Last modified by Theodore Xu on 2025/02/21 14:13

From version 19.1
edited by Mora Zhou
on 2023/12/21 15:07
Change comment: There is no comment for this version
To version 5.1
edited by Jim(Forgotten)
on 2023/04/13 09:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -08 Function parameter details
1 +8 Function parameter details
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Mora
1 +XWiki.Jim
Content
... ... @@ -1,4 +1,4 @@
1 -= F0 group basic parameters =
1 += 1 F0 group basic parameters =
2 2  
3 3  (% class="table-bordered" %)
4 4  |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0
... ... @@ -13,10 +13,7 @@
13 13  
14 14  It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps.
15 15  
16 -(% class="box infomessage" %)
17 -(((
18 -**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it.
19 -)))
16 +**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it
20 20  
21 21  (% class="table-bordered" %)
22 22  |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0
... ... @@ -47,7 +47,7 @@
47 47  
48 48  This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. .
49 49  
50 -(% class="table-bordered" style="width:1474px" %)
47 +(% class="table-bordered" %)
51 51  |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1
52 52  |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
53 53  |1|(% colspan="2" %)Digital setting (retentive at power failure)
... ... @@ -54,7 +54,7 @@
54 54  |2|(% colspan="2" %)AI1
55 55  |3|(% colspan="2" %)AI2
56 56  |4|(% colspan="2" %)Reserved
57 -|5|(% colspan="2" %)PULSE setting DI6(Reserved
54 +|5|(% colspan="2" %)Reserved
58 58  |6|(% colspan="2" %)Multi-stage speed setting
59 59  |7|(% colspan="2" %)Simple PLC
60 60  |8|(% colspan="2" %)PID
... ... @@ -82,15 +82,13 @@
82 82  
83 83  Means that the frequency is determined by the analog input terminal. The standard unit provides 2 analog input terminals (AI1, AI2), among which AI1 is 0V~~10V voltage input, AI2 can be 0V~~10V voltage input, or 4mA~~20mA current input, Selected by jumper J8 on the control board.
84 84  
85 -**5: **PULSE setting(Reserved)
82 +**4/5: **PULSE setting(Reserved)
86 86  
87 87  The set frequency is given by the terminal pulse.
88 88  
89 89  Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~100kHz.
90 90  
91 -{{info}}
92 -**✎**Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__
93 -{{/info}}
88 +Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__
94 94  
95 95  **6: **Multi-stage speed
96 96  
... ... @@ -135,8 +135,8 @@
135 135  
136 136  (% class="table-bordered" %)
137 137  |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0
138 -|(% rowspan="2" style="width:494px" %)Setting Range|(% style="width:271px" %)0|(% colspan="2" %)Relative to the maximum frequency
139 -|(% style="width:271px" %)1|(% colspan="2" %)Relative to the frequency source X
133 +|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Relative to the maximum frequency
134 +|1|(% colspan="2" %)Relative to the frequency source X
140 140  |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0
141 141  |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150%
142 142  
... ... @@ -159,13 +159,13 @@
159 159  
160 160  Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y.
161 161  
162 -One’s digit: Selection of frequency source
157 +One’s digit:Selection of frequency source
163 163  
164 -0: Main frequency source X
159 +0:main frequency source X
165 165  
166 166  The main frequency X is used as the target frequency.
167 167  
168 -1: Main and auxiliary calculation results
163 +1: main and auxiliary calculation results
169 169  
170 170  The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits).
171 171  
... ... @@ -183,9 +183,9 @@
183 183  
184 184  4: Switchover between Y and main (X) & auxiliary(Y) calculation
185 185  
186 -When the multi-function input terminal 18: Frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
181 +When the multi-function input terminal 18: frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
187 187  
188 -When the multi-function input terminal 18: Frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
183 +When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
189 189  
190 190  Ten’s digit:X and Y calculation relationship:
191 191  
... ... @@ -210,30 +210,30 @@
210 210  The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency.
