Wiki source code of 06 Operation

Version 85.1 by Mora Zhou on 2025/04/28 14:26

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|Forward: facing the motor axis.
87 0: Standard setting (CW is forward);
88 1: Reverse mode (CCW is forward);
89 2: Reverse mode (CCW is forward), set P1-12,
90 P1-17 to limit the CCW direction speed; set
91 P1-13, P1-18 to limit the CW direction speed.
92 **Note:VD2L driver P0-04 setting range: 0~~1, not support P00-4=2!**|-
93
94 Table 6-3 Rotation direction parameters** **
95
96 == **Braking resistor** ==
97
98 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
99
100 The basis for judging whether the braking resistor is built-in or external.
101
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
103 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
104
105 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
106 **Setting method**
107 )))|=(% style="width: 126px;" %)(((
108 **Effective time**
109 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
110 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
111 Operation setting
112 )))|(% style="width:126px" %)(((
113 Effective immediately
114 )))|0|0 to 3|(((
115 0: use built-in braking resistor
116
117 1: use external braking resistor and natural cooling
118
119 2: use external braking resistor and forced air cooling; (cannot be set)
120
121 3: No braking resistor is used, it is all absorbed by capacitor.
122 )))|-
123 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
124 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
125 Operation setting
126 )))|(% style="width:126px" %)(((
127 Effective immediately
128 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
129 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
130 Operation setting
131 )))|(% style="width:126px" %)(((
132 Effective immediately
133 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
134
135 Table 6-4 Braking resistor parameters
136
137 == **Servo operation** ==
138
139 **Set the servo enable (S-ON) to valid (ON)**
140
141 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
142
143 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
144
145 **Input the instruction and the motor rotates**
146
147 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
148
149 **Timing diagram of power on**
150
151 (% style="text-align:center" %)
152 (((
153 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
154 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
155 )))
156
157 == Servo shutdown ==
158
159 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
160
161 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
162 |=(% style="width: 150px;" %)Free stop|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
163 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
164
165 Table 6-5 Comparison of two shutdown modes
166
167 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
168 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
169
170 Table 6-6 Comparison of two shutdown status
171
172 **Servo enable (S-ON) OFF shutdown**
173
174 The related parameters of the servo OFF shutdown mode are shown in the table below.
175
176 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
177 **Setting method**
178 )))|=(% style="width: 134px;" %)(((
179 **Effective time**
180 )))|=(% style="width: 86px;" %)(((
181 **Default value**
182 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
183 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
184 Shutdown
185
186 setting
187 )))|(% style="width:134px" %)(((
188 Effective
189
190 immediately
191 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
192 0: Free stop, and the motor shaft remains free status.
193
194 1: Zero-speed stop, and the motor axis remains free status.
195 )))|-
196
197 Table 6-7 Servo OFF shutdown mode parameters details
198
199 **Emergency shutdown**
200
201 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
202
203 Estop mode 1 (deceleration stop):
204
205 ~1. Configurate DI function code: 8 [ESTOP]
206
207 2. Set P1-5 shutdown deceleration time.
208
209 3. Trigger DI emergency shutdown.
210
211 4. Servo emergency shutdown and deceleration to zero speed.
212
213 Estop mode 2:
214
215 ~1. Configurate DI function code: 1 [Servo enable SON]
216
217 2. Set P1-05 shutdown deceleration time.
218
219 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
220
221 4. Trigger DI to turn off servo enable SON.
222
223 |Function code|Name|(((
224 Setting
225
226 method
227 )))|(((
228 Effective
229
230 time
231 )))|Default|Range|Definition|Unit
232 |P01-05|Shutdown deceleration time|(((
233 Shutdown
234
235 setting
236 )))|(((
237 immediately
238
239 Effective
240 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
241
242 **Overtravel shutdown**
243
244 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
245
246 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
247
248 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
249
250 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
251 **Setting method**
252 )))|=(% style="width: 114px;" %)(((
253 **Effective time**
254 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
255 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
256 0: OFF (not used)
257
258 01: S-ON servo enable
259
260 02: A-CLR fault and Warning Clear
261
262 03: POT forward drive prohibition
263
264 04: NOT Reverse drive prohibition
265
266 05: ZCLAMP Zero speed
267
268 06: CL Clear deviation counter
269
270 07: C-SIGN Inverted instruction
271
272 08: E-STOP Emergency stop
273
274 09: GEAR-SEL Electronic Gear Switch 1
275
276 10: GAIN-SEL gain switch
277
278 11: INH Instruction pulse prohibited input
279
280 12: VSSEL Vibration control switch input
281
282 13: INSPD1 Internal speed instruction selection 1
283
284 14: INSPD2 Internal speed instruction selection 2
285
286 15: INSPD3 Internal speedinstruction selection 3
287
288 16: J-SEL inertia ratio switch (not implemented yet)
289
290 17: MixModesel mixed mode selection
291
292 20: Internal multi-segment position enable signal
293
294 21: Internal multi-segment position selection 1
295
296 22: Internal multi-segment position selection 2
297
298 23: Internal multi-segment position selection 3
299
300 24: Internal multi-segment position selection 4
301
302 25: HOME_START Homing start
303 26: HOME ORG Homing signal
304 27: JOGU DI Forward jog
305 28: JOGD DI Reverse jog
306
307 Others: reserved
308 )))|-
309 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
310 Effective immediately
311 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
312 DI port input logic validity function selection.
313
314 0: Normally open input. Low level valid (switch on);
315
316 1: Normally closed input. High level valid (switch off);
317 )))|-
318 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
319 Effective immediately
320 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
321 Select the DI_3 port type to enable
322
323 0: Hardware DI_3 input terminal
324
325 1: Virtual VDI_3 input terminal
326 )))|-
327 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
328 Operation setting
329 )))|(% style="width:114px" %)(((
330 again Power-on
331 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
332 0: OFF (not used)
333
334 01: SON Servo enable
335
336 02: A-CLR Fault and Warning Clear
337
338 03: POT Forward drive prohibition
339
340 04: NOT Reverse drive prohibition
341
342 05: ZCLAMP Zero speed
343
344 06: CL Clear deviation counter
345
346 07: C-SIGN Inverted instruction
347
348 08: E-STOP Emergency shutdown
349
350 09: GEAR-SEL Electronic Gear Switch 1
351
352 10: GAIN-SEL gain switch
353
354 11: INH Instruction pulse prohibited input
355
356 12: VSSEL Vibration control switch input
357
358 13: INSPD1 Internal speed instruction selection 1
359
360 14: INSPD2 Internal speed instruction selection 2
361
362 15: INSPD3 Internal speed instruction selection 3
363
364 16: J-SEL inertia ratio switch (not implemented yet)
