Wiki source code of 06 Operation

Version 60.1 by Jim(Forgotten) on 2023/04/10 10:47

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 * 0: standard setting (CW is forward rotation)
90 * 1: reverse mode (CCW is forward rotation)
91 )))|-
92
93 Table 6-3 Rotation direction parameters** **
94
95 == **Braking resistor** ==
96
97 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
98
99 The basis for judging whether the braking resistor is built-in or external.
100
101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103
104 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
105 **Setting method**
106 )))|=(% style="width: 126px;" %)(((
107 **Effective time**
108 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
110 Operation setting
111 )))|(% style="width:126px" %)(((
112 Effective immediately
113 )))|0|0 to 3|(((
114 * 0: use built-in braking resistor
115 * 1: use external braking resistor and natural cooling
116 * 2: use external braking resistor and forced air cooling; (cannot be set)
117 * 3: No braking resistor is used, it is all absorbed by capacitor.
118 )))|-
119 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
121 Operation setting
122 )))|(% style="width:126px" %)(((
123 Effective immediately
124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
126 Operation setting
127 )))|(% style="width:126px" %)(((
128 Effective immediately
129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130
131 Table 6-4 Braking resistor parameters
132
133 == **Servo operation** ==
134
135 **Set the servo enable (S-ON) to valid (ON)**
136
137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138
139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140
141 **Input the instruction and the motor rotates**
142
143 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
144
145 **Timing diagram of power on**
146
147 (% style="text-align:center" %)
148 (((
149 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 )))
152
153 == Servo shutdown ==
154
155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
156
157 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 |=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
160
161 Table 6-5 Comparison of two shutdown modes
162
163 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165
166 Table 6-6 Comparison of two shutdown status
167
168 **Servo enable (S-ON) OFF shutdown**
169
170 The related parameters of the servo OFF shutdown mode are shown in the table below.
171
172 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
173 **Setting method**
174 )))|=(% style="width: 134px;" %)(((
175 **Effective time**
176 )))|=(% style="width: 86px;" %)(((
177 **Default value**
178 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
180 Shutdown
181
182 setting
183 )))|(% style="width:134px" %)(((
184 Effective
185
186 immediately
187 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 * 0: Free shutdown, and the motor shaft remains free status.
189 * 1: Zero-speed shutdown, and the motor shaft remains free status.
190 )))|-
191
192 Table 6-7 Servo OFF shutdown mode parameters details
193
194 **Emergency shutdown**
195
196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
197
198 **Overtravel shutdown**
199
200 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
201
202 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
203
204 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
205
206 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
207 **Setting method**
208 )))|=(% style="width: 114px;" %)(((
209 **Effective time**
210 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
211 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
212 * 0: OFF (not used)
213 * 01: S-ON servo enable
214 * 02: A-CLR fault and Warning Clear
215 * 03: POT forward drive prohibition
216 * 04: NOT Reverse drive prohibition
217 * 05: ZCLAMP Zero speed
218 * 06: CL Clear deviation counter
219 * 07: C-SIGN Inverted instruction
220 * 08: E-STOP Emergency stop
221 * 09: GEAR-SEL Electronic Gear Switch 1
222 * 10: GAIN-SEL gain switch
223 * 11: INH Instruction pulse prohibited input
224 * 12: VSSEL Vibration control switch input
225 * 13: INSPD1 Internal speed instruction selection 1
226 * 14: INSPD2 Internal speed instruction selection 2
227 * 15: INSPD3 Internal speedinstruction selection 3
228 * 16: J-SEL inertia ratio switch (not implemented yet)
229 * 17: MixModesel mixed mode selection
230 * 20: Internal multi-segment position enable signal
231 * 21: Internal multi-segment position selection 1
232 * 22: Internal multi-segment position selection 2
233 * 23: Internal multi-segment position selection 3
234 * 24: Internal multi-segment position selection 4
235 * Others: reserved
236 )))|-
237 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
238 Effective immediately
239 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
240 DI port input logic validity function selection.
241
242 * 0: Normally open input. Active low level (switch on);
243 * 1: Normally closed input. Active high level (switch off);
244 )))|-
245 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
246 Effective immediately
247 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
248 Select the DI_3 port type to enable
249
250 * 0: Hardware DI_3 input terminal
251 * 1: virtual VDI_3 input terminal
252 )))|-
253 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
254 Operation setting
255 )))|(% style="width:114px" %)(((
256 again Power-on
257 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
258 * 0: OFF (not used)
259 * 01: SON Servo enable
260 * 02: A-CLR Fault and Warning Clear
261 * 03: POT Forward drive prohibition
262 * 04: NOT Reverse drive prohibition
263 * 05: ZCLAMP Zero speed
264 * 06: CL Clear deviation counter
265 * 07: C-SIGN Inverted instruction
266 * 08: E-STOP Emergency shutdown
267 * 09: GEAR-SEL Electronic Gear Switch 1
268 * 10: GAIN-SEL gain switch
269 * 11: INH Instruction pulse prohibited input
270 * 12: VSSEL Vibration control switch input
271 * 13: INSPD1 Internal speed instruction selection 1
272 * 14: INSPD2 Internal speed instruction selection 2
273 * 15: INSPD3 Internal speed instruction selection 3
274 * 16: J-SEL inertia ratio switch (not implemented yet)
275 * 17: MixModesel mixed mode selection
276 * 20: Internal multi-segment position enable signal
277 * 21: Internal multi-segment position selection 1
278 * 22: Internal multi-segment position selection 2
279 * 23: Internal multi-segment position selection 3
280 * 24: Internal multi-segment position selection 4
281 * Others: reserved
282 )))|-
283 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
284 Effective immediately
285 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
286 DI port input logic validity function selection.
287
288 * 0: Normally open input. Active low level (switch on);
289 * 1: Normally closed input. Active high level (switch off);
290 )))|-
291 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
292 Effective immediately
293 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
294 Select the DI_4 port type to enable
295
296 * 0: Hardware DI_4 input terminal
297 * 1: virtual VDI_4 input terminal
298 )))|-
299
300 Table 6-8 DI3 and DI4 channel parameters
301
302 **(4) Malfunction shutdown**
303
304 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
305
306 == Brake device ==
307
308 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
309
310 (% class="warning" %)|(((
311 (% style="text-align:center" %)
312 [[image:image-20220611151617-1.png]]
313 )))
314 |(((
315 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
316
317 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
318
319 ✎The brake coil has no polarity;
320
321 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
322
323 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
324 )))
325
326 **Wiring of brake device**
327
328 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
329
330
331 (% style="text-align:center" %)
332 (((
333 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
335 )))
336
337 (% class="warning" %)|(((
338 (% style="text-align:center" %)
339 [[image:image-20220611151642-2.png]]
340 )))
341 |(((
342 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
343
344 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
345
346 ✎It is recommended to use cables above 0.5 mm².
