Last modified by Theodore Xu on 2025/02/21 14:13

From version 25.1
edited by Theodore Xu
on 2025/02/21 14:13
Change comment: There is no comment for this version
To version 16.1
edited by Theodore Xu
on 2023/11/13 11:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,4 +1,4 @@
1 -= F0 group basic parameters =
1 += 1 F0 group basic parameters =
2 2  
3 3  (% class="table-bordered" %)
4 4  |(% rowspan="3" %)**F0.00**|(% colspan="2" %)Motor control mode|Default|0
... ... @@ -13,10 +13,7 @@
13 13  
14 14  It is suitable for occasions where the load requirements are not high or one AC drive drives multiple motors, such as fans and pumps.
15 15  
16 -(% class="box infomessage" %)
17 -(((
18 -**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it.
19 -)))
16 +**✎Note**: The motor parameter identification process must be carried out when selecting the SVC mode. Only accurate motor parameters can give full play to the advantages of it
20 20  
21 21  (% class="table-bordered" %)
22 22  |(% rowspan="4" %)**F0.01**|(% colspan="2" %)Command source selection|Default|0
... ... @@ -47,7 +47,7 @@
47 47  
48 48  This function is only valid for the digital setting of the frequency source. It is used to determine whether the set frequency is the current operating frequency or the current target frequency in UP/DOWN. .
49 49  
50 -(% class="table-bordered" style="width:1474px" %)
47 +(% class="table-bordered" %)
51 51  |(% rowspan="11" %)**F0.03**|(% colspan="2" %)Setting main frequency source X|Default|1
52 52  |(% rowspan="10" %)Setting Range|0|(% colspan="2" %)Digital setting (non-retentive at power failure)
53 53  |1|(% colspan="2" %)Digital setting (retentive at power failure)
... ... @@ -54,7 +54,7 @@
54 54  |2|(% colspan="2" %)AI1
55 55  |3|(% colspan="2" %)AI2
56 56  |4|(% colspan="2" %)Reserved
57 -|5|(% colspan="2" %)PULSE setting DI6
54 +|5|(% colspan="2" %)PULSE setting DI6(Reserved)
58 58  |6|(% colspan="2" %)Multi-stage speed setting
59 59  |7|(% colspan="2" %)Simple PLC
60 60  |8|(% colspan="2" %)PID
... ... @@ -86,8 +86,10 @@
86 86  
87 87  The set frequency is given by the terminal pulse.
88 88  
89 -Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~20kHz.
86 +Pulse given signal specifications: voltage range 9V~~30V, frequency range 0kHz~~100kHz.
90 90  
88 +Note: Pulse reference can only be input from the multi-function input terminal, __**requires custom control board development.**__
89 +
91 91  **6: **Multi-stage speed
92 92  
93 93  Select multi-stage speed operation mode. Need to set the F5 group "input terminals" and FD group "multi-stage speed and PLC" parameters to determine the corresponding relationship between the given signal and the given frequency.
... ... @@ -131,8 +131,8 @@
131 131  
132 132  (% class="table-bordered" %)
133 133  |(% rowspan="3" %)**F0.05**|(% colspan="2" %)Range of auxiliary frequency source Y|Default|0
134 -|(% rowspan="2" style="width:494px" %)Setting Range|(% style="width:271px" %)0|(% colspan="2" %)Relative to the maximum frequency
135 -|(% style="width:271px" %)1|(% colspan="2" %)Relative to the frequency source X
133 +|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Relative to the maximum frequency
134 +|1|(% colspan="2" %)Relative to the frequency source X
136 136  |(% rowspan="2" %)**F0.06**|(% colspan="2" %)Percentage range of auxiliary frequency source Y|Default|0
137 137  |(% colspan="2" %)Setting Range|(% colspan="2" %)0%~~150%
138 138  
... ... @@ -155,13 +155,13 @@
155 155  
156 156  Use this parameter to select the frequency given channel. The frequency setting is realized by the combination of the main frequency source X and the auxiliary frequency source Y.
157 157  
158 -One’s digit: Selection of frequency source
157 +One’s digit:Selection of frequency source
159 159  
160 -0: Main frequency source X
159 +0:main frequency source X
161 161  
162 162  The main frequency X is used as the target frequency.