211 211  
212 212  (% class="table-bordered" %)
213 -|(% rowspan="2" style="width:126px" %)**F0.08**|(% style="width:296px" %)Keypad setting frequency|(% style="width:525px" %)Default|(% style="width:504px" %)50.00Hz
214 -|(% style="width:296px" %)Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
208 +|(% rowspan="2" %)**F0.08**|Keypad setting frequency|Default|50.00Hz
209 +|Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
215 215  
216 216  When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter.
217 217  
218 -(% class="table-bordered" style="width:1454px" %)
219 -|(% rowspan="3" style="width:134px" %)**F0.09**|(% colspan="2" style="width:825px" %)Running direction selection|(% style="width:405px" %)Default|(% style="width:117px" %)0
220 -|(% rowspan="2" style="width:288px" %)Setting Range|(% style="width:528px" %)0|(% colspan="2" style="width:513px" %)Forward direction
221 -|(% style="width:528px" %)1|(% colspan="2" style="width:513px" %)Reverse direction
213 +(% class="table-bordered" %)
214 +|(% rowspan="3" %)**F0.09**|(% colspan="2" %)Running direction selection|Default|0
215 +|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Forward direction
216 +|1|(% colspan="2" %)Reverse direction
222 222  
223 223  By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W).
224 224  
225 225  Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged.
226 226  
227 -(% class="table-bordered" style="width:1473px" %)
228 -|(% rowspan="2" style="width:135px" %)**F0.10**|(% colspan="2" style="width:815px" %)Maximum Frequency|(% style="width:376px" %)Default|50.00 Hz
229 -|(% colspan="2" style="width:815px" %)Setting Range|(% colspan="2" style="width:501px" %)50.00Hz~~500.00Hz
230 -|(% rowspan="7" style="width:135px" %)**F0.11**|(% colspan="2" style="width:815px" %)Source of frequency upper limit|(% style="width:376px" %)Default|0
231 -|(% rowspan="6" style="width:285px" %)Setting Range|(% style="width:530px" %)0|(% colspan="2" style="width:501px" %)Set by F0.12
232 -|(% style="width:530px" %)1|(% colspan="2" style="width:501px" %)AI1
233 -|(% style="width:530px" %)2|(% colspan="2" style="width:501px" %)AI2
234 -|(% style="width:530px" %)3|(% colspan="2" style="width:501px" %)Reserved
235 -|(% style="width:530px" %)4|(% colspan="2" style="width:501px" %)Reserved
236 -|(% style="width:530px" %)5|(% colspan="2" style="width:501px" %)Communication setting
222 +(% class="table-bordered" %)
223 +|(% rowspan="2" %)**F0.10**|(% colspan="2" %)Maximum Frequency|Default|50.00 Hz
224 +|(% colspan="2" %)Setting Range|(% colspan="2" %)50.00Hz~~500.00Hz
225 +|(% rowspan="7" %)**F0.11**|(% colspan="2" %)Source of frequency upper limit|Default|0
226 +|(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Set by F0.12
227 +|1|(% colspan="2" %)AI1
228 +|2|(% colspan="2" %)AI2
229 +|3|(% colspan="2" %)Reserved
230 +|4|(% colspan="2" %)Reserved
231 +|5|(% colspan="2" %)Communication setting
237 237  
238 238  Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12.
239 239  
... ... @@ -240,33 +240,31 @@
240 240  For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency.