347 )))
348
349 **Brake software setting**
350
351 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
352
353 Related function code is as below.
354
355 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
356 **Effective time**
357 )))
358 |=141|(% style="width:241px" %)(((
359 BRK-OFF Brake output
360 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
361
362 Table 6-2 Relevant function codes for brake setting
363
364 |=(% scope="row" %)**Function code**|=**Name**|=(((
365 **Setting method**
366 )))|=(((
367 **Effective time**
368 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
369 |=P1-30|Delay from brake output to instruction reception|(((
370 Operation setting
371 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
372 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
373 Operation setting
374 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
375 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
376 Operation setting
377 )))|Effective immediately|30|0 to 3000|(((
378 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
379
380 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
381 )))|rpm
382 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
383 Operation setting
384 )))|Effective immediately|500|1 to 1000|(((
385 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
386
387 When brake output (BRK-OFF) is not allocated, this function code has no effect.
388 )))|ms
389
390 Table 6-9 Brake setting function codes
391
392 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
393
394 **Servo drive brake timing in normal state**
395
396 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
397
398 * Brake timing when servo motor is stationary
399
400 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
401
402 (% class="warning" %)|(((
403 (% style="text-align:center" %)
404 [[image:image-20220611151705-3.png]]
405 )))
406 |(((
407 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
408
409 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
410 )))
411
412 (% style="text-align:center" %)
413 (((
414 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
415 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
416 )))
417
418 (% class="box infomessage" %)
419 (((
420 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
421 )))
422
423 * The brake timing when servo motor rotates
424
425 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
426
427 (% class="warning" %)|(((
428 (% style="text-align:center" %)
429 [[image:image-20220611151719-4.png]]
430 )))
431 |(((
432 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
433
434 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
435
436 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
437
438 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
439
440 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
441 )))
442
443 (% style="text-align:center" %)
444 (((
445 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
446 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
447 )))
448
449 **Brake timing when the servo drive fails**
450
451 The brake timing (free shutdown) in the fault status is as follows.
452
453 (% style="text-align:center" %)
454 (((
455 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
456 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
457 )))
458
459 = **Position control mode** =
460
461 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
462
463 (% style="text-align:center" %)
464 (((
465 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
466 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
467 )))
468
469 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
470
471 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
472 **Setting method**
473 )))|=(((
474 **Effective time**
475 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
476 |=(% style="width: 123px;" %)P01-01|(% style="width:134px" %)Control mode|(((
477 Operation setting
478 )))|(((
479 immediately Effective
480 )))|0|0 to 6|(((
481 0: position control
482
483 2: speed control
484
485 3: torque control
486
487 4: position/speed mix control
488
489 5: position/torque mix control
490
491 6: speed /torque mix control
492 )))|-
493
494 Table 6-10 Control mode parameters
495
496 == Position instruction input setting ==
497
498 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
499
500 |=(% scope="row" %)**Function code**|=**Name**|=(((
501 **Setting method**
502 )))|=(((
503 **Effective time**
504 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
505 |=P01-06|Position instruction source|(((
506 Operation setting
507 )))|(((
508 immediately Effective
509 )))|0|0 to 1|(((
510 0: pulse instruction
511
512 1: internal position instruction
513 )))|-
514
515 Table 6-11 Position instruction source parameter
516
517 **The source of position instruction is pulse instruction (P01-06=0)**
518
519 Low-speed pulse instruction input
520
521 |(% style="text-align:center" %)(((
522 (% class="wikigeneratedid" %)
523 [[VD2A and VD2B servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
524 )))|(% style="text-align:center" %)(((
525 (% class="wikigeneratedid" %)
526 [[VD2F servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
527 )))
528 |(% colspan="2" %)Figure 6-7 Position instruction input setting
529
530 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
531
532 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
533
534 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
535 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
536 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
537
538 Table 6-12 Pulse input specifications
539
540 * Differential input
541
542 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
543
544 (% style="text-align:center" %)
545 (((
546 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
547 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
548 )))
549
550 (% class="box infomessage" %)
551 (((
552 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
553 )))
554
555 * Open collector input
556
557 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
558
559 (% style="text-align:center" %)
560 (((
561 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
562 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
563 )))
564
565
566 (% class="box infomessage" %)
567 (((
568 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
569 )))
570
571 * Position pulse frequency and anti-interference level
572
573 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
574
575 (% style="text-align:center" %)
576 (((
577 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
578 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
579 )))