163 163  
164 -1: Main and auxiliary calculation results
163 +1: main and auxiliary calculation results
165 165  
166 166  The main and auxiliary calculation result is used as the target frequency (The calculation relationship is determined by the ten’s digits).
167 167  
... ... @@ -179,9 +179,9 @@
179 179  
180 180  4: Switchover between Y and main (X) & auxiliary(Y) calculation
181 181  
182 -When the multi-function input terminal 18: Frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
181 +When the multi-function input terminal 18: frequency source switching is invalid, the auxiliary frequency source Y is taken as the target frequency.
183 183  
184 -When the multi-function input terminal 18: Frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
183 +When the multi-function input terminal 18: frequency source switching is valid, the main and auxiliary calculation result is taken as the target frequency.
185 185  
186 186  Ten’s digit:X and Y calculation relationship:
187 187  
... ... @@ -206,30 +206,30 @@
206 206  The result of multiplying the main frequency source X by the auxiliary frequency source Y is used as the target frequency.
207 207  
208 208  (% class="table-bordered" %)
209 -|(% rowspan="2" style="width:126px" %)**F0.08**|(% style="width:296px" %)Keypad setting frequency|(% style="width:525px" %)Default|(% style="width:504px" %)50.00Hz
210 -|(% style="width:296px" %)Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
208 +|(% rowspan="2" %)**F0.08**|Keypad setting frequency|Default|50.00Hz
209 +|Setting Range|(% colspan="2" %)0.00~~Maximum frequency F0.10 (valid for digital setting for frequency source selection)
211 211  
212 212  When the frequency source is selected as "digital setting" or "terminal UP/DOWN", the function code value is the initial value of the frequency digital setting of the inverter.
213 213  
214 -(% class="table-bordered" style="width:1454px" %)
215 -|(% rowspan="3" style="width:134px" %)**F0.09**|(% colspan="2" style="width:825px" %)Running direction selection|(% style="width:405px" %)Default|(% style="width:117px" %)0
216 -|(% rowspan="2" style="width:288px" %)Setting Range|(% style="width:528px" %)0|(% colspan="2" style="width:513px" %)Forward direction
217 -|(% style="width:528px" %)1|(% colspan="2" style="width:513px" %)Reverse direction
213 +(% class="table-bordered" %)
214 +|(% rowspan="3" %)**F0.09**|(% colspan="2" %)Running direction selection|Default|0
215 +|(% rowspan="2" %)Setting Range|0|(% colspan="2" %)Forward direction
216 +|1|(% colspan="2" %)Reverse direction
218 218  
219 219  By changing this parameter, the rotation direction of the motor can be changed without changing any other parameters. Its function is equivalent to realizing the conversion of the rotation direction of the motor by adjusting any two cables of the motor (U, V, W).
220 220  
221 221  Tip: After the parameters are initialized, the motor running direction will return to the original state. Use it with caution when it is forbidden to change the rotation of the motor after the system is debugged.
222 222  
223 -(% class="table-bordered" style="width:1473px" %)
224 -|(% rowspan="2" style="width:135px" %)**F0.10**|(% colspan="2" style="width:815px" %)Maximum Frequency|(% style="width:376px" %)Default|50.00 Hz
225 -|(% colspan="2" style="width:815px" %)Setting Range|(% colspan="2" style="width:501px" %)50.00Hz~~500.00Hz
226 -|(% rowspan="7" style="width:135px" %)**F0.11**|(% colspan="2" style="width:815px" %)Source of frequency upper limit|(% style="width:376px" %)Default|0
227 -|(% rowspan="6" style="width:285px" %)Setting Range|(% style="width:530px" %)0|(% colspan="2" style="width:501px" %)Set by F0.12
228 -|(% style="width:530px" %)1|(% colspan="2" style="width:501px" %)AI1
229 -|(% style="width:530px" %)2|(% colspan="2" style="width:501px" %)AI2
230 -|(% style="width:530px" %)3|(% colspan="2" style="width:501px" %)Reserved
231 -|(% style="width:530px" %)4|(% colspan="2" style="width:501px" %)Reserved
232 -|(% style="width:530px" %)5|(% colspan="2" style="width:501px" %)Communication setting
222 +(% class="table-bordered" %)
223 +|(% rowspan="2" %)**F0.10**|(% colspan="2" %)Maximum Frequency|Default|50.00 Hz
224 +|(% colspan="2" %)Setting Range|(% colspan="2" %)50.00Hz~~500.00Hz
225 +|(% rowspan="7" %)**F0.11**|(% colspan="2" %)Source of frequency upper limit|Default|0
226 +|(% rowspan="6" %)Setting Range|0|(% colspan="2" %)Set by F0.12
227 +|1|(% colspan="2" %)AI1
228 +|2|(% colspan="2" %)AI2
229 +|3|(% colspan="2" %)Reserved
230 +|4|(% colspan="2" %)Reserved
231 +|5|(% colspan="2" %)Communication setting
233 233  
234 234  Define the source of the upper limit frequency. The upper limit frequency can come from the digital setting (F0.12) or the analog input channel. When using the analog input to set the upper limit frequency, 100% of the analog input setting corresponds to F0.12.