241 241  
242 242  (% class="table-bordered" %)
243 -|(% rowspan="2" style="width:138px" %)**F0.12**|(% style="width:814px" %)Frequency upper limit|(% style="width:113px" %)Default|50.00Hz
244 -|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)Frequency lower limit (F0.14)~~F0.10
245 -|(% rowspan="2" style="width:138px" %)**F0.13**|(% style="width:814px" %)Upper limit frequency offset|(% style="width:113px" %)Default|0.00Hz
246 -|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)0.00Hz ~~F0.10
238 +|(% rowspan="2" %)**F0.12**|Frequency upper limit|Default|50.00Hz
239 +|Setting Range|(% colspan="2" %)Frequency lower limit (F0.14)~~F0.10
240 +|(% rowspan="2" %)**F0.13**|Upper limit frequency offset|Default|0.00Hz
241 +|Setting Range|(% colspan="2" %)0.00Hz ~~F0.10
247 247  
248 248  When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value.
249 249  
250 250  (% class="table-bordered" %)
251 -|(% rowspan="2" style="width:136px" %)**F0.14**|(% style="width:670px" %)Frequency lower limit|(% style="width:217px" %)Default|0.00Hz
252 -|(% style="width:670px" %)Setting Range|(% colspan="2" style="width:491px" %)0.00Hz~~F0.12
246 +|(% rowspan="2" %)**F0.14**|Frequency lower limit|Default|0.00Hz
247 +|Setting Range|(% colspan="2" %)0.00Hz~~F0.12
253 253  
254 254  When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15.
255 255  
256 256  (% class="table-bordered" %)
257 -|(% rowspan="4" style="width:136px" %)**F0.15**|(% colspan="2" style="width:676px" %)The function of frequency lower limit|(% style="width:546px" %)Default|0
258 -|(% rowspan="3" style="width:488px" %)Setting Range|(% style="width:188px" %)0|(% colspan="2" style="width:640px" %)Running at frequency lower limit
259 -|(% style="width:188px" %)1|(% colspan="2" style="width:640px" %)Stop
260 -|(% style="width:188px" %)2|(% colspan="2" style="width:640px" %)Standby(Running at 0 Hz)
252 +|(% rowspan="4" %)**F0.15**|(% colspan="2" %)The function of frequency lower limit|Default|0
253 +|(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Running at frequency lower limit
254 +|1|(% colspan="2" %)Stop
255 +|2|(% colspan="2" %)Standby(Running at 0 Hz)
261 261  
262 262  Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop.
263 263  
264 264  (% class="table-bordered" %)
265 -|(% rowspan="2" style="width:139px" %)** F0.16**|(% style="width:680px" %)Carrier Frequency|(% style="width:429px" %)Default|(% style="width:204px" %)Model Dependent
266 -|(% style="width:680px" %)Setting Range|(% colspan="2" style="width:633px" %)0.5kHz~~16.0kHz
260 +|(% rowspan="2" %)** F0.16**|Carrier Frequency|Default|Model Dependent
261 +|Setting Range|(% colspan="2" %)0.5kHz~~16.0kHz
267 267  
268 -= Carrier Frequency: =
269 -
270 270  This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced.
271 271  
272 272  When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases.
... ... @@ -394,7 +394,7 @@
394 394  
395 395  The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20.
396 396  
397 -= F1 group start & stop control =
390 += 2 F1 group start & stop control =
398 398  
399 399  (% class="table-bordered" %)
400 400  |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0
... ... @@ -554,7 +554,7 @@
554 554  
555 555  Setting whether the AC drive has output when running frequency is 0
556 556  
557 -= F2 group motor parameters =
550 += 3 F2 group motor parameters =
558 558  
559 559  (% class="table-bordered" %)
560 560  |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0
... ... @@ -648,9 +648,7 @@
648 648  
649 649  When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0.
650 650  
651 -{{info}}
652 652  **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.**
653 -{{/info}}
654 654  
655 655  (% class="table-bordered" %)
656 656  |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent
... ... @@ -669,7 +669,7 @@
669 669  
670 670  The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) .
671 671  
672 -= F3 group vector control parameters =
663 += 4 F3 group vector control parameters =
673 673  
674 674  F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1.
675 675  
... ... @@ -806,7 +806,7 @@
806 806  
807 807  During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15.