365
366 17: MixModesel mixed mode selection
367
368 20: Internal multi-segment position enable signal
369
370 21: Internal multi-segment position selection 1
371
372 22: Internal multi-segment position selection 2
373
374 23: Internal multi-segment position selection 3
375
376 24: Internal multi-segment position selection 4
377
378 25: HOME_START Homing start
379 26: HOME ORG Homing signal
380 27: JOGU DI Forward jog
381 28: JOGD DI Reverse jog
382
383 Others: reserved
384 )))|-
385 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
386 Effective immediately
387 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
388 DI port input logic validity function selection.
389
390 0: Normally open input. Low level valid (switch on);
391
392 1: Normally closed input. High level valid (switch off);
393 )))|-
394 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
395 Effective immediately
396 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
397 Select the DI_4 port type to enable
398
399 0: Hardware DI_4 input terminal
400
401 1: Virtual VDI_4 input terminal
402 )))|-
403
404 Table 6-8 DI3 and DI4 channel parameters
405
406 **(4) Malfunction shutdown**
407
408 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
409
410 == Brake device ==
411
412 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
413
414 (% class="warning" %)|(((
415 (% style="text-align:center" %)
416 [[image:image-20220611151617-1.png]]
417 )))
418 |(((
419 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
420
421 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
422
423 ✎The brake coil has no polarity;
424
425 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
426
427 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
428 )))
429
430 **Wiring of brake device**
431
432 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
433
434
435 (% style="text-align:center" %)
436 (((
437 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
438 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
439 )))
440
441 (% class="warning" %)|(((
442 (% style="text-align:center" %)
443 [[image:image-20220611151642-2.png]]
444 )))
445 |(((
446 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
447
448 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
449
450 ✎It is recommended to use cables above 0.5 mm².
451 )))
452
453 **Brake software setting**
454
455 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
456
457 Related function code is as below.
458
459 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
460 **Effective time**
461 )))
462 |=141|(% style="width:241px" %)(((
463 BRK-OFF Brake output
464 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
465
466 Table 6-2 Relevant function codes for brake setting
467
468 |=(% scope="row" %)**Function code**|=**Name**|=(((
469 **Setting method**
470 )))|=(((
471 **Effective time**
472 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
473 |=P1-30|Delay from brake output to instruction reception|(((
474 Operation setting
475 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
476 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
477 Operation setting
478 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
479 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
480 Operation setting
481 )))|Effective immediately|30|0 to 3000|(((
482 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
483
484 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
485 )))|rpm
486 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
487 Operation setting
488 )))|Effective immediately|500|1 to 1000|(((
489 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
490
491 When brake output (BRK-OFF) is not allocated, this function code has no effect.
492 )))|ms
493
494 Table 6-9 Brake setting function codes
495
496 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
497
498 **Servo drive brake timing in normal state**
499
500 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
501
502 * Brake timing when servo motor is stationary
503
504 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
505
506 (% class="warning" %)|(((
507 (% style="text-align:center" %)
508 [[image:image-20220611151705-3.png]]
509 )))
510 |(((
511 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
512
513 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
514 )))
515
516 (% style="text-align:center" %)
517 (((
518 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
519 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
520 )))
521
522 (% class="box infomessage" %)
523 (((
524 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
525 )))
526
527 * The brake timing when servo motor rotates
528
529 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
530
531 (% class="warning" %)|(((
532 (% style="text-align:center" %)
533 [[image:image-20220611151719-4.png]]
534 )))
535 |(((
536 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
537
538 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
539
540 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
541
542 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
543
544 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
545 )))
546
547 (% style="text-align:center" %)
548 (((
549 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
550 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
551 )))
552
553 **Brake timing when the servo drive fails**
554
555 The brake timing (free shutdown) in the fault status is as follows.
556
557 (% style="text-align:center" %)
558 (((
559 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
560 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
561 )))
562
563 = **Position control mode** =
564
565 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
566
567 (% style="text-align:center" %)
568 (((
569 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
570 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
571 )))
572
573 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
574
575 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
576 **Setting method**
577 )))|=(((
578 **Effective time**
579 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
580 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
581 Operation setting
582 )))|(((
583 immediately Effective
584 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
585 1: position control
586
587 2: speed control
588
589 3: torque control
590
591 4: position/speed mix control
592
593 5: position/torque mix control
594
595 6: speed /torque mix control
596
597 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
598 )))|(% style="width:151px" %)-
599
600 Table 6-10 Control mode parameters
601
602 == Position instruction input setting ==
603
604 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
605
606 |=(% scope="row" %)**Function code**|=**Name**|=(((
607 **Setting method**
608 )))|=(((
609 **Effective time**
610 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
611 |=P01-06|Position instruction source|(((
612 Operation setting
613 )))|(((
614 immediately Effective
615 )))|0|0 to 1|(((
616 0: pulse instruction
617
618 1: internal position instruction
619 )))|-
620
621 Table 6-12 Position instruction source parameter
622
623 **The source of position instruction is pulse instruction (P01-06=0)**
624
625 Low-speed pulse instruction input
626
627 |(% style="text-align:center" %)(((
628 (% class="wikigeneratedid" %)
629 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
630 )))|(% style="text-align:center" %)(((
631 (% class="wikigeneratedid" %)
632 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
633 )))
634 |(% colspan="2" %)Figure 6-7 Position instruction input setting
635
636 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
637
638 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
639
640 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
641 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
642 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
643
644 Table 6-13 Pulse input specifications
645
646 * Differential input
647
648 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
649
650 (% style="text-align:center" %)
651 (((
652 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
653 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
654 )))
655
656 (% class="box infomessage" %)
657 (((
658 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
659 )))
660
661 * Open collector input
662
663 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
664
665 (% style="text-align:center" %)
666 (((
667 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
668 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
669 )))
670
671
672 (% class="box infomessage" %)
673 (((
674 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
675 )))
676
677 * Position pulse frequency and anti-interference level
678
679 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
680
681 (% style="text-align:center" %)
682 (((
683 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
684 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
685 )))
686
687 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
688
689 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
690 **Setting method**
691 )))|=(((
692 **Effective time**
693 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
694 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
695 Operation setting
696 )))|(% rowspan="3" %)(((
697 Power-on again
698 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
699 Set the anti-interference level of external pulse instruction.
700
701 * 0: no filtering;
702 * 1: Filtering time 128ns
703 * 2: Filtering time 256ns
704 * 3: Filtering time 512ns
705 * 4: Filtering time 1.024us
706 * 5: Filtering time 2.048us
707 * 6: Filtering time 4.096us
708 * 7: Filtering time 8.192us
709 * 8: Filtering time 16.384us
710 * 9:
711 ** VD2: Filtering time 25.5us
712 ** VD2F: Filtering time 25.5us
713 )))|(% rowspan="3" %)-
714
715 Table 6-14 Position pulse frequency and anti-interference level parameters
716
717 |**Function code**|**Name**|(((
718 **Setting**
719
720 **method**
721 )))|(((
722 **Effective**
723
724 **time**
725 )))|**Default value**|**Range**|**Definition**|**Unit**
726 |P00-14|Position pulse anti-interference level|(((
727 Operation
728
729 setting
730 )))|(((
731 Power-on
732
733 again
734 )))|2|0 to 8|(((
735 VD2L drive set the anti-interference level of external pulse instruction.
736
737 0: no filtering;
738
739 1: Filtering time 111.1ns
740
741 2: Filtering time 222.2ns
742
743 3: Filtering time 444.4ns
744
745 4: Filtering time 888.8ns
746
747 5: Filtering time 1777.7ns
748
749 6: Filtering time 3555.5ns
750
751 7: Filtering time 7111.7ns
752
753 8: Filtering time 14222.2ns
754
755
756 )))|-
757
758 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
759
760
761 * Position pulse type selection
762
763 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
764
765 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
766 **Setting method**
767 )))|=(% style="width: 109px;" %)(((
768 **Effective time**
769 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
770 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
771 Operation setting
772 )))|(% style="width:109px" %)(((
773 Power-on again
774 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
775 * 0: direction + pulse (positive logic)
776 * 1: CW/CCW
777 * 2: A, B phase quadrature pulse (4 times frequency)
778 * 3: Direction + pulse (negative logic)
779 * 4: CW/CCW (negative logic)
780 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
781
782 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
783 )))|-
784
785 Table 6-15 Position pulse type selection parameter
786
787 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
788 |=0|(% style="width:200px" %)(((
789 Direction + pulse
790
791 (Positive logic)
792 )))|(% style="width:161px" %)(((
793 PULSE
794
795 SIGN
796 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
797 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
798 PULSE (CW)
799
800 SIGN (CCW)
801 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
802 |=2|(% style="width:200px" %)(((
803 AB phase orthogonal
804
805 pulse (4 times frequency)
806 )))|(% style="width:161px" %)(((
807 PULSE (Phase A)
808
809 SIGN (Phase B)
810 )))|(((
811
812
813 [[image:image-20220707094358-9.jpeg]]
814
815 Phase A is 90° ahead of Phase B
816 )))|(((
817
818
819 [[image:image-20220707094407-10.jpeg]]
820
821 Phase B is 90° ahead of Phase A
822 )))
823 |=3|(% style="width:200px" %)(((
824 Direction + pulse
825
826 (Negative logic)
827 )))|(% style="width:161px" %)(((
828 PULSE
829
830 SIGN
831 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
832 |=4|(% style="width:200px" %)(((
833 CW/CCW
834
835 (Negative logic)
836 )))|(% style="width:161px" %)(((
837 PULSE (CW)
838
839 SIGN (CCW)
840 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
841 |=5|(% style="width:200px" %)(((
842 AB phase orthogonal
843
844 pulse (4 times frequency negative logic)
845 )))|(% style="width:161px" %)(((
846 PULSE (Phase A)
847
848 SIGN (Phase B)
849 )))|(((
850
851
852 [[image:image-20220707094429-14.jpeg]]
853
854 Phase B is ahead of A phase by 90°
855 )))|(((
856
857
858 [[image:image-20220707094437-15.jpeg]]
859
860 Phase A is ahead of B phase by 90°
861 )))
862
863 Table 6-16 Pulse description
864
865 **The source of position instruction is internal position instruction (P01-06=1)**
866
867 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
868
869 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
870
871 (% style="text-align:center" %)
872 (((
873 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
874 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
875 )))
876
877
878 * Set multi-segment position running mode
879
880 |=(% scope="row" %)**Function code**|=**Name**|=(((
881 **Setting method**
882 )))|=(((
883 **Effective time**
884 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
885 |=P07-01|Multi-segment position running mode|(((
886 Shutdown setting
887 )))|(((
888 Effective immediately
889 )))|0|0 to 2|(((
890 0: Single running
891
892 1: Cycle running
893
894 2: DI switching running
895 )))|-
896 |=P07-02|Start segment number|(((
897 Shutdown setting
898 )))|(((
899 Effective immediately
900 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
901 |=P07-03|End segment number|(((
902 Shutdown setting
903 )))|(((
904 Effective immediately
905 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
906 |=P07-04|Margin processing method|(((
907 Shutdown setting
908 )))|(((
909 Effective immediately
910 )))|0|0 to 1|(((
911 0: Run the remaining segments
912
913 1: Run again from the start segment
914 )))|-
915 |=P07-05|Displacement instruction type|(((
916 Shutdown setting
917 )))|(((
918 Effective immediately
919 )))|0|0 to 1|(((
920 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
921
922 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
923 )))|-
924
925 Table 6-17 multi-segment position running mode parameters
926
927 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
928
929 1. Single running
930
931 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
932
933 (% style="text-align:center" %)
934 (((
935 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
936 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
937 )))
938
939 * 2. Cycle running
940
941 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
942
943 (% style="text-align:center" %)
944 (((
945 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
946 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
947 )))
948
949 (% class="warning" %)|(((
950 (% style="text-align:center" %)
951 [[image:image-20220611151917-5.png]]
952 )))
953 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
954
955 (% start="3" %)
956 1. DI switching running
957
958 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
959
960 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
961 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
962 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
963 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
964 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
965
966 Table 6-18 DI function code
967
968 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
969
970 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
971 |=0|0|0|0|1
972 |=0|0|0|1|2
973 |=0|0|1|0|3
974 |=0|0|1|1|4
975 |=0|1|0|0|5
976 |=0|1|0|1|6
977 |=0|1|1|0|7
978 |=0|1|1|1|8
979 |=1|0|0|0|9
980 |=1|0|0|1|10
981 |=1|0|1|0|11
982 |=1|0|1|1|12
983 |=1|1|0|0|13
984 |=1|1|0|1|14
985 |=1|1|1|0|15
986 |=1|1|1|1|16
987
988 Table 6-20 INPOS corresponds to running segment number
989
990 The operating curve in this running mode is shown in __Figure 6-14__.
991
992 (% style="text-align:center" %)
993 (((
994 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
995 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
996 )))
997
998 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
999
1000 **Run the remaining segments**
1001
1002 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
1003
1004 (% style="text-align:center" %)
1005 (((
1006 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1007 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
1008 )))
1009
1010 (% style="text-align:center" %)
1011 (((
1012 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
1013 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
1014 )))
1015
1016 **Run again from the start segment**
1017
1018 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
1019
1020 (% style="text-align:center" %)
1021 (((
1022 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1023 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
1024 )))
1025
1026 (% style="text-align:center" %)
1027 (((
1028 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1029 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
1030 )))
1031
1032 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
1033
1034 * Relative position instruction
1035
1036 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
1037
1038 |(((
1039 (% style="text-align:center" %)
1040 (((
1041 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1042 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
1043 )))
1044 )))|(((
1045 (% style="text-align:center" %)
1046 (((
1047 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1048 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
1049 )))
1050 )))
1051
1052 * Absolute position instruction
1053
1054 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
1055
1056 |(((
1057 (% style="text-align:center" %)
1058 (((
1059 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1060 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
1061 )))
1062 )))|(((
1063 (% style="text-align:center" %)
1064 (((
1065 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1066 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1067 )))
1068 )))
1069
1070 * Multi-segment position running curve setting
1071
1072 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1073
1074 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1075 |=P07-09|(((
1076 1st segment
1077
1078 displacement
1079 )))|(((
1080 Operation setting
1081 )))|(((
1082 Effective immediately
1083 )))|10000|(((
1084 -2147483647 to
1085
1086 2147483646
1087 )))|Position instruction, positive and negative values could be set|-
1088 |=P07-10|Maximum speed of the 1st displacement|(((
1089 Operation setting
1090 )))|(((
1091 Effective immediately
1092 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1093 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1094 Operation setting
1095 )))|(((
1096 Effective immediately
1097 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1098 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1099 Operation setting
1100 )))|(((
1101 Effective immediately
1102 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1103
1104 Table 6-21 The 1st position operation curve parameters table
1105
1106 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1107
1108 (% style="text-align:center" %)
1109 (((
1110 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1111 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1112 )))
1113
1114
1115 * multi-segment position instruction enable
1116
1117 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1118
1119 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1120 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1121 DI port logic invalid: Does not affect the current operation of the servo motor.
