Last modified by Theodore Xu on 2025/02/21 14:13

From version 21.1
edited by Theodore Xu
on 2024/03/27 09:37
Change comment: There is no comment for this version
To version 5.1
edited by Jim(Forgotten)
on 2023/04/13 09:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -08 Function parameter details
1 +8 Function parameter details
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.AiXia
1 +XWiki.Jim
Content
... ... @@ -1,4 +1,4 @@
1 -= F0 group basic parameters =
1 += 1 F0 group basic parameters =
2 2  
3 3  (% class="table-bordered" %)
4 4  |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0
... ... @@ -13,10 +13,7 @@
13 13  
14 14  It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps.
15 15  
16 -(% class="box infomessage" %)
17 -(((
18 -**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it.
19 -)))
16 +**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it
20 20  
21 21  (% class="table-bordered" %)
22 22  |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0
... ... @@ -47,7 +47,7 @@
47 47  
48 48  This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. .
49 49  
50 -(% class="table-bordered" style="width:1474px" %)
47 +(% class="table-bordered" %)
51 51  |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1
52 52  |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
53 53  |1|(% colspan="2" %)Digital setting (retentive at power failure)
... ... @@ -54,7 +54,7 @@
54 54  |2|(% colspan="2" %)AI1
55 55  |3|(% colspan="2" %)AI2
56 56  |4|(% colspan="2" %)Reserved
57 -|5|(% colspan="2" %)PULSE setting DI6(Reserved
54 +|5|(% colspan="2" %)Reserved
58 58  |6|(% colspan="2" %)Multi-stage speed setting
59 59  |7|(% colspan="2" %)Simple PLC
60 60  |8|(% colspan="2" %)PID
... ... @@ -82,12 +82,14 @@
82 82  
83 83  Means that the frequency is determined by the analog input terminal. The standard unit provides 2 analog input terminals (AI1, AI2), among which AI1 is 0V~~10V voltage input, AI2 can be 0V~~10V voltage input, or 4mA~~20mA current input, Selected by jumper J8 on the control board.
84 84  
85 -**5: **PULSE setting(Reserved)
82 +**4/5: **PULSE setting(Reserved)
86 86  
87 87  The set frequency is given by the terminal pulse.
88 88  
89 -Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~20kHz.
86 +Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~100kHz.
90 90  
88 +Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__
89 +
91 91  **6: **Multi-stage speed
92 92  
93 93  Select multi-stage speed operation mode. Need to set the F5 group "input terminals" and FD group "multi-stage speed and PLC" parameters to determine the corresponding relationship between the given signal and the given frequency.
... ... @@ -131,8 +131,8 @@
131 131  
132 132  (% class="table-bordered" %)
133 133  |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0
134 -|(% rowspan="2" style="width:494px" %)Setting Range|(% style="width:271px" %)0|(% colspan="2" %)Relative to the maximum frequency
135 -|(% style="width:271px" %)1|(% colspan="2" %)Relative to the frequency source X
133 +|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Relative to the maximum frequency
134 +|1|(% colspan="2" %)Relative to the frequency source X
136 136  |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0
137 137  |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150%
138 138  
... ... @@ -155,13 +155,13 @@
155 155  
156 156  Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y.
157 157  
158 -One’s digit: Selection of frequency source
157 +One’s digit:Selection of frequency source
159 159  
160 -0: Main frequency source X
159 +0:main frequency source X
161 161  
162 162  The main frequency X is used as the target frequency.
163 163  
164 -1: Main and auxiliary calculation results
163 +1: main and auxiliary calculation results
165 165  
166 166  The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits).
167 167  
... ... @@ -179,9 +179,9 @@
179 179  
180 180  4: Switchover between Y and main (X) & auxiliary(Y) calculation
181 181  
182 -When the multi-function input terminal 18: Frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
181 +When the multi-function input terminal 18: frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
183 183  
184 -When the multi-function input terminal 18: Frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
183 +When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
185 185  
186 186  Ten’s digit:X and Y calculation relationship:
187 187  
... ... @@ -206,30 +206,30 @@
206 206  The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency.