580
581 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
582
583 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
584 **Setting method**
585 )))|=(((
586 **Effective time**
587 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
588 |P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((
589 Shutdown setting
590 )))|(((
591 Effective immediately
592 )))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz
593 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
594 Operation setting
595 )))|(% rowspan="3" %)(((
596 Power-on again
597 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
598 Set the anti-interference level of external pulse instruction.
599
600 * 0: no filtering;
601 * 1: Filtering time 128ns
602 * 2: Filtering time 256ns
603 * 3: Filtering time 512ns
604 * 4: Filtering time 1.024us
605 * 5: Filtering time 2.048us
606 * 6: Filtering time 4.096us
607 * 7: Filtering time 8.192us
608 * 8: Filtering time 16.384us
609 * 9:
610 ** VD2: Filtering time 25.5us
611 ** VD2F: Filtering time 25.5us
612 )))|(% rowspan="3" %)-
613
614 Table 6-13 Position pulse frequency and anti-interference level parameters
615
616 * Position pulse type selection
617
618 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
619
620 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
621 **Setting method**
622 )))|=(% style="width: 109px;" %)(((
623 **Effective time**
624 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
625 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
626 Operation setting
627 )))|(% style="width:109px" %)(((
628 Power-on again
629 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
630 * 0: direction + pulse (positive logic)
631 * 1: CW/CCW
632 * 2: A, B phase quadrature pulse (4 times frequency)
633 * 3: Direction + pulse (negative logic)
634 * 4: CW/CCW (negative logic)
635 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
636 )))|-
637
638 Table 6-14 Position pulse type selection parameter
639
640 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
641 |=0|(% style="width:200px" %)(((
642 Direction + pulse
643
644 (Positive logic)
645 )))|(% style="width:161px" %)(((
646 PULSE
647
648 SIGN
649 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
650 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
651 PULSE (CW)
652
653 SIGN (CCW)
654 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
655 |=2|(% style="width:200px" %)(((
656 AB phase orthogonal
657
658 pulse (4 times frequency)
659 )))|(% style="width:161px" %)(((
660 PULSE (Phase A)
661
662 SIGN (Phase B)
663 )))|(((
664
665
666 [[image:image-20220707094358-9.jpeg]]
667
668 Phase A is 90° ahead of Phase B
669 )))|(((
670
671
672 [[image:image-20220707094407-10.jpeg]]
673
674 Phase B is 90° ahead of Phase A
675 )))
676 |=3|(% style="width:200px" %)(((
677 Direction + pulse
678
679 (Negative logic)
680 )))|(% style="width:161px" %)(((
681 PULSE
682
683 SIGN
684 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
685 |=4|(% style="width:200px" %)(((
686 CW/CCW
687
688 (Negative logic)
689 )))|(% style="width:161px" %)(((
690 PULSE (CW)
691
692 SIGN (CCW)
693 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
694 |=5|(% style="width:200px" %)(((
695 AB phase orthogonal
696
697 pulse (4 times frequency negative logic)
698 )))|(% style="width:161px" %)(((
699 PULSE (Phase A)
700
701 SIGN (Phase B)
702 )))|(((
703
704
705 [[image:image-20220707094429-14.jpeg]]
706
707 Phase B is ahead of A phase by 90°
708 )))|(((
709
710
711 [[image:image-20220707094437-15.jpeg]]
712
713 Phase A is ahead of B phase by 90°
714 )))
715
716 Table 6-15 Pulse description
717
718 **The source of position instruction is internal position instruction (P01-06=1)**
719
720 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
721
722 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
723
724 (% style="text-align:center" %)
725 (((
726 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
727 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
728 )))
729
730
731 * Set multi-segment position running mode
732
733 |=(% scope="row" %)**Function code**|=**Name**|=(((
734 **Setting method**
735 )))|=(((
736 **Effective time**
737 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
738 |=P07-01|Multi-segment position running mode|(((
739 Shutdown setting
740 )))|(((
741 Effective immediately
742 )))|0|0 to 2|(((
743 * 0: Single running
744 * 1: Cycle running
745 * 2: DI switching running
746 )))|-
747 |=P07-02|Start segment number|(((
748 Shutdown setting
749 )))|(((
750 Effective immediately
751 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
752 |=P07-03|End segment number|(((
753 Shutdown setting
754 )))|(((
755 Effective immediately
756 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
757 |=P07-04|Margin processing method|(((
758 Shutdown setting
759 )))|(((
760 Effective immediately
761 )))|0|0 to 1|(((
762 * 0: Run the remaining segments
763 * 1: Run again from the start segment
764 )))|-
765 |=P07-05|Displacement instruction type|(((
766 Shutdown setting
767 )))|(((
768 Effective immediately
769 )))|0|0 to 1|(((
770 * 0: Relative position instruction
771 * 1: Absolute position instruction
772 )))|-
773
774 Table 6-16 multi-segment position running mode parameters
775
776 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
777
778 1. Single running
779
780 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
781
782 (% style="text-align:center" %)
783 (((
784 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
785 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
786 )))
787
788 * 2. Cycle running
789
790 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
791
792 (% style="text-align:center" %)
793 (((
794 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
795 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
796 )))
797
798 (% class="warning" %)|(((
799 (% style="text-align:center" %)
800 [[image:image-20220611151917-5.png]]
801 )))
802 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
803
804 (% start="3" %)
805 1. DI switching running
806
807 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
808
809 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
810 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
811 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
812 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
813 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
814
815 Table 6-17 DI function code
816
817 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
818
819 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
820 |=0|0|0|0|1
821 |=0|0|0|1|2
822 |=0|0|1|0|3
823 |=0|0|1|1|4
824 |=0|1|0|0|5
825 |=0|1|0|1|6
826 |=0|1|1|0|7
827 |=0|1|1|1|8
828 |=1|0|0|0|9
829 |=1|0|0|1|10
830 |=1|0|1|0|11
831 |=1|0|1|1|12
832 |=1|1|0|0|13
833 |=1|1|0|1|14
834 |=1|1|1|0|15
835 |=1|1|1|1|16
836
837 Table 6-18 INPOS corresponds to running segment number
838
839 The operating curve in this running mode is shown in __Figure 6-14__.
840
841 (% style="text-align:center" %)
842 (((
843 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
844 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
845 )))
846
847 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
848
849 **Run the remaining segments**
850
851 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
852
853 (% style="text-align:center" %)
854 (((
855 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
856 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
857 )))
858
859 (% style="text-align:center" %)
860 (((
861 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
862 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
863 )))
864
865 **Run again from the start segment**
866
867 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
868
869 (% style="text-align:center" %)
870 (((
871 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
872 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
873 )))
874
875 (% style="text-align:center" %)
876 (((
877 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
878 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
879 )))
880
881 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
882
883 * Relative position instruction
884
885 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
886
887 |(((
888 (% style="text-align:center" %)
889 (((
890 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
891 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
892 )))
893 )))|(((
894 (% style="text-align:center" %)
895 (((
896 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
897 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
898 )))
899 )))
900
901 * Absolute position instruction
902
903 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
904
905 |(((
906 (% style="text-align:center" %)
907 (((
908 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
909 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
910 )))
911 )))|(((
912 (% style="text-align:center" %)
913 (((
914 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
915 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
916 )))
917 )))
918
919 * Multi-segment position running curve setting
920
921 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
922
923 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
924 |=P07-09|(((
925 1st segment
926
927 displacement
928 )))|(((
929 Operation setting
930 )))|(((
931 Effective immediately
932 )))|10000|(((
933 -2147483647 to
934
935 2147483646
936 )))|Position instruction, positive and negative values could be set|-
937 |=P07-10|Maximum speed of the 1st displacement|(((
938 Operation setting
939 )))|(((
940 Effective immediately
941 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
942 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
943 Operation setting
944 )))|(((
945 Effective immediately
946 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
947 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
948 Operation setting
949 )))|(((
950 Effective immediately
951 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
952
953 Table 6-19 The 1st position operation curve parameters table
954
955 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
956
957 (% style="text-align:center" %)
958 (((
959 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
960 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
961 )))