1122
1123 DI port logic valid: Motor runs multi-segment position
1124 )))
1125
1126 (% style="text-align:center" %)
1127 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1128
1129 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1130
1131 == Electronic gear ratio ==
1132
1133 **Definition of electronic gear ratio**
1134
1135 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1136
1137 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1138
1139 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1140
1141 (% style="text-align:center" %)
1142 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1143
1144 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1145
1146 **Setting steps of electronic gear ratio**
1147
1148 (% style="text-align:center" %)
1149 (((
1150 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1151 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1152 )))
1153
1154 **lectronic gear ratio switch setting**
1155
1156 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1157
1158 |=(% scope="row" %)**Function code**|=**Name**|=(((
1159 **Setting method**
1160 )))|=(((
1161 **Effective time**
1162 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1163 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1164 Shutdown setting
1165 )))|(((
1166 Effective immediately
1167 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1168 Instruction pulse
1169
1170 unit
1171 )))
1172 |=P00-17|(((
1173 Electronic gear 1
1174
1175 numerator
1176 )))|Operation setting|(((
1177 Effective immediately
1178 )))|1|1 to 4294967294|(((
1179 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1180
1181 **VD2L: 1-2147483647**
1182 )))|-
1183 |=P00-18|(((
1184 Electronic gear 1
1185
1186 denominator
1187 )))|(((
1188 Operation setting
1189 )))|(((
1190 Effective immediately
1191 )))|1|1 to 4294967294|(((
1192 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1193
1194 **VD2L: 1-2147483647**
1195 )))|-
1196 |=P00-19|(((
1197 Electronic gear 2
1198
1199 numerator
1200 )))|Operation setting|(((
1201 Effective immediately
1202 )))|1|1 to 4294967294|(((
1203 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1204
1205 **VD2L: 1-2147483647**
1206 )))|-
1207 |=P00-20|(((
1208 Electronic gear 2
1209
1210 denominator
1211 )))|Operation setting|(((
1212 Effective immediately
1213 )))|1|1 to 4294967294|(((
1214 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1215
1216 **VD2L: 1-2147483647**
1217 )))|-
1218
1219 Table 6-20 Electronic gear ratio function code
1220
1221 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1222
1223 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1224 |=09|GEAR-SEL electronic gear switch 1|(((
1225 DI port logic invalid: electronic gear ratio 1
1226
1227 DI port logic valid: electronic gear ratio 2
1228 )))
1229
1230 Table 6-21 Switching conditions of electronic gear ratio group
1231
1232 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1233 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1234 (% style="text-align:center" %)
1235 [[image:image-20220707101328-21.png]]
1236 )))
1237 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1238 (% style="text-align:center" %)
1239 [[image:image-20220707101336-22.png]]
1240 )))
1241 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1242 (% style="text-align:center" %)
1243 [[image:image-20220707101341-23.png]]
1244 )))
1245
1246 Table 6-22 Application of electronic gear ratio
1247
1248 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1249
1250 == Position instruction filtering ==
1251
1252 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1253
1254 In the following situations, position instruction filtering should be added.
1255
1256 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1257 1. The pulse instruction frequency is low;
1258 1. When the electronic gear ratio is 10 times or more.
1259
1260 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1261
1262 (% style="text-align:center" %)
1263 (((
1264 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1265 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1266 )))
1267
1268 |=(% scope="row" %)**Function code**|=**Name**|=(((
1269 **Setting method**
1270 )))|=(((
1271 **Effective time**
1272 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1273 |=P04-01|Pulse instruction filtering method|(((
1274 Shutdown setting
1275 )))|(((
1276 Effective immediately
1277 )))|0|0 to 1|(((
1278 * 0: 1st-order low-pass filtering
1279 * 1: average filtering
1280 )))|-
1281 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1282 Effective immediately
1283 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1284 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1285 Effective immediately
1286 )))|0|0 to 128|Position instruction average filtering time constant|ms
1287
1288 Table 6-25 Position instruction filter function code
1289
1290 == Clearance of position deviation ==
1291
1292 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1293
1294 Position deviation = (position instruction-position feedback) (encoder unit)
1295
1296 == Position-related DO output function ==
1297
1298 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1299
1300 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1301 **Positioning completion/positioning approach output**
1302
1303 (% class="wikigeneratedid" %)
1304 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1305
1306 (% style="text-align:center" %)
1307 (((
1308 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1309 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1310 )))
1311
1312 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1313
1314 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1315
1316 (% style="text-align:center" %)
1317 (((
1318 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1319 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1320 )))
1321
1322 |=(% scope="row" %)**Function code**|=**Name**|=(((
1323 **Setting method**
1324 )))|=(% style="width: 129px;" %)(((
1325 **Effective time**
1326 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1327 |=P05-12|Positioning completion threshold|(((
1328 Operation setting
1329 )))|(% style="width:129px" %)(((
1330 Effective immediately
1331 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1332 |=P05-13|Positioning approach threshold|(((
1333 Operation setting
1334 )))|(% style="width:129px" %)(((
1335 Effective immediately
1336 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1337 |=P05-14|Position detection window time|(((
1338 Operation setting
1339 )))|(% style="width:129px" %)(((
1340 Effective immediately
1341 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1342 |=P05-15|Positioning signal hold time|(((
1343 Operation setting
1344 )))|(% style="width:129px" %)(((
1345 Effective immediately
1346 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1347
1348 Table 6-26 Function code parameters of positioning completion
1349
1350 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1351 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1352 |=135|(((
