Wiki source code of 06 Operation

Version 72.1 by Mora Zhou on 2024/07/17 10:29

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 * 0: standard setting (CW is forward rotation)
90 * 1: reverse mode (CCW is forward rotation)
91 )))|-
92
93 Table 6-3 Rotation direction parameters** **
94
95 == **Braking resistor** ==
96
97 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
98
99 The basis for judging whether the braking resistor is built-in or external.
100
101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103
104 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
105 **Setting method**
106 )))|=(% style="width: 126px;" %)(((
107 **Effective time**
108 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
110 Operation setting
111 )))|(% style="width:126px" %)(((
112 Effective immediately
113 )))|0|0 to 3|(((
114 * 0: use built-in braking resistor
115 * 1: use external braking resistor and natural cooling
116 * 2: use external braking resistor and forced air cooling; (cannot be set)
117 * 3: No braking resistor is used, it is all absorbed by capacitor.
118 )))|-
119 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
121 Operation setting
122 )))|(% style="width:126px" %)(((
123 Effective immediately
124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
126 Operation setting
127 )))|(% style="width:126px" %)(((
128 Effective immediately
129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130
131 Table 6-4 Braking resistor parameters
132
133 == **Servo operation** ==
134
135 **Set the servo enable (S-ON) to valid (ON)**
136
137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138
139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140
141 **Input the instruction and the motor rotates**
142
143 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
144
145 **Timing diagram of power on**
146
147 (% style="text-align:center" %)
148 (((
149 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 )))
152
153 == Servo shutdown ==
154
155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
156
157 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 |=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
160
161 Table 6-5 Comparison of two shutdown modes
162
163 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165
166 Table 6-6 Comparison of two shutdown status
167
168 **Servo enable (S-ON) OFF shutdown**
169
170 The related parameters of the servo OFF shutdown mode are shown in the table below.
171
172 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
173 **Setting method**
174 )))|=(% style="width: 134px;" %)(((
175 **Effective time**
176 )))|=(% style="width: 86px;" %)(((
177 **Default value**
178 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
180 Shutdown
181
182 setting
183 )))|(% style="width:134px" %)(((
184 Effective
185
186 immediately
187 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 * 0: Free shutdown, and the motor shaft remains free status.
189 * 1: Zero-speed shutdown, and the motor shaft remains free status.
190 )))|-
191
192 Table 6-7 Servo OFF shutdown mode parameters details
193
194 **Emergency shutdown**
195
196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
197
198 Estop mode 1 (deceleration stop):
199
200 ~1. Configurate DI function code: 8 [ESTOP]
201
202 2. Set P1-5 shutdown deceleration time.
203
204 3. Trigger DI emergency shutdown.
205
206 4. Servo emergency shutdown and deceleration to zero speed.
207
208 Estop mode 2:
209
210 ~1. Configurate DI function code: 1 [Servo enable SON]
211
212 2. Set P1-05 shutdown deceleration time.
213
214 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
215
216 4. Trigger DI to turn off servo enable SON.
217
218 |Function code|Name|(((
219 Setting
220
221 method
222 )))|(((
223 Effective
224
225 time
226 )))|Default|Range|Definition|Unit
227 |P01-05|Shutdown deceleration time|(((
228 Shutdown
229
230 setting
231 )))|(((
232 immediately
233
234 Effective
235 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
236
237 **Overtravel shutdown**
238
239 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
240
241 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
242
243 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
244
245 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
246 **Setting method**
247 )))|=(% style="width: 114px;" %)(((
248 **Effective time**
249 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
250 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
251 * 0: OFF (not used)
252 * 01: S-ON servo enable
253 * 02: A-CLR fault and Warning Clear
254 * 03: POT forward drive prohibition
255 * 04: NOT Reverse drive prohibition
256 * 05: ZCLAMP Zero speed
257 * 06: CL Clear deviation counter
258 * 07: C-SIGN Inverted instruction
259 * 08: E-STOP Emergency stop
260 * 09: GEAR-SEL Electronic Gear Switch 1
261 * 10: GAIN-SEL gain switch
262 * 11: INH Instruction pulse prohibited input
263 * 12: VSSEL Vibration control switch input
264 * 13: INSPD1 Internal speed instruction selection 1
265 * 14: INSPD2 Internal speed instruction selection 2
266 * 15: INSPD3 Internal speedinstruction selection 3
267 * 16: J-SEL inertia ratio switch (not implemented yet)
268 * 17: MixModesel mixed mode selection
269 * 20: Internal multi-segment position enable signal
270 * 21: Internal multi-segment position selection 1
271 * 22: Internal multi-segment position selection 2
272 * 23: Internal multi-segment position selection 3
273 * 24: Internal multi-segment position selection 4
274 * Others: reserved
275 )))|-
276 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
277 Effective immediately
278 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
279 DI port input logic validity function selection.
280
281 * 0: Normally open input. Active low level (switch on);
282 * 1: Normally closed input. Active high level (switch off);
283 )))|-
284 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
285 Effective immediately
286 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
287 Select the DI_3 port type to enable
288
289 * 0: Hardware DI_3 input terminal
290 * 1: virtual VDI_3 input terminal
291 )))|-
292 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
293 Operation setting
294 )))|(% style="width:114px" %)(((
295 again Power-on
296 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
297 * 0: OFF (not used)
298 * 01: SON Servo enable
299 * 02: A-CLR Fault and Warning Clear
300 * 03: POT Forward drive prohibition
301 * 04: NOT Reverse drive prohibition
302 * 05: ZCLAMP Zero speed
303 * 06: CL Clear deviation counter
304 * 07: C-SIGN Inverted instruction
305 * 08: E-STOP Emergency shutdown
306 * 09: GEAR-SEL Electronic Gear Switch 1
307 * 10: GAIN-SEL gain switch
308 * 11: INH Instruction pulse prohibited input
309 * 12: VSSEL Vibration control switch input
310 * 13: INSPD1 Internal speed instruction selection 1
311 * 14: INSPD2 Internal speed instruction selection 2
312 * 15: INSPD3 Internal speed instruction selection 3
313 * 16: J-SEL inertia ratio switch (not implemented yet)
314 * 17: MixModesel mixed mode selection
315 * 20: Internal multi-segment position enable signal
316 * 21: Internal multi-segment position selection 1
317 * 22: Internal multi-segment position selection 2
318 * 23: Internal multi-segment position selection 3
319 * 24: Internal multi-segment position selection 4
320 * Others: reserved
321 )))|-
322 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
323 Effective immediately
324 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
325 DI port input logic validity function selection.
326
327 * 0: Normally open input. Active low level (switch on);
328 * 1: Normally closed input. Active high level (switch off);
329 )))|-
330 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
331 Effective immediately
332 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
333 Select the DI_4 port type to enable
334
335 * 0: Hardware DI_4 input terminal
336 * 1: virtual VDI_4 input terminal
337 )))|-
338
339 Table 6-8 DI3 and DI4 channel parameters
340
341 **(4) Malfunction shutdown**
342
343 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
344
345 == Brake device ==
346
347 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
348
349 (% class="warning" %)|(((
350 (% style="text-align:center" %)
351 [[image:image-20220611151617-1.png]]
352 )))
353 |(((
354 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
355
356 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
357
358 ✎The brake coil has no polarity;
359
360 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
361
362 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
363 )))
364
365 **Wiring of brake device**
366
367 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
368
369
370 (% style="text-align:center" %)
371 (((
372 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
373 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
374 )))
375
376 (% class="warning" %)|(((
377 (% style="text-align:center" %)
378 [[image:image-20220611151642-2.png]]
379 )))
380 |(((
381 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
382
383 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
384
385 ✎It is recommended to use cables above 0.5 mm².