962
963
964 * multi-segment position instruction enable
965
966 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
967
968 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
969 |=20|ENINPOS: Internal multi-segment position enable signal|(((
970 DI port logic invalid: Does not affect the current operation of the servo motor.
971
972 DI port logic valid: Motor runs multi-segment position
973 )))
974
975 (% style="text-align:center" %)
976 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
977
978 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
979
980 == Electronic gear ratio ==
981
982 **Definition of electronic gear ratio**
983
984 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
985
986 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
987
988 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
989
990 (% style="text-align:center" %)
991 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
992
993 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
994
995 **Setting steps of electronic gear ratio**
996
997 (% style="text-align:center" %)
998 (((
999 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1000 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1001 )))
1002
1003 **lectronic gear ratio switch setting**
1004
1005 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1006
1007 |=(% scope="row" %)**Function code**|=**Name**|=(((
1008 **Setting method**
1009 )))|=(((
1010 **Effective time**
1011 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1012 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1013 Shutdown setting
1014 )))|(((
1015 Effective immediately
1016 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1017 Instruction pulse
1018
1019 unit
1020 )))
1021 |=P00-17|(((
1022 Electronic gear 1
1023
1024 numerator
1025 )))|Operation setting|(((
1026 Effective immediately
1027 )))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1028 |=P00-18|(((
1029 Electronic gear 1
1030
1031 denominator
1032 )))|(((
1033 Operation setting
1034 )))|(((
1035 Effective immediately
1036 )))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1037 |=P00-19|(((
1038 Electronic gear 2
1039
1040 numerator
1041 )))|Operation setting|(((
1042 Effective immediately
1043 )))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1044 |=P00-20|(((
1045 Electronic gear 2
1046
1047 denominator
1048 )))|Operation setting|(((
1049 Effective immediately
1050 )))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1051
1052 Table 6-20 Electronic gear ratio function code
1053
1054 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1055
1056 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1057 |=09|GEAR-SEL electronic gear switch 1|(((
1058 DI port logic invalid: electronic gear ratio 1
1059
1060 DI port logic valid: electronic gear ratio 2
1061 )))
1062
1063 Table 6-21 Switching conditions of electronic gear ratio group
1064
1065 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1066 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1067 (% style="text-align:center" %)
1068 [[image:image-20220707101328-21.png]]
1069 )))
1070 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1071 (% style="text-align:center" %)
1072 [[image:image-20220707101336-22.png]]
1073 )))
1074 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1075 (% style="text-align:center" %)
1076 [[image:image-20220707101341-23.png]]
1077 )))
1078
1079 Table 6-22 Application of electronic gear ratio
1080
1081 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1082
1083 == Position instruction filtering ==
1084
1085 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1086
1087 In the following situations, position instruction filtering should be added.
1088
1089 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1090 1. The pulse instruction frequency is low;
1091 1. When the electronic gear ratio is 10 times or more.
1092
1093 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1094
1095 (% style="text-align:center" %)
1096 (((
1097 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1098 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1099 )))
1100
1101 |=(% scope="row" %)**Function code**|=**Name**|=(((
1102 **Setting method**
1103 )))|=(((
1104 **Effective time**
1105 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1106 |=P04-01|Pulse instruction filtering method|(((
1107 Shutdown setting
1108 )))|(((
1109 Effective immediately
1110 )))|0|0 to 1|(((
1111 * 0: 1st-order low-pass filtering
1112 * 1: average filtering
1113 )))|-
1114 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1115 Effective immediately
1116 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1117 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1118 Effective immediately
1119 )))|0|0 to 128|Position instruction average filtering time constant|ms
1120
1121 Table 6-23 Position instruction filter function code
1122
1123 == Clearance of position deviation ==
1124
1125 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1126
1127 Position deviation = (position instruction-position feedback) (encoder unit)
1128
1129 == Position-related DO output function ==
1130
1131 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1132
1133 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1134 **Positioning completion/positioning approach output**
1135
1136 (% class="wikigeneratedid" %)
1137 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1138
1139 (% style="text-align:center" %)
1140 (((
1141 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1142 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1143 )))
1144
1145 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1146
1147 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1148
1149 (% style="text-align:center" %)
1150 (((
1151 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1152 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1153 )))
1154
1155 |=(% scope="row" %)**Function code**|=**Name**|=(((
1156 **Setting method**
1157 )))|=(% style="width: 129px;" %)(((
1158 **Effective time**
1159 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1160 |=P05-12|Positioning completion threshold|(((
1161 Operation setting
1162 )))|(% style="width:129px" %)(((
1163 Effective immediately
1164 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1165 |=P05-13|Positioning approach threshold|(((
1166 Operation setting
1167 )))|(% style="width:129px" %)(((
1168 Effective immediately
1169 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1170 |=P05-14|Position detection window time|(((
1171 Operation setting
1172 )))|(% style="width:129px" %)(((
1173 Effective immediately
1174 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1175 |=P05-15|Positioning signal hold time|(((
1176 Operation setting
1177 )))|(% style="width:129px" %)(((
1178 Effective immediately
1179 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1180
1181 Table 6-24 Function code parameters of positioning completion
1182
1183 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1184 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1185 |=135|(((
1186 P-NEAR positioning close
1187 )))|(((
1188 Output this signal indicates that the servo drive position is close.
1189 )))
1190
1191 Table 6-25 Description of DO rotation detection function code
1192
1193 = **Speed control mode** =
1194
1195 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1196
1197 (% style="text-align:center" %)
1198 (((
1199 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1200 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1201 )))
1202
1203 == Speed instruction input setting ==
1204
1205 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1206
1207 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1208 **Setting method**
1209 )))|=(% style="width: 125px;" %)(((
1210 **Effective time**
1211 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1212 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1213 Shutdown setting
1214 )))|(% style="width:125px" %)(((
1215 Effective immediately
1216 )))|(% style="width:85px" %)1|(% style="width:75px" %)1 to 1|(% style="width:310px" %)(((
1217 * 0: internal speed instruction
1218 * 1: AI_1 analog input (not supported by VD2F)
1219 )))|-
1220
1221 Table 6-26 Speed instruction source parameter
1222
1223 **Speed instruction source is internal speed instruction (P01-01=0)**
1224
1225 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1226
1227 (% style="width:1141px" %)
1228 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1229 **Setting**
1230
1231 **method**
1232 )))|=(% colspan="2" %)(((
1233 **Effective**
1234
1235 **time**
1236 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1237 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1238 Internal speed
1239
1240 Instruction 0
1241 )))|(% colspan="2" %)(((
1242 Operation
1243
1244 setting
1245 )))|(% colspan="2" %)(((
1246 Effective
1247
1248 immediately
1249 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1250 Internal speed instruction 0
1251
1252 When DI input port:
1253
1254 * 15-INSPD3: 0
1255 * 14-INSPD2: 0
1256 * 13-INSPD1: 0,
1257
1258 select this speed instruction to be effective.