1353 P-NEAR positioning close
1354 )))|(((
1355 Output this signal indicates that the servo drive position is close.
1356 )))
1357
1358 Table 6-27 Description of DO rotation detection function code
1359
1360 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1361
1362 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1363
1364 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1365
1366 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1367
1368 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1369
1370 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1371
1372 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1373
1374 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1375
1376
1377 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1378 |DO_2 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1379 |(% colspan="8" %)(((
1380 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1381
1382 |Setting value|DO channel function| |Setting value|DO channel function
1383 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1384 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1385 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1386 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1387 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1388 |133|ZSP (zero speed signal)| |144|N/A
1389 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1390 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1391 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1392 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1393 |138|T-COIN (torque arrival)| | |
1394
1395 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1396
1397 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1398
1399 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1400
1401 Note 2:
1402
1403 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1404
1405 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1406
1407 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1408 )))
1409
1410 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1411 |DO_3 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1412 |(% colspan="8" %)(((
1413 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1414
1415 |Setting value|DO channel function| |Setting value|DO channel function
1416 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1417 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1418 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1419 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1420 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1421 |133|ZSP (zero speed signal)| |144|None
1422 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1423 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1424 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1425 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1426 |138|T-COIN (torque arrival)| | |
1427
1428 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1429
1430 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1431
1432 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1433
1434 **Note 2:**
1435
1436 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1437
1438 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1439
1440 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1441 )))
1442
1443 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1444 |DO_4 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1445 |(% colspan="8" %)(((
1446 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1447
1448 |Setting value|DO channel function| |Setting value|DO channel function
1449 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1450 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1451 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1452 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1453 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1454 |133|ZSP (zero speed signal)| |144|None
1455 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1456 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1457 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1458 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1459 |138|T-COIN (torque arrival)| | |
1460
1461 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1462
1463 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1464
1465 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1466
1467 **Note 2:**
1468
1469 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1470
1471 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1472
1473 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1474 )))
1475
1476 = **Speed control mode** =
1477
1478 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1479
1480 (% style="text-align:center" %)
1481 (((
1482 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1483 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1484 )))
1485
1486 == Speed instruction input setting ==
1487
1488 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1489
1490 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1491 **Setting method**
1492 )))|=(% style="width: 125px;" %)(((
1493 **Effective time**
1494 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1495 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1496 Shutdown setting
1497 )))|(% style="width:125px" %)(((
1498 Effective immediately
1499 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1500 * 0: internal speed instruction
1501 * 1: AI_1 analog input (not supported by VD2F)
1502 )))|-
1503
1504 Table 6-26 Speed instruction source parameter
1505
1506 **Speed instruction source is internal speed instruction (P01-01=0)**
1507
1508 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1509
1510 (% style="width:1141px" %)
1511 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1512 **Setting**
1513
1514 **method**
1515 )))|=(% colspan="2" %)(((
1516 **Effective**
1517
1518 **time**
1519 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1520 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1521 Internal speed
1522
1523 Instruction 0
1524 )))|(% colspan="2" %)(((
1525 Operation
1526
1527 setting
1528 )))|(% colspan="2" %)(((
1529 Effective
1530
1531 immediately
1532 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1533 Internal speed instruction 0
1534
1535 When DI input port:
1536
1537 * 15-INSPD3: 0
1538 * 14-INSPD2: 0
1539 * 13-INSPD1: 0,
1540
1541 select this speed instruction to be effective.
1542 )))|(% colspan="2" %)rpm
1543 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1544 Internal speed
1545
1546 Instruction 1
1547 )))|(% colspan="2" %)(((
1548 Operation
1549
1550 setting
1551 )))|(% colspan="2" %)(((
1552 Effective
1553
1554 immediately
1555 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1556 Internal speed instruction 1
1557
1558 When DI input port:
1559
1560 * 15-INSPD3: 0
1561 * 14-INSPD2: 0
1562 * 13-INSPD1: 1,
1563
1564 Select this speed instruction to be effective.
1565 )))|(% colspan="2" %)rpm
1566 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1567 Internal speed
1568
1569 Instruction 2
1570 )))|(% colspan="2" %)(((
1571 Operation
1572
1573 setting
1574 )))|(% colspan="2" %)(((
1575 Effective
1576
1577 immediately
1578 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1579 Internal speed instruction 2
1580
1581 When DI input port:
1582
1583 * 15-INSPD3: 0
1584 * 14-INSPD2: 1
1585 * 13-INSPD1: 0,
1586
1587 Select this speed instruction to be effective.
1588 )))|(% colspan="2" %)rpm
1589 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1590 Internal speed
1591
1592 Instruction 3
1593 )))|(% colspan="2" %)(((
1594 Operation
1595
1596 setting
1597 )))|(% colspan="2" %)(((
1598 Effective
1599
1600 immediately
1601 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1602 Internal speed instruction 3
1603
1604 When DI input port:
1605
1606 * 15-INSPD3: 0
1607 * 14-INSPD2: 1
1608 * 13-INSPD1: 1,
1609
1610 Select this speed instruction to be effective.
1611 )))|(% colspan="2" %)rpm
1612 |=P01-26|(% colspan="2" %)(((
1613 Internal speed
1614
1615 Instruction 4
1616 )))|(% colspan="2" %)(((
1617 Operation
1618
1619 setting
1620 )))|(% colspan="2" %)(((
1621 Effective
1622
1623 immediately
1624 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1625 Internal speed instruction 4
1626
1627 When DI input port:
1628
1629 * 15-INSPD3: 1
1630 * 14-INSPD2: 0
1631 * 13-INSPD1: 0,
1632
1633 Select this speed instruction to be effective.
1634 )))|(% colspan="1" %)rpm
1635 |=P01-27|(% colspan="2" %)(((
1636 Internal speed
1637
1638 Instruction 5
1639 )))|(% colspan="2" %)(((
1640 Operation
1641
1642 setting
1643 )))|(% colspan="2" %)(((
1644 Effective
1645
1646 immediately
1647 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1648 Internal speed instruction 5
1649
1650 When DI input port:
1651
1652 * 15-INSPD3: 1
1653 * 14-INSPD2: 0
1654 * 13-INSPD1: 1,
1655
1656 Select this speed instruction to be effective.
1657 )))|(% colspan="1" %)rpm
1658 |=P01-28|(% colspan="2" %)(((
1659 Internal speed
1660
1661 Instruction 6
1662 )))|(% colspan="2" %)(((
1663 Operation
1664
1665 setting
1666 )))|(% colspan="2" %)(((
1667 Effective
1668
1669 immediately
1670 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1671 Internal speed instruction 6
1672
1673 When DI input port:
1674
1675 * 15-INSPD3: 1
1676 * 14-INSPD2: 1
1677 * 13-INSPD1: 0,
1678
1679 Select this speed instruction to be effective.
1680 )))|(% colspan="1" %)rpm
1681 |=P01-29|(% colspan="2" %)(((
1682 Internal speed
1683
1684 Instruction 7
1685 )))|(% colspan="2" %)(((
1686 Operation
1687
1688 setting
1689 )))|(% colspan="2" %)(((
1690 Effective
1691
1692 immediately
1693 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1694 Internal speed instruction 7
1695
1696 When DI input port:
1697
1698 * 15-INSPD3: 1
1699 * 14-INSPD2: 1
1700 * 13-INSPD1: 1,
1701
1702 Select this speed instruction to be effective.
1703 )))|(% colspan="1" %)rpm
1704
1705 Table 6-27 Internal speed instruction parameters
1706
1707 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1708 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1709 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1710 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1711
1712 Table 6-28 DI multi-speed function code description
1713
1714 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1715
1716
1717 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1718 |0|0|0|1|0
1719 |0|0|1|2|1
1720 |0|1|0|3|2
1721 |(% colspan="5" %)......