386 )))
387
388 **Brake software setting**
389
390 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
391
392 Related function code is as below.
393
394 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
395 **Effective time**
396 )))
397 |=141|(% style="width:241px" %)(((
398 BRK-OFF Brake output
399 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
400
401 Table 6-2 Relevant function codes for brake setting
402
403 |=(% scope="row" %)**Function code**|=**Name**|=(((
404 **Setting method**
405 )))|=(((
406 **Effective time**
407 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
408 |=P1-30|Delay from brake output to instruction reception|(((
409 Operation setting
410 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
411 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
412 Operation setting
413 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
414 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
415 Operation setting
416 )))|Effective immediately|30|0 to 3000|(((
417 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
418
419 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
420 )))|rpm
421 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
422 Operation setting
423 )))|Effective immediately|500|1 to 1000|(((
424 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
425
426 When brake output (BRK-OFF) is not allocated, this function code has no effect.
427 )))|ms
428
429 Table 6-9 Brake setting function codes
430
431 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
432
433 **Servo drive brake timing in normal state**
434
435 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
436
437 * Brake timing when servo motor is stationary
438
439 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
440
441 (% class="warning" %)|(((
442 (% style="text-align:center" %)
443 [[image:image-20220611151705-3.png]]
444 )))
445 |(((
446 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
447
448 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
449 )))
450
451 (% style="text-align:center" %)
452 (((
453 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
454 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
455 )))
456
457 (% class="box infomessage" %)
458 (((
459 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
460 )))
461
462 * The brake timing when servo motor rotates
463
464 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
465
466 (% class="warning" %)|(((
467 (% style="text-align:center" %)
468 [[image:image-20220611151719-4.png]]
469 )))
470 |(((
471 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
472
473 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
474
475 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
476
477 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
478
479 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
480 )))
481
482 (% style="text-align:center" %)
483 (((
484 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
485 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
486 )))
487
488 **Brake timing when the servo drive fails**
489
490 The brake timing (free shutdown) in the fault status is as follows.
491
492 (% style="text-align:center" %)
493 (((
494 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
495 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
496 )))
497
498 = **Position control mode** =
499
500 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
501
502 (% style="text-align:center" %)
503 (((
504 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
505 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
506 )))
507
508 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
509
510 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
511 **Setting method**
512 )))|=(((
513 **Effective time**
514 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
515 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
516 Operation setting
517 )))|(((
518 immediately Effective
519 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
520 1: position control
521
522 2: speed control
523
524 3: torque control
525
526 4: position/speed mix control
527
528 5: position/torque mix control
529
530 6: speed /torque mix control
531
532 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
533 )))|(% style="width:151px" %)-
534
535 Table 6-10 Control mode parameters
536
537 == Position instruction input setting ==
538
539 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
540
541 |=(% scope="row" %)**Function code**|=**Name**|=(((
542 **Setting method**
543 )))|=(((
544 **Effective time**
545 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
546 |=P01-06|Position instruction source|(((
547 Operation setting
548 )))|(((
549 immediately Effective
550 )))|0|0 to 1|(((
551 0: pulse instruction
552
553 1: internal position instruction
554 )))|-
555
556 Table 6-12 Position instruction source parameter
557
558 **The source of position instruction is pulse instruction (P01-06=0)**
559
560 Low-speed pulse instruction input
561
562 |(% style="text-align:center" %)(((
563 (% class="wikigeneratedid" %)
564 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
565 )))|(% style="text-align:center" %)(((
566 (% class="wikigeneratedid" %)
567 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
568 )))
569 |(% colspan="2" %)Figure 6-7 Position instruction input setting
570
571 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
572
573 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
574
575 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
576 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
577 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
578
579 Table 6-13 Pulse input specifications
580
581 * Differential input
582
583 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
584
585 (% style="text-align:center" %)
586 (((
587 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
588 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
589 )))
590
591 (% class="box infomessage" %)
592 (((
593 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
594 )))
595
596 * Open collector input
597
598 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
599
600 (% style="text-align:center" %)
601 (((
602 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
603 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
604 )))
605
606
607 (% class="box infomessage" %)
608 (((
609 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
610 )))
611
612 * Position pulse frequency and anti-interference level
613
614 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
615
616 (% style="text-align:center" %)
617 (((
618 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
619 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
620 )))
621
622 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
623
624 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
625 **Setting method**
626 )))|=(((
627 **Effective time**
628 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
629 |P00-13|(% style="width:169px" %)Maximum position pulse frequency|(% style="width:146px" %)(((
630 Shutdown setting
631 )))|(((
632 Effective immediately
633 )))|300|(% style="width:87px" %)1 to 500|(% colspan="2" style="width:296px" %)Set the maximum frequency of external pulse instruction|KHz
