Wiki source code of 06 Operation

Version 69.1 by Mora Zhou on 2024/07/15 15:54

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 * 0: standard setting (CW is forward rotation)
90 * 1: reverse mode (CCW is forward rotation)
91 )))|-
92
93 Table 6-3 Rotation direction parameters** **
94
95 == **Braking resistor** ==
96
97 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
98
99 The basis for judging whether the braking resistor is built-in or external.
100
101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103
104 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
105 **Setting method**
106 )))|=(% style="width: 126px;" %)(((
107 **Effective time**
108 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
110 Operation setting
111 )))|(% style="width:126px" %)(((
112 Effective immediately
113 )))|0|0 to 3|(((
114 * 0: use built-in braking resistor
115 * 1: use external braking resistor and natural cooling
116 * 2: use external braking resistor and forced air cooling; (cannot be set)
117 * 3: No braking resistor is used, it is all absorbed by capacitor.
118 )))|-
119 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
121 Operation setting
122 )))|(% style="width:126px" %)(((
123 Effective immediately
124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
126 Operation setting
127 )))|(% style="width:126px" %)(((
128 Effective immediately
129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130
131 Table 6-4 Braking resistor parameters
132
133 == **Servo operation** ==
134
135 **Set the servo enable (S-ON) to valid (ON)**
136
137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138
139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140
141 **Input the instruction and the motor rotates**
142
143 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
144
145 **Timing diagram of power on**
146
147 (% style="text-align:center" %)
148 (((
149 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 )))
152
153 == Servo shutdown ==
154
155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
156
157 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 |=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
160
161 Table 6-5 Comparison of two shutdown modes
162
163 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165
166 Table 6-6 Comparison of two shutdown status
167
168 **Servo enable (S-ON) OFF shutdown**
169
170 The related parameters of the servo OFF shutdown mode are shown in the table below.
171
172 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
173 **Setting method**
174 )))|=(% style="width: 134px;" %)(((
175 **Effective time**
176 )))|=(% style="width: 86px;" %)(((
177 **Default value**
178 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
180 Shutdown
181
182 setting
183 )))|(% style="width:134px" %)(((
184 Effective
185
186 immediately
187 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 * 0: Free shutdown, and the motor shaft remains free status.
189 * 1: Zero-speed shutdown, and the motor shaft remains free status.
190 )))|-
191
192 Table 6-7 Servo OFF shutdown mode parameters details
193
194 **Emergency shutdown**
195
196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
197
198 Estop mode 1 (deceleration stop):
199
200 ~1. Configurate DI function code: 8 [ESTOP]
201
202 2. Set P1-5 shutdown deceleration time.
203
204 3. Trigger DI emergency shutdown.
205
206 4. Servo emergency shutdown and deceleration to zero speed.
207
208 Estop mode 2:
209
210 ~1. Configurate DI function code: 1 [Servo enable SON]
211
212 2. Set P1-05 shutdown deceleration time.
213
214 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
215
216 4. Trigger DI to turn off servo enable SON.
217
218 |Function code|Name|(((
219 Setting
220
221 method
222 )))|(((
223 Effective
224
225 time
226 )))|Default|Range|Definition|Unit
227 |P01-05|Shutdown deceleration time|(((
228 Shutdown
229
230 setting
231 )))|(((
232 immediately
233
234 Effective
235 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
236
237 **Overtravel shutdown**
238
239 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
240
241 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
242
243 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
244
245 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
246 **Setting method**
247 )))|=(% style="width: 114px;" %)(((
248 **Effective time**
249 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
250 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
251 * 0: OFF (not used)
252 * 01: S-ON servo enable
253 * 02: A-CLR fault and Warning Clear
254 * 03: POT forward drive prohibition
255 * 04: NOT Reverse drive prohibition
256 * 05: ZCLAMP Zero speed
257 * 06: CL Clear deviation counter
258 * 07: C-SIGN Inverted instruction
259 * 08: E-STOP Emergency stop
260 * 09: GEAR-SEL Electronic Gear Switch 1
261 * 10: GAIN-SEL gain switch
262 * 11: INH Instruction pulse prohibited input
263 * 12: VSSEL Vibration control switch input
264 * 13: INSPD1 Internal speed instruction selection 1
265 * 14: INSPD2 Internal speed instruction selection 2
266 * 15: INSPD3 Internal speedinstruction selection 3
267 * 16: J-SEL inertia ratio switch (not implemented yet)
268 * 17: MixModesel mixed mode selection
269 * 20: Internal multi-segment position enable signal
270 * 21: Internal multi-segment position selection 1
271 * 22: Internal multi-segment position selection 2
272 * 23: Internal multi-segment position selection 3
273 * 24: Internal multi-segment position selection 4
274 * Others: reserved
275 )))|-
276 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
277 Effective immediately
278 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
279 DI port input logic validity function selection.
280
281 * 0: Normally open input. Active low level (switch on);
282 * 1: Normally closed input. Active high level (switch off);
283 )))|-
284 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
285 Effective immediately
286 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
287 Select the DI_3 port type to enable
288
289 * 0: Hardware DI_3 input terminal
290 * 1: virtual VDI_3 input terminal
291 )))|-
292 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
293 Operation setting
294 )))|(% style="width:114px" %)(((
295 again Power-on
296 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
297 * 0: OFF (not used)
298 * 01: SON Servo enable
299 * 02: A-CLR Fault and Warning Clear
300 * 03: POT Forward drive prohibition
301 * 04: NOT Reverse drive prohibition
302 * 05: ZCLAMP Zero speed
303 * 06: CL Clear deviation counter
304 * 07: C-SIGN Inverted instruction
305 * 08: E-STOP Emergency shutdown
306 * 09: GEAR-SEL Electronic Gear Switch 1
307 * 10: GAIN-SEL gain switch
308 * 11: INH Instruction pulse prohibited input
309 * 12: VSSEL Vibration control switch input
310 * 13: INSPD1 Internal speed instruction selection 1
311 * 14: INSPD2 Internal speed instruction selection 2
312 * 15: INSPD3 Internal speed instruction selection 3
313 * 16: J-SEL inertia ratio switch (not implemented yet)
314 * 17: MixModesel mixed mode selection
315 * 20: Internal multi-segment position enable signal
316 * 21: Internal multi-segment position selection 1
317 * 22: Internal multi-segment position selection 2
318 * 23: Internal multi-segment position selection 3
319 * 24: Internal multi-segment position selection 4
320 * Others: reserved
321 )))|-
322 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
323 Effective immediately
324 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
325 DI port input logic validity function selection.
326
327 * 0: Normally open input. Active low level (switch on);
328 * 1: Normally closed input. Active high level (switch off);
329 )))|-
330 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
331 Effective immediately
332 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
333 Select the DI_4 port type to enable
334
335 * 0: Hardware DI_4 input terminal
336 * 1: virtual VDI_4 input terminal
337 )))|-
338
339 Table 6-8 DI3 and DI4 channel parameters
340
341 **(4) Malfunction shutdown**
342
343 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
344
345 == Brake device ==
346
347 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
348
349 (% class="warning" %)|(((
350 (% style="text-align:center" %)
351 [[image:image-20220611151617-1.png]]
352 )))
353 |(((
354 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
355
356 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
357
358 ✎The brake coil has no polarity;
359
360 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
361
362 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
363 )))
364
365 **Wiring of brake device**
366
367 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
368
369
370 (% style="text-align:center" %)
371 (((
372 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
373 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
374 )))
375
376 (% class="warning" %)|(((
377 (% style="text-align:center" %)
378 [[image:image-20220611151642-2.png]]
379 )))
380 |(((
381 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
382
383 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
384
385 ✎It is recommended to use cables above 0.5 mm².