1259 )))|(% colspan="2" %)rpm
1260 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1261 Internal speed
1262
1263 Instruction 1
1264 )))|(% colspan="2" %)(((
1265 Operation
1266
1267 setting
1268 )))|(% colspan="2" %)(((
1269 Effective
1270
1271 immediately
1272 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1273 Internal speed instruction 1
1274
1275 When DI input port:
1276
1277 * 15-INSPD3: 0
1278 * 14-INSPD2: 0
1279 * 13-INSPD1: 1,
1280
1281 Select this speed instruction to be effective.
1282 )))|(% colspan="2" %)rpm
1283 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1284 Internal speed
1285
1286 Instruction 2
1287 )))|(% colspan="2" %)(((
1288 Operation
1289
1290 setting
1291 )))|(% colspan="2" %)(((
1292 Effective
1293
1294 immediately
1295 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1296 Internal speed instruction 2
1297
1298 When DI input port:
1299
1300 * 15-INSPD3: 0
1301 * 14-INSPD2: 1
1302 * 13-INSPD1: 0,
1303
1304 Select this speed instruction to be effective.
1305 )))|(% colspan="2" %)rpm
1306 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1307 Internal speed
1308
1309 Instruction 3
1310 )))|(% colspan="2" %)(((
1311 Operation
1312
1313 setting
1314 )))|(% colspan="2" %)(((
1315 Effective
1316
1317 immediately
1318 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1319 Internal speed instruction 3
1320
1321 When DI input port:
1322
1323 * 15-INSPD3: 0
1324 * 14-INSPD2: 1
1325 * 13-INSPD1: 1,
1326
1327 Select this speed instruction to be effective.
1328 )))|(% colspan="2" %)rpm
1329 |=P01-26|(% colspan="2" %)(((
1330 Internal speed
1331
1332 Instruction 4
1333 )))|(% colspan="2" %)(((
1334 Operation
1335
1336 setting
1337 )))|(% colspan="2" %)(((
1338 Effective
1339
1340 immediately
1341 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1342 Internal speed instruction 4
1343
1344 When DI input port:
1345
1346 * 15-INSPD3: 1
1347 * 14-INSPD2: 0
1348 * 13-INSPD1: 0,
1349
1350 Select this speed instruction to be effective.
1351 )))|(% colspan="1" %)rpm
1352 |=P01-27|(% colspan="2" %)(((
1353 Internal speed
1354
1355 Instruction 5
1356 )))|(% colspan="2" %)(((
1357 Operation
1358
1359 setting
1360 )))|(% colspan="2" %)(((
1361 Effective
1362
1363 immediately
1364 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1365 Internal speed instruction 5
1366
1367 When DI input port:
1368
1369 * 15-INSPD3: 1
1370 * 14-INSPD2: 0
1371 * 13-INSPD1: 1,
1372
1373 Select this speed instruction to be effective.
1374 )))|(% colspan="1" %)rpm
1375 |=P01-28|(% colspan="2" %)(((
1376 Internal speed
1377
1378 Instruction 6
1379 )))|(% colspan="2" %)(((
1380 Operation
1381
1382 setting
1383 )))|(% colspan="2" %)(((
1384 Effective
1385
1386 immediately
1387 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1388 Internal speed instruction 6
1389
1390 When DI input port:
1391
1392 * 15-INSPD3: 1
1393 * 14-INSPD2: 1
1394 * 13-INSPD1: 0,
1395
1396 Select this speed instruction to be effective.
1397 )))|(% colspan="1" %)rpm
1398 |=P01-29|(% colspan="2" %)(((
1399 Internal speed
1400
1401 Instruction 7
1402 )))|(% colspan="2" %)(((
1403 Operation
1404
1405 setting
1406 )))|(% colspan="2" %)(((
1407 Effective
1408
1409 immediately
1410 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1411 Internal speed instruction 7
1412
1413 When DI input port:
1414
1415 * 15-INSPD3: 1
1416 * 14-INSPD2: 1
1417 * 13-INSPD1: 1,
1418
1419 Select this speed instruction to be effective.
1420 )))|(% colspan="1" %)rpm
1421
1422 Table 6-27 Internal speed instruction parameters
1423
1424 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1425 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1426 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1427 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1428
1429 Table 6-28 DI multi-speed function code description
1430
1431 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1432
1433
1434 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1435 |0|0|0|1|0
1436 |0|0|1|2|1
1437 |0|1|0|3|2
1438 |(% colspan="5" %)......