634 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
635 Operation setting
636 )))|(% rowspan="3" %)(((
637 Power-on again
638 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
639 Set the anti-interference level of external pulse instruction.
640
641 * 0: no filtering;
642 * 1: Filtering time 128ns
643 * 2: Filtering time 256ns
644 * 3: Filtering time 512ns
645 * 4: Filtering time 1.024us
646 * 5: Filtering time 2.048us
647 * 6: Filtering time 4.096us
648 * 7: Filtering time 8.192us
649 * 8: Filtering time 16.384us
650 * 9:
651 ** VD2: Filtering time 25.5us
652 ** VD2F: Filtering time 25.5us
653 )))|(% rowspan="3" %)-
654
655 Table 6-14 Position pulse frequency and anti-interference level parameters
656
657 * Position pulse type selection
658
659 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
660
661 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
662 **Setting method**
663 )))|=(% style="width: 109px;" %)(((
664 **Effective time**
665 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
666 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
667 Operation setting
668 )))|(% style="width:109px" %)(((
669 Power-on again
670 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
671 * 0: direction + pulse (positive logic)
672 * 1: CW/CCW
673 * 2: A, B phase quadrature pulse (4 times frequency)
674 * 3: Direction + pulse (negative logic)
675 * 4: CW/CCW (negative logic)
676 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
677
678 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
679 )))|-
680
681 Table 6-15 Position pulse type selection parameter
682
683 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
684 |=0|(% style="width:200px" %)(((
685 Direction + pulse
686
687 (Positive logic)
688 )))|(% style="width:161px" %)(((
689 PULSE
690
691 SIGN
692 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
693 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
694 PULSE (CW)
695
696 SIGN (CCW)
697 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
698 |=2|(% style="width:200px" %)(((
699 AB phase orthogonal
700
701 pulse (4 times frequency)
702 )))|(% style="width:161px" %)(((
703 PULSE (Phase A)
704
705 SIGN (Phase B)
706 )))|(((
707
708
709 [[image:image-20220707094358-9.jpeg]]
710
711 Phase A is 90° ahead of Phase B
712 )))|(((
713
714
715 [[image:image-20220707094407-10.jpeg]]
716
717 Phase B is 90° ahead of Phase A
718 )))
719 |=3|(% style="width:200px" %)(((
720 Direction + pulse
721
722 (Negative logic)
723 )))|(% style="width:161px" %)(((
724 PULSE
725
726 SIGN
727 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
728 |=4|(% style="width:200px" %)(((
729 CW/CCW
730
731 (Negative logic)
732 )))|(% style="width:161px" %)(((
733 PULSE (CW)
734
735 SIGN (CCW)
736 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
737 |=5|(% style="width:200px" %)(((
738 AB phase orthogonal
739
740 pulse (4 times frequency negative logic)
741 )))|(% style="width:161px" %)(((
742 PULSE (Phase A)
743
744 SIGN (Phase B)
745 )))|(((
746
747
748 [[image:image-20220707094429-14.jpeg]]
749
750 Phase B is ahead of A phase by 90°
751 )))|(((
752
753
754 [[image:image-20220707094437-15.jpeg]]
755
756 Phase A is ahead of B phase by 90°
757 )))
758
759 Table 6-16 Pulse description
760
761 **The source of position instruction is internal position instruction (P01-06=1)**
762
763 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
764
765 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
766
767 (% style="text-align:center" %)
768 (((
769 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
770 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
771 )))
772
773
774 * Set multi-segment position running mode
775
776 |=(% scope="row" %)**Function code**|=**Name**|=(((
777 **Setting method**
778 )))|=(((
779 **Effective time**
780 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
781 |=P07-01|Multi-segment position running mode|(((
782 Shutdown setting
783 )))|(((
784 Effective immediately
785 )))|0|0 to 2|(((
786 0: Single running
787
788 1: Cycle running
789
790 2: DI switching running
791 )))|-
792 |=P07-02|Start segment number|(((
793 Shutdown setting
794 )))|(((
795 Effective immediately
796 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
797 |=P07-03|End segment number|(((
798 Shutdown setting
799 )))|(((
800 Effective immediately
801 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
802 |=P07-04|Margin processing method|(((
803 Shutdown setting
804 )))|(((
805 Effective immediately
806 )))|0|0 to 1|(((
807 0: Run the remaining segments
808
809 1: Run again from the start segment
810 )))|-
811 |=P07-05|Displacement instruction type|(((
812 Shutdown setting
813 )))|(((
814 Effective immediately
815 )))|0|0 to 1|(((
816 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
817
818 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
819 )))|-
820
821 Table 6-17 multi-segment position running mode parameters
822
823 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
824
825 1. Single running
826
827 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
828
829 (% style="text-align:center" %)
830 (((
831 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
832 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
833 )))
834
835 * 2. Cycle running
836
837 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
838
839 (% style="text-align:center" %)
840 (((
841 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
842 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
843 )))
844
845 (% class="warning" %)|(((
846 (% style="text-align:center" %)
847 [[image:image-20220611151917-5.png]]
848 )))
849 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
850
851 (% start="3" %)
852 1. DI switching running
853
854 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
855
856 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
857 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
858 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
859 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
860 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
861
862 Table 6-18 DI function code
863
864 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
865
866 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
867 |=0|0|0|0|1
868 |=0|0|0|1|2
869 |=0|0|1|0|3
870 |=0|0|1|1|4
871 |=0|1|0|0|5
872 |=0|1|0|1|6
873 |=0|1|1|0|7
874 |=0|1|1|1|8
875 |=1|0|0|0|9
876 |=1|0|0|1|10
877 |=1|0|1|0|11
878 |=1|0|1|1|12
879 |=1|1|0|0|13
880 |=1|1|0|1|14
881 |=1|1|1|0|15
882 |=1|1|1|1|16
883
884 Table 6-20 INPOS corresponds to running segment number
885
886 The operating curve in this running mode is shown in __Figure 6-14__.
887
888 (% style="text-align:center" %)
889 (((
890 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
891 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
892 )))
893
894 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
895
896 **Run the remaining segments**
897
898 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
899
900 (% style="text-align:center" %)
901 (((
902 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
903 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
904 )))
905
906 (% style="text-align:center" %)
907 (((
908 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
909 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
910 )))
911
912 **Run again from the start segment**
913
914 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
915
916 (% style="text-align:center" %)
917 (((
918 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
919 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
920 )))
921
922 (% style="text-align:center" %)
923 (((
924 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
925 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
926 )))
927
928 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
929
930 * Relative position instruction
931
932 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
933
934 |(((
935 (% style="text-align:center" %)
936 (((
937 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
938 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
939 )))
940 )))|(((
941 (% style="text-align:center" %)
942 (((
943 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
944 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
945 )))
946 )))
947
948 * Absolute position instruction
949
950 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
951
952 |(((
953 (% style="text-align:center" %)
954 (((
955 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
956 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
957 )))
958 )))|(((
959 (% style="text-align:center" %)
960 (((
961 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
962 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
963 )))
964 )))
965
966 * Multi-segment position running curve setting
967
968 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
969
970 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
971 |=P07-09|(((
972 1st segment
973
974 displacement
975 )))|(((
976 Operation setting
977 )))|(((
978 Effective immediately
979 )))|10000|(((
980 -2147483647 to
981
982 2147483646
983 )))|Position instruction, positive and negative values could be set|-
984 |=P07-10|Maximum speed of the 1st displacement|(((
985 Operation setting
986 )))|(((
987 Effective immediately
988 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
989 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
990 Operation setting
991 )))|(((
992 Effective immediately
993 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
994 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
995 Operation setting
996 )))|(((
997 Effective immediately
998 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
999
1000 Table 6-21 The 1st position operation curve parameters table
1001
1002 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1003
1004 (% style="text-align:center" %)
1005 (((
1006 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1007 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1008 )))
1009
1010
1011 * multi-segment position instruction enable
1012
1013 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1014
1015 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1016 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1017 DI port logic invalid: Does not affect the current operation of the servo motor.