386 )))
387
388 **Brake software setting**
389
390 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
391
392 Related function code is as below.
393
394 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
395 **Effective time**
396 )))
397 |=141|(% style="width:241px" %)(((
398 BRK-OFF Brake output
399 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
400
401 Table 6-2 Relevant function codes for brake setting
402
403 |=(% scope="row" %)**Function code**|=**Name**|=(((
404 **Setting method**
405 )))|=(((
406 **Effective time**
407 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
408 |=P1-30|Delay from brake output to instruction reception|(((
409 Operation setting
410 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
411 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
412 Operation setting
413 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
414 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
415 Operation setting
416 )))|Effective immediately|30|0 to 3000|(((
417 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
418
419 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
420 )))|rpm
421 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
422 Operation setting
423 )))|Effective immediately|500|1 to 1000|(((
424 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
425
426 When brake output (BRK-OFF) is not allocated, this function code has no effect.
427 )))|ms
428
429 Table 6-9 Brake setting function codes
430
431 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
432
433 **Servo drive brake timing in normal state**
434
435 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
436
437 * Brake timing when servo motor is stationary
438
439 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
440
441 (% class="warning" %)|(((
442 (% style="text-align:center" %)
443 [[image:image-20220611151705-3.png]]
444 )))
445 |(((
446 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
447
448 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
449 )))
450
451 (% style="text-align:center" %)
452 (((
453 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
454 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
455 )))
456
457 (% class="box infomessage" %)
458 (((
459 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
460 )))
461
462 * The brake timing when servo motor rotates
463
464 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
465
466 (% class="warning" %)|(((
467 (% style="text-align:center" %)
468 [[image:image-20220611151719-4.png]]
469 )))
470 |(((
471 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
472
473 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
474
475 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
476
477 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
478
479 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
480 )))
481
482 (% style="text-align:center" %)
483 (((
484 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
485 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
486 )))
487
488 **Brake timing when the servo drive fails**
489
490 The brake timing (free shutdown) in the fault status is as follows.
491
492 (% style="text-align:center" %)
493 (((
494 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
495 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
496 )))
497
498 = **Position control mode** =
499
500 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
501
502 (% style="text-align:center" %)
503 (((
504 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
505 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
506 )))
507
508 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
509
510 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
511 **Setting method**
512 )))|=(((
513 **Effective time**
514 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
515 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
516 Operation setting
517 )))|(((
518 immediately Effective
519 )))|1|1 to 6|(((
520 1: position control
521
522 2: speed control
523
524 3: torque control
525
526 4: position/speed mix control
527
528 5: position/torque mix control
529
530 6: speed /torque mix control
531 )))|-
532
533 Table 6-10 Control mode parameters
534
535 == Position instruction input setting ==
536
537 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
538
539 |=(% scope="row" %)**Function code**|=**Name**|=(((
540 **Setting method**
541 )))|=(((
542 **Effective time**
543 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
544 |=P01-06|Position instruction source|(((
545 Operation setting
546 )))|(((
547 immediately Effective
548 )))|0|0 to 1|(((
549 0: pulse instruction
550
551 1: internal position instruction
552 )))|-
553
554 Table 6-12 Position instruction source parameter
555
556 **The source of position instruction is pulse instruction (P01-06=0)**
557
558 Low-speed pulse instruction input
559
560 |(% style="text-align:center" %)(((
561 (% class="wikigeneratedid" %)
562 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
563 )))|(% style="text-align:center" %)(((
564 (% class="wikigeneratedid" %)
565 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
566 )))
567 |(% colspan="2" %)Figure 6-7 Position instruction input setting
568
569 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
570
571 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
572
573 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
574 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
575 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
576
577 Table 6-13 Pulse input specifications
578
579 * Differential input
580
581 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
582
583 (% style="text-align:center" %)
584 (((
585 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
586 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
587 )))
588
589 (% class="box infomessage" %)
590 (((
591 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
592 )))
593
594 * Open collector input
595
596 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
597
598 (% style="text-align:center" %)
599 (((
600 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
601 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
602 )))
603
604
605 (% class="box infomessage" %)
606 (((
607 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
608 )))
609
610 * Position pulse frequency and anti-interference level
611
612 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
613
614 (% style="text-align:center" %)
615 (((
616 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
617 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
618 )))