1722 |1|1|1|8|7
1723
1724 Table 6-29 Correspondence between INSPD bits and segment numbers
1725
1726 (% style="text-align:center" %)
1727 (((
1728 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1729 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1730 )))
1731
1732 **Speed instruction source is internal speed instruction (P01-01=1)**
1733
1734 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1735
1736 (% style="text-align:center" %)
1737 (((
1738 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1739 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1740 )))
1741
1742 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1743
1744 (% style="text-align:center" %)
1745 (((
1746 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1747 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1748 )))
1749
1750 Explanation of related terms:
1751
1752 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1753 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1754 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1755
1756 (% style="text-align:center" %)
1757 (((
1758 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1759 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1760 )))
1761
1762 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1763 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1764 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1765 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1766 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1767
1768 Table 6-30 AI_1 parameters
1769
1770 (% class="box infomessage" %)
1771 (((
1772 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1773 )))
1774
1775 == Acceleration and deceleration time setting ==
1776
1777 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1778
1779 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1780
1781 (% style="text-align:center" %)
1782 (((
1783 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1784 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1785 )))
1786
1787 (% style="text-align:center" %)
1788 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1789
1790 |=(% scope="row" %)**Function code**|=**Name**|=(((
1791 **Setting method**
1792 )))|=(((
1793 **Effective time**
1794 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1795 |=P01-03|Acceleration time|(((
1796 Operation setting
1797 )))|(((
1798 Effective immediately
1799 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1800 |=P01-04|Deceleration time|(((
1801 Operation setting
1802 )))|(((
1803 Effective immediately
1804 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1805
1806 Table 6-31 Acceleration and deceleration time parameters
1807
1808 == Speed instruction limit ==
1809
1810 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1811
1812 1. P01-10: Set the maximum speed limit value
1813 1. P01-12: Set forward speed limit value
1814 1. P01-13: Set reverse speed limit value
1815 1. The maximum speed of the motor: determined by motor model
1816
1817 The actual motor speed limit interval satisfies the following relationship:
1818
1819 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1820
1821 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1822
1823 |=(% scope="row" %)**Function code**|=**Name**|=(((
1824 **Setting method**
1825 )))|=(((
1826 **Effective time**
1827 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1828 |=P01-10|Maximum speed threshold|(((
1829 Operation setting
1830 )))|(((
1831 Effective immediately
1832 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1833 |=P01-12|Forward speed threshold|(((
1834 Operation setting
1835 )))|(((
1836 Effective immediately
1837 )))|3000|0 to 5000|Set forward speed limit value|rpm
1838 |=P01-13|Reverse speed threshold|(((
1839 Operation setting
1840 )))|(((
1841 Effective immediately
1842 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1843
1844 Table 6-32 Rotation speed related function codes
1845
1846 == Zero-speed clamp function ==
1847
1848 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1849
1850 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1851
1852 |=(% scope="row" %)**Function code**|=**Name**|=(((
1853 **Setting method**
1854 )))|=(((
1855 **Effective time**
1856 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1857 |=P01-21|(((
1858 Zero-speed clamp function selection
1859 )))|(((
1860 Operation setting
1861 )))|(((
1862 Effective immediately
1863 )))|0|0 to 3|(((
1864 Set the zero-speed clamp function. In speed mode:
1865
1866 * 0: Force the speed to 0;
1867 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1868 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1869 * 3: Invalid, ignore zero-speed clamp input
1870 )))|-
1871 |=P01-22|(((
1872 Zero-speed clamp speed threshold
1873 )))|(((
1874 Operation setting
1875 )))|(((
1876 Effective immediately
1877 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1878
1879 Table 6-33 Zero-speed clamp related parameters
1880
1881 (% style="text-align:center" %)
1882 (((
1883 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1884 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1885 )))
1886
1887 == Speed-related DO output function ==
1888
1889 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1890
1891 **Rotation detection signal**
1892
1893 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1894
1895 (% style="text-align:center" %)
1896 (((
1897 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1898 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1899 )))
1900
1901 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1902
1903 |=(% scope="row" %)**Function code**|=**Name**|=(((
1904 **Setting method**
1905 )))|=(((
1906 **Effective time**
1907 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1908 |=P05-16|(((
1909 Rotation detection
1910
1911 speed threshold
1912 )))|(((
1913 Operation setting
1914 )))|(((
1915 Effective immediately
1916 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1917
1918 Table 6-34 Rotation detection speed threshold parameters
1919
1920 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1921 |=132|(% style="width:247px" %)(((
1922 T-COIN rotation detection
1923 )))|(% style="width:695px" %)(((
1924 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1925
1926 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1927 )))
1928
1929 Table 6-35 DO rotation detection function code
1930
1931 **Zero-speed signal**
1932
1933 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1934
1935 (% style="text-align:center" %)
1936 (((
1937 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1938 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1939 )))
1940
1941 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1942
1943 |=(% scope="row" %)**Function code**|=**Name**|=(((
1944 **Setting method**
1945 )))|=(((
1946 **Effective time**
1947 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1948 |=P05-19|Zero speed output signal threshold|(((
1949 Operation setting
1950 )))|(((
1951 Effective immediately
1952 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1953
1954 Table 6-36 Zero-speed output signal threshold parameter
1955
1956 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1957 |=133|(((
1958 ZSP zero speed signal
1959 )))|Output this signal indicates that the servo motor is stopping rotation
1960
1961 Table 6-37 DO zero-speed signal function code
1962
1963 **Speed consistent signal**
1964
1965 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1966
1967 (% style="text-align:center" %)
1968 (((
1969 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1970 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1971 )))
1972
1973 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1974
1975 |=(% scope="row" %)**Function code**|=**Name**|=(((
1976 **Setting method**
1977 )))|=(((
1978 **Effective time**
1979 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1980 |=P05-17|Speed consistent signal threshold|(((
1981 Operationsetting
1982 )))|(((
1983 Effective immediately
1984 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1985
1986 Table 6-38 Speed consistent signal threshold parameters
1987
1988 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1989 |=136|(% style="width:262px" %)(((
1990 U-COIN consistent speed
1991 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1992
1993 Table 6-39 DO speed consistent function code
1994
1995 **Speed approach signal**
1996
1997 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1998
1999 (% style="text-align:center" %)
2000 (((
2001 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2002 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
2003 )))
2004
2005 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
2006
2007 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
2008 **Setting method**
2009 )))|=(((
2010 **Effective time**
2011 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2012 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
2013 Operation setting
2014 )))|(((
2015 Effective immediately
2016 )))|100|10 to 6000|Set speed approach signal threshold|rpm
2017
2018 Table 6-40 Speed approaching signal threshold parameters
2019
2020 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2021 |=137|(((
2022 V-NEAR speed approach
2023 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
2024
2025 Table 6-41 DO speed approach function code
2026
2027 = **Torque control mode** =
2028
2029 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
2030
2031 (% style="text-align:center" %)
2032 (((
2033 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2034 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
2035 )))
2036
2037 == **Torque instruction input setting** ==
2038
2039 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
2040
2041 |=(% scope="row" %)**Function code**|=**Name**|=(((
2042 **Setting method**
2043 )))|=(((
2044 **Effective time**
2045 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2046 |=P01-07|Torque instruction source|(((
2047 Shutdown setting
2048 )))|(((
2049 Effective immediately
2050 )))|0|0 to 1|(((
2051 0: internal torque instruction
2052
2053 1: AI_1 analog input(not supported by VD2F and VD2L)