207 207  
208 208  (% class="table-bordered" %)
209 -|(% rowspan="2" style="width:126px" %)**F0.08**|(% style="width:296px" %)Keypad setting frequency|(% style="width:525px" %)Default|(% style="width:504px" %)50.00Hz
210 -|(% style="width:296px" %)Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
208 +|(% rowspan="2" %)**F0.08**|Keypad setting frequency|Default|50.00Hz
209 +|Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
211 211  
212 212  When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter.
213 213  
214 -(% class="table-bordered" style="width:1454px" %)
215 -|(% rowspan="3" style="width:134px" %)**F0.09**|(% colspan="2" style="width:825px" %)Running direction selection|(% style="width:405px" %)Default|(% style="width:117px" %)0
216 -|(% rowspan="2" style="width:288px" %)Setting Range|(% style="width:528px" %)0|(% colspan="2" style="width:513px" %)Forward direction
217 -|(% style="width:528px" %)1|(% colspan="2" style="width:513px" %)Reverse direction
213 +(% class="table-bordered" %)
214 +|(% rowspan="3" %)**F0.09**|(% colspan="2" %)Running direction selection|Default|0
215 +|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Forward direction
216 +|1|(% colspan="2" %)Reverse direction
218 218  
219 219  By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W).
220 220  
221 221  Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged.
222 222  
223 -(% class="table-bordered" style="width:1473px" %)
224 -|(% rowspan="2" style="width:135px" %)**F0.10**|(% colspan="2" style="width:815px" %)Maximum Frequency|(% style="width:376px" %)Default|50.00 Hz
225 -|(% colspan="2" style="width:815px" %)Setting Range|(% colspan="2" style="width:501px" %)50.00Hz~~500.00Hz
226 -|(% rowspan="7" style="width:135px" %)**F0.11**|(% colspan="2" style="width:815px" %)Source of frequency upper limit|(% style="width:376px" %)Default|0
227 -|(% rowspan="6" style="width:285px" %)Setting Range|(% style="width:530px" %)0|(% colspan="2" style="width:501px" %)Set by F0.12
228 -|(% style="width:530px" %)1|(% colspan="2" style="width:501px" %)AI1
229 -|(% style="width:530px" %)2|(% colspan="2" style="width:501px" %)AI2
230 -|(% style="width:530px" %)3|(% colspan="2" style="width:501px" %)Reserved
231 -|(% style="width:530px" %)4|(% colspan="2" style="width:501px" %)Reserved
232 -|(% style="width:530px" %)5|(% colspan="2" style="width:501px" %)Communication setting
222 +(% class="table-bordered" %)
223 +|(% rowspan="2" %)**F0.10**|(% colspan="2" %)Maximum Frequency|Default|50.00 Hz
224 +|(% colspan="2" %)Setting Range|(% colspan="2" %)50.00Hz~~500.00Hz
225 +|(% rowspan="7" %)**F0.11**|(% colspan="2" %)Source of frequency upper limit|Default|0
226 +|(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Set by F0.12
227 +|1|(% colspan="2" %)AI1
228 +|2|(% colspan="2" %)AI2
229 +|3|(% colspan="2" %)Reserved
230 +|4|(% colspan="2" %)Reserved
231 +|5|(% colspan="2" %)Communication setting
233 233  
234 234  Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12.
235 235  
... ... @@ -236,33 +236,31 @@
236 236  For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency.
237 237  
238 238  (% class="table-bordered" %)
239 -|(% rowspan="2" style="width:138px" %)**F0.12**|(% style="width:814px" %)Frequency upper limit|(% style="width:113px" %)Default|50.00Hz
240 -|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)Frequency lower limit (F0.14)~~F0.10
241 -|(% rowspan="2" style="width:138px" %)**F0.13**|(% style="width:814px" %)Upper limit frequency offset|(% style="width:113px" %)Default|0.00Hz
242 -|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)0.00Hz ~~F0.10
238 +|(% rowspan="2" %)**F0.12**|Frequency upper limit|Default|50.00Hz
239 +|Setting Range|(% colspan="2" %)Frequency lower limit (F0.14)~~F0.10
240 +|(% rowspan="2" %)**F0.13**|Upper limit frequency offset|Default|0.00Hz
241 +|Setting Range|(% colspan="2" %)0.00Hz ~~F0.10
243 243  
244 244  When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value.
