Wiki source code of 06 Operation

Version 59.1 by Jim(Forgotten) on 2023/02/07 09:06

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 * 0: standard setting (CW is forward rotation)
90 * 1: reverse mode (CCW is forward rotation)
91 )))|-
92
93 Table 6-3 Rotation direction parameters** **
94
95 == **Braking resistor** ==
96
97 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
98
99 The basis for judging whether the braking resistor is built-in or external.
100
101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103
104 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
105 **Setting method**
106 )))|=(% style="width: 126px;" %)(((
107 **Effective time**
108 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
110 Operation setting
111 )))|(% style="width:126px" %)(((
112 Effective immediately
113 )))|0|0 to 3|(((
114 * 0: use built-in braking resistor
115 * 1: use external braking resistor and natural cooling
116 * 2: use external braking resistor and forced air cooling; (cannot be set)
117 * 3: No braking resistor is used, it is all absorbed by capacitor.
118 )))|-
119 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
121 Operation setting
122 )))|(% style="width:126px" %)(((
123 Effective immediately
124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
126 Operation setting
127 )))|(% style="width:126px" %)(((
128 Effective immediately
129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130
131 Table 6-4 Braking resistor parameters
132
133 == **Servo operation** ==
134
135 **Set the servo enable (S-ON) to valid (ON)**
136
137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138
139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140
141 **Input the instruction and the motor rotates**
142
143 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
144
145 **Timing diagram of power on**
146
147 (% style="text-align:center" %)
148 (((
149 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 )))
152
153 == Servo shutdown ==
154
155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
156
157 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 |=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
160
161 Table 6-5 Comparison of two shutdown modes
162
163 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165
166 Table 6-6 Comparison of two shutdown status
167
168 **Servo enable (S-ON) OFF shutdown**
169
170 The related parameters of the servo OFF shutdown mode are shown in the table below.
171
172 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
173 **Setting method**
174 )))|=(% style="width: 134px;" %)(((
175 **Effective time**
176 )))|=(% style="width: 86px;" %)(((
177 **Default value**
178 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
180 Shutdown
181
182 setting
183 )))|(% style="width:134px" %)(((
184 Effective
185
186 immediately
187 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 * 0: Free shutdown, and the motor shaft remains free status.
189 * 1: Zero-speed shutdown, and the motor shaft remains free status.
190 )))|-
191
192 Table 6-7 Servo OFF shutdown mode parameters details
193
194 **Emergency shutdown**
195
196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
197
198 **Overtravel shutdown**
199
200 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
201
202 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
203
204 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
205
206 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
207 **Setting method**
208 )))|=(% style="width: 114px;" %)(((
209 **Effective time**
210 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
211 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
212 * 0: OFF (not used)
213 * 01: S-ON servo enable
214 * 02: A-CLR fault and Warning Clear
215 * 03: POT forward drive prohibition
216 * 04: NOT Reverse drive prohibition
217 * 05: ZCLAMP Zero speed
218 * 06: CL Clear deviation counter
219 * 07: C-SIGN Inverted instruction
220 * 08: E-STOP Emergency stop
221 * 09: GEAR-SEL Electronic Gear Switch 1
222 * 10: GAIN-SEL gain switch
223 * 11: INH Instruction pulse prohibited input
224 * 12: VSSEL Vibration control switch input
225 * 13: INSPD1 Internal speed instruction selection 1
226 * 14: INSPD2 Internal speed instruction selection 2
227 * 15: INSPD3 Internal speedinstruction selection 3
228 * 16: J-SEL inertia ratio switch (not implemented yet)
229 * 17: MixModesel mixed mode selection
230 * 20: Internal multi-segment position enable signal
231 * 21: Internal multi-segment position selection 1
232 * 22: Internal multi-segment position selection 2
233 * 23: Internal multi-segment position selection 3
234 * 24: Internal multi-segment position selection 4
235 * Others: reserved
236 )))|-
237 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
238 Effective immediately
239 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
240 DI port input logic validity function selection.
241
242 * 0: Normally open input. Active low level (switch on);
243 * 1: Normally closed input. Active high level (switch off);
244 )))|-
245 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
246 Effective immediately
247 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
248 Select the DI_3 port type to enable
249
250 * 0: Hardware DI_3 input terminal
251 * 1: virtual VDI_3 input terminal
252 )))|-
253 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
254 Operation setting
255 )))|(% style="width:114px" %)(((
256 again Power-on
257 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 * 0: OFF (not used)
259 * 01: SON Servo enable
260 * 02: A-CLR Fault and Warning Clear
261 * 03: POT Forward drive prohibition
262 * 04: NOT Reverse drive prohibition
263 * 05: ZCLAMP Zero speed
264 * 06: CL Clear deviation counter
265 * 07: C-SIGN Inverted instruction
266 * 08: E-STOP Emergency shutdown
267 * 09: GEAR-SEL Electronic Gear Switch 1
268 * 10: GAIN-SEL gain switch
269 * 11: INH Instruction pulse prohibited input
270 * 12: VSSEL Vibration control switch input
271 * 13: INSPD1 Internal speed instruction selection 1
272 * 14: INSPD2 Internal speed instruction selection 2
273 * 15: INSPD3 Internal speed instruction selection 3
274 * 16: J-SEL inertia ratio switch (not implemented yet)
275 * 17: MixModesel mixed mode selection
276 * 20: Internal multi-segment position enable signal
277 * 21: Internal multi-segment position selection 1
278 * 22: Internal multi-segment position selection 2
279 * 23: Internal multi-segment position selection 3
280 * 24: Internal multi-segment position selection 4
281 * Others: reserved
282 )))|-
283 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
284 Effective immediately
285 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
286 DI port input logic validity function selection.
287
288 * 0: Normally open input. Active low level (switch on);
289 * 1: Normally closed input. Active high level (switch off);
290 )))|-
291 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
292 Effective immediately
293 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
294 Select the DI_4 port type to enable
295
296 * 0: Hardware DI_4 input terminal
297 * 1: virtual VDI_4 input terminal
298 )))|-
299
300 Table 6-8 DI3 and DI4 channel parameters
301
302 **(4) Malfunction shutdown**
303
304 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
305
306 == Brake device ==
307
308 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
309
310 (% class="warning" %)|(((
311 (% style="text-align:center" %)
312 [[image:image-20220611151617-1.png]]
313 )))
314 |(((
315 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
316
317 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
318
319 ✎The brake coil has no polarity;
320
321 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
322
323 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
324 )))
325
326 **Wiring of brake device**
327
328 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
329
330
331 (% style="text-align:center" %)
332 (((
333 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
335 )))
336
337 (% class="warning" %)|(((
338 (% style="text-align:center" %)
339 [[image:image-20220611151642-2.png]]
340 )))
341 |(((
342 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
343
344 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
345
346 ✎It is recommended to use cables above 0.5 mm².