2054 )))|-
2055
2056 Table 6-42 Torque instruction source parameter
2057
2058 **Torque instruction source is internal torque instruction (P01-07=0)**
2059
2060 Torque instruction source is from inside, the value is set by function code P01-08.
2061
2062 |=(% scope="row" %)**Function code**|=**Name**|=(((
2063 **Setting method**
2064 )))|=(((
2065 **Effective time**
2066 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2067 |=P01-08|Torque instruction keyboard set value|(((
2068 Operation setting
2069 )))|(((
2070 Effective immediately
2071 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2072
2073 Table 6-43 Torque instruction keyboard set value
2074
2075 **Torque instruction source is AI_1 analog input (P01-07=1)**
2076
2077 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2078
2079 (% style="text-align:center" %)
2080 (((
2081 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2082 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2083 )))
2084
2085 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2086
2087 (% style="text-align:center" %)
2088 (((
2089 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2090 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2091 )))
2092
2093 Explanation of related terms:
2094
2095 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2096 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2097 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2098
2099 (% style="text-align:center" %)
2100 (((
2101 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2102 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2103 )))
2104
2105 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2106 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2107 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2108 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2109 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2110
2111 Table 6-44 AI_1 parameters
2112
2113 (% class="box infomessage" %)
2114 (((
2115 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2116 )))
2117
2118 == Torque instruction filtering ==
2119
2120 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2121
2122 |=(% scope="row" %)**Function code**|=**Name**|=(((
2123 **Setting method**
2124 )))|=(((
2125 **Effective time**
2126 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2127 |=P04-04|Torque filtering time constant|(((
2128 Operation setting
2129 )))|(((
2130 Effective immediately
2131 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2132
2133 Table 6-45 Torque filtering time constant parameter details
2134
2135 (% class="box infomessage" %)
2136 (((
2137 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2138 )))
2139
2140 (% style="text-align:center" %)
2141 (((
2142 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2143 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2144 )))
2145
2146 == Torque instruction limit ==
2147
2148 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2149
2150 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2151
2152 (% style="text-align:center" %)
2153 (((
2154 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2155 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2156 )))
2157
2158 **Set torque limit source**
2159
2160 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2161
2162 |=(% scope="row" %)**Function code**|=**Name**|=(((
2163 **Setting method**
2164 )))|=(((
2165 **Effective time**
2166 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2167 |=P01-14|(((
2168 Torque limit source
2169 )))|(((
2170 Shutdown setting
2171 )))|(((
2172 Effective immediately
2173 )))|0|0 to 1|(((
2174 * 0: internal value
2175 * 1: AI_1 analog input (not supported by VD2F and VD2L)
2176 )))|-
2177
2178 * Torque limit source is internal torque instruction (P01-14=0)
2179
2180 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2181
2182 |=(% scope="row" %)**Function code**|=**Name**|=(((
2183 **Setting method**
2184 )))|=(((
2185 **Effective time**
2186 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2187 |=P01-15|(((
2188 Forward torque limit
2189 )))|(((
2190 Operation setting
2191 )))|(((
2192 Effective immediately
2193 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2194 |=P01-16|(((
2195 Reverse torque limit
2196 )))|(((
2197 Operation setting
2198 )))|(((
2199 Effective immediately
2200 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2201
2202 Table 6-46 Torque limit parameter details
2203
2204 * Torque limit source is external (P01-14=1)
2205
2206 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2207
2208 **Set torque limit DO signal output**
2209
2210 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2211
2212 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2213 |=139|(((
2214 T-LIMIT in torque limit
2215 )))|Output of this signal indicates that the servo motor torque is limited
2216
2217 Table 6-47 DO torque limit function codes
2218
2219 == **Speed limit in torque mode** ==
2220
2221 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2222
2223 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2224
2225 |(((
2226 (% style="text-align:center" %)
2227 (((
2228 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2229 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2230 )))
2231 )))|(((
2232 (% style="text-align:center" %)
2233 (((
2234 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2235 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2236 )))
2237 )))
2238
2239 |=(% scope="row" %)**Function code**|=**Name**|=(((
2240 **Setting method**
2241 )))|=(((
2242 **Effective time**
2243 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2244 |=P01-17|(((
2245 Forward speed
2246
2247 limit in torque mode
2248 )))|(((
2249 Operation setting
2250 )))|(((
2251 Effective immediately
2252 )))|3000|0 to 5000|(((
2253 Forward torque
2254
2255 limit in torque mode
2256 )))|rpm
2257 |=P01-18|(((
2258 Reverse speed
2259
2260 limit in torque mode
2261 )))|(((
2262 Operation setting
2263 )))|(((
2264 Effective immediately
2265 )))|3000|0 to 5000|(((
2266 Reverse torque
2267
2268 limit in torque mode
2269 )))|rpm
2270
2271 Table 6-48 Speed limit parameters in torque mode
2272
2273 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2274
2275 == Torque-related DO output functions ==
2276
2277 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2278
2279 **Torque arrival**
2280
2281 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2282
2283 (% style="text-align:center" %)
2284 (((
2285 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2286 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2287 )))
2288
2289 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2290
2291 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2292 **Setting method**
2293 )))|=(% style="width: 124px;" %)(((
2294 **Effective time**
2295 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2296 |=P05-20|(% style="width:113px" %)(((
2297 Torque arrival
2298
2299 threshold
2300 )))|(% style="width:100px" %)(((
2301 Operation setting
2302 )))|(% style="width:124px" %)(((
2303 Effective immediately
2304 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2305 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2306
2307 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2308
2309 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2310 )))|%
2311 |=P05-21|(% style="width:113px" %)(((
2312 Torque arrival
2313
2314 hysteresis
2315 )))|(% style="width:100px" %)(((
2316 Operation setting
2317 )))|(% style="width:124px" %)(((
2318 Effective immediately
2319 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2320
2321 Table 6-49 Torque arrival parameters
2322
2323 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2324 |=138|(((
2325 T-COIN torque arrival
2326 )))|Used to determine whether the actual torque instruction has reached the set range
2327
2328 Table 6-50 DO Torque Arrival Function Code
2329
2330 = **Mixed control mode** =
2331
2332 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2333
2334 * Position mode⇔ Speed mode
2335 * Position mode ⇔Torque mode
2336 * Speed mode ⇔Torque mode
2337
2338 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2339
2340 |=(% scope="row" %)**Function code**|=**Name**|=(((
2341 **Setting method**
2342 )))|=(((
2343 **Effective time**
2344 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2345 |=P00-01|Control mode|(((
2346 Shutdown setting
2347 )))|(((
2348 Shutdown setting
2349 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2350 * 1: Position control
2351 * 2: Speed control
2352 * 3: Torque control
2353 * 4: Position/speed mixed control
2354 * 5: Position/torque mixed control
2355 * 6: Speed/torque mixed control
2356
2357 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2358 )))|-
2359
2360 Table 6-51 Mixed control mode parameters
2361
2362 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2363
2364 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2365 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2366 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2367 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2368 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2369 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2370 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2371 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2372 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2373 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2374 )))
2375
2376 Table 6-52 Description of DI function codes in control mode
2377
2378 (% class="box infomessage" %)
2379 (((
2380 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2381 )))
2382
2383 = **Absolute system** =
2384
2385 == Overview ==
2386
2387 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2388
2389 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2390
2391 == Single-turn absolute value system ==
2392
2393 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2394
2395 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2396 |A1 (single-turn magnetic encoder)|17|0 to 131071
2397
2398 Table 6-53 Single-turn absolute encoder information
2399
2400 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2401
2402 (% style="text-align:center" %)
2403 (((
2404 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2405 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2406 )))
2407
2408 == Multi-turn absolute value system ==
2409
2410 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2411
2412 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2413 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2414 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2415
2416 Table 6-54 Multi-turn absolute encoder information
2417
