Wiki source code of 06 Operation

Version 73.1 by Mora Zhou on 2024/07/17 10:53

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 * 0: standard setting (CW is forward rotation)
90 * 1: reverse mode (CCW is forward rotation)
91 )))|-
92
93 Table 6-3 Rotation direction parameters** **
94
95 == **Braking resistor** ==
96
97 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
98
99 The basis for judging whether the braking resistor is built-in or external.
100
101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103
104 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
105 **Setting method**
106 )))|=(% style="width: 126px;" %)(((
107 **Effective time**
108 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
110 Operation setting
111 )))|(% style="width:126px" %)(((
112 Effective immediately
113 )))|0|0 to 3|(((
114 * 0: use built-in braking resistor
115 * 1: use external braking resistor and natural cooling
116 * 2: use external braking resistor and forced air cooling; (cannot be set)
117 * 3: No braking resistor is used, it is all absorbed by capacitor.
118 )))|-
119 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
121 Operation setting
122 )))|(% style="width:126px" %)(((
123 Effective immediately
124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
126 Operation setting
127 )))|(% style="width:126px" %)(((
128 Effective immediately
129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130
131 Table 6-4 Braking resistor parameters
132
133 == **Servo operation** ==
134
135 **Set the servo enable (S-ON) to valid (ON)**
136
137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138
139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140
141 **Input the instruction and the motor rotates**
142
143 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
144
145 **Timing diagram of power on**
146
147 (% style="text-align:center" %)
148 (((
149 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 )))
152
153 == Servo shutdown ==
154
155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
156
157 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 |=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
160
161 Table 6-5 Comparison of two shutdown modes
162
163 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165
166 Table 6-6 Comparison of two shutdown status
167
168 **Servo enable (S-ON) OFF shutdown**
169
170 The related parameters of the servo OFF shutdown mode are shown in the table below.
171
172 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
173 **Setting method**
174 )))|=(% style="width: 134px;" %)(((
175 **Effective time**
176 )))|=(% style="width: 86px;" %)(((
177 **Default value**
178 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
180 Shutdown
181
182 setting
183 )))|(% style="width:134px" %)(((
184 Effective
185
186 immediately
187 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 * 0: Free shutdown, and the motor shaft remains free status.
189 * 1: Zero-speed shutdown, and the motor shaft remains free status.
190 )))|-
191
192 Table 6-7 Servo OFF shutdown mode parameters details
193
194 **Emergency shutdown**
195
196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
197
198 Estop mode 1 (deceleration stop):
199
200 ~1. Configurate DI function code: 8 [ESTOP]
201
202 2. Set P1-5 shutdown deceleration time.
203
204 3. Trigger DI emergency shutdown.
205
206 4. Servo emergency shutdown and deceleration to zero speed.
207
208 Estop mode 2:
209
210 ~1. Configurate DI function code: 1 [Servo enable SON]
211
212 2. Set P1-05 shutdown deceleration time.
213
214 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
215
216 4. Trigger DI to turn off servo enable SON.
217
218 |Function code|Name|(((
219 Setting
220
221 method
222 )))|(((
223 Effective
224
225 time
226 )))|Default|Range|Definition|Unit
227 |P01-05|Shutdown deceleration time|(((
228 Shutdown
229
230 setting
231 )))|(((
232 immediately
233
234 Effective
235 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
236
237 **Overtravel shutdown**
238
239 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
240
241 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
242
243 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
244
245 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
246 **Setting method**
247 )))|=(% style="width: 114px;" %)(((
248 **Effective time**
249 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
250 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
251 * 0: OFF (not used)
252 * 01: S-ON servo enable
253 * 02: A-CLR fault and Warning Clear
254 * 03: POT forward drive prohibition
255 * 04: NOT Reverse drive prohibition
256 * 05: ZCLAMP Zero speed
257 * 06: CL Clear deviation counter
258 * 07: C-SIGN Inverted instruction
259 * 08: E-STOP Emergency stop
260 * 09: GEAR-SEL Electronic Gear Switch 1
261 * 10: GAIN-SEL gain switch
262 * 11: INH Instruction pulse prohibited input
263 * 12: VSSEL Vibration control switch input
264 * 13: INSPD1 Internal speed instruction selection 1
265 * 14: INSPD2 Internal speed instruction selection 2
266 * 15: INSPD3 Internal speedinstruction selection 3
267 * 16: J-SEL inertia ratio switch (not implemented yet)
268 * 17: MixModesel mixed mode selection
269 * 20: Internal multi-segment position enable signal
270 * 21: Internal multi-segment position selection 1
271 * 22: Internal multi-segment position selection 2
272 * 23: Internal multi-segment position selection 3
273 * 24: Internal multi-segment position selection 4
274 * Others: reserved
275 )))|-
276 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
277 Effective immediately
278 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
279 DI port input logic validity function selection.
280
281 * 0: Normally open input. Active low level (switch on);
282 * 1: Normally closed input. Active high level (switch off);
283 )))|-
284 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
285 Effective immediately
286 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
287 Select the DI_3 port type to enable
288
289 * 0: Hardware DI_3 input terminal
290 * 1: virtual VDI_3 input terminal
291 )))|-
292 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
293 Operation setting
294 )))|(% style="width:114px" %)(((
295 again Power-on
296 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
297 * 0: OFF (not used)
298 * 01: SON Servo enable
299 * 02: A-CLR Fault and Warning Clear
300 * 03: POT Forward drive prohibition
301 * 04: NOT Reverse drive prohibition
302 * 05: ZCLAMP Zero speed
303 * 06: CL Clear deviation counter
304 * 07: C-SIGN Inverted instruction
305 * 08: E-STOP Emergency shutdown
306 * 09: GEAR-SEL Electronic Gear Switch 1
307 * 10: GAIN-SEL gain switch
308 * 11: INH Instruction pulse prohibited input
309 * 12: VSSEL Vibration control switch input
310 * 13: INSPD1 Internal speed instruction selection 1
311 * 14: INSPD2 Internal speed instruction selection 2
312 * 15: INSPD3 Internal speed instruction selection 3
313 * 16: J-SEL inertia ratio switch (not implemented yet)
314 * 17: MixModesel mixed mode selection
315 * 20: Internal multi-segment position enable signal
316 * 21: Internal multi-segment position selection 1
317 * 22: Internal multi-segment position selection 2
318 * 23: Internal multi-segment position selection 3
319 * 24: Internal multi-segment position selection 4
320 * Others: reserved
321 )))|-
322 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
323 Effective immediately
324 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
325 DI port input logic validity function selection.
326
327 * 0: Normally open input. Active low level (switch on);
328 * 1: Normally closed input. Active high level (switch off);
329 )))|-
330 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
331 Effective immediately
332 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
333 Select the DI_4 port type to enable
334
335 * 0: Hardware DI_4 input terminal
336 * 1: virtual VDI_4 input terminal
337 )))|-
338
339 Table 6-8 DI3 and DI4 channel parameters
340
341 **(4) Malfunction shutdown**
342
343 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
344
345 == Brake device ==
346
347 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
348
349 (% class="warning" %)|(((
350 (% style="text-align:center" %)
351 [[image:image-20220611151617-1.png]]
352 )))
353 |(((
354 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
355
356 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
357
358 ✎The brake coil has no polarity;
359
360 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
361
362 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
363 )))
364
365 **Wiring of brake device**
366
367 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
368
369
370 (% style="text-align:center" %)
371 (((
372 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
373 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
374 )))
375
376 (% class="warning" %)|(((
377 (% style="text-align:center" %)
378 [[image:image-20220611151642-2.png]]
379 )))
380 |(((
381 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
382
383 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
384
385 ✎It is recommended to use cables above 0.5 mm².