1018
1019 DI port logic valid: Motor runs multi-segment position
1020 )))
1021
1022 (% style="text-align:center" %)
1023 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1024
1025 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1026
1027 == Electronic gear ratio ==
1028
1029 **Definition of electronic gear ratio**
1030
1031 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1032
1033 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1034
1035 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1036
1037 (% style="text-align:center" %)
1038 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1039
1040 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1041
1042 **Setting steps of electronic gear ratio**
1043
1044 (% style="text-align:center" %)
1045 (((
1046 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1047 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1048 )))
1049
1050 **lectronic gear ratio switch setting**
1051
1052 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1053
1054 |=(% scope="row" %)**Function code**|=**Name**|=(((
1055 **Setting method**
1056 )))|=(((
1057 **Effective time**
1058 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1059 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1060 Shutdown setting
1061 )))|(((
1062 Effective immediately
1063 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1064 Instruction pulse
1065
1066 unit
1067 )))
1068 |=P00-17|(((
1069 Electronic gear 1
1070
1071 numerator
1072 )))|Operation setting|(((
1073 Effective immediately
1074 )))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1075 |=P00-18|(((
1076 Electronic gear 1
1077
1078 denominator
1079 )))|(((
1080 Operation setting
1081 )))|(((
1082 Effective immediately
1083 )))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1084 |=P00-19|(((
1085 Electronic gear 2
1086
1087 numerator
1088 )))|Operation setting|(((
1089 Effective immediately
1090 )))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1091 |=P00-20|(((
1092 Electronic gear 2
1093
1094 denominator
1095 )))|Operation setting|(((
1096 Effective immediately
1097 )))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1098
1099 Table 6-20 Electronic gear ratio function code
1100
1101 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1102
1103 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1104 |=09|GEAR-SEL electronic gear switch 1|(((
1105 DI port logic invalid: electronic gear ratio 1
1106
1107 DI port logic valid: electronic gear ratio 2
1108 )))
1109
1110 Table 6-21 Switching conditions of electronic gear ratio group
1111
1112 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1113 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1114 (% style="text-align:center" %)
1115 [[image:image-20220707101328-21.png]]
1116 )))
1117 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1118 (% style="text-align:center" %)
1119 [[image:image-20220707101336-22.png]]
1120 )))
1121 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1122 (% style="text-align:center" %)
1123 [[image:image-20220707101341-23.png]]
1124 )))
1125
1126 Table 6-22 Application of electronic gear ratio
1127
1128 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1129
1130 == Position instruction filtering ==
1131
1132 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1133
1134 In the following situations, position instruction filtering should be added.
1135
1136 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1137 1. The pulse instruction frequency is low;
1138 1. When the electronic gear ratio is 10 times or more.
1139
1140 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1141
1142 (% style="text-align:center" %)
1143 (((
1144 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1145 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1146 )))
1147
1148 |=(% scope="row" %)**Function code**|=**Name**|=(((
1149 **Setting method**
1150 )))|=(((
1151 **Effective time**
1152 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1153 |=P04-01|Pulse instruction filtering method|(((
1154 Shutdown setting
1155 )))|(((
1156 Effective immediately
1157 )))|0|0 to 1|(((
1158 * 0: 1st-order low-pass filtering
1159 * 1: average filtering
1160 )))|-
1161 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1162 Effective immediately
1163 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1164 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1165 Effective immediately
1166 )))|0|0 to 128|Position instruction average filtering time constant|ms
1167
1168 Table 6-25 Position instruction filter function code
1169
1170 == Clearance of position deviation ==
1171
1172 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1173
1174 Position deviation = (position instruction-position feedback) (encoder unit)
1175
1176 == Position-related DO output function ==
1177
1178 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1179
1180 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1181 **Positioning completion/positioning approach output**
1182
1183 (% class="wikigeneratedid" %)
1184 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1185
1186 (% style="text-align:center" %)
1187 (((
1188 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1189 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1190 )))
1191
1192 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1193
1194 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1195
1196 (% style="text-align:center" %)
1197 (((
1198 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1199 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1200 )))
1201
1202 |=(% scope="row" %)**Function code**|=**Name**|=(((
1203 **Setting method**
1204 )))|=(% style="width: 129px;" %)(((
1205 **Effective time**
1206 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1207 |=P05-12|Positioning completion threshold|(((
1208 Operation setting
1209 )))|(% style="width:129px" %)(((
1210 Effective immediately
1211 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1212 |=P05-13|Positioning approach threshold|(((
1213 Operation setting
1214 )))|(% style="width:129px" %)(((
1215 Effective immediately
1216 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1217 |=P05-14|Position detection window time|(((
1218 Operation setting
1219 )))|(% style="width:129px" %)(((
1220 Effective immediately
1221 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1222 |=P05-15|Positioning signal hold time|(((
1223 Operation setting
1224 )))|(% style="width:129px" %)(((
1225 Effective immediately
1226 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1227
1228 Table 6-26 Function code parameters of positioning completion
1229
1230 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1231 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1232 |=135|(((
1233 P-NEAR positioning close
1234 )))|(((
1235 Output this signal indicates that the servo drive position is close.
1236 )))
1237
1238 Table 6-27 Description of DO rotation detection function code
1239
1240 = **Speed control mode** =
1241
1242 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1243
1244 (% style="text-align:center" %)
1245 (((
1246 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1247 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1248 )))
1249
1250 == Speed instruction input setting ==
1251
1252 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1253
1254 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1255 **Setting method**
1256 )))|=(% style="width: 125px;" %)(((
1257 **Effective time**
1258 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1259 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1260 Shutdown setting
1261 )))|(% style="width:125px" %)(((
1262 Effective immediately
1263 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1264 * 0: internal speed instruction
1265 * 1: AI_1 analog input (not supported by VD2F)
1266 )))|-
1267
1268 Table 6-26 Speed instruction source parameter
1269
1270 **Speed instruction source is internal speed instruction (P01-01=0)**
1271
1272 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1273
1274 (% style="width:1141px" %)
1275 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1276 **Setting**
1277
1278 **method**
1279 )))|=(% colspan="2" %)(((
1280 **Effective**
1281
1282 **time**
1283 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1284 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1285 Internal speed
1286
1287 Instruction 0
1288 )))|(% colspan="2" %)(((
1289 Operation
1290
1291 setting
1292 )))|(% colspan="2" %)(((
1293 Effective
1294
1295 immediately
1296 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1297 Internal speed instruction 0
1298
1299 When DI input port:
1300
1301 * 15-INSPD3: 0
1302 * 14-INSPD2: 0
1303 * 13-INSPD1: 0,
1304
1305 select this speed instruction to be effective.