808 808  
809 -= F4 group v/f control parameters =
800 += 5 F4 group v/f control parameters =
810 810  
811 811  This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control.
812 812  
... ... @@ -975,7 +975,7 @@
975 975  
976 976  According to the actual use, select the situation where the AVR function is enabled.
977 977  
978 -= F5 group input terminals =
969 += 6 F5 group input terminals =
979 979  
980 980  The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals.
981 981  
... ... @@ -1110,27 +1110,18 @@
1110 1110  
1111 1111  0: Two-line mode 1: This mode is the most commonly used two-line mode. The FWD and REV terminal commands determine the forward and reverse of the motor.
1112 1112  
1113 -[[image:1681697850903-377.png||height="282" width="633"]]
1114 -
1115 1115  1: Two-wire mode 2: FWD is the enable terminal when using this mode. The direction is determined by the state of the REV.
1116 1116  
1117 -[[image:1681697969422-504.png]]
1106 +2: Three-line mode 1: This mode Din is the enable terminal, and the direction is controlled by FWD and REV respectively.
1118 1118  
1119 -2: Three-line mode 1: This mode Din(function code 3) is the enable terminal, and the direction is controlled by FWD and REV respectively.
1108 +But the pulse is valid, it must be completed by disconnecting the Din terminal signal when stopping.
1120 1120  
1121 -DIN is pulse effective, user need to disconnect the Din terminal signal when stop.
1122 -
1123 1123  Din is the multifunctional input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1124 1124  
1125 -[[image:1681698530367-261.png||height="298" width="628"]]
1126 -
1127 1127  3: Three-line mode 2: The enable terminal of this mode is Din, the running command is given by FWD, and the direction is determined by the state of REV. The stop command is completed by disconnecting the Din signal.
1128 1128  
1129 1129  Din is the multi-function input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1130 1130  
1131 -[[image:1681698557086-403.png||height="267" width="625"]]
1132 -
1133 -
1134 1134  (% class="table-bordered" %)
1135 1135  |(% rowspan="2" %)**F5.17**|UP/DOWN change rate range|Default|0.50Hz
1136 1136  |Setting range|(% colspan="2" %)0.01Hz~~65.535Hz
... ... @@ -1175,6 +1175,20 @@
1175 1175  The function of AI2 is similar to the setting method of AI1.
1176 1176  
1177 1177  (% class="table-bordered" %)
1160 +|(% rowspan="2" %)**F5.28**|PULSE INPUT minimum input|Default|0.00kHz
1161 +|Setting range|(% colspan="2" %)0.00kHz~~F5.30 
1162 +|(% rowspan="2" %)**F5.29**|Percentage rate of PULSE INPUT minimum input|Default|0.0%
1163 +|Setting range|(% colspan="2" %)-100.00%~~100.0%
1164 +|(% rowspan="2" %)**F5.30**|PULSE INPUT maximum input|Default|50.00kHz
1165 +|Setting range|(% colspan="2" %)F5.28~~50.00kHz  
1166 +|(% rowspan="2" %)**F5.31**|Percentage rate of PULSE INPUT maximum input|Default|100.0%
1167 +|Setting range|(% colspan="2" %)-100.00%~~100.0%
1168 +|(% rowspan="2" %)**F5.32**|PULSE INPUT filter time|Default|0.10s
1169 +|Setting range|(% colspan="2" %)0.00s~~10.00s
1170 +
1171 +This group of function codes defines the corresponding relationship when pulse is used as the frequency setting method. Pulse frequency input can only be input through DI6 channel. The application of this group of functions is similar to that of AI1.
1172 +
1173 +(% class="table-bordered" %)
1178 1178  |(% rowspan="2" %)**F5.33**|DI1 enable delay time|Default|0.0s
1179 1179  |Setting range|(% colspan="2" %)0.0s~~3600.0s
1180 1180  |(% rowspan="2" %)**F5.34**|DI1 disable delay time|Default|0.0s
... ... @@ -1212,7 +1212,7 @@
1212 1212  
1213 1213  Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid.