386 )))
387
388 **Brake software setting**
389
390 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
391
392 Related function code is as below.
393
394 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
395 **Effective time**
396 )))
397 |=141|(% style="width:241px" %)(((
398 BRK-OFF Brake output
399 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
400
401 Table 6-2 Relevant function codes for brake setting
402
403 |=(% scope="row" %)**Function code**|=**Name**|=(((
404 **Setting method**
405 )))|=(((
406 **Effective time**
407 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
408 |=P1-30|Delay from brake output to instruction reception|(((
409 Operation setting
410 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
411 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
412 Operation setting
413 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
414 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
415 Operation setting
416 )))|Effective immediately|30|0 to 3000|(((
417 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
418
419 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
420 )))|rpm
421 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
422 Operation setting
423 )))|Effective immediately|500|1 to 1000|(((
424 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
425
426 When brake output (BRK-OFF) is not allocated, this function code has no effect.
427 )))|ms
428
429 Table 6-9 Brake setting function codes
430
431 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
432
433 **Servo drive brake timing in normal state**
434
435 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
436
437 * Brake timing when servo motor is stationary
438
439 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
440
441 (% class="warning" %)|(((
442 (% style="text-align:center" %)
443 [[image:image-20220611151705-3.png]]
444 )))
445 |(((
446 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
447
448 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
449 )))
450
451 (% style="text-align:center" %)
452 (((
453 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
454 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
455 )))
456
457 (% class="box infomessage" %)
458 (((
459 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
460 )))
461
462 * The brake timing when servo motor rotates
463
464 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
465
466 (% class="warning" %)|(((
467 (% style="text-align:center" %)
468 [[image:image-20220611151719-4.png]]
469 )))
470 |(((
471 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
472
473 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
474
475 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
476
477 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
478
479 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
480 )))
481
482 (% style="text-align:center" %)
483 (((
484 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
485 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
486 )))
487
488 **Brake timing when the servo drive fails**
489
490 The brake timing (free shutdown) in the fault status is as follows.
491
492 (% style="text-align:center" %)
493 (((
494 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
495 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
496 )))
497
498 = **Position control mode** =
499
500 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
501
502 (% style="text-align:center" %)
503 (((
504 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
505 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
506 )))
507
508 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
509
510 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
511 **Setting method**
512 )))|=(((
513 **Effective time**
514 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
515 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
516 Operation setting
517 )))|(((
518 immediately Effective
519 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
520 1: position control
521
522 2: speed control
523
524 3: torque control
525
526 4: position/speed mix control
527
528 5: position/torque mix control
529
530 6: speed /torque mix control
531
532 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
533 )))|(% style="width:151px" %)-
534
535 Table 6-10 Control mode parameters
536
537 == Position instruction input setting ==
538
539 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
540
541 |=(% scope="row" %)**Function code**|=**Name**|=(((
542 **Setting method**
543 )))|=(((
544 **Effective time**
545 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
546 |=P01-06|Position instruction source|(((
547 Operation setting
548 )))|(((
549 immediately Effective
550 )))|0|0 to 1|(((
551 0: pulse instruction
552
553 1: internal position instruction
554 )))|-
555
556 Table 6-12 Position instruction source parameter
557
558 **The source of position instruction is pulse instruction (P01-06=0)**
559
560 Low-speed pulse instruction input
561
562 |(% style="text-align:center" %)(((
563 (% class="wikigeneratedid" %)
564 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
565 )))|(% style="text-align:center" %)(((
566 (% class="wikigeneratedid" %)
567 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
568 )))
569 |(% colspan="2" %)Figure 6-7 Position instruction input setting
570
571 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
572
573 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
574
575 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
576 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
577 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
578
579 Table 6-13 Pulse input specifications
580
581 * Differential input
582
583 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
584
585 (% style="text-align:center" %)
586 (((
587 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
588 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
589 )))
590
591 (% class="box infomessage" %)
592 (((
593 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
594 )))
595
596 * Open collector input
597
598 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
599
600 (% style="text-align:center" %)
601 (((
602 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
603 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
604 )))
605
606
607 (% class="box infomessage" %)
608 (((
609 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
610 )))
611
612 * Position pulse frequency and anti-interference level
613
614 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
615
616 (% style="text-align:center" %)
617 (((
618 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
619 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
620 )))
621
622 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
623
624 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
625 **Setting method**
626 )))|=(((
627 **Effective time**
628 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
629 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
630 Operation setting
631 )))|(% rowspan="3" %)(((
632 Power-on again
633 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
634 Set the anti-interference level of external pulse instruction.
635
636 * 0: no filtering;
637 * 1: Filtering time 128ns
638 * 2: Filtering time 256ns
639 * 3: Filtering time 512ns
640 * 4: Filtering time 1.024us
641 * 5: Filtering time 2.048us
642 * 6: Filtering time 4.096us
643 * 7: Filtering time 8.192us
644 * 8: Filtering time 16.384us
645 * 9:
646 ** VD2: Filtering time 25.5us
647 ** VD2F: Filtering time 25.5us
648 )))|(% rowspan="3" %)-
649
650 Table 6-14 Position pulse frequency and anti-interference level parameters
651
652 |**Function code**|**Name**|(((
653 **Setting**
654
655 **method**
656 )))|(((
657 **Effective**
658
659 **time**
660 )))|**Default value**|**Range**|**Definition**|**Unit**
661 |P00-14|Position pulse anti-interference level|(((
662 Operation
663
664 setting
665 )))|(((
666 Power-on
667
668 again
669 )))|2|0 to 8|(((
670 VD2L drive set the anti-interference level of external pulse instruction.
671
672 0: no filtering;
673
674 1: Filtering time 111.1ns
675
676 2: Filtering time 222.2ns
677
678 3: Filtering time 444.4ns
679
680 4: Filtering time 888.8ns
681
682 5: Filtering time 1777.7ns
683
684 6: Filtering time 3555.5ns
685
686 7: Filtering time 7111.7ns
687
688 8: Filtering time 14222.2ns
689
690
691 )))|-
692
693 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
694
695
696 * Position pulse type selection
697
698 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
699
700 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
701 **Setting method**
702 )))|=(% style="width: 109px;" %)(((
703 **Effective time**
704 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
705 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
706 Operation setting
707 )))|(% style="width:109px" %)(((
708 Power-on again
709 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
710 * 0: direction + pulse (positive logic)
711 * 1: CW/CCW
712 * 2: A, B phase quadrature pulse (4 times frequency)
713 * 3: Direction + pulse (negative logic)
714 * 4: CW/CCW (negative logic)
715 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
716
717 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
718 )))|-
719
720 Table 6-15 Position pulse type selection parameter
721
722 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
723 |=0|(% style="width:200px" %)(((
724 Direction + pulse
725
726 (Positive logic)
727 )))|(% style="width:161px" %)(((
728 PULSE
729
730 SIGN
731 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
732 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
733 PULSE (CW)
734
735 SIGN (CCW)
736 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
737 |=2|(% style="width:200px" %)(((
738 AB phase orthogonal
739
740 pulse (4 times frequency)
741 )))|(% style="width:161px" %)(((
742 PULSE (Phase A)
743
744 SIGN (Phase B)
745 )))|(((
746
747
748 [[image:image-20220707094358-9.jpeg]]
749
750 Phase A is 90° ahead of Phase B
751 )))|(((
752
753
754 [[image:image-20220707094407-10.jpeg]]
755
756 Phase B is 90° ahead of Phase A
757 )))
758 |=3|(% style="width:200px" %)(((
759 Direction + pulse
760
761 (Negative logic)
762 )))|(% style="width:161px" %)(((
763 PULSE
764
765 SIGN
766 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
767 |=4|(% style="width:200px" %)(((
768 CW/CCW
769
770 (Negative logic)
771 )))|(% style="width:161px" %)(((
772 PULSE (CW)
773
774 SIGN (CCW)
775 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
776 |=5|(% style="width:200px" %)(((
777 AB phase orthogonal
778
779 pulse (4 times frequency negative logic)
780 )))|(% style="width:161px" %)(((
781 PULSE (Phase A)
782
783 SIGN (Phase B)
784 )))|(((
785
786
787 [[image:image-20220707094429-14.jpeg]]
788
789 Phase B is ahead of A phase by 90°
790 )))|(((
791
792
793 [[image:image-20220707094437-15.jpeg]]
794
795 Phase A is ahead of B phase by 90°
796 )))
797
798 Table 6-16 Pulse description
799
800 **The source of position instruction is internal position instruction (P01-06=1)**
801
802 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
803
804 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
805
806 (% style="text-align:center" %)
807 (((
808 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
809 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
810 )))
811
812
813 * Set multi-segment position running mode
814
815 |=(% scope="row" %)**Function code**|=**Name**|=(((
816 **Setting method**
817 )))|=(((
818 **Effective time**
819 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
820 |=P07-01|Multi-segment position running mode|(((
821 Shutdown setting
822 )))|(((
823 Effective immediately
824 )))|0|0 to 2|(((
825 0: Single running
826
827 1: Cycle running
828
829 2: DI switching running
830 )))|-
831 |=P07-02|Start segment number|(((
832 Shutdown setting
833 )))|(((
834 Effective immediately
835 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
836 |=P07-03|End segment number|(((
837 Shutdown setting
838 )))|(((
839 Effective immediately
840 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
841 |=P07-04|Margin processing method|(((
842 Shutdown setting
843 )))|(((
844 Effective immediately
845 )))|0|0 to 1|(((
846 0: Run the remaining segments
847
848 1: Run again from the start segment
849 )))|-
850 |=P07-05|Displacement instruction type|(((
851 Shutdown setting
852 )))|(((
853 Effective immediately
854 )))|0|0 to 1|(((
855 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
856
857 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
858 )))|-
859
860 Table 6-17 multi-segment position running mode parameters
861
862 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
863
864 1. Single running
865
866 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
867
868 (% style="text-align:center" %)
869 (((
870 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
871 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
872 )))
873
874 * 2. Cycle running
875
876 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
877
878 (% style="text-align:center" %)
879 (((
880 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
881 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
882 )))
883
884 (% class="warning" %)|(((
885 (% style="text-align:center" %)
886 [[image:image-20220611151917-5.png]]
887 )))
888 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
889
890 (% start="3" %)
891 1. DI switching running
892
893 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
894
895 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
896 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
897 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
898 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
899 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
900
901 Table 6-18 DI function code
902
903 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
904
905 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
906 |=0|0|0|0|1
907 |=0|0|0|1|2
908 |=0|0|1|0|3
909 |=0|0|1|1|4
910 |=0|1|0|0|5
911 |=0|1|0|1|6
912 |=0|1|1|0|7
913 |=0|1|1|1|8
914 |=1|0|0|0|9
915 |=1|0|0|1|10
916 |=1|0|1|0|11
917 |=1|0|1|1|12
918 |=1|1|0|0|13
919 |=1|1|0|1|14
920 |=1|1|1|0|15
921 |=1|1|1|1|16
922
923 Table 6-20 INPOS corresponds to running segment number
924
925 The operating curve in this running mode is shown in __Figure 6-14__.
926
927 (% style="text-align:center" %)
928 (((
929 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
930 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
931 )))
932
933 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
934
935 **Run the remaining segments**
936
937 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
938
939 (% style="text-align:center" %)
940 (((
941 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
942 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
943 )))
944
945 (% style="text-align:center" %)
946 (((
947 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
948 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
949 )))
950
951 **Run again from the start segment**
952
953 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
954
955 (% style="text-align:center" %)
956 (((
957 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
958 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
959 )))
960
961 (% style="text-align:center" %)
962 (((
963 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
964 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
965 )))
966
967 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
968
969 * Relative position instruction
970
971 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
972
973 |(((
974 (% style="text-align:center" %)
975 (((
976 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
977 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
978 )))
979 )))|(((
980 (% style="text-align:center" %)
981 (((
982 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
983 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
984 )))
985 )))
986
987 * Absolute position instruction
988
989 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
990
991 |(((
992 (% style="text-align:center" %)
993 (((
994 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
995 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
996 )))
997 )))|(((
998 (% style="text-align:center" %)
999 (((
1000 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1001 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1002 )))
1003 )))
1004
1005 * Multi-segment position running curve setting
1006
1007 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1008
1009 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1010 |=P07-09|(((
1011 1st segment
1012
1013 displacement
1014 )))|(((
1015 Operation setting
1016 )))|(((
1017 Effective immediately
1018 )))|10000|(((
1019 -2147483647 to
1020
1021 2147483646
1022 )))|Position instruction, positive and negative values could be set|-
1023 |=P07-10|Maximum speed of the 1st displacement|(((
1024 Operation setting
1025 )))|(((
1026 Effective immediately
1027 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1028 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1029 Operation setting
1030 )))|(((
1031 Effective immediately
1032 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1033 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1034 Operation setting
1035 )))|(((
1036 Effective immediately
1037 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1038
1039 Table 6-21 The 1st position operation curve parameters table
1040
1041 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1042
1043 (% style="text-align:center" %)
1044 (((
1045 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1046 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1047 )))
1048
1049
1050 * multi-segment position instruction enable
1051
1052 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1053
1054 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1055 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1056 DI port logic invalid: Does not affect the current operation of the servo motor.