1306 )))|(% colspan="2" %)rpm
1307 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1308 Internal speed
1309
1310 Instruction 1
1311 )))|(% colspan="2" %)(((
1312 Operation
1313
1314 setting
1315 )))|(% colspan="2" %)(((
1316 Effective
1317
1318 immediately
1319 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1320 Internal speed instruction 1
1321
1322 When DI input port:
1323
1324 * 15-INSPD3: 0
1325 * 14-INSPD2: 0
1326 * 13-INSPD1: 1,
1327
1328 Select this speed instruction to be effective.
1329 )))|(% colspan="2" %)rpm
1330 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1331 Internal speed
1332
1333 Instruction 2
1334 )))|(% colspan="2" %)(((
1335 Operation
1336
1337 setting
1338 )))|(% colspan="2" %)(((
1339 Effective
1340
1341 immediately
1342 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1343 Internal speed instruction 2
1344
1345 When DI input port:
1346
1347 * 15-INSPD3: 0
1348 * 14-INSPD2: 1
1349 * 13-INSPD1: 0,
1350
1351 Select this speed instruction to be effective.
1352 )))|(% colspan="2" %)rpm
1353 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1354 Internal speed
1355
1356 Instruction 3
1357 )))|(% colspan="2" %)(((
1358 Operation
1359
1360 setting
1361 )))|(% colspan="2" %)(((
1362 Effective
1363
1364 immediately
1365 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1366 Internal speed instruction 3
1367
1368 When DI input port:
1369
1370 * 15-INSPD3: 0
1371 * 14-INSPD2: 1
1372 * 13-INSPD1: 1,
1373
1374 Select this speed instruction to be effective.
1375 )))|(% colspan="2" %)rpm
1376 |=P01-26|(% colspan="2" %)(((
1377 Internal speed
1378
1379 Instruction 4
1380 )))|(% colspan="2" %)(((
1381 Operation
1382
1383 setting
1384 )))|(% colspan="2" %)(((
1385 Effective
1386
1387 immediately
1388 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1389 Internal speed instruction 4
1390
1391 When DI input port:
1392
1393 * 15-INSPD3: 1
1394 * 14-INSPD2: 0
1395 * 13-INSPD1: 0,
1396
1397 Select this speed instruction to be effective.
1398 )))|(% colspan="1" %)rpm
1399 |=P01-27|(% colspan="2" %)(((
1400 Internal speed
1401
1402 Instruction 5
1403 )))|(% colspan="2" %)(((
1404 Operation
1405
1406 setting
1407 )))|(% colspan="2" %)(((
1408 Effective
1409
1410 immediately
1411 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1412 Internal speed instruction 5
1413
1414 When DI input port:
1415
1416 * 15-INSPD3: 1
1417 * 14-INSPD2: 0
1418 * 13-INSPD1: 1,
1419
1420 Select this speed instruction to be effective.
1421 )))|(% colspan="1" %)rpm
1422 |=P01-28|(% colspan="2" %)(((
1423 Internal speed
1424
1425 Instruction 6
1426 )))|(% colspan="2" %)(((
1427 Operation
1428
1429 setting
1430 )))|(% colspan="2" %)(((
1431 Effective
1432
1433 immediately
1434 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1435 Internal speed instruction 6
1436
1437 When DI input port:
1438
1439 * 15-INSPD3: 1
1440 * 14-INSPD2: 1
1441 * 13-INSPD1: 0,
1442
1443 Select this speed instruction to be effective.
1444 )))|(% colspan="1" %)rpm
1445 |=P01-29|(% colspan="2" %)(((
1446 Internal speed
1447
1448 Instruction 7
1449 )))|(% colspan="2" %)(((
1450 Operation
1451
1452 setting
1453 )))|(% colspan="2" %)(((
1454 Effective
1455
1456 immediately
1457 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1458 Internal speed instruction 7
1459
1460 When DI input port:
1461
1462 * 15-INSPD3: 1
1463 * 14-INSPD2: 1
1464 * 13-INSPD1: 1,
1465
1466 Select this speed instruction to be effective.
1467 )))|(% colspan="1" %)rpm
1468
1469 Table 6-27 Internal speed instruction parameters
1470
1471 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1472 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1473 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1474 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1475
1476 Table 6-28 DI multi-speed function code description
1477
1478 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1479
1480
1481 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1482 |0|0|0|1|0
1483 |0|0|1|2|1
1484 |0|1|0|3|2
1485 |(% colspan="5" %)......
1486 |1|1|1|8|7
1487
1488 Table 6-29 Correspondence between INSPD bits and segment numbers
1489
1490 (% style="text-align:center" %)
1491 (((
1492 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1493 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1494 )))
1495
1496 **Speed instruction source is internal speed instruction (P01-01=1)**
1497
1498 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1499
1500 (% style="text-align:center" %)
1501 (((
1502 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1503 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1504 )))
1505
1506 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1507
1508 (% style="text-align:center" %)
1509 (((
1510 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1511 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1512 )))
1513
1514 Explanation of related terms:
1515
1516 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1517 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1518 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1519
1520 (% style="text-align:center" %)
1521 (((
1522 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1523 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1524 )))
1525
1526 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1527 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1528 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1529 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1530 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1531
1532 Table 6-30 AI_1 parameters
1533
1534 (% class="box infomessage" %)
1535 (((
1536 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1537 )))
1538
1539 == Acceleration and deceleration time setting ==
1540
1541 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1542
1543 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1544
1545 (% style="text-align:center" %)
1546 (((
1547 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1548 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1549 )))
1550
1551 (% style="text-align:center" %)
1552 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1553
1554 |=(% scope="row" %)**Function code**|=**Name**|=(((
1555 **Setting method**
1556 )))|=(((
1557 **Effective time**
1558 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1559 |=P01-03|Acceleration time|(((
1560 Operation setting
1561 )))|(((
1562 Effective immediately
1563 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1564 |=P01-04|Deceleration time|(((
1565 Operation setting
1566 )))|(((
1567 Effective immediately
1568 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1569
1570 Table 6-31 Acceleration and deceleration time parameters
1571
1572 == Speed instruction limit ==
1573
1574 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1575
1576 1. P01-10: Set the maximum speed limit value
1577 1. P01-12: Set forward speed limit value
1578 1. P01-13: Set reverse speed limit value
1579 1. The maximum speed of the motor: determined by motor model
1580
1581 The actual motor speed limit interval satisfies the following relationship:
1582
1583 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1584
1585 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1586
1587 |=(% scope="row" %)**Function code**|=**Name**|=(((
1588 **Setting method**
1589 )))|=(((
1590 **Effective time**
1591 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1592 |=P01-10|Maximum speed threshold|(((
1593 Operation setting
1594 )))|(((
1595 Effective immediately
1596 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1597 |=P01-12|Forward speed threshold|(((
1598 Operation setting
1599 )))|(((
1600 Effective immediately
1601 )))|3000|0 to 5000|Set forward speed limit value|rpm
1602 |=P01-13|Reverse speed threshold|(((
1603 Operation setting
1604 )))|(((
1605 Effective immediately
1606 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1607
1608 Table 6-32 Rotation speed related function codes
1609
1610 == Zero-speed clamp function ==
1611
1612 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1613
1614 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1615
1616 |=(% scope="row" %)**Function code**|=**Name**|=(((
1617 **Setting method**
1618 )))|=(((
1619 **Effective time**
1620 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1621 |=P01-21|(((
1622 Zero-speed clamp function selection
1623 )))|(((
1624 Operation setting
1625 )))|(((
1626 Effective immediately
1627 )))|0|0 to 3|(((
1628 Set the zero-speed clamp function. In speed mode:
1629
1630 * 0: Force the speed to 0;
1631 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1632 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1633 * 3: Invalid, ignore zero-speed clamp input
1634 )))|-
1635 |=P01-22|(((
1636 Zero-speed clamp speed threshold
1637 )))|(((
1638 Operation setting
1639 )))|(((
1640 Effective immediately
1641 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1642
1643 Table 6-33 Zero-speed clamp related parameters
1644
1645 (% style="text-align:center" %)
1646 (((
1647 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1648 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1649 )))
1650
1651 == Speed-related DO output function ==
1652
1653 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1654
1655 **Rotation detection signal**
1656
1657 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1658
1659 (% style="text-align:center" %)
1660 (((
1661 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1662 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1663 )))
1664
1665 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1666
1667 |=(% scope="row" %)**Function code**|=**Name**|=(((
1668 **Setting method**
1669 )))|=(((
1670 **Effective time**
1671 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1672 |=P05-16|(((
1673 Rotation detection
1674
1675 speed threshold
1676 )))|(((
1677 Operation setting
1678 )))|(((
1679 Effective immediately
1680 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1681
1682 Table 6-34 Rotation detection speed threshold parameters
1683
1684 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1685 |=132|(% style="width:247px" %)(((
1686 T-COIN rotation detection
1687 )))|(% style="width:695px" %)(((
1688 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1689
1690 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1691 )))
1692
1693 Table 6-35 DO rotation detection function code
1694
1695 **Zero-speed signal**
1696
1697 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1698
1699 (% style="text-align:center" %)
1700 (((
1701 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1702 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1703 )))
1704
1705 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1706
1707 |=(% scope="row" %)**Function code**|=**Name**|=(((
1708 **Setting method**
1709 )))|=(((
1710 **Effective time**
1711 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1712 |=P05-19|Zero speed output signal threshold|(((
1713 Operation setting
1714 )))|(((
1715 Effective immediately
1716 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1717
1718 Table 6-36 Zero-speed output signal threshold parameter
1719
1720 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1721 |=133|(((
1722 ZSP zero speed signal
1723 )))|Output this signal indicates that the servo motor is stopping rotation
1724
1725 Table 6-37 DO zero-speed signal function code
1726
1727 **Speed consistent signal**
1728
1729 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1730
1731 (% style="text-align:center" %)
1732 (((
1733 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1734 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1735 )))
1736
1737 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1738
1739 |=(% scope="row" %)**Function code**|=**Name**|=(((
1740 **Setting method**
1741 )))|=(((
1742 **Effective time**
1743 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1744 |=P05-17|Speed consistent signal threshold|(((
1745 Operationsetting
1746 )))|(((
1747 Effective immediately
1748 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1749
1750 Table 6-38 Speed consistent signal threshold parameters
1751
1752 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1753 |=136|(% style="width:262px" %)(((
1754 U-COIN consistent speed
1755 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1756
1757 Table 6-39 DO speed consistent function code
1758
1759 **Speed approach signal**
1760
1761 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1762
1763 (% style="text-align:center" %)
1764 (((
1765 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1766 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1767 )))
1768
1769 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1770
1771 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1772 **Setting method**
1773 )))|=(((
1774 **Effective time**
1775 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1776 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1777 Operation setting
1778 )))|(((
1779 Effective immediately
1780 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1781
1782 Table 6-40 Speed approaching signal threshold parameters
1783
1784 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1785 |=137|(((
1786 V-NEAR speed approach
1787 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1788
1789 Table 6-41 DO speed approach function code
1790
1791 = **Torque control mode** =
1792
1793 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1794
1795 (% style="text-align:center" %)
1796 (((
1797 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1798 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1799 )))
1800
1801 == **Torque instruction input setting** ==
1802
1803 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1804
1805 |=(% scope="row" %)**Function code**|=**Name**|=(((
1806 **Setting method**
1807 )))|=(((
1808 **Effective time**
1809 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1810 |=P01-07|Torque instruction source|(((
1811 Shutdown setting
1812 )))|(((
1813 Effective immediately
1814 )))|0|0 to 1|(((
1815 0: internal torque instruction
1816
1817 1: AI_1 analog input(not supported by VD2F)