1439 |1|1|1|8|7
1440
1441 Table 6-29 Correspondence between INSPD bits and segment numbers
1442
1443 (% style="text-align:center" %)
1444 (((
1445 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1446 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1447 )))
1448
1449 **Speed instruction source is internal speed instruction (P01-01=1)**
1450
1451 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1452
1453 (% style="text-align:center" %)
1454 (((
1455 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1456 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1457 )))
1458
1459 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1460
1461 (% style="text-align:center" %)
1462 (((
1463 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1464 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1465 )))
1466
1467 Explanation of related terms:
1468
1469 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1470 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1471 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1472
1473 (% style="text-align:center" %)
1474 (((
1475 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1476 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1477 )))
1478
1479 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1480 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1481 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1482 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1483 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1484
1485 Table 6-30 AI_1 parameters
1486
1487 (% class="box infomessage" %)
1488 (((
1489 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1490 )))
1491
1492 == Acceleration and deceleration time setting ==
1493
1494 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1495
1496 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1497
1498 (% style="text-align:center" %)
1499 (((
1500 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1501 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1502 )))
1503
1504 (% style="text-align:center" %)
1505 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1506
1507 |=(% scope="row" %)**Function code**|=**Name**|=(((
1508 **Setting method**
1509 )))|=(((
1510 **Effective time**
1511 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1512 |=P01-03|Acceleration time|(((
1513 Operation setting
1514 )))|(((
1515 Effective immediately
1516 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1517 |=P01-04|Deceleration time|(((
1518 Operation setting
1519 )))|(((
1520 Effective immediately
1521 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1522
1523 Table 6-31 Acceleration and deceleration time parameters
1524
1525 == Speed instruction limit ==
1526
1527 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1528
1529 1. P01-10: Set the maximum speed limit value
1530 1. P01-12: Set forward speed limit value
1531 1. P01-13: Set reverse speed limit value
1532 1. The maximum speed of the motor: determined by motor model
1533
1534 The actual motor speed limit interval satisfies the following relationship:
1535
1536 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1537
1538 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1539
1540 |=(% scope="row" %)**Function code**|=**Name**|=(((
1541 **Setting method**
1542 )))|=(((
1543 **Effective time**
1544 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1545 |=P01-10|Maximum speed threshold|(((
1546 Operation setting
1547 )))|(((
1548 Effective immediately
1549 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1550 |=P01-12|Forward speed threshold|(((
1551 Operation setting
1552 )))|(((
1553 Effective immediately
1554 )))|3000|0 to 5000|Set forward speed limit value|rpm
1555 |=P01-13|Reverse speed threshold|(((
1556 Operation setting
1557 )))|(((
1558 Effective immediately
1559 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1560
1561 Table 6-32 Rotation speed related function codes
1562
1563 == Zero-speed clamp function ==
1564
1565 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1566
1567 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1568
1569 |=(% scope="row" %)**Function code**|=**Name**|=(((
1570 **Setting method**
1571 )))|=(((
1572 **Effective time**
1573 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1574 |=P01-21|(((
1575 Zero-speed clamp function selection
1576 )))|(((
1577 Operation setting
1578 )))|(((
1579 Effective immediately
1580 )))|0|0 to 3|(((
1581 Set the zero-speed clamp function. In speed mode:
1582
1583 * 0: Force the speed to 0;
1584 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1585 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1586 * 3: Invalid, ignore zero-speed clamp input
1587 )))|-
1588 |=P01-22|(((
1589 Zero-speed clamp speed threshold
1590 )))|(((
1591 Operation setting
1592 )))|(((
1593 Effective immediately
1594 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1595
1596 Table 6-33 Zero-speed clamp related parameters
1597
1598 (% style="text-align:center" %)
1599 (((
1600 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1601 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1602 )))
1603
1604 == Speed-related DO output function ==
1605
1606 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1607
1608 **Rotation detection signal**
1609
1610 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1611
1612 (% style="text-align:center" %)
1613 (((
1614 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1615 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1616 )))
1617
1618 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1619
1620 |=(% scope="row" %)**Function code**|=**Name**|=(((
1621 **Setting method**
1622 )))|=(((
1623 **Effective time**
1624 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1625 |=P05-16|(((
1626 Rotation detection
1627
1628 speed threshold
1629 )))|(((
1630 Operation setting
1631 )))|(((
1632 Effective immediately
1633 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1634
1635 Table 6-34 Rotation detection speed threshold parameters
1636
1637 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1638 |=132|(% style="width:247px" %)(((
1639 T-COIN rotation detection
1640 )))|(% style="width:695px" %)(((
1641 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1642
1643 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1644 )))
1645
1646 Table 6-35 DO rotation detection function code
1647
1648 **Zero-speed signal**
1649
1650 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1651
1652 (% style="text-align:center" %)
1653 (((
1654 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1655 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1656 )))
1657
1658 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1659
1660 |=(% scope="row" %)**Function code**|=**Name**|=(((
1661 **Setting method**
1662 )))|=(((
1663 **Effective time**
1664 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1665 |=P05-19|Zero speed output signal threshold|(((
1666 Operation setting
1667 )))|(((
1668 Effective immediately
1669 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1670
1671 Table 6-36 Zero-speed output signal threshold parameter
1672
1673 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1674 |=133|(((
1675 ZSP zero speed signal
1676 )))|Output this signal indicates that the servo motor is stopping rotation
1677
1678 Table 6-37 DO zero-speed signal function code
1679
1680 **Speed consistent signal**
1681
1682 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1683
1684 (% style="text-align:center" %)
1685 (((
1686 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1687 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1688 )))
1689
1690 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1691
1692 |=(% scope="row" %)**Function code**|=**Name**|=(((
1693 **Setting method**
1694 )))|=(((
1695 **Effective time**
1696 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1697 |=P05-17|Speed consistent signal threshold|(((
1698 Operationsetting
1699 )))|(((
1700 Effective immediately
1701 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1702
1703 Table 6-38 Speed consistent signal threshold parameters
1704
1705 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1706 |=136|(% style="width:262px" %)(((
1707 U-COIN consistent speed
1708 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1709
1710 Table 6-39 DO speed consistent function code
1711
1712 **Speed approach signal**
1713
1714 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1715
1716 (% style="text-align:center" %)
1717 (((
1718 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1719 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1720 )))
1721
1722 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1723
1724 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1725 **Setting method**
1726 )))|=(((
1727 **Effective time**
1728 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1729 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1730 Operation setting
1731 )))|(((
1732 Effective immediately
1733 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1734
1735 Table 6-40 Speed approaching signal threshold parameters
1736
1737 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1738 |=137|(((
1739 V-NEAR speed approach
1740 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1741
1742 Table 6-41 DO speed approach function code
1743
1744 = **Torque control mode** =
1745
1746 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1747
1748 (% style="text-align:center" %)
1749 (((
1750 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1751 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1752 )))
1753
1754 == Torque instru**ction input setting** ==
1755
1756 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1757
1758 |=(% scope="row" %)**Function code**|=**Name**|=(((
1759 **Setting method**
1760 )))|=(((
1761 **Effective time**
1762 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1763 |=P01-07|Torque instruction source|(((
1764 Shutdown setting
1765 )))|(((
1766 Effective immediately
1767 )))|0|0 to 1|(((
1768 0: internal torque instruction
1769
1770 1: AI_1 analog input(not supported by VD2F)