245 245  
246 246  (% class="table-bordered" %)
247 -|(% rowspan="2" style="width:136px" %)**F0.14**|(% style="width:670px" %)Frequency lower limit|(% style="width:217px" %)Default|0.00Hz
248 -|(% style="width:670px" %)Setting Range|(% colspan="2" style="width:491px" %)0.00Hz~~F0.12
246 +|(% rowspan="2" %)**F0.14**|Frequency lower limit|Default|0.00Hz
247 +|Setting Range|(% colspan="2" %)0.00Hz~~F0.12
249 249  
250 250  When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15.
251 251  
252 252  (% class="table-bordered" %)
253 -|(% rowspan="4" style="width:136px" %)**F0.15**|(% colspan="2" style="width:676px" %)The function of frequency lower limit|(% style="width:546px" %)Default|0
254 -|(% rowspan="3" style="width:488px" %)Setting Range|(% style="width:188px" %)0|(% colspan="2" style="width:640px" %)Running at frequency lower limit
255 -|(% style="width:188px" %)1|(% colspan="2" style="width:640px" %)Stop
256 -|(% style="width:188px" %)2|(% colspan="2" style="width:640px" %)Standby(Running at 0 Hz)
252 +|(% rowspan="4" %)**F0.15**|(% colspan="2" %)The function of frequency lower limit|Default|0
253 +|(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Running at frequency lower limit
254 +|1|(% colspan="2" %)Stop
255 +|2|(% colspan="2" %)Standby(Running at 0 Hz)
257 257  
258 258  Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop.
259 259  
260 260  (% class="table-bordered" %)
261 -|(% rowspan="2" style="width:139px" %)** F0.16**|(% style="width:680px" %)Carrier Frequency|(% style="width:429px" %)Default|(% style="width:204px" %)Model Dependent
262 -|(% style="width:680px" %)Setting Range|(% colspan="2" style="width:633px" %)0.5kHz~~16.0kHz
260 +|(% rowspan="2" %)** F0.16**|Carrier Frequency|Default|Model Dependent
261 +|Setting Range|(% colspan="2" %)0.5kHz~~16.0kHz
263 263  
264 -= Carrier frequency =
265 -
266 266  This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced.
267 267  
268 268  When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases.
... ... @@ -390,7 +390,7 @@
390 390  
391 391  The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20.
392 392  
393 -= F1 group start & stop control =
390 += 2 F1 group start & stop control =
394 394  
395 395  (% class="table-bordered" %)
396 396  |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0
... ... @@ -550,7 +550,7 @@
550 550  
551 551  Setting whether the AC drive has output when running frequency is 0
552 552  
553 -= F2 group motor parameters =
550 += 3 F2 group motor parameters =
554 554  
555 555  (% class="table-bordered" %)
556 556  |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0
... ... @@ -644,9 +644,7 @@
644 644  
645 645  When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0.
646 646  
647 -{{info}}
648 648  **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.**
649 -{{/info}}
650 650  
651 651  (% class="table-bordered" %)
652 652  |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent
... ... @@ -665,7 +665,7 @@
665 665  
666 666  The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) .
667 667  
668 -= F3 group vector control parameters =
663 += 4 F3 group vector control parameters =
669 669  
670 670  F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1.
671 671  
... ... @@ -802,7 +802,7 @@
802 802  
803 803  During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15.
804 804  
805 -= F4 group v/f control parameters =
800 += 5 F4 group v/f control parameters =
806 806  
807 807  This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control.
808 808  
... ... @@ -971,7 +971,7 @@
971 971  
972 972  According to the actual use, select the situation where the AVR function is enabled.
973 973  
974 -= F5 group input terminals =
969 += 6 F5 group input terminals =
975 975  
976 976  The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals.