619
620 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
621
622 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
623 **Setting method**
624 )))|=(((
625 **Effective time**
626 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
627 |P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((
628 Shutdown setting
629 )))|(((
630 Effective immediately
631 )))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz
632 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
633 Operation setting
634 )))|(% rowspan="3" %)(((
635 Power-on again
636 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
637 Set the anti-interference level of external pulse instruction.
638
639 * 0: no filtering;
640 * 1: Filtering time 128ns
641 * 2: Filtering time 256ns
642 * 3: Filtering time 512ns
643 * 4: Filtering time 1.024us
644 * 5: Filtering time 2.048us
645 * 6: Filtering time 4.096us
646 * 7: Filtering time 8.192us
647 * 8: Filtering time 16.384us
648 * 9:
649 ** VD2: Filtering time 25.5us
650 ** VD2F: Filtering time 25.5us
651 )))|(% rowspan="3" %)-
652
653 Table 6-14 Position pulse frequency and anti-interference level parameters
654
655 * Position pulse type selection
656
657 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
658
659 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
660 **Setting method**
661 )))|=(% style="width: 109px;" %)(((
662 **Effective time**
663 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
664 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
665 Operation setting
666 )))|(% style="width:109px" %)(((
667 Power-on again
668 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
669 * 0: direction + pulse (positive logic)
670 * 1: CW/CCW
671 * 2: A, B phase quadrature pulse (4 times frequency)
672 * 3: Direction + pulse (negative logic)
673 * 4: CW/CCW (negative logic)
674 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
675
676 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
677 )))|-
678
679 Table 6-15 Position pulse type selection parameter
680
681 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
682 |=0|(% style="width:200px" %)(((
683 Direction + pulse
684
685 (Positive logic)
686 )))|(% style="width:161px" %)(((
687 PULSE
688
689 SIGN
690 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
691 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
692 PULSE (CW)
693
694 SIGN (CCW)
695 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
696 |=2|(% style="width:200px" %)(((
697 AB phase orthogonal
698
699 pulse (4 times frequency)
700 )))|(% style="width:161px" %)(((
701 PULSE (Phase A)
702
703 SIGN (Phase B)
704 )))|(((
705
706
707 [[image:image-20220707094358-9.jpeg]]
708
709 Phase A is 90° ahead of Phase B
710 )))|(((
711
712
713 [[image:image-20220707094407-10.jpeg]]
714
715 Phase B is 90° ahead of Phase A
716 )))
717 |=3|(% style="width:200px" %)(((
718 Direction + pulse
719
720 (Negative logic)
721 )))|(% style="width:161px" %)(((
722 PULSE
723
724 SIGN
725 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
726 |=4|(% style="width:200px" %)(((
727 CW/CCW
728
729 (Negative logic)
730 )))|(% style="width:161px" %)(((
731 PULSE (CW)
732
733 SIGN (CCW)
734 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
735 |=5|(% style="width:200px" %)(((
736 AB phase orthogonal
737
738 pulse (4 times frequency negative logic)
739 )))|(% style="width:161px" %)(((
740 PULSE (Phase A)
741
742 SIGN (Phase B)
743 )))|(((
744
745
746 [[image:image-20220707094429-14.jpeg]]
747
748 Phase B is ahead of A phase by 90°
749 )))|(((
750
751
752 [[image:image-20220707094437-15.jpeg]]
753
754 Phase A is ahead of B phase by 90°
755 )))
756
757 Table 6-16 Pulse description
758
759 **The source of position instruction is internal position instruction (P01-06=1)**
760
761 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
762
763 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
764
765 (% style="text-align:center" %)
766 (((
767 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
768 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
769 )))
770
771
772 * Set multi-segment position running mode
773
774 |=(% scope="row" %)**Function code**|=**Name**|=(((
775 **Setting method**
776 )))|=(((
777 **Effective time**
778 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
779 |=P07-01|Multi-segment position running mode|(((
780 Shutdown setting
781 )))|(((
782 Effective immediately
783 )))|0|0 to 2|(((
784 0: Single running
785
786 1: Cycle running
787
788 2: DI switching running
789 )))|-
790 |=P07-02|Start segment number|(((
791 Shutdown setting
792 )))|(((
793 Effective immediately
794 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
795 |=P07-03|End segment number|(((
796 Shutdown setting
797 )))|(((
798 Effective immediately
799 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
800 |=P07-04|Margin processing method|(((
801 Shutdown setting
802 )))|(((
803 Effective immediately
804 )))|0|0 to 1|(((
805 0: Run the remaining segments
806
807 1: Run again from the start segment
808 )))|-
809 |=P07-05|Displacement instruction type|(((
810 Shutdown setting
811 )))|(((
812 Effective immediately
813 )))|0|0 to 1|(((
814 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
815
816 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
817 )))|-
818
819 Table 6-17 multi-segment position running mode parameters
820
821 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
822
823 1. Single running
824
825 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
826
827 (% style="text-align:center" %)
828 (((
829 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
830 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
831 )))
832
833 * 2. Cycle running
834
835 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
836
837 (% style="text-align:center" %)
838 (((
839 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
840 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
841 )))
842
843 (% class="warning" %)|(((
844 (% style="text-align:center" %)
845 [[image:image-20220611151917-5.png]]
846 )))
847 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
848
849 (% start="3" %)
850 1. DI switching running
851
852 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
853
854 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
855 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
856 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
857 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
858 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
859
860 Table 6-18 DI function code
861
862 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
863
864 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
865 |=0|0|0|0|1
866 |=0|0|0|1|2
867 |=0|0|1|0|3
868 |=0|0|1|1|4
869 |=0|1|0|0|5
870 |=0|1|0|1|6
871 |=0|1|1|0|7
872 |=0|1|1|1|8
873 |=1|0|0|0|9
874 |=1|0|0|1|10
875 |=1|0|1|0|11
876 |=1|0|1|1|12
877 |=1|1|0|0|13
878 |=1|1|0|1|14
879 |=1|1|1|0|15
880 |=1|1|1|1|16
881
882 Table 6-20 INPOS corresponds to running segment number
883
884 The operating curve in this running mode is shown in __Figure 6-14__.
885
886 (% style="text-align:center" %)
887 (((
888 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
889 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
890 )))
891
892 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
893
894 **Run the remaining segments**
895
896 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
897
898 (% style="text-align:center" %)
899 (((
900 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
901 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
902 )))
903
904 (% style="text-align:center" %)
905 (((
906 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
907 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
908 )))
909
910 **Run again from the start segment**
911
912 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
913
914 (% style="text-align:center" %)
915 (((
916 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
917 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
918 )))
919
920 (% style="text-align:center" %)
921 (((
922 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
923 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
924 )))
925
926 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
927
928 * Relative position instruction
929
930 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
931
932 |(((
933 (% style="text-align:center" %)
934 (((
935 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
936 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
937 )))
938 )))|(((
939 (% style="text-align:center" %)
940 (((
941 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
942 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
943 )))
944 )))
945
946 * Absolute position instruction
947
948 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
949
950 |(((
951 (% style="text-align:center" %)
952 (((
953 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
954 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
955 )))
956 )))|(((
957 (% style="text-align:center" %)
958 (((
959 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
960 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
961 )))
962 )))
963
964 * Multi-segment position running curve setting
965
966 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
967
968 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
969 |=P07-09|(((
970 1st segment
971
972 displacement
973 )))|(((
974 Operation setting
975 )))|(((
976 Effective immediately
977 )))|10000|(((
978 -2147483647 to
979
980 2147483646
981 )))|Position instruction, positive and negative values could be set|-
982 |=P07-10|Maximum speed of the 1st displacement|(((
983 Operation setting
984 )))|(((
985 Effective immediately
986 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
987 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
988 Operation setting
989 )))|(((
990 Effective immediately
991 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
992 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
993 Operation setting
994 )))|(((
995 Effective immediately
996 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
997
998 Table 6-21 The 1st position operation curve parameters table
999
1000 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1001
1002 (% style="text-align:center" %)
1003 (((
1004 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1005 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1006 )))
1007
1008
1009 * multi-segment position instruction enable
1010
1011 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1012
1013 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1014 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1015 DI port logic invalid: Does not affect the current operation of the servo motor.