1057
1058 DI port logic valid: Motor runs multi-segment position
1059 )))
1060
1061 (% style="text-align:center" %)
1062 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1063
1064 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1065
1066 == Electronic gear ratio ==
1067
1068 **Definition of electronic gear ratio**
1069
1070 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1071
1072 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1073
1074 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1075
1076 (% style="text-align:center" %)
1077 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1078
1079 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1080
1081 **Setting steps of electronic gear ratio**
1082
1083 (% style="text-align:center" %)
1084 (((
1085 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1086 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1087 )))
1088
1089 **lectronic gear ratio switch setting**
1090
1091 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1092
1093 |=(% scope="row" %)**Function code**|=**Name**|=(((
1094 **Setting method**
1095 )))|=(((
1096 **Effective time**
1097 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1098 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1099 Shutdown setting
1100 )))|(((
1101 Effective immediately
1102 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1103 Instruction pulse
1104
1105 unit
1106 )))
1107 |=P00-17|(((
1108 Electronic gear 1
1109
1110 numerator
1111 )))|Operation setting|(((
1112 Effective immediately
1113 )))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1114 |=P00-18|(((
1115 Electronic gear 1
1116
1117 denominator
1118 )))|(((
1119 Operation setting
1120 )))|(((
1121 Effective immediately
1122 )))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1123 |=P00-19|(((
1124 Electronic gear 2
1125
1126 numerator
1127 )))|Operation setting|(((
1128 Effective immediately
1129 )))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1130 |=P00-20|(((
1131 Electronic gear 2
1132
1133 denominator
1134 )))|Operation setting|(((
1135 Effective immediately
1136 )))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1137
1138 Table 6-20 Electronic gear ratio function code
1139
1140 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1141
1142 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1143 |=09|GEAR-SEL electronic gear switch 1|(((
1144 DI port logic invalid: electronic gear ratio 1
1145
1146 DI port logic valid: electronic gear ratio 2
1147 )))
1148
1149 Table 6-21 Switching conditions of electronic gear ratio group
1150
1151 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1152 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1153 (% style="text-align:center" %)
1154 [[image:image-20220707101328-21.png]]
1155 )))
1156 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1157 (% style="text-align:center" %)
1158 [[image:image-20220707101336-22.png]]
1159 )))
1160 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1161 (% style="text-align:center" %)
1162 [[image:image-20220707101341-23.png]]
1163 )))
1164
1165 Table 6-22 Application of electronic gear ratio
1166
1167 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1168
1169 == Position instruction filtering ==
1170
1171 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1172
1173 In the following situations, position instruction filtering should be added.
1174
1175 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1176 1. The pulse instruction frequency is low;
1177 1. When the electronic gear ratio is 10 times or more.
1178
1179 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1180
1181 (% style="text-align:center" %)
1182 (((
1183 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1184 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1185 )))
1186
1187 |=(% scope="row" %)**Function code**|=**Name**|=(((
1188 **Setting method**
1189 )))|=(((
1190 **Effective time**
1191 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1192 |=P04-01|Pulse instruction filtering method|(((
1193 Shutdown setting
1194 )))|(((
1195 Effective immediately
1196 )))|0|0 to 1|(((
1197 * 0: 1st-order low-pass filtering
1198 * 1: average filtering
1199 )))|-
1200 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1201 Effective immediately
1202 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1203 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1204 Effective immediately
1205 )))|0|0 to 128|Position instruction average filtering time constant|ms
1206
1207 Table 6-25 Position instruction filter function code
1208
1209 == Clearance of position deviation ==
1210
1211 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1212
1213 Position deviation = (position instruction-position feedback) (encoder unit)
1214
1215 == Position-related DO output function ==
1216
1217 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1218
1219 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1220 **Positioning completion/positioning approach output**
1221
1222 (% class="wikigeneratedid" %)
1223 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1224
1225 (% style="text-align:center" %)
1226 (((
1227 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1228 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1229 )))
1230
1231 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1232
1233 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1234
1235 (% style="text-align:center" %)
1236 (((
1237 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1238 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1239 )))
1240
1241 |=(% scope="row" %)**Function code**|=**Name**|=(((
1242 **Setting method**
1243 )))|=(% style="width: 129px;" %)(((
1244 **Effective time**
1245 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1246 |=P05-12|Positioning completion threshold|(((
1247 Operation setting
1248 )))|(% style="width:129px" %)(((
1249 Effective immediately
1250 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1251 |=P05-13|Positioning approach threshold|(((
1252 Operation setting
1253 )))|(% style="width:129px" %)(((
1254 Effective immediately
1255 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1256 |=P05-14|Position detection window time|(((
1257 Operation setting
1258 )))|(% style="width:129px" %)(((
1259 Effective immediately
1260 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1261 |=P05-15|Positioning signal hold time|(((
1262 Operation setting
1263 )))|(% style="width:129px" %)(((
1264 Effective immediately
1265 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1266
1267 Table 6-26 Function code parameters of positioning completion
1268
1269 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1270 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1271 |=135|(((
1272 P-NEAR positioning close
1273 )))|(((
1274 Output this signal indicates that the servo drive position is close.
1275 )))
1276
1277 Table 6-27 Description of DO rotation detection function code
1278
1279 = **Speed control mode** =
1280
1281 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1282
1283 (% style="text-align:center" %)
1284 (((
1285 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1286 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1287 )))
1288
1289 == Speed instruction input setting ==
1290
1291 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1292
1293 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1294 **Setting method**
1295 )))|=(% style="width: 125px;" %)(((
1296 **Effective time**
1297 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1298 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1299 Shutdown setting
1300 )))|(% style="width:125px" %)(((
1301 Effective immediately
1302 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1303 * 0: internal speed instruction
1304 * 1: AI_1 analog input (not supported by VD2F)
1305 )))|-
1306
1307 Table 6-26 Speed instruction source parameter
1308
1309 **Speed instruction source is internal speed instruction (P01-01=0)**
1310
1311 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1312
1313 (% style="width:1141px" %)
1314 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1315 **Setting**
1316
1317 **method**
1318 )))|=(% colspan="2" %)(((
1319 **Effective**
1320
1321 **time**
1322 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1323 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1324 Internal speed
1325
1326 Instruction 0
1327 )))|(% colspan="2" %)(((
1328 Operation
1329
1330 setting
1331 )))|(% colspan="2" %)(((
1332 Effective
1333
1334 immediately
1335 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1336 Internal speed instruction 0
1337
1338 When DI input port:
1339
1340 * 15-INSPD3: 0
1341 * 14-INSPD2: 0
1342 * 13-INSPD1: 0,
1343
1344 select this speed instruction to be effective.