977 977  
... ... @@ -1106,27 +1106,18 @@
1106 1106  
1107 1107  0: Two-line mode 1: This mode is the most commonly used two-line mode. The FWD and REV terminal commands determine the forward and reverse of the motor.
1108 1108  
1109 -[[image:1681697850903-377.png||height="282" width="633"]]
1110 -
1111 1111  1: Two-wire mode 2: FWD is the enable terminal when using this mode. The direction is determined by the state of the REV.
1112 1112  
1113 -[[image:1681697969422-504.png]]
1106 +2: Three-line mode 1: This mode Din is the enable terminal, and the direction is controlled by FWD and REV respectively.
1114 1114  
1115 -2: Three-line mode 1: This mode Din(function code 3) is the enable terminal, and the direction is controlled by FWD and REV respectively.
1108 +But the pulse is valid, it must be completed by disconnecting the Din terminal signal when stopping.
1116 1116  
1117 -DIN is pulse effective, user need to disconnect the Din terminal signal when stop.
1118 -
1119 1119  Din is the multifunctional input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1120 1120  
1121 -[[image:1681698530367-261.png||height="298" width="628"]]
1122 -
1123 1123  3: Three-line mode 2: The enable terminal of this mode is Din, the running command is given by FWD, and the direction is determined by the state of REV. The stop command is completed by disconnecting the Din signal.
1124 1124  
1125 1125  Din is the multi-function input terminal of DI1~~DI6. At this time, the corresponding terminal function should be defined as the No. 3 function "three-wire operation control".
1126 1126  
1127 -[[image:1681698557086-403.png||height="267" width="625"]]
1128 -
1129 -
1130 1130  (% class="table-bordered" %)
1131 1131  |(% rowspan="2" %)**F5.17**|UP/DOWN change rate range|Default|0.50Hz
1132 1132  |Setting range|(% colspan="2" %)0.01Hz~~65.535Hz
... ... @@ -1171,6 +1171,20 @@
1171 1171  The function of AI2 is similar to the setting method of AI1.
1172 1172  
1173 1173  (% class="table-bordered" %)
1160 +|(% rowspan="2" %)**F5.28**|PULSE INPUT minimum input|Default|0.00kHz
1161 +|Setting range|(% colspan="2" %)0.00kHz~~F5.30 
1162 +|(% rowspan="2" %)**F5.29**|Percentage rate of PULSE INPUT minimum input|Default|0.0%
1163 +|Setting range|(% colspan="2" %)-100.00%~~100.0%
1164 +|(% rowspan="2" %)**F5.30**|PULSE INPUT maximum input|Default|50.00kHz
1165 +|Setting range|(% colspan="2" %)F5.28~~50.00kHz  
1166 +|(% rowspan="2" %)**F5.31**|Percentage rate of PULSE INPUT maximum input|Default|100.0%
1167 +|Setting range|(% colspan="2" %)-100.00%~~100.0%
1168 +|(% rowspan="2" %)**F5.32**|PULSE INPUT filter time|Default|0.10s
1169 +|Setting range|(% colspan="2" %)0.00s~~10.00s
1170 +
1171 +This group of function codes defines the corresponding relationship when pulse is used as the frequency setting method. Pulse frequency input can only be input through DI6 channel. The application of this group of functions is similar to that of AI1.
1172 +
1173 +(% class="table-bordered" %)
1174 1174  |(% rowspan="2" %)**F5.33**|DI1 enable delay time|Default|0.0s
1175 1175  |Setting range|(% colspan="2" %)0.0s~~3600.0s
1176 1176  |(% rowspan="2" %)**F5.34**|DI1 disable delay time|Default|0.0s
... ... @@ -1208,7 +1208,7 @@
1208 1208  
1209 1209  Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid.
1210 1210  
1211 -= F6 group output terminals =
1211 += 7 F6 group output terminals =
1212 1212  
1213 1213  The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals.
1214 1214  
... ... @@ -1462,14 +1462,8 @@
1462 1462  
1463 1463  For the second output, the parameter setting method is the same as F6.28~~F6.32.