235 235  
... ... @@ -236,33 +236,33 @@
236 236  For example, in torque control, speed control is invalid. In order to avoid "overspeeding" due to material disconnection, the upper limit frequency can be set by analog. When the inverter runs to the upper limit frequency value, the torque control is invalid and the inverter continues to run at the upper limit frequency.
237 237  
238 238  (% class="table-bordered" %)
239 -|(% rowspan="2" style="width:138px" %)**F0.12**|(% style="width:814px" %)Frequency upper limit|(% style="width:113px" %)Default|50.00Hz
240 -|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)Frequency lower limit (F0.14)~~F0.10
241 -|(% rowspan="2" style="width:138px" %)**F0.13**|(% style="width:814px" %)Upper limit frequency offset|(% style="width:113px" %)Default|0.00Hz
242 -|(% style="width:814px" %)Setting Range|(% colspan="2" style="width:500px" %)0.00Hz ~~F0.10
238 +|(% rowspan="2" %)**F0.12**|Frequency upper limit|Default|50.00Hz
239 +|Setting Range|(% colspan="2" %)Frequency lower limit (F0.14)~~F0.10
240 +|(% rowspan="2" %)**F0.13**|Upper limit frequency offset|Default|0.00Hz
241 +|Setting Range|(% colspan="2" %)0.00Hz ~~F0.10
243 243  
244 244  When the upper limit frequency is given by the analog input, this parameter is used as the offset of the upper limit frequency calculation, and this upper limit frequency offset is added to the set value of the analog upper limit frequency as the final upper limit frequency setting value.
245 245  
246 246  (% class="table-bordered" %)
247 -|(% rowspan="2" style="width:136px" %)**F0.14**|(% style="width:670px" %)Frequency lower limit|(% style="width:217px" %)Default|0.00Hz
248 -|(% style="width:670px" %)Setting Range|(% colspan="2" style="width:491px" %)0.00Hz~~F0.12
246 +|(% rowspan="2" %)**F0.14**|Frequency lower limit|Default|0.00Hz
247 +|Setting Range|(% colspan="2" %)0.00Hz~~F0.12
249 249  
250 250  When the inverter starts to run, it starts from the starting frequency. If the given frequency is less than the lower limit frequency during operation, the inverter will run at the lower limit frequency, stop or run at zero speed. You can set which operating mode to use through F0.15.
251 251  
252 252  (% class="table-bordered" %)
253 -|(% rowspan="4" style="width:136px" %)**F0.15**|(% colspan="2" style="width:676px" %)The function of frequency lower limit|(% style="width:546px" %)Default|0
254 -|(% rowspan="3" style="width:488px" %)Setting Range|(% style="width:188px" %)0|(% colspan="2" style="width:640px" %)Running at frequency lower limit
255 -|(% style="width:188px" %)1|(% colspan="2" style="width:640px" %)Stop
256 -|(% style="width:188px" %)2|(% colspan="2" style="width:640px" %)Standby(Running at 0 Hz)
252 +|(% rowspan="4" %)**F0.15**|(% colspan="2" %)The function of frequency lower limit|Default|0
253 +|(% rowspan="3" %)Setting Range|0|(% colspan="2" %)Running at frequency lower limit
254 +|1|(% colspan="2" %)Stop
255 +|2|(% colspan="2" %)Standby(Running at 0 Hz)
257 257  
258 258  Select the running state of the AC drive when the set frequency is lower than the lower limit frequency. In order to prevent the motor from running at low speed for a long time, this function can be used to choose to stop.