1016
1017 DI port logic valid: Motor runs multi-segment position
1018 )))
1019
1020 (% style="text-align:center" %)
1021 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1022
1023 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1024
1025 == Electronic gear ratio ==
1026
1027 **Definition of electronic gear ratio**
1028
1029 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1030
1031 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1032
1033 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1034
1035 (% style="text-align:center" %)
1036 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1037
1038 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1039
1040 **Setting steps of electronic gear ratio**
1041
1042 (% style="text-align:center" %)
1043 (((
1044 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1045 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1046 )))
1047
1048 **lectronic gear ratio switch setting**
1049
1050 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1051
1052 |=(% scope="row" %)**Function code**|=**Name**|=(((
1053 **Setting method**
1054 )))|=(((
1055 **Effective time**
1056 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1057 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1058 Shutdown setting
1059 )))|(((
1060 Effective immediately
1061 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1062 Instruction pulse
1063
1064 unit
1065 )))
1066 |=P00-17|(((
1067 Electronic gear 1
1068
1069 numerator
1070 )))|Operation setting|(((
1071 Effective immediately
1072 )))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1073 |=P00-18|(((
1074 Electronic gear 1
1075
1076 denominator
1077 )))|(((
1078 Operation setting
1079 )))|(((
1080 Effective immediately
1081 )))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1082 |=P00-19|(((
1083 Electronic gear 2
1084
1085 numerator
1086 )))|Operation setting|(((
1087 Effective immediately
1088 )))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1089 |=P00-20|(((
1090 Electronic gear 2
1091
1092 denominator
1093 )))|Operation setting|(((
1094 Effective immediately
1095 )))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1096
1097 Table 6-20 Electronic gear ratio function code
1098
1099 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1100
1101 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1102 |=09|GEAR-SEL electronic gear switch 1|(((
1103 DI port logic invalid: electronic gear ratio 1
1104
1105 DI port logic valid: electronic gear ratio 2
1106 )))
1107
1108 Table 6-21 Switching conditions of electronic gear ratio group
1109
1110 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1111 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1112 (% style="text-align:center" %)
1113 [[image:image-20220707101328-21.png]]
1114 )))
1115 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1116 (% style="text-align:center" %)
1117 [[image:image-20220707101336-22.png]]
1118 )))
1119 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1120 (% style="text-align:center" %)
1121 [[image:image-20220707101341-23.png]]
1122 )))
1123
1124 Table 6-22 Application of electronic gear ratio
1125
1126 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1127
1128 == Position instruction filtering ==
1129
1130 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1131
1132 In the following situations, position instruction filtering should be added.
1133
1134 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1135 1. The pulse instruction frequency is low;
1136 1. When the electronic gear ratio is 10 times or more.
1137
1138 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1139
1140 (% style="text-align:center" %)
1141 (((
1142 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1143 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1144 )))
1145
1146 |=(% scope="row" %)**Function code**|=**Name**|=(((
1147 **Setting method**
1148 )))|=(((
1149 **Effective time**
1150 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1151 |=P04-01|Pulse instruction filtering method|(((
1152 Shutdown setting
1153 )))|(((
1154 Effective immediately
1155 )))|0|0 to 1|(((
1156 * 0: 1st-order low-pass filtering
1157 * 1: average filtering
1158 )))|-
1159 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1160 Effective immediately
1161 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1162 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1163 Effective immediately
1164 )))|0|0 to 128|Position instruction average filtering time constant|ms
1165
1166 Table 6-23 Position instruction filter function code
1167
1168 == Clearance of position deviation ==
1169
1170 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1171
1172 Position deviation = (position instruction-position feedback) (encoder unit)
1173
1174 == Position-related DO output function ==
1175
1176 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1177
1178 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1179 **Positioning completion/positioning approach output**
1180
1181 (% class="wikigeneratedid" %)
1182 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1183
1184 (% style="text-align:center" %)
1185 (((
1186 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1187 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1188 )))
1189
1190 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1191
1192 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1193
1194 (% style="text-align:center" %)
1195 (((
1196 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1197 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1198 )))
1199
1200 |=(% scope="row" %)**Function code**|=**Name**|=(((
1201 **Setting method**
1202 )))|=(% style="width: 129px;" %)(((
1203 **Effective time**
1204 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1205 |=P05-12|Positioning completion threshold|(((
1206 Operation setting
1207 )))|(% style="width:129px" %)(((
1208 Effective immediately
1209 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1210 |=P05-13|Positioning approach threshold|(((
1211 Operation setting
1212 )))|(% style="width:129px" %)(((
1213 Effective immediately
1214 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1215 |=P05-14|Position detection window time|(((
1216 Operation setting
1217 )))|(% style="width:129px" %)(((
1218 Effective immediately
1219 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1220 |=P05-15|Positioning signal hold time|(((
1221 Operation setting
1222 )))|(% style="width:129px" %)(((
1223 Effective immediately
1224 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1225
1226 Table 6-24 Function code parameters of positioning completion
1227
1228 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1229 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1230 |=135|(((
1231 P-NEAR positioning close
1232 )))|(((
1233 Output this signal indicates that the servo drive position is close.
1234 )))
1235
1236 Table 6-25 Description of DO rotation detection function code
1237
1238 = **Speed control mode** =
1239
1240 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1241
1242 (% style="text-align:center" %)
1243 (((
1244 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1245 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1246 )))
1247
1248 == Speed instruction input setting ==
1249
1250 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1251
1252 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1253 **Setting method**
1254 )))|=(% style="width: 125px;" %)(((
1255 **Effective time**
1256 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1257 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1258 Shutdown setting
1259 )))|(% style="width:125px" %)(((
1260 Effective immediately
1261 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1262 * 0: internal speed instruction
1263 * 1: AI_1 analog input (not supported by VD2F)
1264 )))|-
1265
1266 Table 6-26 Speed instruction source parameter
1267
1268 **Speed instruction source is internal speed instruction (P01-01=0)**
1269
1270 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1271
1272 (% style="width:1141px" %)
1273 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1274 **Setting**
1275
1276 **method**
1277 )))|=(% colspan="2" %)(((
1278 **Effective**
1279
1280 **time**
1281 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1282 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1283 Internal speed
1284
1285 Instruction 0
1286 )))|(% colspan="2" %)(((
1287 Operation
1288
1289 setting
1290 )))|(% colspan="2" %)(((
1291 Effective
1292
1293 immediately
1294 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1295 Internal speed instruction 0
1296
1297 When DI input port:
1298
1299 * 15-INSPD3: 0
1300 * 14-INSPD2: 0
1301 * 13-INSPD1: 0,
1302
1303 select this speed instruction to be effective.