1345 )))|(% colspan="2" %)rpm
1346 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1347 Internal speed
1348
1349 Instruction 1
1350 )))|(% colspan="2" %)(((
1351 Operation
1352
1353 setting
1354 )))|(% colspan="2" %)(((
1355 Effective
1356
1357 immediately
1358 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1359 Internal speed instruction 1
1360
1361 When DI input port:
1362
1363 * 15-INSPD3: 0
1364 * 14-INSPD2: 0
1365 * 13-INSPD1: 1,
1366
1367 Select this speed instruction to be effective.
1368 )))|(% colspan="2" %)rpm
1369 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1370 Internal speed
1371
1372 Instruction 2
1373 )))|(% colspan="2" %)(((
1374 Operation
1375
1376 setting
1377 )))|(% colspan="2" %)(((
1378 Effective
1379
1380 immediately
1381 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1382 Internal speed instruction 2
1383
1384 When DI input port:
1385
1386 * 15-INSPD3: 0
1387 * 14-INSPD2: 1
1388 * 13-INSPD1: 0,
1389
1390 Select this speed instruction to be effective.
1391 )))|(% colspan="2" %)rpm
1392 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1393 Internal speed
1394
1395 Instruction 3
1396 )))|(% colspan="2" %)(((
1397 Operation
1398
1399 setting
1400 )))|(% colspan="2" %)(((
1401 Effective
1402
1403 immediately
1404 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1405 Internal speed instruction 3
1406
1407 When DI input port:
1408
1409 * 15-INSPD3: 0
1410 * 14-INSPD2: 1
1411 * 13-INSPD1: 1,
1412
1413 Select this speed instruction to be effective.
1414 )))|(% colspan="2" %)rpm
1415 |=P01-26|(% colspan="2" %)(((
1416 Internal speed
1417
1418 Instruction 4
1419 )))|(% colspan="2" %)(((
1420 Operation
1421
1422 setting
1423 )))|(% colspan="2" %)(((
1424 Effective
1425
1426 immediately
1427 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1428 Internal speed instruction 4
1429
1430 When DI input port:
1431
1432 * 15-INSPD3: 1
1433 * 14-INSPD2: 0
1434 * 13-INSPD1: 0,
1435
1436 Select this speed instruction to be effective.
1437 )))|(% colspan="1" %)rpm
1438 |=P01-27|(% colspan="2" %)(((
1439 Internal speed
1440
1441 Instruction 5
1442 )))|(% colspan="2" %)(((
1443 Operation
1444
1445 setting
1446 )))|(% colspan="2" %)(((
1447 Effective
1448
1449 immediately
1450 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1451 Internal speed instruction 5
1452
1453 When DI input port:
1454
1455 * 15-INSPD3: 1
1456 * 14-INSPD2: 0
1457 * 13-INSPD1: 1,
1458
1459 Select this speed instruction to be effective.
1460 )))|(% colspan="1" %)rpm
1461 |=P01-28|(% colspan="2" %)(((
1462 Internal speed
1463
1464 Instruction 6
1465 )))|(% colspan="2" %)(((
1466 Operation
1467
1468 setting
1469 )))|(% colspan="2" %)(((
1470 Effective
1471
1472 immediately
1473 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1474 Internal speed instruction 6
1475
1476 When DI input port:
1477
1478 * 15-INSPD3: 1
1479 * 14-INSPD2: 1
1480 * 13-INSPD1: 0,
1481
1482 Select this speed instruction to be effective.
1483 )))|(% colspan="1" %)rpm
1484 |=P01-29|(% colspan="2" %)(((
1485 Internal speed
1486
1487 Instruction 7
1488 )))|(% colspan="2" %)(((
1489 Operation
1490
1491 setting
1492 )))|(% colspan="2" %)(((
1493 Effective
1494
1495 immediately
1496 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1497 Internal speed instruction 7
1498
1499 When DI input port:
1500
1501 * 15-INSPD3: 1
1502 * 14-INSPD2: 1
1503 * 13-INSPD1: 1,
1504
1505 Select this speed instruction to be effective.
1506 )))|(% colspan="1" %)rpm
1507
1508 Table 6-27 Internal speed instruction parameters
1509
1510 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1511 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1512 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1513 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1514
1515 Table 6-28 DI multi-speed function code description
1516
1517 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1518
1519
1520 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1521 |0|0|0|1|0
1522 |0|0|1|2|1
1523 |0|1|0|3|2
1524 |(% colspan="5" %)......