347 )))
348
349 **Brake software setting**
350
351 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
352
353 Related function code is as below.
354
355 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
356 **Effective time**
357 )))
358 |=141|(% style="width:241px" %)(((
359 BRK-OFF Brake output
360 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
361
362 Table 6-2 Relevant function codes for brake setting
363
364 |=(% scope="row" %)**Function code**|=**Name**|=(((
365 **Setting method**
366 )))|=(((
367 **Effective time**
368 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
369 |=P1-30|Delay from brake output to instruction reception|(((
370 Operation setting
371 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
372 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
373 Operation setting
374 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
375 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
376 Operation setting
377 )))|Effective immediately|30|0 to 3000|(((
378 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
379
380 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
381 )))|rpm
382 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
383 Operation setting
384 )))|Effective immediately|500|1 to 1000|(((
385 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
386
387 When brake output (BRK-OFF) is not allocated, this function code has no effect.
388 )))|ms
389
390 Table 6-9 Brake setting function codes
391
392 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
393
394 **Servo drive brake timing in normal state**
395
396 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
397
398 * Brake timing when servo motor is stationary
399
400 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
401
402 (% class="warning" %)|(((
403 (% style="text-align:center" %)
404 [[image:image-20220611151705-3.png]]
405 )))
406 |(((
407 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
408
409 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
410 )))
411
412 (% style="text-align:center" %)
413 (((
414 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
415 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
416 )))
417
418 (% class="box infomessage" %)
419 (((
420 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
421 )))
422
423 * The brake timing when servo motor rotates
424
425 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
426
427 (% class="warning" %)|(((
428 (% style="text-align:center" %)
429 [[image:image-20220611151719-4.png]]
430 )))
431 |(((
432 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
433
434 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
435
436 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
437
438 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
439
440 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
441 )))
442
443 (% style="text-align:center" %)
444 (((
445 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
446 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
447 )))
448
449 **Brake timing when the servo drive fails**
450
451 The brake timing (free shutdown) in the fault status is as follows.
452
453 (% style="text-align:center" %)
454 (((
455 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
456 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
457 )))
458
459 = **Position control mode** =
460
461 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
462
463 (% style="text-align:center" %)
464 (((
465 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
466 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
467 )))
468
469 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
470
471 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
472 **Setting method**
473 )))|=(((
474 **Effective time**
475 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
476 |=(% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((
477 Operation setting
478 )))|(((
479 immediately Effective
480 )))|0|0 to 6|(((
481 0: position control
482
483 2: speed control
484
485 3: torque control
486
487 4: position/speed mix control
488
489 5: position/torque mix control
490
491 6: speed /torque mix control
492 )))|-
493
494 Table 6-10 Control mode parameters
495
496 == Position instruction input setting ==
497
498 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
499
500 |=(% scope="row" %)**Function code**|=**Name**|=(((
501 **Setting method**
502 )))|=(((
503 **Effective time**
504 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
505 |=P01-06|Position instruction source|(((
506 Operation setting
507 )))|(((
508 immediately Effective
509 )))|0|0 to 1|(((
510 0: pulse instruction
511
512 1: internal position instruction
513 )))|-
514
515 Table 6-11 Position instruction source parameter
516
517 **The source of position instruction is pulse instruction (P01-06=0)**
518
519 Low-speed pulse instruction input
520
521 |(% style="text-align:center" %)(((
522 (% class="wikigeneratedid" style="display:inline-block" %)
523 [[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
524 )))|(% style="text-align:center" %)(((
525 (% class="wikigeneratedid" style="display:inline-block" %)
526 [[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
527 )))
528 |(% colspan="2" %)Figure 6-7 Position instruction input setting
529
530 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
531
532 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
533
534 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
535 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
536 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
537
538 Table 6-12 Pulse input specifications
539
540 * Differential input
541
542 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
543
544 (% style="text-align:center" %)
545 (((
546 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
547 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
548 )))
549
550 (% class="box infomessage" %)
551 (((
552 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
553 )))
554
555 * Open collector input
556
557 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
558
559 (% style="text-align:center" %)
560 (((
561 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
562 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
563 )))
564
565
566 (% class="box infomessage" %)
567 (((
568 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
569 )))
570
571 * Position pulse frequency and anti-interference level
572
573 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
574
575 (% style="text-align:center" %)
576 (((
577 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
578 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
579 )))