1771 )))|-
1772
1773 Table 6-42 Torque instruction source parameter
1774
1775 **Torque instruction source is internal torque instruction (P01-07=0)**
1776
1777 Torque instruction source is from inside, the value is set by function code P01-08.
1778
1779 |=(% scope="row" %)**Function code**|=**Name**|=(((
1780 **Setting method**
1781 )))|=(((
1782 **Effective time**
1783 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1784 |=P01-08|Torque instruction keyboard set value|(((
1785 Operation setting
1786 )))|(((
1787 Effective immediately
1788 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1789
1790 Table 6-43 Torque instruction keyboard set value
1791
1792 **Torque instruction source is internal torque instruction (P01-07=1)**
1793
1794 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1795
1796 (% style="text-align:center" %)
1797 (((
1798 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1799 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1800 )))
1801
1802 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1803
1804 (% style="text-align:center" %)
1805 (((
1806 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1807 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1808 )))
1809
1810 Explanation of related terms:
1811
1812 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1813 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1814 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1815
1816 (% style="text-align:center" %)
1817 (((
1818 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1819 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1820 )))
1821
1822 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1823 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1824 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1825 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1826 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1827
1828 Table 6-44 AI_1 parameters
1829
1830 (% class="box infomessage" %)
1831 (((
1832 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1833 )))
1834
1835 == Torque instruction filtering ==
1836
1837 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1838
1839 |=(% scope="row" %)**Function code**|=**Name**|=(((
1840 **Setting method**
1841 )))|=(((
1842 **Effective time**
1843 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1844 |=P04-04|Torque filtering time constant|(((
1845 Operation setting
1846 )))|(((
1847 Effective immediately
1848 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1849
1850 Table 6-45 Torque filtering time constant parameter details
1851
1852 (% class="box infomessage" %)
1853 (((
1854 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1855 )))
1856
1857 (% style="text-align:center" %)
1858 (((
1859 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1860 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1861 )))
1862
1863 == Torque instruction limit ==
1864
1865 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1866
1867 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1868
1869 (% style="text-align:center" %)
1870 (((
1871 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1872 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1873 )))
1874
1875 **Set torque limit source**
1876
1877 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1878
1879 |=(% scope="row" %)**Function code**|=**Name**|=(((
1880 **Setting method**
1881 )))|=(((
1882 **Effective time**
1883 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1884 |=P01-14|(((
1885 Torque limit source
1886 )))|(((
1887 Shutdown setting
1888 )))|(((
1889 Effective immediately
1890 )))|0|0 to 1|(((
1891 * 0: internal value
1892 * 1: AI_1 analog input (not supported by VD2F)
1893 )))|-
1894
1895 * Torque limit source is internal torque instruction (P01-14=0)
1896
1897 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1898
1899 |=(% scope="row" %)**Function code**|=**Name**|=(((
1900 **Setting method**
1901 )))|=(((
1902 **Effective time**
1903 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1904 |=P01-15|(((
1905 Forward torque limit
1906 )))|(((
1907 Operation setting
1908 )))|(((
1909 Effective immediately
1910 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1911 |=P01-16|(((
1912 Reverse torque limit
1913 )))|(((
1914 Operation setting
1915 )))|(((
1916 Effective immediately
1917 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1918
1919 Table 6-46 Torque limit parameter details
1920
1921 * Torque limit source is external (P01-14=1)
1922
1923 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1924
1925 **Set torque limit DO signal output**
1926
1927 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1928
1929 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1930 |=139|(((
1931 T-LIMIT in torque limit
1932 )))|Output of this signal indicates that the servo motor torque is limited
1933
1934 Table 6-47 DO torque limit function codes
1935
1936 == **Speed limit in torque mode** ==
1937
1938 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1939
1940 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1941
1942 |(((
1943 (% style="text-align:center" %)
1944 (((
1945 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1946 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1947 )))
1948 )))|(((
1949 (% style="text-align:center" %)
1950 (((
1951 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1952 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1953 )))
1954 )))
1955
1956 |=(% scope="row" %)**Function code**|=**Name**|=(((
1957 **Setting method**
1958 )))|=(((
1959 **Effective time**
1960 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1961 |=P01-17|(((
1962 Forward torque
1963
1964 limit in torque mode
1965 )))|(((
1966 Operation setting
1967 )))|(((
1968 Effective immediately
1969 )))|3000|0 to 5000|(((
1970 Forward torque
1971
1972 limit in torque mode
1973 )))|0.1%
1974 |=P01-18|(((
1975 Reverse torque
1976
1977 limit in torque mode
1978 )))|(((
1979 Operation setting
1980 )))|(((
1981 Effective immediately
1982 )))|3000|0 to 5000|(((
1983 Reverse torque
1984
1985 limit in torque mode
1986 )))|0.1%
1987
1988 Table 6-48 Speed limit parameters in torque mode
1989
1990 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
1991
1992 == Torque-related DO output functions ==
1993
1994 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
1995
1996 **Torque arrival**
1997
1998 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
1999
2000 (% style="text-align:center" %)
2001 (((
2002 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2003 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2004 )))
2005
2006 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2007
2008 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2009 **Setting method**
2010 )))|=(% style="width: 124px;" %)(((
2011 **Effective time**
2012 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2013 |=P05-20|(% style="width:113px" %)(((
2014 Torque arrival
2015
2016 threshold
2017 )))|(% style="width:100px" %)(((
2018 Operation setting
2019 )))|(% style="width:124px" %)(((
2020 Effective immediately
2021 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2022 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2023
2024 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2025
2026 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2027 )))|%
2028 |=P05-21|(% style="width:113px" %)(((
2029 Torque arrival
2030
2031 hysteresis
2032 )))|(% style="width:100px" %)(((
2033 Operation setting
2034 )))|(% style="width:124px" %)(((
2035 Effective immediately
2036 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2037
2038 Table 6-49 Torque arrival parameters
2039
2040 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2041 |=138|(((
2042 T-COIN torque arrival
2043 )))|Used to determine whether the actual torque instruction has reached the set range
2044
2045 Table 6-50 DO Torque Arrival Function Code
2046
2047 = **Mixed control mode** =
2048
2049 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2050
2051 * Position mode⇔ Speed mode
2052 * Position mode ⇔Torque mode
2053 * Speed mode ⇔Torque mode
2054
2055 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2056
2057 |=(% scope="row" %)**Function code**|=**Name**|=(((
2058 **Setting method**
2059 )))|=(((
2060 **Effective time**
2061 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2062 |=P00-01|Control mode|(((
2063 Shutdown setting
2064 )))|(((
2065 Shutdown setting
2066 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2067 * 1: Position control
2068 * 2: Speed control
2069 * 3: Torque control
2070 * 4: Position/speed mixed control
2071 * 5: Position/torque mixed control
2072 * 6: Speed/torque mixed control
2073 )))|-
2074
2075 Table 6-51 Mixed control mode parameters
2076
2077 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2078
2079 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2080 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2081 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2082 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2083 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2084 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2085 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2086 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2087 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2088 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2089 )))
2090
2091 Table 6-52 Description of DI function codes in control mode
2092
2093 (% class="box infomessage" %)
2094 (((
2095 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2096 )))
2097
2098 = **Absolute system** =
2099
2100 == Overview ==
2101
2102 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2103
2104 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2105