1464 1464  
1465 -(% class="table-bordered" %)
1466 -|(% rowspan="2" %)**F6.38**|The setting time of timer|Default|0
1467 -|Setting range|(% colspan="3" %)0.00s~~100.0s
1465 += 8 F7 group keypad display =
1468 1468  
1469 -Set the timer setting time
1470 -
1471 -= F7 group keypad display =
1472 -
1473 1473  (% class="table-bordered" %)
1474 1474  |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0
1475 1475  |(% rowspan="3" %)Setting range|0|(% colspan="2" %)No operation
... ... @@ -1679,7 +1679,7 @@
1679 1679  |(% rowspan="2" %)**F7.15**|Performance software version|Default|-
1680 1680  |Setting range|(% colspan="2" %)-
1681 1681  
1682 -= F8 group auxiliary functions =
1676 += 9 F8 group auxiliary functions =
1683 1683  
1684 1684  (% class="table-bordered" %)
1685 1685  |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz
... ... @@ -1979,7 +1979,7 @@
1979 1979  
1980 1980  Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10.
1981 1981  
1982 -= F9 group pid function of process control =
1976 += 10 F9 group pid function of process control =
1983 1983  
1984 1984  PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows:
1985 1985  
... ... @@ -1986,9 +1986,6 @@
1986 1986  (% style="text-align:center" %)
1987 1987  [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]]
1988 1988  
1989 -(% style="text-align:center" %)
1990 -[[image:生产流程图.png]]
1991 -
1992 1992  Figure 6-10-1 Block diagram of process PID principle
1993 1993  
1994 1994  (% class="table-bordered" %)
... ... @@ -2184,7 +2184,7 @@
2184 2184  
2185 2185  Figure 6-10-2 PID sleep and wake-up timing diagram
2186 2186  
2187 -= FA group faults & protection =
2178 += 11 FA group faults & protection =
2188 2188  
2189 2189  (% class="table-bordered" %)
2190 2190  |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1
... ... @@ -2308,17 +2308,23 @@
2308 2308  |(% rowspan="9" %)**FA.15**|(% colspan="2" style="width:442px" %)Fault protection action selection 3|(% style="width:451px" %)Default|(% colspan="2" %)00000
2309 2309  |(% rowspan="7" %)Setting range|(% style="width:316px" %)Ones Place|(% colspan="3" style="width:978px" %)User-defined fault 1(Err27) (0~~2,as ones place of FA.13)
2310 2310  |(% style="width:316px" %)Tens Place|(% colspan="3" style="width:978px" %)User-defined fault 2(Err28) (0~~2,as ones place of FA.13)
2311 -|(% style="width:316px" %)Hundreds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2312 -|(% style="width:316px" %)Thousands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2302 +|(% style="width:316px" %)Hundr-eds Place|(% colspan="3" style="width:978px" %)Powering on time reached(Err29) (0~~2,as ones place of FA.13)
2303 +|(% style="width:316px" %)Thous-ands Place|(% colspan="3" style="width:978px" %)Load loss(Err30)
2313 2313  |(% style="width:316px" %)0|(% colspan="3" style="width:978px" %)Free stopping
2314 2314  |(% style="width:316px" %)1|(% colspan="3" style="width:978px" %)Stop according to the stop mode
2315 2315  |(% style="width:316px" %)2|(% colspan="3" style="width:978px" %)Decelerate to 7% of the rated frequency of the motor and continue to run, and automatically return to the set frequency if the load is not lost
2316 -| |(% style="width:316px" %)Ten thousands Place|(% colspan="3" style="width:978px" %)(((
2307 +| |(% style="width:316px" %)Ten thous-ands Place|(% colspan="3" style="width:978px" %)(((
2317 2317  PID feedback loss during
2318 2318  
2319 2319  Running (Err31) (0~~2,as ones place of FA.13)
2320 2320  )))
2312 +|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2313 +Overcurrent stall Integral coefficient
2314 +)))|(% colspan="2" style="width:451px" %)Default|500
2315 +|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2321 2321  
2317 +set overcurrent stall Integral coefficient rate.
2318 +
2322 2322  When “free stop” is selected: the inverter prompts Err~*~* and stops directly.
