01-16|(((
1903 Reverse torque limit
1904 )))|(((
1905 Operation setting
1906 )))|(((
1907 Effective immediately
1908 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1909
1910 Table 6-46 Torque limit parameter details
1911
1912 * Torque limit source is external (P01-14=1)
1913
1914 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1915
1916 **Set torque limit DO signal output**
1917
1918 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1919
1920 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1921 |=139|(((
1922 T-LIMIT in torque limit
1923 )))|Output of this signal indicates that the servo motor torque is limited
1924
1925 Table 6-47 DO torque limit function codes
1926
1927 == **Speed limit in torque mode** ==
1928
1929 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1930
1931 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1932
1933 |(((
1934 (% style="text-align:center" %)
1935 (((
1936 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1937 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1938 )))
1939 )))|(((
1940 (% style="text-align:center" %)
1941 (((
1942 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1943 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1944 )))
1945 )))
1946
1947 |=(% scope="row" %)**Function code**|=**Name**|=(((
1948 **Setting method**
1949 )))|=(((
1950 **Effective time**
1951 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1952 |=P01-17|(((
1953 Forward torque
1954
1955 limit in torque mode
1956 )))|(((
1957 Operation setting
1958 )))|(((
1959 Effective immediately
1960 )))|3000|0 to 5000|(((
1961 Forward torque
1962
1963 limit in torque mode
1964 )))|0.1%
1965 |=P01-18|(((
1966 Reverse torque
1967
1968 limit in torque mode
1969 )))|(((
1970 Operation setting
1971 )))|(((
1972 Effective immediately
1973 )))|3000|0 to 5000|(((
1974 Reverse torque
1975
1976 limit in torque mode
1977 )))|0.1%
1978
1979 Table 6-48 Speed limit parameters in torque mode
1980
1981 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1982
1983 == Torque-related DO output functions ==
1984
1985 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1986
1987 **Torque arrival**
1988
1989 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1990
1991 (% style="text-align:center" %)
1992 (((
1993 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1994 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
1995 )))
1996
1997 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
1998
1999 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2000 **Setting method**
2001 )))|=(% style="width: 124px;" %)(((
2002 **Effective time**
2003 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2004 |=P05-20|(% style="width:113px" %)(((
2005 Torque arrival
2006
2007 threshold
2008 )))|(% style="width:100px" %)(((
2009 Operation setting
2010 )))|(% style="width:124px" %)(((
2011 Effective immediately
2012 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2013 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2014
2015 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2016
2017 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2018 )))|%
2019 |=P05-21|(% style="width:113px" %)(((
2020 Torque arrival
2021
2022 hysteresis
2023 )))|(% style="width:100px" %)(((
2024 Operation setting
2025 )))|(% style="width:124px" %)(((
2026 Effective immediately
2027 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2028
2029 Table 6-49 Torque arrival parameters
2030
2031 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2032 |=138|(((
2033 T-COIN torque arrival
2034 )))|Used to determine whether the actual torque instruction has reached the set range
2035
2036 Table 6-50 DO Torque Arrival Function Code
2037
2038 = **Mixed control mode** =
2039
2040 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2041
2042 * Position mode⇔ Speed mode
2043 * Position mode ⇔Torque mode
2044 * Speed mode ⇔Torque mode
2045
2046 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2047
2048 |=(% scope="row" %)**Function code**|=**Name**|=(((
2049 **Setting method**
2050 )))|=(((
2051 **Effective time**
2052 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2053 |=P00-01|Control mode|(((
2054 Shutdown setting
2055 )))|(((
2056 Shutdown setting
2057 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2058 * 1: Position control
2059 * 2: Speed control
2060 * 3: Torque control
2061 * 4: Position/speed mixed control
2062 * 5: Position/torque mixed control
2063 * 6: Speed/torque mixed control
2064 )))|-
2065
2066 Table 6-51 Mixed control mode parameters
2067
2068 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2069
2070 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2071 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2072 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2073 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2074 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2075 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2076 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2077 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2078 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2079 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2080 )))
2081
2082 Table 6-52 Description of DI function codes in control mode
2083
2084 (% class="box infomessage" %)
2085 (((
2086 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2087 )))
2088
2089 = **Absolute system** =
2090
2091 == Overview ==
2092
2093 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2094
2095 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2096
2097 == Single-turn absolute value system ==
2098
2099 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2100
2101 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2102 |A1 (single-turn magnetic encoder)|17|0 to 131071
2103
2104 Table 6-53 Single-turn absolute encoder information
2105
2106 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2107
2108 (% style="text-align:center" %)
2109 (((
2110 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2111 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2112 )))
2113
2114 == Multi-turn absolute value system ==
2115
2116 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2117
2118 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2119 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2120 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2121
2122 Table 6-54 Multi-turn absolute encoder information
2123
2124 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2125
2126 (% style="text-align:center" %)
2127 (((
2128 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2129 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2130 )))
2131
2132 == Related functions and parameters ==
2133
2134 **Encoder feedback data**
2135
2136 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2137
2138 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2139 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2140 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2141 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2142
2143 Table 6-55 Encoder feedback data
2144
2145 **Shield multi-turn absolute encoder battery fault**
2146
2147 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2148
2149 |=(% scope="row" %)**Function code**|=**Name**|=(((
2150 **Setting**
2151
2152 **method**
2153 )))|=(((
2154 **Effective**
2155
2156 **time**
2157 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2158 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2159 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2160 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2161 )))|-
2162
2163 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2164
2165 (% class="box infomessage" %)
2166 (((
2167 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2168 )))
2169
2170 == Absolute value system encoder battery box use precautions. ==
2171
2172 **Cautions**
2173
2174 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2175
2176 (% style="text-align:center" %)
2177 (((
2178 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2179 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2180 )))
2181
2182 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2183
2184 **Replace the battery**
2185
2186 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2187
2188 The specific replacement method is as follows:
2189
2190 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2191 * Step2 Remove the old battery.