1525 |1|1|1|8|7
1526
1527 Table 6-29 Correspondence between INSPD bits and segment numbers
1528
1529 (% style="text-align:center" %)
1530 (((
1531 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1532 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1533 )))
1534
1535 **Speed instruction source is internal speed instruction (P01-01=1)**
1536
1537 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1538
1539 (% style="text-align:center" %)
1540 (((
1541 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1542 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1543 )))
1544
1545 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1546
1547 (% style="text-align:center" %)
1548 (((
1549 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1550 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1551 )))
1552
1553 Explanation of related terms:
1554
1555 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1556 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1557 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1558
1559 (% style="text-align:center" %)
1560 (((
1561 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1562 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1563 )))
1564
1565 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1566 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1567 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1568 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1569 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1570
1571 Table 6-30 AI_1 parameters
1572
1573 (% class="box infomessage" %)
1574 (((
1575 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1576 )))
1577
1578 == Acceleration and deceleration time setting ==
1579
1580 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1581
1582 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1583
1584 (% style="text-align:center" %)
1585 (((
1586 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1587 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1588 )))
1589
1590 (% style="text-align:center" %)
1591 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1592
1593 |=(% scope="row" %)**Function code**|=**Name**|=(((
1594 **Setting method**
1595 )))|=(((
1596 **Effective time**
1597 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1598 |=P01-03|Acceleration time|(((
1599 Operation setting
1600 )))|(((
1601 Effective immediately
1602 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1603 |=P01-04|Deceleration time|(((
1604 Operation setting
1605 )))|(((
1606 Effective immediately
1607 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1608
1609 Table 6-31 Acceleration and deceleration time parameters
1610
1611 == Speed instruction limit ==
1612
1613 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1614
1615 1. P01-10: Set the maximum speed limit value
1616 1. P01-12: Set forward speed limit value
1617 1. P01-13: Set reverse speed limit value
1618 1. The maximum speed of the motor: determined by motor model
1619
1620 The actual motor speed limit interval satisfies the following relationship:
1621
1622 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1623
1624 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1625
1626 |=(% scope="row" %)**Function code**|=**Name**|=(((
1627 **Setting method**
1628 )))|=(((
1629 **Effective time**
1630 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1631 |=P01-10|Maximum speed threshold|(((
1632 Operation setting
1633 )))|(((
1634 Effective immediately
1635 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1636 |=P01-12|Forward speed threshold|(((
1637 Operation setting
1638 )))|(((
1639 Effective immediately
1640 )))|3000|0 to 5000|Set forward speed limit value|rpm
1641 |=P01-13|Reverse speed threshold|(((
1642 Operation setting
1643 )))|(((
1644 Effective immediately
1645 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1646
1647 Table 6-32 Rotation speed related function codes
1648
1649 == Zero-speed clamp function ==
1650
1651 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1652
1653 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1654
1655 |=(% scope="row" %)**Function code**|=**Name**|=(((
1656 **Setting method**
1657 )))|=(((
1658 **Effective time**
1659 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1660 |=P01-21|(((
1661 Zero-speed clamp function selection
1662 )))|(((
1663 Operation setting
1664 )))|(((
1665 Effective immediately
1666 )))|0|0 to 3|(((
1667 Set the zero-speed clamp function. In speed mode:
1668
1669 * 0: Force the speed to 0;
1670 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1671 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1672 * 3: Invalid, ignore zero-speed clamp input
1673 )))|-
1674 |=P01-22|(((
1675 Zero-speed clamp speed threshold
1676 )))|(((
1677 Operation setting
1678 )))|(((
1679 Effective immediately
1680 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1681
1682 Table 6-33 Zero-speed clamp related parameters
1683
1684 (% style="text-align:center" %)
1685 (((
1686 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1687 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1688 )))
1689
1690 == Speed-related DO output function ==
1691
1692 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1693
1694 **Rotation detection signal**
1695
1696 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1697
1698 (% style="text-align:center" %)
1699 (((
1700 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1701 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1702 )))
1703
1704 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1705
1706 |=(% scope="row" %)**Function code**|=**Name**|=(((
1707 **Setting method**
1708 )))|=(((
1709 **Effective time**
1710 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1711 |=P05-16|(((
1712 Rotation detection
1713
1714 speed threshold
1715 )))|(((
1716 Operation setting
1717 )))|(((
1718 Effective immediately
1719 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1720
1721 Table 6-34 Rotation detection speed threshold parameters
1722
1723 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1724 |=132|(% style="width:247px" %)(((
1725 T-COIN rotation detection
1726 )))|(% style="width:695px" %)(((
1727 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1728
1729 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1730 )))
1731
1732 Table 6-35 DO rotation detection function code
1733
1734 **Zero-speed signal**
1735
1736 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1737
1738 (% style="text-align:center" %)
1739 (((
1740 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1741 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1742 )))
1743
1744 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1745
1746 |=(% scope="row" %)**Function code**|=**Name**|=(((
1747 **Setting method**
1748 )))|=(((
1749 **Effective time**
1750 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1751 |=P05-19|Zero speed output signal threshold|(((
1752 Operation setting
1753 )))|(((
1754 Effective immediately
1755 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1756
1757 Table 6-36 Zero-speed output signal threshold parameter
1758
1759 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1760 |=133|(((
1761 ZSP zero speed signal
1762 )))|Output this signal indicates that the servo motor is stopping rotation
1763
1764 Table 6-37 DO zero-speed signal function code
1765
1766 **Speed consistent signal**
1767
1768 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1769
1770 (% style="text-align:center" %)
1771 (((
1772 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1773 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1774 )))
1775
1776 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1777
1778 |=(% scope="row" %)**Function code**|=**Name**|=(((
1779 **Setting method**
1780 )))|=(((
1781 **Effective time**
1782 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1783 |=P05-17|Speed consistent signal threshold|(((
1784 Operationsetting
1785 )))|(((
1786 Effective immediately
1787 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1788
1789 Table 6-38 Speed consistent signal threshold parameters
1790
1791 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1792 |=136|(% style="width:262px" %)(((
1793 U-COIN consistent speed
1794 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1795
1796 Table 6-39 DO speed consistent function code
1797
1798 **Speed approach signal**
1799
1800 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1801
1802 (% style="text-align:center" %)
1803 (((
1804 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1805 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1806 )))
1807
1808 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1809
1810 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1811 **Setting method**
1812 )))|=(((
1813 **Effective time**
1814 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1815 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1816 Operation setting
1817 )))|(((
1818 Effective immediately
1819 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1820
1821 Table 6-40 Speed approaching signal threshold parameters
1822
1823 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1824 |=137|(((
1825 V-NEAR speed approach
1826 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1827
1828 Table 6-41 DO speed approach function code
1829
1830 = **Torque control mode** =
1831
1832 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1833
1834 (% style="text-align:center" %)
1835 (((
1836 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1837 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1838 )))
1839
1840 == **Torque instruction input setting** ==
1841
1842 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1843
1844 |=(% scope="row" %)**Function code**|=**Name**|=(((
1845 **Setting method**
1846 )))|=(((
1847 **Effective time**
1848 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1849 |=P01-07|Torque instruction source|(((
1850 Shutdown setting
1851 )))|(((
1852 Effective immediately
1853 )))|0|0 to 1|(((
1854 0: internal torque instruction
1855
1856 1: AI_1 analog input(not supported by VD2F)