580
581 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
582
583 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
584 **Setting method**
585 )))|=(((
586 **Effective time**
587 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
588 |P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((
589 Shutdown setting
590 )))|(((
591 Effective immediately
592 )))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz
593 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
594 Operation setting
595 )))|(% rowspan="3" %)(((
596 Power-on again
597 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
598 Set the anti-interference level of external pulse instruction.
599
600 * 0: no filtering;
601 * 1: Filtering time 128ns
602 * 2: Filtering time 256ns
603 * 3: Filtering time 512ns
604 * 4: Filtering time 1.024us
605 * 5: Filtering time 2.048us
606 * 6: Filtering time 4.096us
607 * 7: Filtering time 8.192us
608 * 8: Filtering time 16.384us
609 * 9:
610 ** VD2: Filtering time 25.5us
611 ** VD2F: Filtering time 25.5us
612 )))|(% rowspan="3" %)-
613
614 Table 6-13 Position pulse frequency and anti-interference level parameters
615
616 * Position pulse type selection
617
618 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
619
620 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
621 **Setting method**
622 )))|=(% style="width: 109px;" %)(((
623 **Effective time**
624 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
625 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
626 Operation setting
627 )))|(% style="width:109px" %)(((
628 Power-on again
629 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
630 * 0: direction + pulse (positive logic)
631 * 1: CW/CCW
632 * 2: A, B phase quadrature pulse (4 times frequency)
633 * 3: Direction + pulse (negative logic)
634 * 4: CW/CCW (negative logic)
635 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
636 )))|-
637
638 Table 6-14 Position pulse type selection parameter
639
640 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
641 |=0|(% style="width:200px" %)(((
642 Direction + pulse
643
644 (Positive logic)
645 )))|(% style="width:161px" %)(((
646 PULSE
647
648 SIGN
649 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
650 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
651 PULSE (CW)
652
653 SIGN (CCW)
654 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
655 |=2|(% style="width:200px" %)(((
656 AB phase orthogonal
657
658 pulse (4 times frequency)
659 )))|(% style="width:161px" %)(((
660 PULSE (Phase A)
661
662 SIGN (Phase B)
663 )))|(((
664
665
666 [[image:image-20220707094358-9.jpeg]]
667
668 Phase A is 90° ahead of Phase B
669 )))|(((
670
671
672 [[image:image-20220707094407-10.jpeg]]
673
674 Phase B is 90° ahead of Phase A
675 )))
676 |=3|(% style="width:200px" %)(((
677 Direction + pulse
678
679 (Negative logic)
680 )))|(% style="width:161px" %)(((
681 PULSE
682
683 SIGN
684 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
685 |=4|(% style="width:200px" %)(((
686 CW/CCW
687
688 (Negative logic)
689 )))|(% style="width:161px" %)(((
690 PULSE (CW)
691
692 SIGN (CCW)
693 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
694 |=5|(% style="width:200px" %)(((
695 AB phase orthogonal
696
697 pulse (4 times frequency negative logic)
698 )))|(% style="width:161px" %)(((
699 PULSE (Phase A)
700
701 SIGN (Phase B)
702 )))|(((
703
704
705 [[image:image-20220707094429-14.jpeg]]
706
707 Phase B is ahead of A phase by 90°
708 )))|(((
709
710
711 [[image:image-20220707094437-15.jpeg]]
712
713 Phase A is ahead of B phase by 90°
714 )))
715
716 Table 6-15 Pulse description
717
718 **The source of position instruction is internal position instruction (P01-06=1)**
719
720 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
721
722 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
723
724 (% style="text-align:center" %)
725 (((
726 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
727 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
728 )))
729
730
731 * Set multi-segment position running mode
732
733 |=(% scope="row" %)**Function code**|=**Name**|=(((
734 **Setting method**
735 )))|=(((
736 **Effective time**
737 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
738 |=P07-01|Multi-segment position running mode|(((
739 Shutdown setting
740 )))|(((
741 Effective immediately
742 )))|0|0 to 2|(((
743 * 0: Single running
744 * 1: Cycle running
745 * 2: DI switching running
746 )))|-
747 |=P07-02|Start segment number|(((
748 Shutdown setting
749 )))|(((
750 Effective immediately
751 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
752 |=P07-03|End segment number|(((
753 Shutdown setting
754 )))|(((
755 Effective immediately
756 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
757 |=P07-04|Margin processing method|(((
758 Shutdown setting
759 )))|(((
760 Effective immediately
761 )))|0|0 to 1|(((
762 * 0: Run the remaining segments
763 * 1: Run again from the start segment
764 )))|-
765 |=P07-05|Displacement instruction type|(((
766 Shutdown setting
767 )))|(((
768 Effective immediately
769 )))|0|0 to 1|(((
770 * 0: Relative position instruction
771 * 1: Absolute position instruction
772 )))|-
773
774 Table 6-16 multi-segment position running mode parameters
775
776 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
777
778 1. Single running
779
780 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
781
782 (% style="text-align:center" %)
783 (((
784 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
785 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
786 )))
787
788 * 2. Cycle running
789
790 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
791
792 (% style="text-align:center" %)
793 (((
794 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
795 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
796 )))
797
798 (% class="warning" %)|(((
799 (% style="text-align:center" %)
800 [[image:image-20220611151917-5.png]]
801 )))
802 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
803
804 (% start="3" %)
805 1. DI switching running
806
807 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
808
809 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
810 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
811 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
812 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
813 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
814
815 Table 6-17 DI function code
816
817 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
818
819 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
820 |=0|0|0|0|1
821 |=0|0|0|1|2
822 |=0|0|1|0|3
823 |=(% colspan="5" %)…………
824 |=1|1|1|1|16
825
826 Table 6-18 INPOS corresponds to running segment number
827
828 The operating curve in this running mode is shown in __Figure 6-14__.
829
830 (% style="text-align:center" %)
831 (((
832 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
833 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
834 )))
835
836 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
837
838 **Run the remaining segments**
839
840 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
841
842 (% style="text-align:center" %)
843 (((
844 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
845 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
846 )))
847
848 (% style="text-align:center" %)
849 (((
850 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
851 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
852 )))
853
854 **Run again from the start segment**
855
856 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
857
858 (% style="text-align:center" %)
859 (((
860 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
861 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
862 )))
863
864 (% style="text-align:center" %)
865 (((
866 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
867 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
868 )))
869
870 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
871
872 * Relative position instruction
873
874 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
875
876 |(((
877 (% style="text-align:center" %)
878 (((
879 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
880 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
881 )))
882 )))|(((
883 (% style="text-align:center" %)
884 (((
885 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
886 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
887 )))
888 )))
889
890 * Absolute position instruction
891
892 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
893
894 |(((
895 (% style="text-align:center" %)
896 (((
897 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
898 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
899 )))
900 )))|(((
901 (% style="text-align:center" %)
902 (((
903 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
904 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
905 )))
906 )))
907
908 * Multi-segment position running curve setting
909
910 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
911
912 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
913 |=P07-09|(((
914 1st segment
915
916 displacement
917 )))|(((
918 Operation setting
919 )))|(((
920 Effective immediately
921 )))|10000|(((
922 -2147483647 to
923
924 2147483646
925 )))|Position instruction, positive and negative values could be set|-
926 |=P07-10|Maximum speed of the 1st displacement|(((
927 Operation setting
928 )))|(((
929 Effective immediately
930 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
931 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
932 Operation setting
933 )))|(((
934 Effective immediately
935 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
936 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
937 Operation setting
938 )))|(((
939 Effective immediately
940 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
941
942 Table 6-19 The 1st position operation curve parameters table
943
944 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
945
946 (% style="text-align:center" %)
947 (((
948 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
949 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
950 )))