259 259  
260 -== Carrier frequency ==
261 -
262 262  (% class="table-bordered" %)
263 -|(% rowspan="2" style="width:139px" %)** F0.16**|(% style="width:680px" %)Carrier Frequency|(% style="width:429px" %)Default|(% style="width:204px" %)Model Dependent
264 -|(% style="width:680px" %)Setting Range|(% colspan="2" style="width:633px" %)0.5kHz~~16.0kHz
260 +|(% rowspan="2" %)** F0.16**|Carrier Frequency|Default|Model Dependent
261 +|Setting Range|(% colspan="2" %)0.5kHz~~16.0kHz
265 265  
263 += Carrier Frequency: =
264 +
266 266  This function adjusts the carrier frequency of the AC drive. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line to the ground and the interference caused by the inverter can be reduced.
267 267  
268 268  When the carrier frequency is low, the higher harmonic components of the output current increase, the motor loss increases, and the motor temperature rise increases.
... ... @@ -390,7 +390,7 @@
390 390  
391 391  The decimal place of the control frequency related instruction, the default is 2 decimal places. After the parameter is set, the decimal place of the parameter associated with the frequency is automatically adjusted. This parameter is not affected by F0.20.
392 392  
393 -= F1 group start & stop control =
392 += 2 F1 group start & stop control =
394 394  
395 395  (% class="table-bordered" %)
396 396  |(% rowspan="4" %)**F1.00**|(% colspan="2" %)Starting mode|Default|0
... ... @@ -550,7 +550,7 @@
550 550  
551 551  Setting whether the AC drive has output when running frequency is 0
552 552  
553 -= F2 group motor parameters =
552 += 3 F2 group motor parameters =
554 554  
555 555  (% class="table-bordered" %)
556 556  |(% rowspan="5" %)**F2.00**|(% colspan="2" %)Motor type selection|Default|0
... ... @@ -644,9 +644,7 @@
644 644  
645 645  When F2.11 is set to 1 or 2 and then press the ENT key, "TUNE" is displayed and flashes at this time, and then press the RUN key to start parameter tuning, and the displayed "TUNE" stops flashing at this time. When the tuning is over, the display returns to the stop state interface. During the tuning process, you can press the STOP button to stop tuning. When the tuning is completed, the value of F2.11 automatically returns to 0.
646 646  
647 -{{info}}
648 648  **✎Note: Tuning can only be effective in keyboard control mode, and the factory default value of acceleration and deceleration time is recommended.**
649 -{{/info}}
650 650  
651 651  (% class="table-bordered" %)
652 652  |(% rowspan="3" %)**F2.12**|(% colspan="2" %)G/P type selection|Default|Model dependent
... ... @@ -665,7 +665,7 @@
665 665  
666 666  The main and auxiliary winding currents can be changed by adjusting the single-phase motor turns ratio. Generally, reducing the single-phase motor turns ratio can increase the main winding current, reduce the auxiliary winding current, and reduce the motor heating (only effective when F2.00 = 3) .
667 667  
668 -= F3 group vector control parameters =
665 += 4 F3 group vector control parameters =
669 669  
670 670  F3 group function codes are only valid in vector control mode, that is, it is valid when F0.00=0, and it is invalid when F0.00=1.
671 671  
... ... @@ -802,7 +802,7 @@
802 802  
803 803  During startup, torque command 1 = F3.11 * F3.24 / 100; after maintaining time F3.25 seconds, it will be restored to torque command 2 = F3.11; torque command 1/2 switching requires torque acceleration and deceleration time F3.14/F3.15.
804 804  
805 -= F4 group v/f control parameters =
802 += 5 F4 group v/f control parameters =
806 806  
807 807  This group of function codes is only valid for V/F control (F0.00=1), and invalid for vector control.