1857 )))|-
1858
1859 Table 6-42 Torque instruction source parameter
1860
1861 **Torque instruction source is internal torque instruction (P01-07=0)**
1862
1863 Torque instruction source is from inside, the value is set by function code P01-08.
1864
1865 |=(% scope="row" %)**Function code**|=**Name**|=(((
1866 **Setting method**
1867 )))|=(((
1868 **Effective time**
1869 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1870 |=P01-08|Torque instruction keyboard set value|(((
1871 Operation setting
1872 )))|(((
1873 Effective immediately
1874 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1875
1876 Table 6-43 Torque instruction keyboard set value
1877
1878 **Torque instruction source is AI_1 analog input (P01-07=1)**
1879
1880 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1881
1882 (% style="text-align:center" %)
1883 (((
1884 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
1885 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1886 )))
1887
1888 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1889
1890 (% style="text-align:center" %)
1891 (((
1892 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1893 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1894 )))
1895
1896 Explanation of related terms:
1897
1898 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1899 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1900 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1901
1902 (% style="text-align:center" %)
1903 (((
1904 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1905 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1906 )))
1907
1908 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1909 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1910 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1911 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1912 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1913
1914 Table 6-44 AI_1 parameters
1915
1916 (% class="box infomessage" %)
1917 (((
1918 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1919 )))
1920
1921 == Torque instruction filtering ==
1922
1923 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1924
1925 |=(% scope="row" %)**Function code**|=**Name**|=(((
1926 **Setting method**
1927 )))|=(((
1928 **Effective time**
1929 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1930 |=P04-04|Torque filtering time constant|(((
1931 Operation setting
1932 )))|(((
1933 Effective immediately
1934 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1935
1936 Table 6-45 Torque filtering time constant parameter details
1937
1938 (% class="box infomessage" %)
1939 (((
1940 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1941 )))
1942
1943 (% style="text-align:center" %)
1944 (((
1945 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1946 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1947 )))
1948
1949 == Torque instruction limit ==
1950
1951 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1952
1953 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1954
1955 (% style="text-align:center" %)
1956 (((
1957 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1958 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1959 )))
1960
1961 **Set torque limit source**
1962
1963 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1964
1965 |=(% scope="row" %)**Function code**|=**Name**|=(((
1966 **Setting method**
1967 )))|=(((
1968 **Effective time**
1969 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1970 |=P01-14|(((
1971 Torque limit source
1972 )))|(((
1973 Shutdown setting
1974 )))|(((
1975 Effective immediately
1976 )))|0|0 to 1|(((
1977 * 0: internal value
1978 * 1: AI_1 analog input (not supported by VD2F)
1979 )))|-
1980
1981 * Torque limit source is internal torque instruction (P01-14=0)
1982
1983 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1984
1985 |=(% scope="row" %)**Function code**|=**Name**|=(((
1986 **Setting method**
1987 )))|=(((
1988 **Effective time**
1989 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
1990 |=P01-15|(((
1991 Forward torque limit
1992 )))|(((
1993 Operation setting
1994 )))|(((
1995 Effective immediately
1996 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1997 |=P01-16|(((
1998 Reverse torque limit
1999 )))|(((
2000 Operation setting
2001 )))|(((
2002 Effective immediately
2003 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2004
2005 Table 6-46 Torque limit parameter details
2006
2007 * Torque limit source is external (P01-14=1)
2008
2009 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2010
2011 **Set torque limit DO signal output**
2012
2013 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2014
2015 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2016 |=139|(((
2017 T-LIMIT in torque limit
2018 )))|Output of this signal indicates that the servo motor torque is limited
2019
2020 Table 6-47 DO torque limit function codes
2021
2022 == **Speed limit in torque mode** ==
2023
2024 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2025
2026 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2027
2028 |(((
2029 (% style="text-align:center" %)
2030 (((
2031 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2032 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2033 )))
2034 )))|(((
2035 (% style="text-align:center" %)
2036 (((
2037 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2038 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2039 )))
2040 )))
2041
2042 |=(% scope="row" %)**Function code**|=**Name**|=(((
2043 **Setting method**
2044 )))|=(((
2045 **Effective time**
2046 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2047 |=P01-17|(((
2048 Forward torque
2049
2050 limit in torque mode
2051 )))|(((
2052 Operation setting
2053 )))|(((
2054 Effective immediately
2055 )))|3000|0 to 5000|(((
2056 Forward torque
2057
2058 limit in torque mode
2059 )))|0.1%
2060 |=P01-18|(((
2061 Reverse torque
2062
2063 limit in torque mode
2064 )))|(((
2065 Operation setting
2066 )))|(((
2067 Effective immediately
2068 )))|3000|0 to 5000|(((
2069 Reverse torque
2070
2071 limit in torque mode
2072 )))|0.1%
2073
2074 Table 6-48 Speed limit parameters in torque mode
2075
2076 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2077
2078 == Torque-related DO output functions ==
2079
2080 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2081
2082 **Torque arrival**
2083
2084 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2085
2086 (% style="text-align:center" %)
2087 (((
2088 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2089 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2090 )))
2091
2092 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2093
2094 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2095 **Setting method**
2096 )))|=(% style="width: 124px;" %)(((
2097 **Effective time**
2098 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2099 |=P05-20|(% style="width:113px" %)(((
2100 Torque arrival
2101
2102 threshold
2103 )))|(% style="width:100px" %)(((
2104 Operation setting
2105 )))|(% style="width:124px" %)(((
2106 Effective immediately
2107 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2108 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2109
2110 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2111
2112 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2113 )))|%
2114 |=P05-21|(% style="width:113px" %)(((
2115 Torque arrival
2116
2117 hysteresis
2118 )))|(% style="width:100px" %)(((
2119 Operation setting
2120 )))|(% style="width:124px" %)(((
2121 Effective immediately
2122 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2123
2124 Table 6-49 Torque arrival parameters
2125
2126 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2127 |=138|(((
2128 T-COIN torque arrival
2129 )))|Used to determine whether the actual torque instruction has reached the set range
2130
2131 Table 6-50 DO Torque Arrival Function Code
2132
2133 = **Mixed control mode** =
2134
2135 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2136
2137 * Position mode⇔ Speed mode
2138 * Position mode ⇔Torque mode
2139 * Speed mode ⇔Torque mode
2140
2141 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2142
2143 |=(% scope="row" %)**Function code**|=**Name**|=(((
2144 **Setting method**
2145 )))|=(((
2146 **Effective time**
2147 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2148 |=P00-01|Control mode|(((
2149 Shutdown setting
2150 )))|(((
2151 Shutdown setting
2152 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2153 * 1: Position control
2154 * 2: Speed control
2155 * 3: Torque control
2156 * 4: Position/speed mixed control
2157 * 5: Position/torque mixed control
2158 * 6: Speed/torque mixed control
2159 )))|-
2160
2161 Table 6-51 Mixed control mode parameters
2162
2163 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2164
2165 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2166 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2167 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2168 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2169 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2170 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2171 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2172 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2173 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2174 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2175 )))
2176
2177 Table 6-52 Description of DI function codes in control mode
2178
2179 (% class="box infomessage" %)
2180 (((
2181 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2182 )))
2183
2184 = **Absolute system** =
2185
2186 == Overview ==
2187
2188 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2189
2190 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2191
2192 == Single-turn absolute value system ==
2193
2194 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2195
2196 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2197 |A1 (single-turn magnetic encoder)|17|0 to 131071
2198
2199 Table 6-53 Single-turn absolute encoder information
2200
2201 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2202
2203 (% style="text-align:center" %)
2204 (((
2205 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2206 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2207 )))
2208
2209 == Multi-turn absolute value system ==
2210
2211 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2212
2213 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2214 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2215 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2216
2217 Table 6-54 Multi-turn absolute encoder information
2218
2219 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2220
2221 (% style="text-align:center" %)
2222 (((
2223 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2224 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2225 )))
2226
2227 (% class="wikigeneratedid" %)
2228 (((
2229 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2230 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2231 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2232 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2233
2234 |**Function code**|**Name**|(((
2235 **Setting**
2236
2237 **method**
2238 )))|(((
2239 **Effective**
2240
2241 **time**
2242 )))|**Default**|**Range**|**Definition**|**Unit**
2243 |P10-06|Multi-turn absolute encoder reset|(((
2244 Shutdown
2245
2246 setting
2247 )))|Effective immediately|0|0 to 1|(((
2248 0: No operation
2249
2250 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2251
2252 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2253 )))|-
2254
2255 (% style="background-color:#ffffff" %)
2256 |**Function code**|**Name**|(((
2257 **Setting**
2258
2259 **method**
2260 )))|(((
2261 **Effective**
2262
2263 **time**
2264 )))|**Default**|**Range**|**Definition**|**Unit**
2265 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2266 Operation
2267
2268 setting
2269 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2270 )))
2271
2272 == Related functions and parameters ==
2273
2274 **Encoder feedback data**
2275
2276 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2277
2278 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2279 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2280 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2281 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2282
2283 Table 6-55 Encoder feedback data
2284
2285 **Shield multi-turn absolute encoder battery fault**
2286
2287 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2288
2289 |=(% scope="row" %)**Function code**|=**Name**|=(((
2290 **Setting**
2291
2292 **method**
2293 )))|=(((
2294 **Effective**
2295
2296 **time**
2297 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2298 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2299 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2300 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2301 )))|-
2302
2303 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2304
2305 **A93 warning solution**
2306
2307 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2308 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2309