1214 1214  
1215 -= F6 group output terminals =
1211 += 7 F6 group output terminals =
1216 1216  
1217 1217  The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals.
1218 1218  
... ... @@ -1466,14 +1466,8 @@
1466 1466  
1467 1467  For the second output, the parameter setting method is the same as F6.28~~F6.32.
1468 1468  
1469 -(% class="table-bordered" %)
1470 -|(% rowspan="2" %)**F6.38**|The setting time of timer|Default|0
1471 -|Setting range|(% colspan="3" %)0.00s~~100.0s
1465 += 8 F7 group keypad display =
1472 1472  
1473 -Set the timer setting time
1474 -
1475 -= F7 group keypad display =
1476 -
1477 1477  (% class="table-bordered" %)
1478 1478  |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0
1479 1479  |(% rowspan="3" %)Setting range|0|(% colspan="2" %)No operation
... ... @@ -1683,7 +1683,7 @@
1683 1683  |(% rowspan="2" %)**F7.15**|Performance software version|Default|-
1684 1684  |Setting range|(% colspan="2" %)-
1685 1685  
1686 -= F8 group auxiliary functions =
1676 += 9 F8 group auxiliary functions =
1687 1687  
1688 1688  (% class="table-bordered" %)
1689 1689  |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz
... ... @@ -1983,7 +1983,7 @@
1983 1983  
1984 1984  Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10.
1985 1985  
1986 -= F9 group pid function of process control =
1976 += 10 F9 group pid function of process control =
1987 1987  
1988 1988  PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows:
1989 1989  
... ... @@ -1990,9 +1990,6 @@
1990 1990  (% style="text-align:center" %)
1991 1991  [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]]
1992 1992  
1993 -(% style="text-align:center" %)
1994 -[[image:生产流程图.png]]
1995 -
1996 1996  Figure 6-10-1 Block diagram of process PID principle
1997 1997  
1998 1998  (% class="table-bordered" %)
... ... @@ -2188,7 +2188,7 @@
2188 2188  
2189 2189  Figure 6-10-2 PID sleep and wake-up timing diagram
2190 2190  
2191 -= FA group faults & protection =
2178 += 11 FA group faults & protection =
2192 2192  
2193 2193  (% class="table-bordered" %)
2194 2194  |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1
... ... @@ -2312,17 +2312,23 @@
2312 2312  |(% rowspan="9" %)**FA.15**|(% colspan="2" style="width:442px" %)Fault protection action selection 3|(% style="width:451px" %)Default|(% colspan="2" %)00000
2313 2313  |(% rowspan="7" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)User-defined fault 1(Err27) (0~~2,as ones place of FA.13)
2314 2314  |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)User-defined fault 2(Err28) (0~~2,as ones place of FA.13)
2315 -|(% style="width:316px" %)Hundreds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2316 -|(% style="width:316px" %)Thousands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2302 +|(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2303 +|(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2317 2317  |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2318 2318  |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2319 2319  |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Decelerate to 7% of the rated frequency of the motor and continue to run, and automatically return to the set frequency if the load is not lost
2320 -| |(% style="width:316px" %)Ten thousands Place|(% colspan="3" style="width:978px" %)(((
2307 +| |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)(((
2321 2321  PID feedback loss during
2322 2322  
2323 2323  Running (Err31) (0~~2,as ones place of FA.13)
2324 2324  )))
2312 +|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2313 +Overcurrent stall Integral coefficient
2314 +)))|(% colspan="2" style="width:451px" %)Default|500
2315 +|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2325 2325  
2317 +set overcurrent stall Integral coefficient rate.
2318 +
2326 2326  When “free stop” is selected: the inverter prompts Err~*~* and stops directly.