1304 )))|(% colspan="2" %)rpm
1305 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1306 Internal speed
1307
1308 Instruction 1
1309 )))|(% colspan="2" %)(((
1310 Operation
1311
1312 setting
1313 )))|(% colspan="2" %)(((
1314 Effective
1315
1316 immediately
1317 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1318 Internal speed instruction 1
1319
1320 When DI input port:
1321
1322 * 15-INSPD3: 0
1323 * 14-INSPD2: 0
1324 * 13-INSPD1: 1,
1325
1326 Select this speed instruction to be effective.
1327 )))|(% colspan="2" %)rpm
1328 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1329 Internal speed
1330
1331 Instruction 2
1332 )))|(% colspan="2" %)(((
1333 Operation
1334
1335 setting
1336 )))|(% colspan="2" %)(((
1337 Effective
1338
1339 immediately
1340 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1341 Internal speed instruction 2
1342
1343 When DI input port:
1344
1345 * 15-INSPD3: 0
1346 * 14-INSPD2: 1
1347 * 13-INSPD1: 0,
1348
1349 Select this speed instruction to be effective.
1350 )))|(% colspan="2" %)rpm
1351 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1352 Internal speed
1353
1354 Instruction 3
1355 )))|(% colspan="2" %)(((
1356 Operation
1357
1358 setting
1359 )))|(% colspan="2" %)(((
1360 Effective
1361
1362 immediately
1363 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1364 Internal speed instruction 3
1365
1366 When DI input port:
1367
1368 * 15-INSPD3: 0
1369 * 14-INSPD2: 1
1370 * 13-INSPD1: 1,
1371
1372 Select this speed instruction to be effective.
1373 )))|(% colspan="2" %)rpm
1374 |=P01-26|(% colspan="2" %)(((
1375 Internal speed
1376
1377 Instruction 4
1378 )))|(% colspan="2" %)(((
1379 Operation
1380
1381 setting
1382 )))|(% colspan="2" %)(((
1383 Effective
1384
1385 immediately
1386 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1387 Internal speed instruction 4
1388
1389 When DI input port:
1390
1391 * 15-INSPD3: 1
1392 * 14-INSPD2: 0
1393 * 13-INSPD1: 0,
1394
1395 Select this speed instruction to be effective.
1396 )))|(% colspan="1" %)rpm
1397 |=P01-27|(% colspan="2" %)(((
1398 Internal speed
1399
1400 Instruction 5
1401 )))|(% colspan="2" %)(((
1402 Operation
1403
1404 setting
1405 )))|(% colspan="2" %)(((
1406 Effective
1407
1408 immediately
1409 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1410 Internal speed instruction 5
1411
1412 When DI input port:
1413
1414 * 15-INSPD3: 1
1415 * 14-INSPD2: 0
1416 * 13-INSPD1: 1,
1417
1418 Select this speed instruction to be effective.
1419 )))|(% colspan="1" %)rpm
1420 |=P01-28|(% colspan="2" %)(((
1421 Internal speed
1422
1423 Instruction 6
1424 )))|(% colspan="2" %)(((
1425 Operation
1426
1427 setting
1428 )))|(% colspan="2" %)(((
1429 Effective
1430
1431 immediately
1432 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1433 Internal speed instruction 6
1434
1435 When DI input port:
1436
1437 * 15-INSPD3: 1
1438 * 14-INSPD2: 1
1439 * 13-INSPD1: 0,
1440
1441 Select this speed instruction to be effective.
1442 )))|(% colspan="1" %)rpm
1443 |=P01-29|(% colspan="2" %)(((
1444 Internal speed
1445
1446 Instruction 7
1447 )))|(% colspan="2" %)(((
1448 Operation
1449
1450 setting
1451 )))|(% colspan="2" %)(((
1452 Effective
1453
1454 immediately
1455 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1456 Internal speed instruction 7
1457
1458 When DI input port:
1459
1460 * 15-INSPD3: 1
1461 * 14-INSPD2: 1
1462 * 13-INSPD1: 1,
1463
1464 Select this speed instruction to be effective.
1465 )))|(% colspan="1" %)rpm
1466
1467 Table 6-27 Internal speed instruction parameters
1468
1469 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1470 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1471 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1472 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1473
1474 Table 6-28 DI multi-speed function code description
1475
1476 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1477
1478
1479 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1480 |0|0|0|1|0
1481 |0|0|1|2|1
1482 |0|1|0|3|2
1483 |(% colspan="5" %)......
1484 |1|1|1|8|7
1485
1486 Table 6-29 Correspondence between INSPD bits and segment numbers
1487
1488 (% style="text-align:center" %)
1489 (((
1490 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1491 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1492 )))
1493
1494 **Speed instruction source is internal speed instruction (P01-01=1)**
1495
1496 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1497
1498 (% style="text-align:center" %)
1499 (((
1500 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1501 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1502 )))
1503
1504 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1505
1506 (% style="text-align:center" %)
1507 (((
1508 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1509 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1510 )))
1511
1512 Explanation of related terms:
1513
1514 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1515 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1516 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1517
1518 (% style="text-align:center" %)
1519 (((
1520 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1521 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1522 )))
1523
1524 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1525 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1526 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1527 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1528 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1529
1530 Table 6-30 AI_1 parameters
1531
1532 (% class="box infomessage" %)
1533 (((
1534 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1535 )))
1536
1537 == Acceleration and deceleration time setting ==
1538
1539 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1540
1541 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1542
1543 (% style="text-align:center" %)
1544 (((
1545 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1546 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1547 )))
1548
1549 (% style="text-align:center" %)
1550 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1551
1552 |=(% scope="row" %)**Function code**|=**Name**|=(((
1553 **Setting method**
1554 )))|=(((
1555 **Effective time**
1556 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1557 |=P01-03|Acceleration time|(((
1558 Operation setting
1559 )))|(((
1560 Effective immediately
1561 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1562 |=P01-04|Deceleration time|(((
1563 Operation setting
1564 )))|(((
1565 Effective immediately
1566 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1567
1568 Table 6-31 Acceleration and deceleration time parameters
1569
1570 == Speed instruction limit ==
1571
1572 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1573
1574 1. P01-10: Set the maximum speed limit value
1575 1. P01-12: Set forward speed limit value
1576 1. P01-13: Set reverse speed limit value
1577 1. The maximum speed of the motor: determined by motor model
1578
1579 The actual motor speed limit interval satisfies the following relationship:
1580
1581 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1582
1583 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1584
1585 |=(% scope="row" %)**Function code**|=**Name**|=(((
1586 **Setting method**
1587 )))|=(((
1588 **Effective time**
1589 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1590 |=P01-10|Maximum speed threshold|(((
1591 Operation setting
1592 )))|(((
1593 Effective immediately
1594 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1595 |=P01-12|Forward speed threshold|(((
1596 Operation setting
1597 )))|(((
1598 Effective immediately
1599 )))|3000|0 to 5000|Set forward speed limit value|rpm
1600 |=P01-13|Reverse speed threshold|(((
1601 Operation setting
1602 )))|(((
1603 Effective immediately
1604 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1605
1606 Table 6-32 Rotation speed related function codes
1607
1608 == Zero-speed clamp function ==
1609
1610 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1611
1612 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1613
1614 |=(% scope="row" %)**Function code**|=**Name**|=(((
1615 **Setting method**
1616 )))|=(((
1617 **Effective time**
1618 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1619 |=P01-21|(((
1620 Zero-speed clamp function selection
1621 )))|(((
1622 Operation setting
1623 )))|(((
1624 Effective immediately
1625 )))|0|0 to 3|(((
1626 Set the zero-speed clamp function. In speed mode:
1627
1628 * 0: Force the speed to 0;
1629 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1630 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1631 * 3: Invalid, ignore zero-speed clamp input
1632 )))|-
1633 |=P01-22|(((
1634 Zero-speed clamp speed threshold
1635 )))|(((
1636 Operation setting
1637 )))|(((
1638 Effective immediately
1639 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1640
1641 Table 6-33 Zero-speed clamp related parameters
1642
1643 (% style="text-align:center" %)
1644 (((
1645 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1646 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1647 )))
1648
1649 == Speed-related DO output function ==
1650
1651 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1652
1653 **Rotation detection signal**
1654
1655 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1656
1657 (% style="text-align:center" %)
1658 (((
1659 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1660 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1661 )))
1662
1663 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1664
1665 |=(% scope="row" %)**Function code**|=**Name**|=(((
1666 **Setting method**
1667 )))|=(((
1668 **Effective time**
1669 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1670 |=P05-16|(((
1671 Rotation detection
1672
1673 speed threshold
1674 )))|(((
1675 Operation setting
1676 )))|(((
1677 Effective immediately
1678 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1679
1680 Table 6-34 Rotation detection speed threshold parameters
1681
1682 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1683 |=132|(% style="width:247px" %)(((
1684 T-COIN rotation detection
1685 )))|(% style="width:695px" %)(((
1686 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1687
1688 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1689 )))
1690
1691 Table 6-35 DO rotation detection function code
1692
1693 **Zero-speed signal**
1694
1695 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1696
1697 (% style="text-align:center" %)
1698 (((
1699 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1700 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1701 )))
1702
1703 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1704
1705 |=(% scope="row" %)**Function code**|=**Name**|=(((
1706 **Setting method**
1707 )))|=(((
1708 **Effective time**
1709 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1710 |=P05-19|Zero speed output signal threshold|(((
1711 Operation setting
1712 )))|(((
1713 Effective immediately
1714 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1715
1716 Table 6-36 Zero-speed output signal threshold parameter
1717
1718 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1719 |=133|(((
1720 ZSP zero speed signal
1721 )))|Output this signal indicates that the servo motor is stopping rotation
1722
1723 Table 6-37 DO zero-speed signal function code
1724
1725 **Speed consistent signal**
1726
1727 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1728
1729 (% style="text-align:center" %)
1730 (((
1731 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1732 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1733 )))
1734
1735 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1736
1737 |=(% scope="row" %)**Function code**|=**Name**|=(((
1738 **Setting method**
1739 )))|=(((
1740 **Effective time**
1741 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1742 |=P05-17|Speed consistent signal threshold|(((
1743 Operationsetting
1744 )))|(((
1745 Effective immediately
1746 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1747
1748 Table 6-38 Speed consistent signal threshold parameters
1749
1750 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1751 |=136|(% style="width:262px" %)(((
1752 U-COIN consistent speed
1753 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1754
1755 Table 6-39 DO speed consistent function code
1756
1757 **Speed approach signal**
1758
1759 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1760
1761 (% style="text-align:center" %)
1762 (((
1763 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1764 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1765 )))
1766
1767 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1768
1769 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1770 **Setting method**
1771 )))|=(((
1772 **Effective time**
1773 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1774 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1775 Operation setting
1776 )))|(((
1777 Effective immediately
1778 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1779
1780 Table 6-40 Speed approaching signal threshold parameters
1781
1782 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1783 |=137|(((
1784 V-NEAR speed approach
1785 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1786
1787 Table 6-41 DO speed approach function code
1788
1789 = **Torque control mode** =
1790
1791 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1792
1793 (% style="text-align:center" %)
1794 (((
1795 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1796 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1797 )))
1798
1799 == **Torque instruction input setting** ==
1800
1801 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1802
1803 |=(% scope="row" %)**Function code**|=**Name**|=(((
1804 **Setting method**
1805 )))|=(((
1806 **Effective time**
1807 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1808 |=P01-07|Torque instruction source|(((
1809 Shutdown setting
1810 )))|(((
1811 Effective immediately
1812 )))|0|0 to 1|(((
1813 0: internal torque instruction
1814
1815 1: AI_1 analog input(not supported by VD2F)