2310 |**Function code**|**Name**|(((
2311 **Setting**
2312
2313 **method**
2314 )))|(((
2315 **Effective**
2316
2317 **time**
2318 )))|**Default**|**Range**|**Definition**|**Unit**
2319 |P00-31|Encoder read-write check abnormal frequency|(((
2320 Operation
2321
2322 setting
2323 )))|(((
2324 immediately
2325
2326 Effective
2327 )))|20|0 to100|(((
2328 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2329
2330 0: no alarm
2331
2332 Others: When this setting value is exceeded, report A93.
2333 )))|-
2334
2335 (% class="box infomessage" %)
2336 (((
2337 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2338 )))
2339
2340 == Absolute value system encoder battery box use precautions. ==
2341
2342 **Cautions**
2343
2344 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2345
2346 (% style="text-align:center" %)
2347 (((
2348 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2349 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2350 )))
2351
2352 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2353
2354 **Replace the battery**
2355
2356 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2357
2358 The specific replacement method is as follows:
2359
2360 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2361 * Step2 Remove the old battery.
2362 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2363 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2364
2365 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2366
2367 |=(% scope="row" %)**Function code**|=**Name**|=(((
2368 **Setting method**
2369 )))|=(((
2370 **Effective time**
2371 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2372 |=P10-06|Multi-turn absolute encoder reset|(((
2373 Shutdown setting
2374 )))|(((
2375 Effective immediately
2376 )))|0|0 to 1|(((
2377 * 0: No operation
2378 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2379
2380 (% class="box infomessage" %)
2381 (((
2382 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2383 )))
2384 )))|-
2385
2386 Table 6-56 Absolute encoder reset enable parameter
2387
2388 **Battery selection**
2389
2390 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2391 |(% rowspan="4" style="width:361px" %)(((
2392 Nominal Voltage: 3.6V
2393
2394 Nominal capacity: 2700mAh
2395 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2396 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2397 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2398 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2399
2400 Table 6-57 Absolute value encoder battery information
2401
2402 **✎Note: **
2403
2404 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2405
2406 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2407
2408 Correct placement of batteries +, - direction
2409
2410 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2411 1. This battery cannot be charged.
2412 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2413 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2414 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2415
2416 = **Other functions** =
2417
2418 == VDI ==
2419
2420 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2421
2422 (% class="box infomessage" %)
2423 (((
2424 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2425 )))
2426
2427 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2428
2429 (% style="text-align:center" %)
2430 (((
2431 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2432 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2433 )))
2434
2435 |=(% scope="row" %)**Function code**|=**Name**|=(((
2436 **Setting method**
2437 )))|=(((
2438 **Effective time**
2439 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2440 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2441 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2442
2443 VDI_1 input level:
2444
2445 * 0: low level
2446 * 1: high level
2447 )))|-
2448 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2449 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2450
2451 VDI_2 input level:
2452
2453 * 0: low level
2454 * 1: high level
2455 )))|-
2456 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2457 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2458
2459 VDI_3 input level:
2460
2461 * 0: low level
2462 * 1: high level
2463 )))|-
2464 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2465 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2466
2467 VDI_4 input level:
2468
2469 * 0: low level
2470 * 1: high level
2471 )))|-
2472 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2473 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2474
2475 VDI_5 input level:
2476
2477 * 0: low level
2478 * 1: high level
2479 )))|-
2480 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2481 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2482
2483 VDI_6 input level:
2484
2485 * 0: low level
2486 * 1: high level
2487 )))|-
2488 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2489 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2490
2491 VDI_7 input level:
2492
2493 * 0: low level
2494 * 1: high level
2495 )))|-
2496 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2497 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2498
2499 VDI_8 input level:
2500
2501 * 0: low level
2502 * 1: high level
2503 )))|-
2504
2505 Table 6-57 Virtual VDI parameters
2506
2507 (% class="box infomessage" %)
2508 (((
2509 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2510 )))
2511
2512 == Port filtering time ==
2513
2514 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2515
2516 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2517 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2518 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2519
2520 Table 6-58 DI terminal channel logic selection
2521
2522 == **VDO** ==
2523
2524 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2525
2526 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2527
2528 (% style="text-align:center" %)
2529 (((
2530 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2531 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2532 )))
2533
2534
2535 |=(% scope="row" %)**Function code**|=**Name**|=(((
2536 **Setting method**
2537 )))|=(((
2538 **Effective time**
2539 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2540 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2541 VDO_1 output level:
2542
2543 * 0: low level
2544 * 1: high level
2545 )))|-
2546 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2547 VDO_2 output level:
2548
2549 * 0: low level
2550 * 1: high level
2551 )))|-
2552 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2553 VDO_3 output level:
2554
2555 * 0: low level
2556 * 1: high level
2557 )))|-
2558 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2559 VDO_4 output level:
2560
2561 * 0: low level
2562 * 1: high level
2563 )))|-
2564
2565 Table 6-59 Communication control DO function parameters
2566
2567 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2568 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2569 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2570 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2571 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2572
2573 Table 6-60 VDO function number
2574
2575 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2576
2577 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2578
2579 == Motor overload protection ==
2580
2581 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2582
2583 |=(% scope="row" %)**Function code**|=**Name**|=(((
2584 **Setting method**
2585 )))|=(((
2586 **Effective time**
2587 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2588 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2589 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2590
2591 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2592 )))|%
2593
2594 In the following cases, it could be modified according to the actual heat generation of the motor
2595
2596 1. The motor works in a place with high ambient temperature
2597 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2598
2599 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2600
2601 (% class="box infomessage" %)
2602 (((
2603 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2604 )))