2327 2327  
2328 2328  When "Stop according to stop mode" is selected: the inverter prompts A~*~* and stops according to the stop mode, and prompts ErrXX after stopping.
... ... @@ -2330,29 +2330,22 @@
2330 2330  When “continue running” is selected: the inverter continues to run and prompts A~*~*. For the running frequency, refer to the description of FA.20 and FA.21.
2331 2331  
2332 2332  (% class="table-bordered" %)
2333 -|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2334 -Overcurrent stall Integral coefficient
2335 -)))|(% colspan="2" style="width:451px" %)Default|500
2336 -|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2337 -
2338 -Set overcurrent stall Integral coefficient rate.
2339 -
2340 -(% class="table-bordered" %)
2341 -|(% rowspan="3" %)(((
2342 -**FA.17**
2343 -)))|(% colspan="2" rowspan="1" %)Instant stop /no-stop mode |(((
2326 +|(% rowspan="2" %)(((
2327 +FA.17
2328 +)))|(((
2329 +Undervoltage setting
2330 +)))|(((
2344 2344  Default
2345 2345  )))|(((
2346 -0
2333 +100.0%
2347 2347  )))
2348 -|(% colspan="1" rowspan="2" %)(((
2335 +|(((
2349 2349  Setting range
2350 -)))|(% rowspan="1" %)0|(% colspan="2" rowspan="1" %)(((
2351 -General machine instant stop/no-stop
2337 +)))|(% colspan="2" rowspan="1" %)(((
2338 +60.0%~~140.0%
2352 2352  )))
2353 -|1|(% colspan="2" %)Spinning machine instant stop/no-stop
2354 2354  
2355 -Set the mode of instant stop and no-stop.
2341 +Instantaneous power failure mode selection
2356 2356  
2357 2357  (% class="table-bordered" %)
2358 2358  |(% rowspan="2" %)**FA.18**|Undervoltage setting|Default|100.0%
... ... @@ -2423,7 +2423,7 @@
2423 2423  
2424 2424  Note: The function code display data is H.xxx, where H. means hexadecimal data.
2425 2425  
2426 -= FB group frequency swing, length fixing and counting =
2412 += 12 FB group frequency swing, length fixing and counting =
2427 2427  
2428 2428  The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions.
2429 2429  
... ... @@ -2510,7 +2510,7 @@
2510 2510  
2511 2511  Figure 6-12-2 Schematic diagram of set count value given and designated count value given
2512 2512  
2513 -= FC group communication parameters =
2499 += 13 FC group communication parameters =
2514 2514  
2515 2515  (% class="table-bordered" %)
2516 2516  |(% rowspan="2" %)**FC.00**|Local address|Default|1
... ... @@ -2561,7 +2561,7 @@
2561 2561  
2562 2562  Used to determine the output unit of the current value when the communication reads the output current.
2563 2563  
2564 -= FD group muti-stage speed and simple plc functions =
2550 += 14 FD group muti-stage speed and simple plc functions =
2565 2565  
2566 2566  The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics.
2567 2567  
... ... @@ -2720,7 +2720,7 @@
2720 2720  
2721 2721  This parameter determines the target quantity given channel of multi-speed 0.
2722 2722  
2723 -= FE group user password management =
2709 += 15 FE group user password management =
2724 2724  
2725 2725  (% class="table-bordered" %)
2726 2726  |(% rowspan="2" %)**FE.00**|User password|Default|0
1681697850903-377.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Jim
Size
... ... @@ -1,1 +1,0 @@
1 -18.5 KB
Content
1681697969422-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Jim
Size
... ... @@ -1,1 +1,0 @@
1 -10.9 KB
Content
1681698530367-261.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Jim
Size
... ... @@ -1,1 +1,0 @@
1 -10.0 KB
Content
1681698557086-403.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Jim
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
生产流程图.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.AiXia
Size
... ... @@ -1,1 +1,0 @@
1 -1.0 MB
Content