1816 )))|-
1817
1818 Table 6-42 Torque instruction source parameter
1819
1820 **Torque instruction source is internal torque instruction (P01-07=0)**
1821
1822 Torque instruction source is from inside, the value is set by function code P01-08.
1823
1824 |=(% scope="row" %)**Function code**|=**Name**|=(((
1825 **Setting method**
1826 )))|=(((
1827 **Effective time**
1828 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1829 |=P01-08|Torque instruction keyboard set value|(((
1830 Operation setting
1831 )))|(((
1832 Effective immediately
1833 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1834
1835 Table 6-43 Torque instruction keyboard set value
1836
1837 **Torque instruction source is AI_1 analog input (P01-07=1)**
1838
1839 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1840
1841 (% style="text-align:center" %)
1842 (((
1843 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
1844 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1845 )))
1846
1847 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1848
1849 (% style="text-align:center" %)
1850 (((
1851 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1852 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1853 )))
1854
1855 Explanation of related terms:
1856
1857 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1858 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1859 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1860
1861 (% style="text-align:center" %)
1862 (((
1863 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1864 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1865 )))
1866
1867 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1868 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1869 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1870 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1871 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1872
1873 Table 6-44 AI_1 parameters
1874
1875 (% class="box infomessage" %)
1876 (((
1877 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1878 )))
1879
1880 == Torque instruction filtering ==
1881
1882 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1883
1884 |=(% scope="row" %)**Function code**|=**Name**|=(((
1885 **Setting method**
1886 )))|=(((
1887 **Effective time**
1888 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1889 |=P04-04|Torque filtering time constant|(((
1890 Operation setting
1891 )))|(((
1892 Effective immediately
1893 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1894
1895 Table 6-45 Torque filtering time constant parameter details
1896
1897 (% class="box infomessage" %)
1898 (((
1899 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1900 )))
1901
1902 (% style="text-align:center" %)
1903 (((
1904 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1905 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1906 )))
1907
1908 == Torque instruction limit ==
1909
1910 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1911
1912 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1913
1914 (% style="text-align:center" %)
1915 (((
1916 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1917 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1918 )))
1919
1920 **Set torque limit source**
1921
1922 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1923
1924 |=(% scope="row" %)**Function code**|=**Name**|=(((
1925 **Setting method**
1926 )))|=(((
1927 **Effective time**
1928 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1929 |=P01-14|(((
1930 Torque limit source
1931 )))|(((
1932 Shutdown setting
1933 )))|(((
1934 Effective immediately
1935 )))|0|0 to 1|(((
1936 * 0: internal value
1937 * 1: AI_1 analog input (not supported by VD2F)
1938 )))|-
1939
1940 * Torque limit source is internal torque instruction (P01-14=0)
1941
1942 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1943
1944 |=(% scope="row" %)**Function code**|=**Name**|=(((
1945 **Setting method**
1946 )))|=(((
1947 **Effective time**
1948 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1949 |=P01-15|(((
1950 Forward torque limit
1951 )))|(((
1952 Operation setting
1953 )))|(((
1954 Effective immediately
1955 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1956 |=P01-16|(((
1957 Reverse torque limit
1958 )))|(((
1959 Operation setting
1960 )))|(((
1961 Effective immediately
1962 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1963
1964 Table 6-46 Torque limit parameter details
1965
1966 * Torque limit source is external (P01-14=1)
1967
1968 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1969
1970 **Set torque limit DO signal output**
1971
1972 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1973
1974 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1975 |=139|(((
1976 T-LIMIT in torque limit
1977 )))|Output of this signal indicates that the servo motor torque is limited
1978
1979 Table 6-47 DO torque limit function codes
1980
1981 == **Speed limit in torque mode** ==
1982
1983 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1984
1985 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1986
1987 |(((
1988 (% style="text-align:center" %)
1989 (((
1990 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1991 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1992 )))
1993 )))|(((
1994 (% style="text-align:center" %)
1995 (((
1996 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1997 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
1998 )))
1999 )))
2000
2001 |=(% scope="row" %)**Function code**|=**Name**|=(((
2002 **Setting method**
2003 )))|=(((
2004 **Effective time**
2005 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2006 |=P01-17|(((
2007 Forward torque
2008
2009 limit in torque mode
2010 )))|(((
2011 Operation setting
2012 )))|(((
2013 Effective immediately
2014 )))|3000|0 to 5000|(((
2015 Forward torque
2016
2017 limit in torque mode
2018 )))|0.1%
2019 |=P01-18|(((
2020 Reverse torque
2021
2022 limit in torque mode
2023 )))|(((
2024 Operation setting
2025 )))|(((
2026 Effective immediately
2027 )))|3000|0 to 5000|(((
2028 Reverse torque
2029
2030 limit in torque mode
2031 )))|0.1%
2032
2033 Table 6-48 Speed limit parameters in torque mode
2034
2035 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2036
2037 == Torque-related DO output functions ==
2038
2039 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2040
2041 **Torque arrival**
2042
2043 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2044
2045 (% style="text-align:center" %)
2046 (((
2047 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2048 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2049 )))
2050
2051 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2052
2053 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2054 **Setting method**
2055 )))|=(% style="width: 124px;" %)(((
2056 **Effective time**
2057 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2058 |=P05-20|(% style="width:113px" %)(((
2059 Torque arrival
2060
2061 threshold
2062 )))|(% style="width:100px" %)(((
2063 Operation setting
2064 )))|(% style="width:124px" %)(((
2065 Effective immediately
2066 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2067 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2068
2069 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2070
2071 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2072 )))|%
2073 |=P05-21|(% style="width:113px" %)(((
2074 Torque arrival
2075
2076 hysteresis
2077 )))|(% style="width:100px" %)(((
2078 Operation setting
2079 )))|(% style="width:124px" %)(((
2080 Effective immediately
2081 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2082
2083 Table 6-49 Torque arrival parameters
2084
2085 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2086 |=138|(((
2087 T-COIN torque arrival
2088 )))|Used to determine whether the actual torque instruction has reached the set range
2089
2090 Table 6-50 DO Torque Arrival Function Code
2091
2092 = **Mixed control mode** =
2093
2094 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2095
2096 * Position mode⇔ Speed mode
2097 * Position mode ⇔Torque mode
2098 * Speed mode ⇔Torque mode
2099
2100 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2101
2102 |=(% scope="row" %)**Function code**|=**Name**|=(((
2103 **Setting method**
2104 )))|=(((
2105 **Effective time**
2106 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2107 |=P00-01|Control mode|(((
2108 Shutdown setting
2109 )))|(((
2110 Shutdown setting
2111 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2112 * 1: Position control
2113 * 2: Speed control
2114 * 3: Torque control
2115 * 4: Position/speed mixed control
2116 * 5: Position/torque mixed control
2117 * 6: Speed/torque mixed control
2118 )))|-
2119
2120 Table 6-51 Mixed control mode parameters
2121
2122 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2123
2124 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2125 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2126 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2127 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2128 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2129 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2130 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2131 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2132 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2133 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2134 )))
2135
2136 Table 6-52 Description of DI function codes in control mode
2137
2138 (% class="box infomessage" %)
2139 (((
2140 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2141 )))
2142
2143 = **Absolute system** =
2144
2145 == Overview ==
2146
2147 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2148
2149 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2150
2151 == Single-turn absolute value system ==
2152
2153 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2154
2155 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2156 |A1 (single-turn magnetic encoder)|17|0 to 131071
2157
2158 Table 6-53 Single-turn absolute encoder information
2159
2160 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2161
2162 (% style="text-align:center" %)
2163 (((
2164 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2165 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2166 )))
2167
2168 == Multi-turn absolute value system ==
2169
2170 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2171
2172 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2173 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2174 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2175
2176 Table 6-54 Multi-turn absolute encoder information
2177
2178 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2179
2180 (% style="text-align:center" %)
2181 (((
2182 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2183 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2184 )))
2185
2186 (% class="wikigeneratedid" %)
2187 (((
2188 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2189 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2190 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2191 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2192
2193 |**Function code**|**Name**|(((
2194 **Setting**
2195
2196 **method**
2197 )))|(((
2198 **Effective**
2199
2200 **time**
2201 )))|**Default**|**Range**|**Definition**|**Unit**
2202 |P10-06|Multi-turn absolute encoder reset|(((
2203 Shutdown
2204
2205 setting
2206 )))|Effective immediately|0|0 to 1|(((
2207 0: No operation
2208
2209 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2210
2211 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2212 )))|-
2213
2214 (% style="background-color:#ffffff" %)
2215 |**Function code**|**Name**|(((
2216 **Setting**
2217
2218 **method**
2219 )))|(((
2220 **Effective**
2221
2222 **time**
2223 )))|**Default**|**Range**|**Definition**|**Unit**
2224 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2225 Operation
2226
2227 setting
2228 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2229 )))
2230
2231 == Related functions and parameters ==
2232
2233 **Encoder feedback data**
2234
2235 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2236
2237 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2238 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2239 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2240 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2241
2242 Table 6-55 Encoder feedback data
2243
2244 **Shield multi-turn absolute encoder battery fault**
2245
2246 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2247
2248 |=(% scope="row" %)**Function code**|=**Name**|=(((
2249 **Setting**
2250
2251 **method**
2252 )))|=(((
2253 **Effective**
2254
2255 **time**
2256 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2257 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2258 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2259 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2260 )))|-
2261
2262 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2263
2264 **A93 warning solution**
2265
2266 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2267 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2268