2106 == Single-turn absolute value system ==
2107
2108 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2109
2110 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2111 |A1 (single-turn magnetic encoder)|17|0 to 131071
2112
2113 Table 6-53 Single-turn absolute encoder information
2114
2115 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2116
2117 (% style="text-align:center" %)
2118 (((
2119 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2120 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2121 )))
2122
2123 == Multi-turn absolute value system ==
2124
2125 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2126
2127 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2128 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2129 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2130
2131 Table 6-54 Multi-turn absolute encoder information
2132
2133 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2134
2135 (% style="text-align:center" %)
2136 (((
2137 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2138 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2139 )))
2140
2141 == Related functions and parameters ==
2142
2143 **Encoder feedback data**
2144
2145 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2146
2147 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2148 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2149 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2150 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2151
2152 Table 6-55 Encoder feedback data
2153
2154 **Shield multi-turn absolute encoder battery fault**
2155
2156 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2157
2158 |=(% scope="row" %)**Function code**|=**Name**|=(((
2159 **Setting**
2160
2161 **method**
2162 )))|=(((
2163 **Effective**
2164
2165 **time**
2166 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2167 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2168 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2169 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2170 )))|-
2171
2172 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2173
2174 (% class="box infomessage" %)
2175 (((
2176 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2177 )))
2178
2179 == Absolute value system encoder battery box use precautions. ==
2180
2181 **Cautions**
2182
2183 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2184
2185 (% style="text-align:center" %)
2186 (((
2187 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2188 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2189 )))
2190
2191 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2192
2193 **Replace the battery**
2194
2195 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2196
2197 The specific replacement method is as follows:
2198
2199 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2200 * Step2 Remove the old battery.
2201 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2202 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2203
2204 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2205
2206 |=(% scope="row" %)**Function code**|=**Name**|=(((
2207 **Setting method**
2208 )))|=(((
2209 **Effective time**
2210 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2211 |=P10-06|Multi-turn absolute encoder reset|(((
2212 Shutdown setting
2213 )))|(((
2214 Effective immediately
2215 )))|0|0 to 1|(((
2216 * 0: No operation
2217 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2218
2219 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2220 )))|-
2221
2222 Table 6-56 Absolute encoder reset enable parameter
2223
2224 **Battery selection**
2225
2226 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2227 |(% rowspan="4" style="width:361px" %)(((
2228 Nominal Voltage: 3.6V
2229
2230 Nominal capacity: 2700mAh
2231 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2232 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2233 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2234 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2235
2236 Table 6-57 Absolute value encoder battery information
2237
2238 **✎Note: **
2239
2240 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2241
2242 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2243
2244 Correct placement of batteries +, - direction
2245
2246 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2247 1. This battery cannot be charged.
2248 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2249 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2250 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2251
2252 = **Other functions** =
2253
2254 == VDI ==
2255
2256 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2257
2258 (% class="box infomessage" %)
2259 (((
2260 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2261 )))
2262
2263 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2264
2265 (% style="text-align:center" %)
2266 (((
2267 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2268 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2269 )))
2270
2271 |=(% scope="row" %)**Function code**|=**Name**|=(((
2272 **Setting method**
2273 )))|=(((
2274 **Effective time**
2275 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2276 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2277 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2278
2279 VDI_1 input level:
2280
2281 * 0: low level
2282 * 1: high level
2283 )))|-
2284 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2285 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2286
2287 VDI_2 input level:
2288
2289 * 0: low level
2290 * 1: high level
2291 )))|-
2292 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2293 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2294
2295 VDI_3 input level:
2296
2297 * 0: low level
2298 * 1: high level
2299 )))|-
2300 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2301 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2302
2303 VDI_4 input level:
2304
2305 * 0: low level
2306 * 1: high level
2307 )))|-
2308 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2309 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2310
2311 VDI_5 input level:
2312
2313 * 0: low level
2314 * 1: high level
2315 )))|-
2316 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2317 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2318
2319 VDI_6 input level:
2320
2321 * 0: low level
2322 * 1: high level
2323 )))|-
2324 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2325 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2326
2327 VDI_7 input level:
2328
2329 * 0: low level
2330 * 1: high level
2331 )))|-
2332 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2333 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2334
2335 VDI_8 input level:
2336
2337 * 0: low level
2338 * 1: high level
2339 )))|-
2340
2341 Table 6-57 Virtual VDI parameters
2342
2343 (% class="box infomessage" %)
2344 (((
2345 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2346 )))
2347
2348 == Port filtering time ==
2349
2350 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2351
2352 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2353 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2354 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2355
2356 Table 6-58 DI terminal channel logic selection
2357
2358 == **VDO** ==
2359
2360 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2361
2362 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2363
2364 (% style="text-align:center" %)
2365 (((
2366 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2367 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2368 )))
2369
2370
2371 |=(% scope="row" %)**Function code**|=**Name**|=(((
2372 **Setting method**
2373 )))|=(((
2374 **Effective time**
2375 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2376 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2377 VDO_1 output level:
2378
2379 * 0: low level
2380 * 1: high level
2381 )))|-
2382 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2383 VDO_2 output level:
2384
2385 * 0: low level
2386 * 1: high level
2387 )))|-
2388 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2389 VDO_3 output level:
2390
2391 * 0: low level
2392 * 1: high level
2393 )))|-
2394 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2395 VDO_4 output level:
2396
2397 * 0: low level
2398 * 1: high level
2399 )))|-
2400
2401 Table 6-59 Communication control DO function parameters
2402
2403 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2404 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2405 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2406 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2407 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2408
2409 Table 6-60 VDO function number
2410
2411 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2412
2413 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2414
2415 == Motor overload protection ==
2416
2417 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2418
2419 |=(% scope="row" %)**Function code**|=**Name**|=(((
2420 **Setting method**
2421 )))|=(((
2422 **Effective time**
2423 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2424 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2425 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2426
2427 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2428 )))|%
2429
2430 In the following cases, it could be modified according to the actual heat generation of the motor
2431
2432 1. The motor works in a place with high ambient temperature
2433 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2434
2435 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2436
2437 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2438
2439 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.