951
952
953 * multi-segment position instruction enable
954
955 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
956
957 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
958 |=20|ENINPOS: Internal multi-segment position enable signal|(((
959 DI port logic invalid: Does not affect the current operation of the servo motor.
960
961 DI port logic valid: Motor runs multi-segment position
962 )))
963
964 (% style="text-align:center" %)
965 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
966
967 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
968
969 == Electronic gear ratio ==
970
971 **Definition of electronic gear ratio**
972
973 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
974
975 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
976
977 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
978
979 (% style="text-align:center" %)
980 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
981
982 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
983
984 **Setting steps of electronic gear ratio**
985
986 (% style="text-align:center" %)
987 (((
988 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
989 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
990 )))
991
992 **lectronic gear ratio switch setting**
993
994 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
995
996 |=(% scope="row" %)**Function code**|=**Name**|=(((
997 **Setting method**
998 )))|=(((
999 **Effective time**
1000 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1001 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1002 Shutdown setting
1003 )))|(((
1004 Effective immediately
1005 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1006 Instruction pulse
1007
1008 unit
1009 )))
1010 |=P00-17|(((
1011 Electronic gear 1
1012
1013 numerator
1014 )))|Operation setting|(((
1015 Effective immediately
1016 )))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1017 |=P00-18|(((
1018 Electronic gear 1
1019
1020 denominator
1021 )))|(((
1022 Operation setting
1023 )))|(((
1024 Effective immediately
1025 )))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1026 |=P00-19|(((
1027 Electronic gear 2
1028
1029 numerator
1030 )))|Operation setting|(((
1031 Effective immediately
1032 )))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1033 |=P00-20|(((
1034 Electronic gear 2
1035
1036 denominator
1037 )))|Operation setting|(((
1038 Effective immediately
1039 )))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1040
1041 Table 6-20 Electronic gear ratio function code
1042
1043 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1044
1045 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1046 |=09|GEAR-SEL electronic gear switch 1|(((
1047 DI port logic invalid: electronic gear ratio 1
1048
1049 DI port logic valid: electronic gear ratio 2
1050 )))
1051
1052 Table 6-21 Switching conditions of electronic gear ratio group
1053
1054 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1055 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1056 (% style="text-align:center" %)
1057 [[image:image-20220707101328-21.png]]
1058 )))
1059 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1060 (% style="text-align:center" %)
1061 [[image:image-20220707101336-22.png]]
1062 )))
1063 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1064 (% style="text-align:center" %)
1065 [[image:image-20220707101341-23.png]]
1066 )))
1067
1068 Table 6-22 Application of electronic gear ratio
1069
1070 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1071
1072 == Position instruction filtering ==
1073
1074 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1075
1076 In the following situations, position instruction filtering should be added.
1077
1078 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1079 1. The pulse instruction frequency is low;
1080 1. When the electronic gear ratio is 10 times or more.
1081
1082 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1083
1084 (% style="text-align:center" %)
1085 (((
1086 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1087 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1088 )))
1089
1090 |=(% scope="row" %)**Function code**|=**Name**|=(((
1091 **Setting method**
1092 )))|=(((
1093 **Effective time**
1094 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1095 |=P04-01|Pulse instruction filtering method|(((
1096 Shutdown setting
1097 )))|(((
1098 Effective immediately
1099 )))|0|0 to 1|(((
1100 * 0: 1st-order low-pass filtering
1101 * 1: average filtering
1102 )))|-
1103 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1104 Effective immediately
1105 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1106 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1107 Effective immediately
1108 )))|0|0 to 128|Position instruction average filtering time constant|ms
1109
1110 Table 6-23 Position instruction filter function code
1111
1112 == Clearance of position deviation ==
1113
1114 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1115
1116 Position deviation = (position instruction-position feedback) (encoder unit)
1117
1118 == Position-related DO output function ==
1119
1120 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1121
1122 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1123 **Positioning completion/positioning approach output**
1124
1125 (% class="wikigeneratedid" %)
1126 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1127
1128 (% style="text-align:center" %)
1129 (((
1130 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1131 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1132 )))
1133
1134 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1135
1136 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1137
1138 (% style="text-align:center" %)
1139 (((
1140 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1141 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1142 )))
1143
1144 |=(% scope="row" %)**Function code**|=**Name**|=(((
1145 **Setting method**
1146 )))|=(% style="width: 129px;" %)(((
1147 **Effective time**
1148 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1149 |=P05-12|Positioning completion threshold|(((
1150 Operation setting
1151 )))|(% style="width:129px" %)(((
1152 Effective immediately
1153 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1154 |=P05-13|Positioning approach threshold|(((
1155 Operation setting
1156 )))|(% style="width:129px" %)(((
1157 Effective immediately
1158 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1159 |=P05-14|Position detection window time|(((
1160 Operation setting
1161 )))|(% style="width:129px" %)(((
1162 Effective immediately
1163 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1164 |=P05-15|Positioning signal hold time|(((
1165 Operation setting
1166 )))|(% style="width:129px" %)(((
1167 Effective immediately
1168 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1169
1170 Table 6-24 Function code parameters of positioning completion
1171
1172 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1173 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1174 |=135|(((
1175 P-NEAR positioning close
1176 )))|(((
1177 Output this signal indicates that the servo drive position is close.
1178 )))
1179
1180 Table 6-25 Description of DO rotation detection function code
1181
1182 = **Speed control mode** =
1183
1184 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1185
1186 (% style="text-align:center" %)
1187 (((
1188 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1189 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1190 )))
1191
1192 == Speed instruction input setting ==
1193
1194 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1195
1196 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1197 **Setting method**
1198 )))|=(% style="width: 125px;" %)(((
1199 **Effective time**
1200 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1201 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1202 Shutdown setting
1203 )))|(% style="width:125px" %)(((
1204 Effective immediately
1205 )))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)(((
1206 * 0: internal speed instruction
1207 * 1: AI_1 analog input (not supported by VD2F)
1208 )))|-
1209
1210 Table 6-26 Speed instruction source parameter
1211
1212 **Speed instruction source is internal speed instruction (P01-01=0)**
1213
1214 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1215
1216 (% style="width:1141px" %)
1217 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1218 **Setting**
1219
1220 **method**
1221 )))|=(% colspan="2" %)(((
1222 **Effective**
1223
1224 **time**
1225 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1226 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1227 Internal speed
1228
1229 Instruction 0
1230 )))|(% colspan="2" %)(((
1231 Operation
1232
1233 setting
1234 )))|(% colspan="2" %)(((
1235 Effective
1236
1237 immediately
1238 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1239 Internal speed instruction 0
1240
1241 When DI input port:
1242
1243 * 15-INSPD3: 0
1244 * 14-INSPD2: 0
1245 * 13-INSPD1: 0,
1246
1247 select this speed instruction to be effective.