2418 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2419
2420 (% style="text-align:center" %)
2421 (((
2422 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2423 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2424 )))
2425
2426 (% class="wikigeneratedid" %)
2427 (((
2428 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2429 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2430 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2431 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2432
2433 |**Function code**|**Name**|(((
2434 **Setting**
2435
2436 **method**
2437 )))|(((
2438 **Effective**
2439
2440 **time**
2441 )))|**Default**|**Range**|**Definition**|**Unit**
2442 |P10-06|Multi-turn absolute encoder reset|(((
2443 Shutdown
2444
2445 setting
2446 )))|Effective immediately|0|0 to 1|(((
2447 0: No operation
2448
2449 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2450
2451 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2452 )))|-
2453
2454 (% style="background-color:#ffffff" %)
2455 |**Function code**|**Name**|(((
2456 **Setting**
2457
2458 **method**
2459 )))|(((
2460 **Effective**
2461
2462 **time**
2463 )))|**Default**|**Range**|**Definition**|**Unit**
2464 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2465 Operation
2466
2467 setting
2468 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2469 )))
2470
2471 == Related functions and parameters ==
2472
2473 **Encoder feedback data**
2474
2475 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2476
2477 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2478 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2479 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2480 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2481
2482 Table 6-55 Encoder feedback data
2483
2484 **Shield multi-turn absolute encoder battery fault**
2485
2486 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2487
2488 |=(% scope="row" %)**Function code**|=**Name**|=(((
2489 **Setting**
2490
2491 **method**
2492 )))|=(((
2493 **Effective**
2494
2495 **time**
2496 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2497 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2498 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2499 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2500 )))|-
2501
2502 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2503
2504 **A93 warning solution**
2505
2506 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2507 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2508
2509 |**Function code**|**Name**|(((
2510 **Setting**
2511
2512 **method**
2513 )))|(((
2514 **Effective**
2515
2516 **time**
2517 )))|**Default**|**Range**|**Definition**|**Unit**
2518 |P00-31|Encoder read-write check abnormal frequency|(((
2519 Operation
2520
2521 setting
2522 )))|(((
2523 immediately
2524
2525 Effective
2526 )))|20|0 to100|(((
2527 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2528
2529 0: no alarm
2530
2531 Others: When this setting value is exceeded, report A93.
2532 )))|-
2533
2534 (% class="box infomessage" %)
2535 (((
2536 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2537 )))
2538
2539 == Absolute value system encoder battery box use precautions. ==
2540
2541 **Cautions**
2542
2543 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2544
2545 (% style="text-align:center" %)
2546 (((
2547 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2548 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2549 )))
2550
2551 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2552
2553 **Replace the battery**
2554
2555 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2556
2557 The specific replacement method is as follows:
2558
2559 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2560 * Step2 Remove the old battery.
2561 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2562 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2563
2564 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2565
2566 |=(% scope="row" %)**Function code**|=**Name**|=(((
2567 **Setting method**
2568 )))|=(((
2569 **Effective time**
2570 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2571 |=P10-06|Multi-turn absolute encoder reset|(((
2572 Shutdown setting
2573 )))|(((
2574 Effective immediately
2575 )))|0|0 to 1|(((
2576 * 0: No operation
2577 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2578
2579 (% class="box infomessage" %)
2580 (((
2581 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2582 )))
2583 )))|-
2584
2585 Table 6-56 Absolute encoder reset enable parameter
2586
2587 **Battery selection**
2588
2589 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2590 |(% rowspan="4" style="width:361px" %)(((
2591 Nominal Voltage: 3.6V
2592
2593 Nominal capacity: 2700mAh
2594 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2595 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2596 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2597 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2598
2599 Table 6-57 Absolute value encoder battery information
2600
2601 **✎Note: **
2602
2603 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2604
2605 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2606
2607 Correct placement of batteries +, - direction
2608
2609 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2610 1. This battery cannot be charged.
2611 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2612 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2613 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2614
2615 = **Other functions** =
2616
2617 == VDI ==
2618
2619 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2620
2621 (% class="box infomessage" %)
2622 (((
2623 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2624 )))
2625
2626 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2627
2628 (% style="text-align:center" %)
2629 (((
2630 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2631 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2632 )))
2633
2634 |=(% scope="row" %)**Function code**|=**Name**|=(((
2635 **Setting method**
2636 )))|=(((
2637 **Effective time**
2638 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2639 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2640 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2641
2642 VDI_1 input level:
2643
2644 * 0: low level
2645 * 1: high level
2646 )))|-
2647 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2648 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2649
2650 VDI_2 input level:
2651
2652 * 0: low level
2653 * 1: high level
2654 )))|-
2655 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2656 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2657
2658 VDI_3 input level:
2659
2660 * 0: low level
2661 * 1: high level
2662 )))|-
2663 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2664 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2665
2666 VDI_4 input level:
2667
2668 * 0: low level
2669 * 1: high level
2670 )))|-
2671 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2672 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2673
2674 VDI_5 input level:
2675
2676 * 0: low level
2677 * 1: high level
2678 )))|-
2679 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2680 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2681
2682 VDI_6 input level:
2683
2684 * 0: low level
2685 * 1: high level
2686 )))|-
2687 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2688 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2689
2690 VDI_7 input level:
2691
2692 * 0: low level
2693 * 1: high level
2694 )))|-
2695 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2696 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2697
2698 VDI_8 input level:
2699
2700 * 0: low level
2701 * 1: high level
2702 )))|-
2703
2704 Table 6-57 Virtual VDI parameters
2705
2706 (% class="box infomessage" %)
2707 (((
2708 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2709 )))
2710
2711 == Port filtering time ==
2712
2713 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2714
2715 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2716 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2717 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2718
2719 Table 6-58 DI terminal channel logic selection
2720
2721 == **VDO** ==
2722
2723 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2724
2725 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2726
2727 (% style="text-align:center" %)
2728 (((
2729 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2730 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2731 )))
2732
2733
2734 |=(% scope="row" %)**Function code**|=**Name**|=(((
2735 **Setting method**
2736 )))|=(((
2737 **Effective time**
2738 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2739 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2740 VDO_1 output level:
2741
2742 * 0: low level
2743 * 1: high level
2744 )))|-
2745 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2746 VDO_2 output level:
2747
2748 * 0: low level
2749 * 1: high level
2750 )))|-
2751 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2752 VDO_3 output level:
2753
2754 * 0: low level
2755 * 1: high level
2756 )))|-
2757 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2758 VDO_4 output level:
2759
2760 * 0: low level
2761 * 1: high level
2762 )))|-
2763
2764 Table 6-59 Communication control DO function parameters
2765
2766 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2767 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2768 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2769 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2770 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2771
2772 Table 6-60 VDO function number
2773
2774 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2775
2776 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2777
2778 == Motor overload protection ==
2779
2780 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2781
2782 |=(% scope="row" %)**Function code**|=**Name**|=(((
2783 **Setting method**
2784 )))|=(((
2785 **Effective time**
2786 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2787 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2788 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2789
2790 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2791 )))|%
2792
2793 In the following cases, it could be modified according to the actual heat generation of the motor
2794
2795 1. The motor works in a place with high ambient temperature
2796 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2797
2798 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2799
2800 (% class="box infomessage" %)
2801 (((
2802 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2803 )))