1818 )))|-
1819
1820 Table 6-42 Torque instruction source parameter
1821
1822 **Torque instruction source is internal torque instruction (P01-07=0)**
1823
1824 Torque instruction source is from inside, the value is set by function code P01-08.
1825
1826 |=(% scope="row" %)**Function code**|=**Name**|=(((
1827 **Setting method**
1828 )))|=(((
1829 **Effective time**
1830 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1831 |=P01-08|Torque instruction keyboard set value|(((
1832 Operation setting
1833 )))|(((
1834 Effective immediately
1835 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1836
1837 Table 6-43 Torque instruction keyboard set value
1838
1839 **Torque instruction source is AI_1 analog input (P01-07=1)**
1840
1841 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1842
1843 (% style="text-align:center" %)
1844 (((
1845 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
1846 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1847 )))
1848
1849 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1850
1851 (% style="text-align:center" %)
1852 (((
1853 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1854 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1855 )))
1856
1857 Explanation of related terms:
1858
1859 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1860 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1861 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1862
1863 (% style="text-align:center" %)
1864 (((
1865 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1866 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1867 )))
1868
1869 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1870 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1871 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1872 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1873 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1874
1875 Table 6-44 AI_1 parameters
1876
1877 (% class="box infomessage" %)
1878 (((
1879 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1880 )))
1881
1882 == Torque instruction filtering ==
1883
1884 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1885
1886 |=(% scope="row" %)**Function code**|=**Name**|=(((
1887 **Setting method**
1888 )))|=(((
1889 **Effective time**
1890 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1891 |=P04-04|Torque filtering time constant|(((
1892 Operation setting
1893 )))|(((
1894 Effective immediately
1895 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1896
1897 Table 6-45 Torque filtering time constant parameter details
1898
1899 (% class="box infomessage" %)
1900 (((
1901 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1902 )))
1903
1904 (% style="text-align:center" %)
1905 (((
1906 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1907 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1908 )))
1909
1910 == Torque instruction limit ==
1911
1912 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1913
1914 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1915
1916 (% style="text-align:center" %)
1917 (((
1918 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1919 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1920 )))
1921
1922 **Set torque limit source**
1923
1924 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1925
1926 |=(% scope="row" %)**Function code**|=**Name**|=(((
1927 **Setting method**
1928 )))|=(((
1929 **Effective time**
1930 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1931 |=P01-14|(((
1932 Torque limit source
1933 )))|(((
1934 Shutdown setting
1935 )))|(((
1936 Effective immediately
1937 )))|0|0 to 1|(((
1938 * 0: internal value
1939 * 1: AI_1 analog input (not supported by VD2F)
1940 )))|-
1941
1942 * Torque limit source is internal torque instruction (P01-14=0)
1943
1944 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1945
1946 |=(% scope="row" %)**Function code**|=**Name**|=(((
1947 **Setting method**
1948 )))|=(((
1949 **Effective time**
1950 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1951 |=P01-15|(((
1952 Forward torque limit
1953 )))|(((
1954 Operation setting
1955 )))|(((
1956 Effective immediately
1957 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1958 |=P01-16|(((
1959 Reverse torque limit
1960 )))|(((
1961 Operation setting
1962 )))|(((
1963 Effective immediately
1964 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1965
1966 Table 6-46 Torque limit parameter details
1967
1968 * Torque limit source is external (P01-14=1)
1969
1970 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1971
1972 **Set torque limit DO signal output**
1973
1974 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1975
1976 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1977 |=139|(((
1978 T-LIMIT in torque limit
1979 )))|Output of this signal indicates that the servo motor torque is limited
1980
1981 Table 6-47 DO torque limit function codes
1982
1983 == **Speed limit in torque mode** ==
1984
1985 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1986
1987 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
1988
1989 |(((
1990 (% style="text-align:center" %)
1991 (((
1992 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1993 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
1994 )))
1995 )))|(((
1996 (% style="text-align:center" %)
1997 (((
1998 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1999 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2000 )))
2001 )))
2002
2003 |=(% scope="row" %)**Function code**|=**Name**|=(((
2004 **Setting method**
2005 )))|=(((
2006 **Effective time**
2007 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2008 |=P01-17|(((
2009 Forward torque
2010
2011 limit in torque mode
2012 )))|(((
2013 Operation setting
2014 )))|(((
2015 Effective immediately
2016 )))|3000|0 to 5000|(((
2017 Forward torque
2018
2019 limit in torque mode
2020 )))|0.1%
2021 |=P01-18|(((
2022 Reverse torque
2023
2024 limit in torque mode
2025 )))|(((
2026 Operation setting
2027 )))|(((
2028 Effective immediately
2029 )))|3000|0 to 5000|(((
2030 Reverse torque
2031
2032 limit in torque mode
2033 )))|0.1%
2034
2035 Table 6-48 Speed limit parameters in torque mode
2036
2037 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2038
2039 == Torque-related DO output functions ==
2040
2041 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2042
2043 **Torque arrival**
2044
2045 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2046
2047 (% style="text-align:center" %)
2048 (((
2049 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2050 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2051 )))
2052
2053 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2054
2055 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2056 **Setting method**
2057 )))|=(% style="width: 124px;" %)(((
2058 **Effective time**
2059 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2060 |=P05-20|(% style="width:113px" %)(((
2061 Torque arrival
2062
2063 threshold
2064 )))|(% style="width:100px" %)(((
2065 Operation setting
2066 )))|(% style="width:124px" %)(((
2067 Effective immediately
2068 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2069 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2070
2071 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2072
2073 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2074 )))|%
2075 |=P05-21|(% style="width:113px" %)(((
2076 Torque arrival
2077
2078 hysteresis
2079 )))|(% style="width:100px" %)(((
2080 Operation setting
2081 )))|(% style="width:124px" %)(((
2082 Effective immediately
2083 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2084
2085 Table 6-49 Torque arrival parameters
2086
2087 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2088 |=138|(((
2089 T-COIN torque arrival
2090 )))|Used to determine whether the actual torque instruction has reached the set range
2091
2092 Table 6-50 DO Torque Arrival Function Code
2093
2094 = **Mixed control mode** =
2095
2096 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2097
2098 * Position mode⇔ Speed mode
2099 * Position mode ⇔Torque mode
2100 * Speed mode ⇔Torque mode
2101
2102 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2103
2104 |=(% scope="row" %)**Function code**|=**Name**|=(((
2105 **Setting method**
2106 )))|=(((
2107 **Effective time**
2108 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2109 |=P00-01|Control mode|(((
2110 Shutdown setting
2111 )))|(((
2112 Shutdown setting
2113 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2114 * 1: Position control
2115 * 2: Speed control
2116 * 3: Torque control
2117 * 4: Position/speed mixed control
2118 * 5: Position/torque mixed control
2119 * 6: Speed/torque mixed control
2120 )))|-
2121
2122 Table 6-51 Mixed control mode parameters
2123
2124 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2125
2126 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2127 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2128 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2129 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2130 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2131 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2132 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2133 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2134 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2135 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2136 )))
2137
2138 Table 6-52 Description of DI function codes in control mode
2139
2140 (% class="box infomessage" %)
2141 (((
2142 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2143 )))
2144
2145 = **Absolute system** =
2146
2147 == Overview ==
2148
2149 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2150
2151 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2152
2153 == Single-turn absolute value system ==
2154
2155 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2156
2157 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2158 |A1 (single-turn magnetic encoder)|17|0 to 131071
2159
2160 Table 6-53 Single-turn absolute encoder information
2161
2162 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2163
2164 (% style="text-align:center" %)
2165 (((
2166 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2167 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2168 )))
2169
2170 == Multi-turn absolute value system ==
2171
2172 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2173
2174 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2175 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2176 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2177
2178 Table 6-54 Multi-turn absolute encoder information
2179
2180 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2181
2182 (% style="text-align:center" %)
2183 (((
2184 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2185 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2186 )))
2187
2188 (% class="wikigeneratedid" %)
2189 (((
2190 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2191 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2192 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2193 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2194
2195 |**Function code**|**Name**|(((
2196 **Setting**
2197
2198 **method**
2199 )))|(((
2200 **Effective**
2201
2202 **time**
2203 )))|**Default**|**Range**|**Definition**|**Unit**
2204 |P10-06|Multi-turn absolute encoder reset|(((
2205 Shutdown
2206
2207 setting
2208 )))|Effective immediately|0|0 to 1|(((
2209 0: No operation
2210
2211 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2212
2213 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2214 )))|-
2215
2216 (% style="background-color:#ffffff" %)
2217 |**Function code**|**Name**|(((
2218 **Setting**
2219
2220 **method**
2221 )))|(((
2222 **Effective**
2223
2224 **time**
2225 )))|**Default**|**Range**|**Definition**|**Unit**
2226 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2227 Operation
2228
2229 setting
2230 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2231 )))
2232
2233 == Related functions and parameters ==
2234
2235 **Encoder feedback data**
2236
2237 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2238
2239 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2240 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2241 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2242 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2243
2244 Table 6-55 Encoder feedback data
2245
2246 **Shield multi-turn absolute encoder battery fault**
2247
2248 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2249
2250 |=(% scope="row" %)**Function code**|=**Name**|=(((
2251 **Setting**
2252
2253 **method**
2254 )))|=(((
2255 **Effective**
2256
2257 **time**
2258 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2259 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2260 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2261 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2262 )))|-
2263
2264 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2265
2266 **A93 warning solution**
2267
2268 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2269 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2270