1248 )))|(% colspan="2" %)rpm
1249 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1250 Internal speed
1251
1252 Instruction 1
1253 )))|(% colspan="2" %)(((
1254 Operation
1255
1256 setting
1257 )))|(% colspan="2" %)(((
1258 Effective
1259
1260 immediately
1261 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1262 Internal speed instruction 1
1263
1264 When DI input port:
1265
1266 * 15-INSPD3: 0
1267 * 14-INSPD2: 0
1268 * 13-INSPD1: 1,
1269
1270 Select this speed instruction to be effective.
1271 )))|(% colspan="2" %)rpm
1272 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1273 Internal speed
1274
1275 Instruction 2
1276 )))|(% colspan="2" %)(((
1277 Operation
1278
1279 setting
1280 )))|(% colspan="2" %)(((
1281 Effective
1282
1283 immediately
1284 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1285 Internal speed instruction 2
1286
1287 When DI input port:
1288
1289 * 15-INSPD3: 0
1290 * 14-INSPD2: 1
1291 * 13-INSPD1: 0,
1292
1293 Select this speed instruction to be effective.
1294 )))|(% colspan="2" %)rpm
1295 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1296 Internal speed
1297
1298 Instruction 3
1299 )))|(% colspan="2" %)(((
1300 Operation
1301
1302 setting
1303 )))|(% colspan="2" %)(((
1304 Effective
1305
1306 immediately
1307 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1308 Internal speed instruction 3
1309
1310 When DI input port:
1311
1312 * 15-INSPD3: 0
1313 * 14-INSPD2: 1
1314 * 13-INSPD1: 1,
1315
1316 Select this speed instruction to be effective.
1317 )))|(% colspan="2" %)rpm
1318 |=P01-26|(% colspan="2" %)(((
1319 Internal speed
1320
1321 Instruction 4
1322 )))|(% colspan="2" %)(((
1323 Operation
1324
1325 setting
1326 )))|(% colspan="2" %)(((
1327 Effective
1328
1329 immediately
1330 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1331 Internal speed instruction 4
1332
1333 When DI input port:
1334
1335 * 15-INSPD3: 1
1336 * 14-INSPD2: 0
1337 * 13-INSPD1: 0,
1338
1339 Select this speed instruction to be effective.
1340 )))|(% colspan="1" %)rpm
1341 |=P01-27|(% colspan="2" %)(((
1342 Internal speed
1343
1344 Instruction 5
1345 )))|(% colspan="2" %)(((
1346 Operation
1347
1348 setting
1349 )))|(% colspan="2" %)(((
1350 Effective
1351
1352 immediately
1353 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1354 Internal speed instruction 5
1355
1356 When DI input port:
1357
1358 * 15-INSPD3: 1
1359 * 14-INSPD2: 0
1360 * 13-INSPD1: 1,
1361
1362 Select this speed instruction to be effective.
1363 )))|(% colspan="1" %)rpm
1364 |=P01-28|(% colspan="2" %)(((
1365 Internal speed
1366
1367 Instruction 6
1368 )))|(% colspan="2" %)(((
1369 Operation
1370
1371 setting
1372 )))|(% colspan="2" %)(((
1373 Effective
1374
1375 immediately
1376 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1377 Internal speed instruction 6
1378
1379 When DI input port:
1380
1381 * 15-INSPD3: 1
1382 * 14-INSPD2: 1
1383 * 13-INSPD1: 0,
1384
1385 Select this speed instruction to be effective.
1386 )))|(% colspan="1" %)rpm
1387 |=P01-29|(% colspan="2" %)(((
1388 Internal speed
1389
1390 Instruction 7
1391 )))|(% colspan="2" %)(((
1392 Operation
1393
1394 setting
1395 )))|(% colspan="2" %)(((
1396 Effective
1397
1398 immediately
1399 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1400 Internal speed instruction 7
1401
1402 When DI input port:
1403
1404 * 15-INSPD3: 1
1405 * 14-INSPD2: 1
1406 * 13-INSPD1: 1,
1407
1408 Select this speed instruction to be effective.
1409 )))|(% colspan="1" %)rpm
1410
1411 Table 6-27 Internal speed instruction parameters
1412
1413 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1414 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1415 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1416 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1417
1418 Table 6-28 DI multi-speed function code description
1419
1420 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1421
1422
1423 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1424 |0|0|0|1|0
1425 |0|0|1|2|1
1426 |0|1|0|3|2
1427 |(% colspan="5" %)......