808 808  
... ... @@ -971,7 +971,7 @@
971 971  
972 972  According to the actual use, select the situation where the AVR function is enabled.
973 973  
974 -= F5 group input terminals =
971 += 6 F5 group input terminals =
975 975  
976 976  The standard unit of the VB series inverter has 6 multi-function digital input terminals and 2 analog input terminals.
977 977  
... ... @@ -1208,7 +1208,7 @@
1208 1208  
1209 1209  Low Level:The connection between DI terminal and COM is invalid, while disconnection is valid.
1210 1210  
1211 -= F6 group output terminals =
1208 += 7 F6 group output terminals =
1212 1212  
1213 1213  The standard unit of VB series inverter has 2 multi-function relay output terminals, 1 FM terminal and 2 multi-function analog output terminals.
1214 1214  
... ... @@ -1314,8 +1314,9 @@
1314 1314  |11|Count value|0~~Maximum count value
1315 1315  |12|Communication setting|-10000~~10000
1316 1316  |13|Motor Speed|0~~Rotation speed corresponding to maximum output frequency
1317 -|14|Output Current|0-1000A, as 0-10V
1318 -|15|Output Voltage|0-1000V, as 0-10V
1314 +|14|Output Current|0-1000A,as 0-10V
1315 + 0-1000V,as 0-10V
1316 +|15|Output Voltage|0.0V~~1000.0V
1319 1319  
1320 1320  (% class="table-bordered" %)
1321 1321  |(% rowspan="2" %)**F6.14**|FMP output maximum frequency|Default|50.00kHz   
... ... @@ -1467,7 +1467,7 @@
1467 1467  
1468 1468  Set the timer setting time
1469 1469  
1470 -= F7 group keypad display =
1468 += 8 F7 group keypad display =
1471 1471  
1472 1472  (% class="table-bordered" %)
1473 1473  |(% rowspan="4" %)**F7.00**|(% colspan="2" %)LCD keypad parameter copy|Default|0
... ... @@ -1678,7 +1678,7 @@
1678 1678  |(% rowspan="2" %)**F7.15**|Performance software version|Default|-
1679 1679  |Setting range|(% colspan="2" %)-
1680 1680  
1681 -= F8 group auxiliary functions =
1679 += 9 F8 group auxiliary functions =
1682 1682  
1683 1683  (% class="table-bordered" %)
1684 1684  |(% rowspan="2" %)**F8.00**|JOG running frequency|Default|2.00Hz
... ... @@ -1978,7 +1978,7 @@
1978 1978  
1979 1979  Enabling the fast current limiting function can minimize the inverter's overcurrent fault and protect the inverter from uninterrupted operation. After entering the fast current-limiting state for a period of time, a fast current-limiting fault (Err40) will be reported, indicating that the inverter is overloaded. Please refer to the handling of Err10.
1980 1980  
1981 -= F9 group pid function of process control =
1979 += 10 F9 group pid function of process control =
1982 1982  
1983 1983  PID control is a common method used in process control. It adjusts the output frequency of the inverter by performing proportional, integral, and differential calculations on the difference between the feedback signal of the controlled quantity and the target quantity signal to form a negative feedback system. The controlled amount is stable at the target amount. It is suitable for process control such as flow control, pressure control and temperature control. The basic control block diagram is as follows:
1984 1984  
... ... @@ -1985,9 +1985,6 @@
1985 1985  (% style="text-align:center" %)
1986 1986  [[image:CHAPTER 7 FUNCTIONAL PARAMETER DETAILS_html_972dcbcc01a1c9f6.png]]
1987 1987  
1988 -(% style="text-align:center" %)
1989 -[[image:生产流程图.png]]
1990 -
1991 1991  Figure 6-10-1 Block diagram of process PID principle
1992 1992  
1993 1993  (% class="table-bordered" %)
... ... @@ -2183,7 +2183,7 @@
2183 2183  
2184 2184  Figure 6-10-2 PID sleep and wake-up timing diagram
2185 2185  
2186 -= FA group faults & protection =
2181 += 11 FA group faults & protection =
2187 2187  
2188 2188  (% class="table-bordered" %)
2189 2189  |(% rowspan="3" %)**FA.00**|Motor overload protection selection|Default|1
... ... @@ -2391,7 +2391,7 @@
2391 2391  
2392 2392  This function means that the inverter will not stop when the power is cut instantaneously. In the case of an instantaneous power failure or a sudden voltage drop, the inverter will reduce its output speed, and compensate for the voltage drop by feeding back energy through the load to keep the inverter running in a short time.