2271 |**Function code**|**Name**|(((
2272 **Setting**
2273
2274 **method**
2275 )))|(((
2276 **Effective**
2277
2278 **time**
2279 )))|**Default**|**Range**|**Definition**|**Unit**
2280 |P00-31|Encoder read-write check abnormal frequency|(((
2281 Operation
2282
2283 setting
2284 )))|(((
2285 immediately
2286
2287 Effective
2288 )))|20|0 to100|(((
2289 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2290
2291 0: no alarm
2292
2293 Others: When this setting value is exceeded, report A93.
2294 )))|-
2295
2296 (% class="box infomessage" %)
2297 (((
2298 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2299 )))
2300
2301 == Absolute value system encoder battery box use precautions. ==
2302
2303 **Cautions**
2304
2305 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2306
2307 (% style="text-align:center" %)
2308 (((
2309 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2310 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2311 )))
2312
2313 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2314
2315 **Replace the battery**
2316
2317 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2318
2319 The specific replacement method is as follows:
2320
2321 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2322 * Step2 Remove the old battery.
2323 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2324 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2325
2326 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2327
2328 |=(% scope="row" %)**Function code**|=**Name**|=(((
2329 **Setting method**
2330 )))|=(((
2331 **Effective time**
2332 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2333 |=P10-06|Multi-turn absolute encoder reset|(((
2334 Shutdown setting
2335 )))|(((
2336 Effective immediately
2337 )))|0|0 to 1|(((
2338 * 0: No operation
2339 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2340
2341 (% class="box infomessage" %)
2342 (((
2343 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2344 )))
2345 )))|-
2346
2347 Table 6-56 Absolute encoder reset enable parameter
2348
2349 **Battery selection**
2350
2351 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2352 |(% rowspan="4" style="width:361px" %)(((
2353 Nominal Voltage: 3.6V
2354
2355 Nominal capacity: 2700mAh
2356 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2357 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2358 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2359 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2360
2361 Table 6-57 Absolute value encoder battery information
2362
2363 **✎Note: **
2364
2365 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2366
2367 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2368
2369 Correct placement of batteries +, - direction
2370
2371 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2372 1. This battery cannot be charged.
2373 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2374 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2375 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2376
2377 = **Other functions** =
2378
2379 == VDI ==
2380
2381 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2382
2383 (% class="box infomessage" %)
2384 (((
2385 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2386 )))
2387
2388 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2389
2390 (% style="text-align:center" %)
2391 (((
2392 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2393 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2394 )))
2395
2396 |=(% scope="row" %)**Function code**|=**Name**|=(((
2397 **Setting method**
2398 )))|=(((
2399 **Effective time**
2400 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2401 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2402 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2403
2404 VDI_1 input level:
2405
2406 * 0: low level
2407 * 1: high level
2408 )))|-
2409 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2410 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2411
2412 VDI_2 input level:
2413
2414 * 0: low level
2415 * 1: high level
2416 )))|-
2417 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2418 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2419
2420 VDI_3 input level:
2421
2422 * 0: low level
2423 * 1: high level
2424 )))|-
2425 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2426 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2427
2428 VDI_4 input level:
2429
2430 * 0: low level
2431 * 1: high level
2432 )))|-
2433 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2434 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2435
2436 VDI_5 input level:
2437
2438 * 0: low level
2439 * 1: high level
2440 )))|-
2441 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2442 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2443
2444 VDI_6 input level:
2445
2446 * 0: low level
2447 * 1: high level
2448 )))|-
2449 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2450 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2451
2452 VDI_7 input level:
2453
2454 * 0: low level
2455 * 1: high level
2456 )))|-
2457 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2458 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2459
2460 VDI_8 input level:
2461
2462 * 0: low level
2463 * 1: high level
2464 )))|-
2465
2466 Table 6-57 Virtual VDI parameters
2467
2468 (% class="box infomessage" %)
2469 (((
2470 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2471 )))
2472
2473 == Port filtering time ==
2474
2475 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2476
2477 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2478 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2479 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2480
2481 Table 6-58 DI terminal channel logic selection
2482
2483 == **VDO** ==
2484
2485 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2486
2487 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2488
2489 (% style="text-align:center" %)
2490 (((
2491 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2492 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2493 )))
2494
2495
2496 |=(% scope="row" %)**Function code**|=**Name**|=(((
2497 **Setting method**
2498 )))|=(((
2499 **Effective time**
2500 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2501 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2502 VDO_1 output level:
2503
2504 * 0: low level
2505 * 1: high level
2506 )))|-
2507 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2508 VDO_2 output level:
2509
2510 * 0: low level
2511 * 1: high level
2512 )))|-
2513 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2514 VDO_3 output level:
2515
2516 * 0: low level
2517 * 1: high level
2518 )))|-
2519 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2520 VDO_4 output level:
2521
2522 * 0: low level
2523 * 1: high level
2524 )))|-
2525
2526 Table 6-59 Communication control DO function parameters
2527
2528 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2529 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2530 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2531 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2532 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2533
2534 Table 6-60 VDO function number
2535
2536 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2537
2538 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2539
2540 == Motor overload protection ==
2541
2542 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2543
2544 |=(% scope="row" %)**Function code**|=**Name**|=(((
2545 **Setting method**
2546 )))|=(((
2547 **Effective time**
2548 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2549 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2550 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2551
2552 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2553 )))|%
2554
2555 In the following cases, it could be modified according to the actual heat generation of the motor
2556
2557 1. The motor works in a place with high ambient temperature
2558 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2559
2560 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2561
2562 (% class="box infomessage" %)
2563 (((
2564 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2565 )))