1428 |1|1|1|8|7
1429
1430 Table 6-29 Correspondence between INSPD bits and segment numbers
1431
1432 (% style="text-align:center" %)
1433 (((
1434 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1435 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1436 )))
1437
1438 **Speed instruction source is internal speed instruction (P01-01=1)**
1439
1440 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1441
1442 (% style="text-align:center" %)
1443 (((
1444 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1445 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1446 )))
1447
1448 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1449
1450 (% style="text-align:center" %)
1451 (((
1452 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1453 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1454 )))
1455
1456 Explanation of related terms:
1457
1458 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1459 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1460 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1461
1462 (% style="text-align:center" %)
1463 (((
1464 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1465 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1466 )))
1467
1468 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1469 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1470 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1471 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1472 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1473
1474 Table 6-30 AI_1 parameters
1475
1476 (% class="box infomessage" %)
1477 (((
1478 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1479 )))
1480
1481 == Acceleration and deceleration time setting ==
1482
1483 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1484
1485 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1486
1487 (% style="text-align:center" %)
1488 (((
1489 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1490 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1491 )))
1492
1493 (% style="text-align:center" %)
1494 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1495
1496 |=(% scope="row" %)**Function code**|=**Name**|=(((
1497 **Setting method**
1498 )))|=(((
1499 **Effective time**
1500 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1501 |=P01-03|Acceleration time|(((
1502 Operation setting
1503 )))|(((
1504 Effective immediately
1505 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1506 |=P01-04|Deceleration time|(((
1507 Operation setting
1508 )))|(((
1509 Effective immediately
1510 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1511
1512 Table 6-31 Acceleration and deceleration time parameters
1513
1514 == Speed instruction limit ==
1515
1516 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1517
1518 1. P01-10: Set the maximum speed limit value
1519 1. P01-12: Set forward speed limit value
1520 1. P01-13: Set reverse speed limit value
1521 1. The maximum speed of the motor: determined by motor model
1522
1523 The actual motor speed limit interval satisfies the following relationship:
1524
1525 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1526
1527 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1528
1529 |=(% scope="row" %)**Function code**|=**Name**|=(((
1530 **Setting method**
1531 )))|=(((
1532 **Effective time**
1533 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1534 |=P01-10|Maximum speed threshold|(((
1535 Operation setting
1536 )))|(((
1537 Effective immediately
1538 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1539 |=P01-12|Forward speed threshold|(((
1540 Operation setting
1541 )))|(((
1542 Effective immediately
1543 )))|3000|0 to 5000|Set forward speed limit value|rpm
1544 |=P01-13|Reverse speed threshold|(((
1545 Operation setting
1546 )))|(((
1547 Effective immediately
1548 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1549
1550 Table 6-32 Rotation speed related function codes
1551
1552 == Zero-speed clamp function ==
1553
1554 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1555
1556 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1557
1558 |=(% scope="row" %)**Function code**|=**Name**|=(((
1559 **Setting method**
1560 )))|=(((
1561 **Effective time**
1562 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1563 |=P01-21|(((
1564 Zero-speed clamp function selection
1565 )))|(((
1566 Operation setting
1567 )))|(((
1568 Effective immediately
1569 )))|0|0 to 3|(((
1570 Set the zero-speed clamp function. In speed mode:
1571
1572 * 0: Force the speed to 0;
1573 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1574 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1575 * 3: Invalid, ignore zero-speed clamp input
1576 )))|-
1577 |=P01-22|(((
1578 Zero-speed clamp speed threshold
1579 )))|(((
1580 Operation setting
1581 )))|(((
1582 Effective immediately
1583 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1584
1585 Table 6-33 Zero-speed clamp related parameters
1586
1587 (% style="text-align:center" %)
1588 (((
1589 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1590 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1591 )))
1592
1593 == Speed-related DO output function ==
1594
1595 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1596
1597 **Rotation detection signal**
1598
1599 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1600
1601 (% style="text-align:center" %)
1602 (((
1603 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1604 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1605 )))
1606
1607 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1608
1609 |=(% scope="row" %)**Function code**|=**Name**|=(((
1610 **Setting method**
1611 )))|=(((
1612 **Effective time**
1613 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1614 |=P05-16|(((
1615 Rotation detection
1616
1617 speed threshold
1618 )))|(((
1619 Operation setting
1620 )))|(((
1621 Effective immediately
1622 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1623
1624 Table 6-34 Rotation detection speed threshold parameters
1625
1626 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1627 |=132|(% style="width:247px" %)(((
1628 T-COIN rotation detection
1629 )))|(% style="width:695px" %)(((
1630 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1631
1632 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1633 )))
1634
1635 Table 6-35 DO rotation detection function code
1636
1637 **Zero-speed signal**
1638
1639 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1640
1641 (% style="text-align:center" %)
1642 (((
1643 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1644 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1645 )))
1646
1647 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1648
1649 |=(% scope="row" %)**Function code**|=**Name**|=(((
1650 **Setting method**
1651 )))|=(((
1652 **Effective time**
1653 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1654 |=P05-19|Zero speed output signal threshold|(((
1655 Operation setting
1656 )))|(((
1657 Effective immediately
1658 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1659
1660 Table 6-36 Zero-speed output signal threshold parameter
1661
1662 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1663 |=133|(((
1664 ZSP zero speed signal
1665 )))|Output this signal indicates that the servo motor is stopping rotation
1666
1667 Table 6-37 DO zero-speed signal function code
1668
1669 **Speed consistent signal**
1670
1671 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1672
1673 (% style="text-align:center" %)
1674 (((
1675 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1676 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1677 )))
1678
1679 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1680
1681 |=(% scope="row" %)**Function code**|=**Name**|=(((
1682 **Setting method**
1683 )))|=(((
1684 **Effective time**
1685 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1686 |=P05-17|Speed consistent signal threshold|(((
1687 Operationsetting
1688 )))|(((
1689 Effective immediately
1690 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1691
1692 Table 6-38 Speed consistent signal threshold parameters
1693
1694 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1695 |=136|(% style="width:262px" %)(((
1696 U-COIN consistent speed
1697 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1698
1699 Table 6-39 DO speed consistent function code
1700
1701 **Speed approach signal**
1702
1703 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1704
1705 (% style="text-align:center" %)
1706 (((
1707 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1708 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1709 )))
1710
1711 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1712
1713 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1714 **Setting method**
1715 )))|=(((
1716 **Effective time**
1717 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1718 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1719 Operation setting
1720 )))|(((
1721 Effective immediately
1722 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1723
1724 Table 6-40 Speed approaching signal threshold parameters
1725
1726 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1727 |=137|(((
1728 V-NEAR speed approach
1729 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1730
1731 Table 6-41 DO speed approach function code
1732
1733 = **Torque control mode** =
1734
1735 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1736
1737 (% style="text-align:center" %)
1738 (((
1739 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1740 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1741 )))
1742
1743 == Torque instru**ction input setting** ==
1744
1745 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1746
1747 |=(% scope="row" %)**Function code**|=**Name**|=(((
1748 **Setting method**
1749 )))|=(((
1750 **Effective time**
1751 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1752 |=P01-07|Torque instruction source|(((
1753 Shutdown setting
1754 )))|(((
1755 Effective immediately
1756 )))|0|0 to 1|(((
1757 0: internal torque instruction
1758
1759 1: AI_1 analog input(not supported by VD2F)