2393 2393  
2394 -If the instantaneous stop non-stop function selection is valid, when the bus voltage is lower than the voltage indicated by the instantaneous stop non-stop action judgment voltage (FA.25), the inverter will decelerate according to the instantaneous stop action selection. When the bus voltage exceeds FA.2and the duration is greater than FA.24, the inverter resumes the set frequency operation; otherwise the inverter will continue to reduce the operating frequency to Stop at 0 o'clock. Instantaneous stop non-stop function if shown.
2389 +If the instantaneous stop non-stop function selection is valid, when the bus voltage is lower than the voltage indicated by the instantaneous stop non-stop action judgment voltage (FA.25), the inverter will decelerate according to the instantaneous stop action selection. When the stop action judgment voltage (FA.25) represents the voltage, and the duration is maintained for the momentary stop and non-stop voltage rise judgment time (FA.24), the inverter resumes the set frequency operation; otherwise the inverter will continue to reduce the operating frequency to Stop at 0 o'clock. Instantaneous stop non-stop function if shown.
2395 2395  
2396 2396  The deceleration time of instantaneous power failure is too long, the load feedback energy is small, and the low voltage can not be effectively compensated; the deceleration time is too short, the load feedback energy is large, which will cause overvoltage protection. Please adjust the deceleration time appropriately according to the load inertia and the weight of the load.
2397 2397  
... ... @@ -2418,7 +2418,7 @@
2418 2418  
2419 2419  Note: The function code display data is H.xxx, where H. means hexadecimal data.
2420 2420  
2421 -= FB group frequency swing, length fixing and counting =
2416 += 12 FB group frequency swing, length fixing and counting =
2422 2422  
2423 2423  The swing frequency function is suitable for textile, chemical fiber and other industries and occasions that require traverse and winding functions.
2424 2424  
... ... @@ -2505,7 +2505,7 @@
2505 2505  
2506 2506  Figure 6-12-2 Schematic diagram of set count value given and designated count value given
2507 2507  
2508 -= FC group communication parameters =
2503 += 13 FC group communication parameters =
2509 2509  
2510 2510  (% class="table-bordered" %)
2511 2511  |(% rowspan="2" %)**FC.00**|Local address|Default|1
... ... @@ -2556,7 +2556,7 @@
2556 2556  
2557 2557  Used to determine the output unit of the current value when the communication reads the output current.
2558 2558  
2559 -= FD group muti-stage speed and simple plc functions =
2554 += 14 FD group muti-stage speed and simple plc functions =
2560 2560  
2561 2561  The simple PLC function is that the inverter has a programmable controller (PLC) built in to complete automatic control of multi-segment frequency logic. The running time, running direction and running frequency can be set to meet the technological requirements. This series of inverters can realize 16-speed change control, and there are 4 kinds of acceleration and deceleration time for selection. When the set PLC completes a cycle, an ON signal can be output from the multifunctional digital output terminals DO1 and DO2 or multifunctional relay 1 and relay 2. See F1.02~~F1.05 for details. When the frequency source selection F0.07, F0.03, F0.04 is determined as the multi-speed operation mode, it is necessary to set FD.00~~FD.15 to determine its characteristics.
2562 2562  
... ... @@ -2715,7 +2715,7 @@
2715 2715  
2716 2716  This parameter determines the target quantity given channel of multi-speed 0.
2717 2717  
2718 -= FE group user password management =
2713 += 15 FE group user password management =
2719 2719  
2720 2720  (% class="table-bordered" %)
2721 2721  |(% rowspan="2" %)**FE.00**|User password|Default|0
生产流程图.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.AiXia
Size
... ... @@ -1,1 +1,0 @@
1 -1.0 MB
Content