2323 2323  
2324 2324  When "Stop according to stop mode" is selected: the inverter prompts A~*~* and stops according to the stop mode, and prompts ErrXX after stopping.
... ... @@ -2326,29 +2326,22 @@
2326 2326  When “continue running” is selected: the inverter continues to run and prompts A~*~*. For the running frequency, refer to the description of FA.20 and FA.21.
2327 2327  
2328 2328  (% class="table-bordered" %)
2329 -|(% rowspan="6" %)**FA.16**|(% colspan="2" style="width:442px" %)(((
2330 -Overcurrent stall Integral coefficient
2331 -)))|(% colspan="2" style="width:451px" %)Default|500
2332 -|(% rowspan="5" %)Setting range|(% colspan="4" rowspan="5" %)1~~2000
2333 -
2334 -Set overcurrent stall Integral coefficient rate.
2335 -
2336 -(% class="table-bordered" %)
2337 -|(% rowspan="3" %)(((
2338 -**FA.17**
2339 -)))|(% colspan="2" rowspan="1" %)Instant stop /no-stop mode |(((
2326 +|(% rowspan="2" %)(((
2327 +FA.17
2328 +)))|(((
2329 +Undervoltage setting
2330 +)))|(((
2340 2340  Default
2341 2341  )))|(((
2342 -0
2333 +100.0%
2343 2343  )))
2344 -|(% colspan="1" rowspan="2" %)(((
2335 +|(((
2345 2345  Setting range
2346 -)))|(% rowspan="1" %)0|(% colspan="2" rowspan="1" %)(((
2347 -General machine instant stop/no-stop
2337 +)))|(% colspan="2" rowspan="1" %)(((
2338 +60.0%~~140.0%
2348 2348  )))
2349 -|1|(% colspan="2" %)Spinning machine instant stop/no-stop
2350 2350  
2351 -Set the mode of instant stop and no-stop.
2341 +Instantaneous power failure mode selection
2352 2352  
2353 2353  (% class="table-bordered" %)
2354 2354  |(% rowspan="2" %)**FA.18**|Undervoltage setting|Default|100.0%
... ... @@ -2419,7 +2419,7 @@
2419 2419  
2420 2420  Note: The function code display data is H.xxx, where H. means hexadecimal data.
2421 2421  
2422 -= FB group frequency swing, length fixing and counting =
2412 += 12 FB group frequency swing, length fixing and counting =
2423 2423  
2424 2424  The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions.
2425 2425  
... ... @@ -2506,7 +2506,7 @@
2506 2506  
2507 2507  Figure 6-12-2 Schematic diagram of set count value given and designated count value given
2508 2508  
2509 -= FC group communication parameters =
2499 += 13 FC group communication parameters =
2510 2510  
2511 2511  (% class="table-bordered" %)
2512 2512  |(% rowspan="2" %)**FC.00**|Local address|Default|1
... ... @@ -2557,7 +2557,7 @@
2557 2557  
2558 2558  Used to determine the output unit of the current value when the communication reads the output current.
2559 2559  
2560 -= FD group muti-stage speed and simple plc functions =
2550 += 14 FD group muti-stage speed and simple plc functions =
2561 2561  
2562 2562  The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics.
2563 2563  
... ... @@ -2716,7 +2716,7 @@
2716 2716  
2717 2717  This parameter determines the target quantity given channel of multi-speed 0.
2718 2718  
2719 -= FE group user password management =
2709 += 15 FE group user password management =
2720 2720  
2721 2721  (% class="table-bordered" %)
2722 2722  |(% rowspan="2" %)**FE.00**|User password|Default|0
1681697850903-377.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Jim
Size
... ... @@ -1,1 +1,0 @@
1 -18.5 KB
Content
1681697969422-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Jim
Size
... ... @@ -1,1 +1,0 @@
1 -10.9 KB
Content
1681698530367-261.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Jim
Size
... ... @@ -1,1 +1,0 @@
1 -10.0 KB
Content
1681698557086-403.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Jim
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
生产流程图.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.AiXia
Size
... ... @@ -1,1 +1,0 @@
1 -1.0 MB
Content