1760 )))|-
1761
1762 Table 6-42 Torque instruction source parameter
1763
1764 **Torque instruction source is internal torque instruction (P01-07=0)**
1765
1766 Torque instruction source is from inside, the value is set by function code P01-08.
1767
1768 |=(% scope="row" %)**Function code**|=**Name**|=(((
1769 **Setting method**
1770 )))|=(((
1771 **Effective time**
1772 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1773 |=P01-08|Torque instruction keyboard set value|(((
1774 Operation setting
1775 )))|(((
1776 Effective immediately
1777 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1778
1779 Table 6-43 Torque instruction keyboard set value
1780
1781 **Torque instruction source is internal torque instruction (P01-07=1)**
1782
1783 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1784
1785 (% style="text-align:center" %)
1786 (((
1787 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1788 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1789 )))
1790
1791 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1792
1793 (% style="text-align:center" %)
1794 (((
1795 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1796 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1797 )))
1798
1799 Explanation of related terms:
1800
1801 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1802 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1803 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1804
1805 (% style="text-align:center" %)
1806 (((
1807 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1808 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1809 )))
1810
1811 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1812 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1813 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1814 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1815 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1816
1817 Table 6-44 AI_1 parameters
1818
1819 (% class="box infomessage" %)
1820 (((
1821 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1822 )))
1823
1824 == Torque instruction filtering ==
1825
1826 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1827
1828 |=(% scope="row" %)**Function code**|=**Name**|=(((
1829 **Setting method**
1830 )))|=(((
1831 **Effective time**
1832 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1833 |=P04-04|Torque filtering time constant|(((
1834 Operation setting
1835 )))|(((
1836 Effective immediately
1837 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1838
1839 Table 6-45 Torque filtering time constant parameter details
1840
1841 (% class="box infomessage" %)
1842 (((
1843 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1844 )))
1845
1846 (% style="text-align:center" %)
1847 (((
1848 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1849 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1850 )))
1851
1852 == Torque instruction limit ==
1853
1854 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1855
1856 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1857
1858 (% style="text-align:center" %)
1859 (((
1860 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1861 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1862 )))
1863
1864 **Set torque limit source**
1865
1866 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1867
1868 |=(% scope="row" %)**Function code**|=**Name**|=(((
1869 **Setting method**
1870 )))|=(((
1871 **Effective time**
1872 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1873 |=P01-14|(((
1874 Torque limit source
1875 )))|(((
1876 Shutdown setting
1877 )))|(((
1878 Effective immediately
1879 )))|0|0 to 1|(((
1880 * 0: internal value
1881 * 1: AI_1 analog input (not supported by VD2F)
1882 )))|-
1883
1884 * Torque limit source is internal torque instruction (P01-14=0)
1885
1886 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1887
1888 |=(% scope="row" %)**Function code**|=**Name**|=(((
1889 **Setting method**
1890 )))|=(((
1891 **Effective time**
1892 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1893 |=P01-15|(((
1894 Forward torque limit
1895 )))|(((
1896 Operation setting
1897 )))|(((
1898 Effective immediately
1899 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1900 |=P01-16|(((
1901 Reverse torque limit
1902 )))|(((
1903 Operation setting
1904 )))|(((
1905 Effective immediately
1906 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1907
1908 Table 6-46 Torque limit parameter details
1909
1910 * Torque limit source is external (P01-14=1)
1911
1912 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1913
1914 **Set torque limit DO signal output**
1915
1916 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1917
1918 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1919 |=139|(((
1920 T-LIMIT in torque limit
1921 )))|Output of this signal indicates that the servo motor torque is limited
1922
1923 Table 6-47 DO torque limit function codes
1924
1925 == **Speed limit in torque mode** ==
1926
1927 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1928
1929 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1930
1931 |(((
1932 (% style="text-align:center" %)
1933 (((
1934 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1935 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1936 )))
1937 )))|(((
1938 (% style="text-align:center" %)
1939 (((
1940 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1941 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1942 )))
1943 )))
1944
1945 |=(% scope="row" %)**Function code**|=**Name**|=(((
1946 **Setting method**
1947 )))|=(((
1948 **Effective time**
1949 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1950 |=P01-17|(((
1951 Forward torque
1952
1953 limit in torque mode
1954 )))|(((
1955 Operation setting
1956 )))|(((
1957 Effective immediately
1958 )))|3000|0 to 5000|(((
1959 Forward torque
1960
1961 limit in torque mode
1962 )))|0.1%
1963 |=P01-18|(((
1964 Reverse torque
1965
1966 limit in torque mode
1967 )))|(((
1968 Operation setting
1969 )))|(((
1970 Effective immediately
1971 )))|3000|0 to 5000|(((
1972 Reverse torque
1973
1974 limit in torque mode
1975 )))|0.1%
1976
1977 Table 6-48 Speed limit parameters in torque mode
1978
1979 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1980
1981 == Torque-related DO output functions ==
1982
1983 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1984
1985 **Torque arrival**
1986
1987 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1988
1989 (% style="text-align:center" %)
1990 (((
1991 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1992 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
1993 )))
1994
1995 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
1996
1997 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
1998 **Setting method**
1999 )))|=(% style="width: 124px;" %)(((
2000 **Effective time**
2001 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2002 |=P05-20|(% style="width:113px" %)(((
2003 Torque arrival
2004
2005 threshold
2006 )))|(% style="width:100px" %)(((
2007 Operation setting
2008 )))|(% style="width:124px" %)(((
2009 Effective immediately
2010 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2011 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2012
2013 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2014
2015 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2016 )))|%
2017 |=P05-21|(% style="width:113px" %)(((
2018 Torque arrival
2019
2020 hysteresis
2021 )))|(% style="width:100px" %)(((
2022 Operation setting
2023 )))|(% style="width:124px" %)(((
2024 Effective immediately
2025 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2026
2027 Table 6-49 Torque arrival parameters
2028
2029 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2030 |=138|(((
2031 T-COIN torque arrival
2032 )))|Used to determine whether the actual torque instruction has reached the set range
2033
2034 Table 6-50 DO Torque Arrival Function Code
2035
2036 = **Mixed control mode** =
2037
2038 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2039
2040 * Position mode⇔ Speed mode
2041 * Position mode ⇔Torque mode
2042 * Speed mode ⇔Torque mode
2043
2044 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2045
2046 |=(% scope="row" %)**Function code**|=**Name**|=(((
2047 **Setting method**
2048 )))|=(((
2049 **Effective time**
2050 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2051 |=P00-01|Control mode|(((
2052 Shutdown setting
2053 )))|(((
2054 Shutdown setting
2055 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2056 * 1: Position control
2057 * 2: Speed control
2058 * 3: Torque control
2059 * 4: Position/speed mixed control
2060 * 5: Position/torque mixed control
2061 * 6: Speed/torque mixed control
2062 )))|-
2063
2064 Table 6-51 Mixed control mode parameters
2065
2066 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2067
2068 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2069 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2070 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2071 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2072 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2073 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2074 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2075 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2076 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2077 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2078 )))
2079
2080 Table 6-52 Description of DI function codes in control mode
2081
2082 (% class="box infomessage" %)
2083 (((
2084 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2085 )))
2086
2087 = **Absolute system** =
2088
2089 == Overview ==
2090
2091 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2092
2093 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2094