2192 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2193 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2194
2195 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2196
2197 |=(% scope="row" %)**Function code**|=**Name**|=(((
2198 **Setting method**
2199 )))|=(((
2200 **Effective time**
2201 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2202 |=P10-06|Multi-turn absolute encoder reset|(((
2203 Shutdown setting
2204 )))|(((
2205 Effective immediately
2206 )))|0|0 to 1|(((
2207 * 0: No operation
2208 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2209
2210 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2211 )))|-
2212
2213 Table 6-56 Absolute encoder reset enable parameter
2214
2215 **Battery selection**
2216
2217 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2218 |(% rowspan="4" style="width:361px" %)(((
2219 Nominal Voltage: 3.6V
2220
2221 Nominal capacity: 2700mAh
2222 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2223 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2224 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2225 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2226
2227 Table 6-57 Absolute value encoder battery information
2228
2229 **✎Note: **
2230
2231 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2232
2233 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2234
2235 Correct placement of batteries +, - direction
2236
2237 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2238 1. This battery cannot be charged.
2239 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2240 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2241 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2242
2243 = **Other functions** =
2244
2245 == VDI ==
2246
2247 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2248
2249 (% class="box infomessage" %)
2250 (((
2251 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2252 )))
2253
2254 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2255
2256 (% style="text-align:center" %)
2257 (((
2258 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2259 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2260 )))
2261
2262 |=(% scope="row" %)**Function code**|=**Name**|=(((
2263 **Setting method**
2264 )))|=(((
2265 **Effective time**
2266 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2267 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2268 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2269
2270 VDI_1 input level:
2271
2272 * 0: low level
2273 * 1: high level
2274 )))|-
2275 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2276 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2277
2278 VDI_2 input level:
2279
2280 * 0: low level
2281 * 1: high level
2282 )))|-
2283 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2284 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2285
2286 VDI_3 input level:
2287
2288 * 0: low level
2289 * 1: high level
2290 )))|-
2291 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2292 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2293
2294 VDI_4 input level:
2295
2296 * 0: low level
2297 * 1: high level
2298 )))|-
2299 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2300 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2301
2302 VDI_5 input level:
2303
2304 * 0: low level
2305 * 1: high level
2306 )))|-
2307 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2308 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2309
2310 VDI_6 input level:
2311
2312 * 0: low level
2313 * 1: high level
2314 )))|-
2315 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2316 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2317
2318 VDI_7 input level:
2319
2320 * 0: low level
2321 * 1: high level
2322 )))|-
2323 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2324 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2325
2326 VDI_8 input level:
2327
2328 * 0: low level
2329 * 1: high level
2330 )))|-
2331
2332 Table 6-57 Virtual VDI parameters
2333
2334 (% class="box infomessage" %)
2335 (((
2336 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2337 )))
2338
2339 == Port filtering time ==
2340
2341 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2342
2343 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2344 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2345 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2346
2347 Table 6-58 DI terminal channel logic selection
2348
2349 == **VDO** ==
2350
2351 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2352
2353 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2354
2355 (% style="text-align:center" %)
2356 (((
2357 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2358 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2359 )))
2360
2361
2362 |=(% scope="row" %)**Function code**|=**Name**|=(((
2363 **Setting method**
2364 )))|=(((
2365 **Effective time**
2366 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2367 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2368 VDO_1 output level:
2369
2370 * 0: low level
2371 * 1: high level
2372 )))|-
2373 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2374 VDO_2 output level:
2375
2376 * 0: low level
2377 * 1: high level
2378 )))|-
2379 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2380 VDO_3 output level:
2381
2382 * 0: low level
2383 * 1: high level
2384 )))|-
2385 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2386 VDO_4 output level:
2387
2388 * 0: low level
2389 * 1: high level
2390 )))|-
2391
2392 Table 6-59 Communication control DO function parameters
2393
2394 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2395 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2396 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2397 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2398 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2399
2400 Table 6-60 VDO function number
2401
2402 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2403
2404 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2405
2406 == Motor overload protection ==
2407
2408 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2409
2410 |=(% scope="row" %)**Function code**|=**Name**|=(((
2411 **Setting method**
2412 )))|=(((
2413 **Effective time**
2414 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2415 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2416 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2417
2418 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2419 )))|%
2420
2421 In the following cases, it could be modified according to the actual heat generation of the motor
2422
2423 1. The motor works in a place with high ambient temperature
2424 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2425
2426 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2427
2428 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2429
2430 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.