2269 |**Function code**|**Name**|(((
2270 **Setting**
2271
2272 **method**
2273 )))|(((
2274 **Effective**
2275
2276 **time**
2277 )))|**Default**|**Range**|**Definition**|**Unit**
2278 |P00-31|Encoder read-write check abnormal frequency|(((
2279 Operation
2280
2281 setting
2282 )))|(((
2283 immediately
2284
2285 Effective
2286 )))|20|0 to100|(((
2287 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2288
2289 0: no alarm
2290
2291 Others: When this setting value is exceeded, report A93.
2292 )))|-
2293
2294 (% class="box infomessage" %)
2295 (((
2296 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2297 )))
2298
2299 == Absolute value system encoder battery box use precautions. ==
2300
2301 **Cautions**
2302
2303 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2304
2305 (% style="text-align:center" %)
2306 (((
2307 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2308 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2309 )))
2310
2311 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2312
2313 **Replace the battery**
2314
2315 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2316
2317 The specific replacement method is as follows:
2318
2319 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2320 * Step2 Remove the old battery.
2321 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2322 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2323
2324 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2325
2326 |=(% scope="row" %)**Function code**|=**Name**|=(((
2327 **Setting method**
2328 )))|=(((
2329 **Effective time**
2330 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2331 |=P10-06|Multi-turn absolute encoder reset|(((
2332 Shutdown setting
2333 )))|(((
2334 Effective immediately
2335 )))|0|0 to 1|(((
2336 * 0: No operation
2337 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2338
2339 (% class="box infomessage" %)
2340 (((
2341 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2342 )))
2343 )))|-
2344
2345 Table 6-56 Absolute encoder reset enable parameter
2346
2347 **Battery selection**
2348
2349 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2350 |(% rowspan="4" style="width:361px" %)(((
2351 Nominal Voltage: 3.6V
2352
2353 Nominal capacity: 2700mAh
2354 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2355 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2356 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2357 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2358
2359 Table 6-57 Absolute value encoder battery information
2360
2361 **✎Note: **
2362
2363 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2364
2365 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2366
2367 Correct placement of batteries +, - direction
2368
2369 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2370 1. This battery cannot be charged.
2371 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2372 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2373 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2374
2375 = **Other functions** =
2376
2377 == VDI ==
2378
2379 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2380
2381 (% class="box infomessage" %)
2382 (((
2383 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2384 )))
2385
2386 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2387
2388 (% style="text-align:center" %)
2389 (((
2390 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2391 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2392 )))
2393
2394 |=(% scope="row" %)**Function code**|=**Name**|=(((
2395 **Setting method**
2396 )))|=(((
2397 **Effective time**
2398 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2399 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2400 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2401
2402 VDI_1 input level:
2403
2404 * 0: low level
2405 * 1: high level
2406 )))|-
2407 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2408 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2409
2410 VDI_2 input level:
2411
2412 * 0: low level
2413 * 1: high level
2414 )))|-
2415 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2416 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2417
2418 VDI_3 input level:
2419
2420 * 0: low level
2421 * 1: high level
2422 )))|-
2423 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2424 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2425
2426 VDI_4 input level:
2427
2428 * 0: low level
2429 * 1: high level
2430 )))|-
2431 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2432 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2433
2434 VDI_5 input level:
2435
2436 * 0: low level
2437 * 1: high level
2438 )))|-
2439 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2440 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2441
2442 VDI_6 input level:
2443
2444 * 0: low level
2445 * 1: high level
2446 )))|-
2447 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2448 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2449
2450 VDI_7 input level:
2451
2452 * 0: low level
2453 * 1: high level
2454 )))|-
2455 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2456 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2457
2458 VDI_8 input level:
2459
2460 * 0: low level
2461 * 1: high level
2462 )))|-
2463
2464 Table 6-57 Virtual VDI parameters
2465
2466 (% class="box infomessage" %)
2467 (((
2468 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2469 )))
2470
2471 == Port filtering time ==
2472
2473 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2474
2475 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2476 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2477 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2478
2479 Table 6-58 DI terminal channel logic selection
2480
2481 == **VDO** ==
2482
2483 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2484
2485 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2486
2487 (% style="text-align:center" %)
2488 (((
2489 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2490 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2491 )))
2492
2493
2494 |=(% scope="row" %)**Function code**|=**Name**|=(((
2495 **Setting method**
2496 )))|=(((
2497 **Effective time**
2498 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2499 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2500 VDO_1 output level:
2501
2502 * 0: low level
2503 * 1: high level
2504 )))|-
2505 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2506 VDO_2 output level:
2507
2508 * 0: low level
2509 * 1: high level
2510 )))|-
2511 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2512 VDO_3 output level:
2513
2514 * 0: low level
2515 * 1: high level
2516 )))|-
2517 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2518 VDO_4 output level:
2519
2520 * 0: low level
2521 * 1: high level
2522 )))|-
2523
2524 Table 6-59 Communication control DO function parameters
2525
2526 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2527 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2528 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2529 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2530 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2531
2532 Table 6-60 VDO function number
2533
2534 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2535
2536 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2537
2538 == Motor overload protection ==
2539
2540 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2541
2542 |=(% scope="row" %)**Function code**|=**Name**|=(((
2543 **Setting method**
2544 )))|=(((
2545 **Effective time**
2546 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2547 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2548 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2549
2550 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2551 )))|%
2552
2553 In the following cases, it could be modified according to the actual heat generation of the motor
2554
2555 1. The motor works in a place with high ambient temperature
2556 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2557
2558 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2559
2560 (% class="box infomessage" %)
2561 (((
2562 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2563 )))