2095 == Single-turn absolute value system ==
2096
2097 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2098
2099 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2100 |A1 (single-turn magnetic encoder)|17|0 to 131071
2101
2102 Table 6-53 Single-turn absolute encoder information
2103
2104 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2105
2106 (% style="text-align:center" %)
2107 (((
2108 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2109 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2110 )))
2111
2112 == Multi-turn absolute value system ==
2113
2114 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2115
2116 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2117 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2118 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2119
2120 Table 6-54 Multi-turn absolute encoder information
2121
2122 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2123
2124 (% style="text-align:center" %)
2125 (((
2126 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2127 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2128 )))
2129
2130 == Related functions and parameters ==
2131
2132 **Encoder feedback data**
2133
2134 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2135
2136 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2137 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2138 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2139 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2140
2141 Table 6-55 Encoder feedback data
2142
2143 **Shield multi-turn absolute encoder battery fault**
2144
2145 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2146
2147 |=(% scope="row" %)**Function code**|=**Name**|=(((
2148 **Setting**
2149
2150 **method**
2151 )))|=(((
2152 **Effective**
2153
2154 **time**
2155 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2156 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2157 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2158 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2159 )))|-
2160
2161 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2162
2163 (% class="box infomessage" %)
2164 (((
2165 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2166 )))
2167
2168 == Absolute value system encoder battery box use precautions. ==
2169
2170 **Cautions**
2171
2172 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2173
2174 (% style="text-align:center" %)
2175 (((
2176 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2177 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2178 )))
2179
2180 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2181
2182 **Replace the battery**
2183
2184 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2185
2186 The specific replacement method is as follows:
2187
2188 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2189 * Step2 Remove the old battery.
2190 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2191 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2192
2193 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2194
2195 |=(% scope="row" %)**Function code**|=**Name**|=(((
2196 **Setting method**
2197 )))|=(((
2198 **Effective time**
2199 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2200 |=P10-06|Multi-turn absolute encoder reset|(((
2201 Shutdown setting
2202 )))|(((
2203 Effective immediately
2204 )))|0|0 to 1|(((
2205 * 0: No operation
2206 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2207
2208 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2209 )))|-
2210
2211 Table 6-56 Absolute encoder reset enable parameter
2212
2213 **Battery selection**
2214
2215 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2216 |(% rowspan="4" style="width:361px" %)(((
2217 Nominal Voltage: 3.6V
2218
2219 Nominal capacity: 2700mAh
2220 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2221 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2222 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2223 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2224
2225 Table 6-57 Absolute value encoder battery information
2226
2227 **✎Note: **
2228
2229 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2230
2231 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2232
2233 Correct placement of batteries +, - direction
2234
2235 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2236 1. This battery cannot be charged.
2237 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2238 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2239 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2240
2241 = **Other functions** =
2242
2243 == VDI ==
2244
2245 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2246
2247 (% class="box infomessage" %)
2248 (((
2249 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2250 )))
2251
2252 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2253
2254 (% style="text-align:center" %)
2255 (((
2256 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2257 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2258 )))
2259
2260 |=(% scope="row" %)**Function code**|=**Name**|=(((
2261 **Setting method**
2262 )))|=(((
2263 **Effective time**
2264 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2265 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2266 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2267
2268 VDI_1 input level:
2269
2270 * 0: low level
2271 * 1: high level
2272 )))|-
2273 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2274 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2275
2276 VDI_2 input level:
2277
2278 * 0: low level
2279 * 1: high level
2280 )))|-
2281 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2282 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2283
2284 VDI_3 input level:
2285
2286 * 0: low level
2287 * 1: high level
2288 )))|-
2289 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2290 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2291
2292 VDI_4 input level:
2293
2294 * 0: low level
2295 * 1: high level
2296 )))|-
2297 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2298 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2299
2300 VDI_5 input level:
2301
2302 * 0: low level
2303 * 1: high level
2304 )))|-
2305 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2306 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2307
2308 VDI_6 input level:
2309
2310 * 0: low level
2311 * 1: high level
2312 )))|-
2313 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2314 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2315
2316 VDI_7 input level:
2317
2318 * 0: low level
2319 * 1: high level
2320 )))|-
2321 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2322 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2323
2324 VDI_8 input level:
2325
2326 * 0: low level
2327 * 1: high level
2328 )))|-
2329
2330 Table 6-57 Virtual VDI parameters
2331
2332 (% class="box infomessage" %)
2333 (((
2334 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2335 )))
2336
2337 == Port filtering time ==
2338
2339 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2340
2341 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2342 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2343 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2344
2345 Table 6-58 DI terminal channel logic selection
2346
2347 == **VDO** ==
2348
2349 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2350
2351 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2352
2353 (% style="text-align:center" %)
2354 (((
2355 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2356 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2357 )))
2358
2359
2360 |=(% scope="row" %)**Function code**|=**Name**|=(((
2361 **Setting method**
2362 )))|=(((
2363 **Effective time**
2364 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2365 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2366 VDO_1 output level:
2367
2368 * 0: low level
2369 * 1: high level
2370 )))|-
2371 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2372 VDO_2 output level:
2373
2374 * 0: low level
2375 * 1: high level
2376 )))|-
2377 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2378 VDO_3 output level:
2379
2380 * 0: low level
2381 * 1: high level
2382 )))|-
2383 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2384 VDO_4 output level:
2385
2386 * 0: low level
2387 * 1: high level
2388 )))|-
2389
2390 Table 6-59 Communication control DO function parameters
2391
2392 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2393 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2394 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2395 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2396 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2397
2398 Table 6-60 VDO function number
2399
2400 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2401
2402 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2403
2404 == Motor overload protection ==
2405
2406 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2407
2408 |=(% scope="row" %)**Function code**|=**Name**|=(((
2409 **Setting method**
2410 )))|=(((
2411 **Effective time**
2412 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2413 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2414 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2415
2416 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2417 )))|%
2418
2419 In the following cases, it could be modified according to the actual heat generation of the motor
2420
2421 1. The motor works in a place with high ambient temperature
2422 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2423
2424 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2425
2426 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2427
2428 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.